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Abstract

There are a number of different analyses for functional languages that count in
one way or another (e.g., strictness analysis, sharing analysis). There has been
a lot of research into each of these analyses individually. The analysis described
in this thesis combines a number of these counting analyses into one analysis.
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Chapter 1

Introduction

There are number of static analyses that count in some way how often expres-
sions are used during evaluation. Strictness analysis counts whether or not an
expression is used at least once, sharing and uniqueness analysis count whether
or not an expression is used at most once and absence analysis tries to determine
whether or not an expression is used at all. The goal of this thesis is to combine
these similar analyses into one analysis.

Why would you want to combine similar, already existing, analyses? You’d
probably end up with yet another analysis that is very similar to the rest of
them.

There are a number of reasons why combining analyses might be interesting:

• Implementation: maintaining an implementation of a single analysis is
probably easier than maintaining the implementation of more analyses.

• Performance: running a single analysis is probably faster than running
multiple analyses.

• Understanding: even if you are not going to use the single analysis, making
the similarities explicit might give you the understanding necessary to
reuse an optimization made in one analysis in another analysis.

In order to describe the analysis we have to start with some preliminaries
(Section 2). This includes some basics about functional languages, type sys-
tems and explanations of the different analyses the new analysis is supposed to
combine.

The analysis is defined using a type and effect system with constraints.
The description of the analysis is split over two sections: constraint generation
(Section 3) and constraint solving (Section 4).

We should prove the soundness of the static analysis with respect to some
sensible operational semantics, otherwise it would be impossible to run the
programs we obtain if we transform them based on information gathered during
analysis. The operational semantics and some theorems on the relation between
the static and operational semantics can be found in Section 5.

In Section 6 we will try to adapt the work from [13], which requires unique-
ness analysis, to work with our analysis.

11



12 CHAPTER 1. INTRODUCTION

After these theoretical sections, we will go on to a more practical section:
a simple example (Section 7). If you had any difficulties understanding the
theoretical sections, this might help you understand everything more clearly.

Section 8 contains a few details about the implementation of the analysis.
Section 9 discusses papers about the relevant analyses or papers that try to

combine some analyses.
And finally, in the conclusion (Section 10) we will discuss some pros and

cons of the analysis and look at which things might require further exploration.



Chapter 2

Preliminaries

2.1 Overview

Programs are written in programming languages. Every programming language
is defined using syntax (how to create expressions) and semantics (how to give
meaning to expressions). The dynamic semantics define how to run a program.
The static semantics can give an approximation at compile-time of how the
program will be behave (according to the dynamic semantics) at run-time.

A lot of languages have static semantics in the form of types. The dynamic
semantics cannot apply a function with an integer parameter to boolean value,
that would result in a run-time error. By introducing static semantics that
restricts this kind of application, we can give this information to the programmer
at compile-time. So giving types to expressions can be seen as a form of verifying
analysis to avoid run-time errors.

In the following sections we will explain a little about (i) functional languages
(Section 2.2); (ii) different methods of analysis (Section 2.3); and (iii) the actual
analyses I’m interested in (Section 2.4).

2.2 Functional languages

Most programming languages are imperative: actions that change state (mem-
ory) are executed in sequences. Functional languages on the other hand avoid
mutable state and are more mathematical in nature. A few examples of func-
tional programming languages are Haskel[21] and Clean[29]. In the following
sections we will describe a few concepts which play an important role in a lot of
functional languages. However, this does not imply these concepts are relevant
only to functional languages.

2.2.1 Functions are values

In functional languages functions are treated just like values. It is possible to
return a function as a result, or to take a function as a parameter.

This means you could write a function f which – when applied to a parameter
– returns a function. In most imperative languages a function always requires
all parameters at once, however, in functional languages we can apply a function

13



14 CHAPTER 2. PRELIMINARIES

to its parameters one by one, since it will just return a function which requires
one less argument. This is called partial application.

Another consequence is that you can write functions which accept a function
as a parameter. These functions are so-called higher-order functions.

2.2.2 Functions are pure

The result of a pure function can only depend on the values of the parameters. It
cannot have side effects (operations on unrelated memory locations for example).
This can lead to some very nice (automatic) optimizations: (i) since the result
of a function call stays the same if the parameters stay the same, the result can
be stored and reused if the call is used more than once; and (ii) if the result of
a function call is not used, the call can be removed without any problems.

However, a language without side effects is not very useful. Computers
are only useful if they can interact with users and that interaction (through a
keyboard and screen for example) requires memory updates. That is why even
pure functional languages usually incorporate (impure) side effects. There are
some tricks to make sure that everything is still pure:

• Haskell uses the IO monad to distinguish between functions with and
without side effects.

• Clean uses uniqueness typing, which allows for mutable state.

Both of these methods are also visible in the types (Section 2.2.4) of expressions.

2.2.3 Evaluation order

Languages that are not pure require a specific evaluation order. Suppose you
have two expressions, that are used as parameters in a function, that both write
to the same memory location but with different values. If you don’t mandate a
specific evaluation order, different compilers might generate different programs.
In pure languages the choice of the evaluation order can be left open.

