
[Faculty of Science
Information and Computing Sciences]

Constraint Handling Rules with Binders,
Patterns and Generic Quantification

Alejandro Serrano Mena and Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

August 31, 2017



[Faculty of Science
Information and Computing Sciences]

2

Overview

I What are we working on?

I Where do CHRs arise in our work?

I Why do they fall short?

I What do we need to make them work (better)?

I For the technical development: see the paper



[Faculty of Science
Information and Computing Sciences]

3

The Haskell type system

I Haskell is a hotbed of type system innovation: Generalized
Abstract Data Types (GADTs), type classes, (closed and
open) type families, etc.

I Inspired by developments in the dependently type
community, more and more features are added: power but
also complexity is on the rise

I Only rarely does the type system become a bit simpler



[Faculty of Science
Information and Computing Sciences]

4

Pros and Cons

I New type system features have advantages:
I More properties of a program can be encoded in the type

system,
I More guarantees on the correctness of our program,

checked automatically at every compile

I But also disadvantages:
I Difficult to implement
I New features may be difficult to grasp
I Complicated interactions
I Introduces new ways for programmers to make mistakes



[Faculty of Science
Information and Computing Sciences]

5

What is type error diagnosis?

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis



[Faculty of Science
Information and Computing Sciences]

6

A small mistake with big consequences

pExpr = pAndPrioExpr
〈|〉 sem Expr Lam -- Semantics for lambda expressions

〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]



[Faculty of Science
Information and Computing Sciences]

6

A small mistake with big consequences

pExpr = pAndPrioExpr
〈|〉 sem Expr Lam -- Semantics for lambda expressions

〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗ pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]



[Faculty of Science
Information and Computing Sciences]

7

What is a Domain Specific Language (DSL)?

I According to Walid Taha we deal with a DSL:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I As we say: “domain-abstractions should not leak”



[Faculty of Science
Information and Computing Sciences]

7

What is a Domain Specific Language (DSL)?

I According to Walid Taha we deal with a DSL:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I As we say: “domain-abstractions should not leak”



[Faculty of Science
Information and Computing Sciences]

8

Embedded Domain Specific Languages

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

I According to Hudak “the ultimate abstraction”



[Faculty of Science
Information and Computing Sciences]

9

What host language?

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In Haskell, EDSLs are simply libraries that provide some
form of “fluency”

I Consisting of domain terms and types, and special
operators with particular priority and fixity



[Faculty of Science
Information and Computing Sciences]

10

Some history: CHRs for typing Haskell programs

I to improve type error diagnosis [Stuckey et al. 2006,
Wazny et al., Serrano and Hage 2016]

I to describe and extend type classes to implement ad-hoc
polymorphism [Sulzmann et al. 2007, Dijkstra et al. 2007]

I to generalize the shape of algebraic data types [Sulzmann
et al. 2006]



[Faculty of Science
Information and Computing Sciences]

11

Why we opt for CHRs

I CHRs allow the formulation of advanced type systems in
simple enough way

I CHRs can be transformed so that domain-type error
diagnosis can be injected

I to achieve control over the order of solving
I which often determines when/where solving will fail

I to carry along domain-specific information to use in error
messages

I Some languages features we want to support in Haskell are
not easily modeled with CHRs

I Solution: extend CHRs



[Faculty of Science
Information and Computing Sciences]

12

So what exactly are we missing?

I Functions in Haskell can be polymorphic: id :: ∀ a . a −> a

I Whenever id is used, it must be instantiated, choosing a
fresh type variable to replace a

I For id id we can choose α for the former, and β for the
latter, and unification will find that α = β −> β

I In the Hindley-Milner type system, all instantiations can be
made at the start of a binding block, all at once

I However, in a type system that supports higher-ranked
instantiation often needs to be delayed



[Faculty of Science
Information and Computing Sciences]

13

What are higher-rank types?

I Types in which not all universal quantifiers occur at top
level

I id :: ∀ a . a −> a is not higher-ranked
I gimmeid :: (∀ a . a −> a) −> Int is

I Not many interesting functions are higher-ranked, but
those that are, are hard to work-around

I Delayed instantiation: generate a fresh β and recall the
(later-to-take-place) instantiation with a constraint
∀a.a→ a 6 β

I τ 6 τ ′ means τ is at least as polymorphic as τ ′

I The rule expressing this has various problems of hygiene

I Our solution is to express binding explicitly in the terms:
λ-tree terms



[Faculty of Science
Information and Computing Sciences]

14

The CHR formalism

The language of CHRs has three kinds of rules:

H r ⇐⇒ G | B simplification
Hk =⇒ G | B propagation
Hk \ H r ⇐⇒ G | B simpagation

where Hk (kept), H r (removed) and B are sets of constraints,
G is a guard.

