Heuristics for type error discovery and recovery 1/28

Heuristics for type error discovery and recovery

Jurriaan Hage
jur@cs.uu.nl
most work by Bastiaan Heeren (bastiaan@cs.uu.nl)

Center for Software Technology, Department of Computer and Information Sciences
Universiteit Utrecht

September 5, 2006

Heuristics for type error discovery and recovery

@ Motivation and context

© The heuristics

© Examples

@ Implementation

© Summary and validation

2/28

Heuristics for type error discovery and recovery > Motivation and context 3/28

Context

o Strongly-typed, higher-order, polymorphic functional languages.

o Typically, type inferencers perform unifications during an AST

traversal.

o Results in a substitution or an error message.
Unification merges a piece of type information into the
substitution.

Consequence: unifications towards the end of the program get the
blame.

o artifact of inferencing process, not programming

@ When an error is discovered, we do not know how we got there.

o Constraint based type systems are certainly an improvement

I,
03
my

§‘v

o (often) small and mobile pieces of information (reordering)
o special solvers can be built for them, and reused a lot

Still, type inferencing is done one constraint at the time (bias)

Universiteit Utrecht Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Motivation and context 4 /28

Contributions

o We consider sets of constraints at the time, not a single
constraint

o approximately a whole binding group at the time
We map these to a special datastructure, a type graph
o Essentially, it can also represent inconsistent sets of unifications
This structure is amenable to the definition of various heuristics
o general heuristics
o programming language dependent heuristics
o programmer dependent heuristics
We implemented quite a number of these (own, others, folklore)
o It is easy to define and plug-in new heuristics

©

©

©

o Heuristics encapsulate expert knowledge and remove bias
o A voting mechanism decides between competing heuristics

o Debugging mechanism: see the Appendix of the paper

Universiteit Utrecht Center for Software Technology Jurriaan Hage

Sy

==
N

Heuristics for type error discovery and recovery > Motivation and context 5/28

Additional benefits

@ The usual for using constraints:
o decoupling of type system specification and inference algorithm
o many solvers can be defined, each with their own specialty
o amenable to reuse: many languages use the same kind of
constraints
o Global analysis gives more flexibility, and when done cleverly
doesn't degrade efficiency much
o Outcome can help us determine which kind of mistakes are made
most often
o Simply consider which heuristic is used most (if used correctly)

o Helium has a logging facility (60,000 programs thus far)

s,

§‘v

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > Motivation and context 7 /28

“Limitations”

o In this talk, | consider only sets of unification (equality)
constraints.
o However, we do handle polymorphism (efficiently), but at a
different level.
o Between binding groups versus within binding groups
o | can tell you what we did, but not how.
o More information in the paper, more in a technical report and even
more in Bastiaan Heeren's PhD.

Jurriaan Hage

s,

§‘v

Universiteit Utrecht Center for Software Technology

LN

Heuristics for type error discovery and recovery > Motivation and context 9 /28

Haskell versus Helium

A stronger limitation: Helium is a subset of Haskell

©

Limited overloading:

©

o overloading yes/no is an option

o no user-definable classes and instances

o only support for Enum,Eq,Num,0rd, Show, all instances derived
o no overloading on numerals... ever.

o No records, n+ k patterns, newtype, qualified imports, literate
programming,...
o Check the website for the current status

Universiteit Utrecht Center for Software Technology Jurriaan Hage

(4|
N

A
U

Heuristics for type error discovery and recovery > Motivation and context 9 /28

Haskell versus Helium

o A stronger limitation: Helium is a subset of Haskell
o Limited overloading:
o overloading yes/no is an option
o no user-definable classes and instances
o only support for Enum,Eq,Num,0rd, Show, all instances derived
o no overloading on numerals... ever.
o No records, n+ k patterns, newtype, qualified imports, literate
programming,...

o Check the website for the current status

We have much of Haskell98, but not all (making our life a little easier).J

s,

§"

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > The heuristics 10 / 28

The list of heuristics (a selection)

@ high participation rate [28 LO(C]
o enforces that when one int goes against ten booleans, the int loses
o Repair heuristics (selectors) with voting mechanism
o sibling functions [43] and literals [40]
o application heuristic [177]
o tuple heuristic [50]
o application like heuristic for tuples
function binding has too many arguments [32]
o f x =0 although f :: Int
o variable function [40]
o variable is not an application unless it has some arguments
o Tie breakers (if nothing else helps), mainly to avoid constraints
o that should not be blamed [10] (type of let and type of body)
o that are trusted [7] (explicit types, Prelude functions)
o that give bad error messages [7] (folklore constraints)

[+

o The final tie breaker: first come first blamed [5].

Universiteit Utrecht Center for Software Technology Jurriaan Hage

an
- —
WS

Heuristics for type error discovery and recovery > Examples

A first example

12 /28

doublelList :: [Int] -> [Int]
doublelist xs = map (*2)

(3,17): Type error in application

expression : map (* 2)
term : map
type : (@ ->b) —> [a] -> [b]

does not match :

(Int -> Int) -> [Int]
probable fix

insert a second argument

A |
= B = Universiteit Utrecht Center for Software Technology Jurriaan Hage
N

Heuristics for type error discovery and recovery > Examples 14/ 28

Multi-example

elem :: a -> [a]l] —> Bool
elem = undefined

::a —> a
= if (elem [1,3..] 2) then (\z -> z)
else (\x -> x) == (\y > y)

f
f

(6,9): Type error in application

expression : elem [1, 3 ..] 2
term : elem
type ta -> [a] -> Bool
does not match : [Int] -> Int -> Bool
probable fix : re-order arguments
%W%

