
Heuristics for type error discovery and recovery 1 / 28

Heuristics for type error discovery and recovery

Jurriaan Hage
jur@cs.uu.nl

most work by Bastiaan Heeren (bastiaan@cs.uu.nl)

Center for Software Technology, Department of Computer and Information Sciences
Universiteit Utrecht

September 5, 2006

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery 2 / 28

Overview

1 Motivation and context

2 The heuristics

3 Examples

4 Implementation

5 Summary and validation

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 3 / 28

Context

Strongly-typed, higher-order, polymorphic functional languages.

Typically, type inferencers perform unifications during an AST
traversal.

Results in a substitution or an error message.

Unification merges a piece of type information into the
substitution.

Consequence: unifications towards the end of the program get the
blame.

artifact of inferencing process, not programming

When an error is discovered, we do not know how we got there.

Constraint based type systems are certainly an improvement

(often) small and mobile pieces of information (reordering)
special solvers can be built for them, and reused a lot

Still, type inferencing is done one constraint at the time (bias)

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 4 / 28

Contributions

We consider sets of constraints at the time, not a single
constraint

approximately a whole binding group at the time

We map these to a special datastructure, a type graph

Essentially, it can also represent inconsistent sets of unifications

This structure is amenable to the definition of various heuristics

general heuristics
programming language dependent heuristics
programmer dependent heuristics

We implemented quite a number of these (own, others, folklore)

It is easy to define and plug-in new heuristics

Heuristics encapsulate expert knowledge and remove bias

A voting mechanism decides between competing heuristics

Debugging mechanism: see the Appendix of the paper

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 5 / 28

Additional benefits

The usual for using constraints:

decoupling of type system specification and inference algorithm
many solvers can be defined, each with their own specialty
amenable to reuse: many languages use the same kind of
constraints

Global analysis gives more flexibility, and when done cleverly
doesn’t degrade efficiency much

Outcome can help us determine which kind of mistakes are made
most often

Simply consider which heuristic is used most (if used correctly)

Helium has a logging facility (60,000 programs thus far)

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 7 / 28

“Limitations”

In this talk, I consider only sets of unification (equality)
constraints.

However, we do handle polymorphism (efficiently), but at a
different level.

Between binding groups versus within binding groups

I can tell you what we did, but not how.

More information in the paper, more in a technical report and even
more in Bastiaan Heeren’s PhD.

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 9 / 28

Haskell versus Helium

A stronger limitation: Helium is a subset of Haskell

Limited overloading:

overloading yes/no is an option
no user-definable classes and instances
only support for Enum,Eq,Num,Ord,Show, all instances derived
no overloading on numerals... ever.

No records, n + k patterns, newtype, qualified imports, literate
programming,...

Check the website for the current status

We have much of Haskell98, but not all (making our life a little easier).

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 9 / 28

Haskell versus Helium

A stronger limitation: Helium is a subset of Haskell

Limited overloading:

overloading yes/no is an option
no user-definable classes and instances
only support for Enum,Eq,Num,Ord,Show, all instances derived
no overloading on numerals... ever.

No records, n + k patterns, newtype, qualified imports, literate
programming,...

Check the website for the current status

We have much of Haskell98, but not all (making our life a little easier).

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > The heuristics 10 / 28

The list of heuristics (a selection)

high participation rate [28 LOC]
enforces that when one int goes against ten booleans, the int loses

Repair heuristics (selectors) with voting mechanism
sibling functions [43] and literals [40]
application heuristic [177]
tuple heuristic [50]

application like heuristic for tuples

function binding has too many arguments [32]
f x = 0 although f :: Int

variable function [40]
variable is not an application unless it has some arguments

Tie breakers (if nothing else helps), mainly to avoid constraints
that should not be blamed [10] (type of let and type of body)
that are trusted [7] (explicit types, Prelude functions)
that give bad error messages [7] (folklore constraints)

The final tie breaker: first come first blamed [5].