I CHRs are applied non-deterministically, no backtracking

I Proving confluence (order does not matter) and
termination is for the author of the rules



[Faculty of Science
Information and Computing Sciences]

15

What have we accomplished?

I extending the matching of CHRs from ground terms to
λ-tree terms

I introducing nominal constants and the ∇ operator, leading
to CHR∇

I generalize existing techniques for dealing confluence and
termination in this setting

I we illustrate our extensions by modeling simple higher-rank
types

I The mostly technical details are in the paper.

I Note: integration of λ-tree syntax with ∇ is known
(Baelde, 2014), integration with CHRs is new



[Faculty of Science
Information and Computing Sciences]

16

Ingredient 1: λ-tree syntax

I We introduce λ-tree syntax [Miller, 2000] for modeling
binding in our language

I In addition to syntactic equality we also have:

λx .B = λy .B[x 7→ y ] if y not free in B (α)
(λx .B)E = B[x 7→ E ] if E does not contain x (β)
λx .F x = F (η)

I We must generalize from unification to Lλ unification
(higher-order pattern unification), a decidable restriction of
higher-order unification

I Aside: in this setting a simpler rule for (β), (β0) will do

I Aside: Lambda-Prolog also uses λ-tree terms



[Faculty of Science
Information and Computing Sciences]

17

Ingredient 2: the generic quantifier ∇

I Setting out to prove ∀x .F , we can

(1) prove F [x → T ] for all possible T
(2) prove F [x → c] for a new nominal constant c

I But ∀x y .P(x , y) =⇒ ∀z .P(z , z) holds for (1) but not for
(2).

I Miller and Tiu (2005) introduce ∇ as the quantifier to
distinguish the 2nd from the 1st

I It generates fresh nominal constants during proof
development

I Aside: nominal constants are also known as Skolems and
rigid variables



[Faculty of Science
Information and Computing Sciences]

18

The CHRs for dealing with higher-rank types

T 6 T ⇐⇒ true
con(C1,Args1) 6 T2 ⇐⇒ con(C1,Args1) = T2

fn(S1,T1) 6 T2 ⇐⇒ fn(S1,T1) = T2

forall(Q) 6 T2 ⇐⇒ ∃V .Q V 6 T2

if T2 6≡ forall(R)
T1 6 forall(Q) ⇐⇒ ∇V .T1 6 Q V

I The last rule used to strip off ∀s on the right, then we strip
them off on the left, and then the first three can make
progress

I The semantics deal with ∃ and ∇ differently: in the latter
case also α, β0 and η rules are applied



[Faculty of Science
Information and Computing Sciences]

19

Ingredient 3: permuting nominal constants

I Guaranteed distinctness of nominal constants has its
problems: ∇x .B(x) ` ∇y .B(y) is not true!

I A special rule idπ is added to permute names of nominal
constants

I Eg. choosing fresh constant a for x and b for y , we get
B(a) ` B(b). Under permutation [a 7→ b, b 7→ a] B(b)
becomes B(a) and all is right.

I Note: both sides may use their own permutation



[Faculty of Science
Information and Computing Sciences]

20

What about termination and confluence?

I As usual, it is up to the author to prove this
I Standard techniques apply, however

I the level mapping needed for proving termination must be
independent of the particular choice of nominal constant

I for confluence unifiers come with a renaming for the
nominal constants



[Faculty of Science
Information and Computing Sciences]

21

Meanwhile, in the UK...

I Alejandro is in Bristol this week, presenting another part of
our work at Implementation and Application of Functional
Language

I The subject of that work is to add implications by means
of scopes to CHR∇to model local reasoning (Haskell’s
GADTs), and higher-rank types that also support type
classes

I There is an implementation of an impredicative,
higher-rank type system at
https://git.science.uu.nl/f100183/quique that
uses our implementation of CHR∇, separately available at
https://git.science.uu.nl/f100183/uchrp

https://git.science.uu.nl/f100183/quique
https://git.science.uu.nl/f100183/uchrp


[Faculty of Science
Information and Computing Sciences]

22

Thank you for your attention.