«-.- Universiteit Utrecht Center for Software Technology Jurriaan Hage

U

Heuristics for type error discovery and recovery > Examples 16 / 28

Multi-example

elem :: a -> [a]l] —> Bool
elem = undefined

::a —> a
= if (elem [1,3..] 2) then (\z -> z)
else (\x -> x) == (\y > y)

f
f

(6,20): Type error in infix application

expression : (\x > x) == Ny > y)
operator g ==
type : Int -> Int -> Bool

does not match : (a -=> a) > (b -=> b) -> ¢c -> ¢

%W%

«-.- Universiteit Utrecht Center for Software Technology Jurriaan Hage

U

Heuristics for type error discovery and recovery > Examples 16 / 28

Multi-example

elem :: a -> [a]l] —> Bool
elem = undefined

::a —> a
= if (elem [1,3..] 2) then (\z -> z)
else (\x -> x) == (\y > y)

f
f

(6,20): Type error in infix application

expression : (\x > x) == (\y > y)
operator g =
type : Int -> Int -> Bool
does not match : (a -=> a) > (b -=> b) > ¢c -> c
probable fix : use . instead -- with siblings
§\‘ llr}% Universiteit Utrecht Center for Software Technology Jurriaan Hage
N

Heuristics for type error discovery and recovery > Examples 18 /28

Tie-breaker example

f :: Bool
f=>~Nx->x) =0y >y

(2,15): Type error in infix application

: (\x > x) == N\y >y
Int -> Int -> Bool
(a => a) -> (b -> b) -> Bool

expression
operator

type
does not match :

Trusted constraint tie-breaker avoids suggesting to change type of ==

N/
&\\ @ Jurriaan Hage

= b = Universiteit Utrecht Center for Software Technology

LN

Heuristics for type error discovery and recovery > Implementation 19 / 28

Heuristics

©

Heuristics encapsulate expert knowledge on how to discover
mistakes
Many of them are obvious, folklore, or thought up by others,
o but we implemented them within an infrastructure,
o and added some of our own.
@ What does a heuristic look like?

o No time. Check out the Helium compiler or ask me to show you
o | did give some code lengths earlier on

©

o How do we apply them?
o basically a list of heuristic functions
o applied in the given order
o but some elements of this list can be lists with a voting mechanism.

s

§‘v

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > Implementation 21 /28

The list in Haskell form

listOfHeuristics siblings path =
[highlyTrustedFilter
, highParticipation 0.95 path

] ++

[Heuristic (Voting

[

)
>
>
>

>

1 ++

siblingFunctions siblings
similarLiterals
applicationEdge

tupleEdge
fbHasTooManyArguments
variableFunction])

[applicationResult

, negationResult

, trustFactorOfConstraint
, isTopDownEdge

, positionInList]

S
N

Universiteit Utrecht Center for Software Technology Jurriaan Hage

Heuristics for type error discovery and recovery > Implementation 22 /28

Type graphs

©

Global analysis by considering sets of constraints at the time.

©

Polymorphic types have been instantiated.

o Recall: type graph handles one binding group at the time.
Indeed, in Helium we usually perform type inferencing greedily,
solving one constraint at the time.

Only when an error occurs in a binding group do we restart type
inferencing only for that binding group.

o Heuristics are basically graph traversing algorithms

o And relatively short and simple ones at that

©

©

s,

&

Universiteit Utrecht Center for Software Technology Jurriaan Hage

WS

Heuristics for type error discovery and recovery > Implementation 23 /28

Type graphs

main = xs : [4, 5, 6]
where len = length xs

xs = [1, 2, 3]
& = Universiteit Utrecht Center for Software Technology Jurriaan Hage

=
W

Heuristics for type error discovery and recovery > Implementation 24 /28

How are type graphs used?

o Consider a set of equivalence constraints
o Build the type graph:
o every type constants, type variable and type application becomes a
vertex

@ every constraint becomes an edge
o but might give rise to derived edges: a — b = b— ¢

o When two different type constants (Int, —) or type application
are in the same clique:

o consider paths between these vertices
o remove edges (constraints) on these paths
o until all such paths have disappeared.

o Heuristics help to discover which constraints should be removed.

@ When all conflicts are resolved a substitution is easy to compute.

s

§‘v

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > Implementation 25 /28

Complications

Type graphs grow large quickly, and have many derived edges
o Represent cliques explicitly, merge and split as needed

©

@ Number of error paths grows fast too
o If error path p contains g then removing a constraint from g also

removes p
o Avoid “detours” (see technical report)

©

Infinite types need special treatment (see paper)

o Handling type synonyms

s

§"

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > Summary and validation 26 / 28

Summary

o We use type graphs for representing sets of equivalence
constraints.
o Therefore we can “globally analyze” type constraints.
o Global ~ per binding group
o We implemented many heuristics, embedded in an infrastructure
o Adding new heuristics is quite easy, the infrastructure is there
o Heuristics are

o general ones (weighting),
o programming language dependent (application), or
o programmer dependent (siblings)

s

§‘v

Universiteit Utrecht Center for Software Technology Jurriaan Hage

LN

Heuristics for type error discovery and recovery > Summary and validation 27 / 28

A small questionnaire

o Validation of our kind of work can only be done experimentally.
o What kind of experiment(ally derived information) would convince
you that
o it works?
o it is useful?

o Let me know at your convenience.

A

%ﬂ < Universiteit Utrecht Center for Software Technology Jurriaan Hage

N

Heuristics for type error discovery and recovery > Summary and validation

28 / 28

	Motivation and context
	The heuristics
	Examples
	Implementation
	Summary and validation