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Examples 12 / 28

A first example

doubleList :: [Int] -> [Int]
doubleList xs = map (*2)

Second error message

(3,17): Type error in application
expression : map (* 2)
term : map

type : (a -> b) -> [a] -> [b]
does not match : (Int -> Int) -> [Int]

probable fix : insert a second argument

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Examples 14 / 28

Multi-example

elem :: a -> [a] -> Bool
elem = undefined

f :: a -> a
f = if (elem [1,3..] 2) then (\z -> z)

else (\x -> x) == (\y -> y)

First error message

(5,9): Type error in application
expression : elem [1, 3 ..] 2
term : elem

type : a -> [a] -> Bool
does not match : [Int] -> Int -> Bool

probable fix : re-order arguments

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Examples 16 / 28

Multi-example

elem :: a -> [a] -> Bool
elem = undefined

f :: a -> a
f = if (elem [1,3..] 2) then (\z -> z)

else (\x -> x) == (\y -> y)

Second error message

(6,20): Type error in infix application
expression : (\x -> x) == (\y -> y)
operator : ==

type : Int -> Int -> Bool
does not match : (a -> a) -> (b -> b) -> c -> c

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Examples 16 / 28

Multi-example

elem :: a -> [a] -> Bool
elem = undefined

f :: a -> a
f = if (elem [1,3..] 2) then (\z -> z)

else (\x -> x) == (\y -> y)

Second error message

(6,20): Type error in infix application
expression : (\x -> x) == (\y -> y)
operator : ==

type : Int -> Int -> Bool
does not match : (a -> a) -> (b -> b) -> c -> c

probable fix : use . instead -- with siblings

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Examples 18 / 28

Tie-breaker example

f :: Bool
f = (\x -> x) == (\y -> y)

Error message

(2,15): Type error in infix application
expression : (\x -> x) == (\y -> y)
operator : ==

type : Int -> Int -> Bool
does not match : (a -> a) -> (b -> b) -> Bool

Trusted constraint tie-breaker avoids suggesting to change type of ==

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 19 / 28

Heuristics

Heuristics encapsulate expert knowledge on how to discover
mistakes

Many of them are obvious, folklore, or thought up by others,

but we implemented them within an infrastructure,
and added some of our own.

What does a heuristic look like?

No time. Check out the Helium compiler or ask me to show you
I did give some code lengths earlier on

How do we apply them?

basically a list of heuristic functions
applied in the given order
but some elements of this list can be lists with a voting mechanism.

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 21 / 28

The list in Haskell form

listOfHeuristics siblings path =
[highlyTrustedFilter
, highParticipation 0.95 path
] ++
[Heuristic (Voting

[siblingFunctions siblings
, similarLiterals
, applicationEdge
, tupleEdge
, fbHasTooManyArguments
, variableFunction])

] ++
[applicationResult
, negationResult
, trustFactorOfConstraint
, isTopDownEdge
, positionInList]

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 22 / 28

Type graphs

Global analysis by considering sets of constraints at the time.

Polymorphic types have been instantiated.

Recall: type graph handles one binding group at the time.

Indeed, in Helium we usually perform type inferencing greedily,
solving one constraint at the time.

Only when an error occurs in a binding group do we restart type
inferencing only for that binding group.

Heuristics are basically graph traversing algorithms

And relatively short and simple ones at that

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 23 / 28

Type graphs

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 24 / 28

How are type graphs used?

Consider a set of equivalence constraints

Build the type graph:

every type constants, type variable and type application becomes a
vertex
every constraint becomes an edge
but might give rise to derived edges: a→ b ≡ b → c

When two different type constants (Int,→) or type application
are in the same clique:

consider paths between these vertices
remove edges (constraints) on these paths
until all such paths have disappeared.

Heuristics help to discover which constraints should be removed.

When all conflicts are resolved a substitution is easy to compute.

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 25 / 28

Complications

Type graphs grow large quickly, and have many derived edges

Represent cliques explicitly, merge and split as needed

Number of error paths grows fast too

If error path p contains q then removing a constraint from q also
removes p
Avoid “detours” (see technical report)

Infinite types need special treatment (see paper)

Handling type synonyms

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Summary and validation 26 / 28

Summary

We use type graphs for representing sets of equivalence
constraints.

Therefore we can “globally analyze” type constraints.

Global ≈ per binding group

We implemented many heuristics, embedded in an infrastructure

Adding new heuristics is quite easy, the infrastructure is there

Heuristics are

general ones (weighting),
programming language dependent (application), or
programmer dependent (siblings)

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Summary and validation 27 / 28

A small questionnaire

Validation of our kind of work can only be done experimentally.

What kind of experiment(ally derived information) would convince
you that

it works?
it is useful?

Let me know at your convenience.

Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Summary and validation 28 / 28

Any questions?

Center for Software Technology Jurriaan Hage

	Motivation and context
	The heuristics
	Examples
	Implementation
	Summary and validation