Call by need, or lazy evaluation, is a particular interesting way of evalu-
ating programs. When evaluating applications, the function and its body are
evaluated before the arguments (in contrast with most imperative programming
languages). The arguments are only evaluated when needed in the body of the
function. Every expression (function or value) can be represented by a thunk
in memory. When evaluating an expression, its thunk can be updated with its
result. This is possible because it won’t change (there are no side effects). The
advantage of this is that when the expression is used again no evaluation has to
occur.

2.2.4 Types

Just like a lot of imperative languages, most functional languages have types.
However, type systems in functional languages are often considered more pow-
erful: most imperative languages either require manual type annotations, throw
run-time type errors or automatically cast values from one type to another when
necessary. Most functional languages on the other hand have automatic type in-
ference using variants of the algorithms by Hindley [16] and Milner [25] (see also
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Syntax

e ::= x | c | λx → e | e1 e2

τ ::= α | int | τ1 → τ2

Static semantics Γ ` e : τ

Γ (x ) ≡ τ
Γ ` x : τ

Var
Γ ` c : int

Lit

Γ, x : τ1 ` e : τ2

Γ ` λx → e : τ1 → τ2
Abs

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
App

Dynamic semantics e1 ⇓ e2

e ⇓ e

e1 ⇓ (λx → e) e [x := e2 ] ⇓ e3

e1 e2 ⇓ e3

Figure 2.1: Example: simple functional language

x : int, y : int ` 3 : int
lit

x : int ` λy → 3 : int→ int
abs

∅ ` λx → (λy → 3) : int→ int→ int
abs
∅ ` 4 : int

lit

∅ ` (λx → (λy → 3)) 4 : int→ int
app
∅ ` 5 : int

lit

∅ ` ((λx → (λy → 3)) 4) 5 : int
app

Figure 2.2: Example: static derivation tree

Damas and Milner [6]). The inferred types can also be checked at compile-time,
which results in an absence of run-time type errors.

A few other interesting features are:

• Algebraic data types (or even GADTs) make it easy to define complex
data types [30].

• (Constrained) polymorphism makes it possible to give an expression a
more generic type [34]. The expression can then behave differently, de-
pending on how it is used.

• The type of a value shows whether or not that value contains side effects.

2.2.5 Example

A very simple functional language definition with types can be found in Fig-
ure 2.1. The compiler could give an error message whenever the top-level ex-
pression cannot be typed with int. When the top-level expression does have the
type int, the compiler can generate an executable which is guaranteed to run.
For some examples derivation trees, see Figure 2.2 and Figure 2.3.
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λx → (λy → 3) ⇓ λx → (λy → 3) (λy → 3) [x := 4] ⇓ λy → 3

(λx → (λy → 3)) 4 ⇓ λy → 3 3 [y := 5] ⇓ 3

((λx → (λy → 3)) 4) 5 ⇓ 3

Figure 2.3: Example: dynamic derivation tree

2.3 Analysis methods

The goal of static analyses is to do one or more of the following (by changing
the static and/or dynamic semantics of the language):

• Accepting and/or rejecting specific programs. Verifying analyses (like
uniqueness analysis, see Section 2.4.2) reject programs that would oth-
erwise be valid. Alternatively, replacing an existing analysis with one that
is less restrictive would lead to accepting more programs.

• Deriving information for the compiler. This information might be used
for program optimization, program transformation, more specific feedback
and other things.

These goals also highlight some difficulties for static analyses:

• Since the static semantics are an approximation of the dynamic semantics,
a change in one of the semantics must almost always be accompanied by
a change in the other. A full understanding of both semantics is required
to avoid subtle mistakes.

• If you start using a static analysis that can reject programs or that does
not understand all language features then programs in an existing code
base might be rejected, while the programs were perfectly valid before.
So, rejecting too many programs or omitting certain language features in
a static analysis might make a language less expressive.

There is more than one way to perform static analysis. We will explain
two: type and effect systems (Section 2.3.1) and abstract interpretation (Sec-
tion 2.3.2). These two methods of analysis seemed to be the most common in
the papers relevant to this master thesis.

2.3.1 Type and effect systems

Type and effect systems are an extension of conventional type systems. In-
stead of giving every expression a simple type, the types can carry additional
information. This information usually comes in the form of annotations. These
annotations can be used to perform additional analyses.

Normal type systems can have polymorphism, a type can then also be a
type scheme which quantifies over type variables. It is also possible to have con-
straints on the type variables in the type scheme (like type classes in Haskell).
In some type and effect systems it is allowed to quantify over annotation vari-
ables. This is called polyvariance and can make the analysis more precise. Some
analyses also introduce constraints on the annotation variables.
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Subtyping and subeffecting are two other common ideas in type and effect
systems. They represent a relation on types and effects (annotations), respec-
tively. Again, the goal is to make the analysis more precise. The notation
A v B would mean: it is safe to use the type/effect B when the type/effect A is
required. An example of subtyping at work is providing a value of type Boolean
where a value of type Object is required in the programming language Java.

A good and more detailed description of type and effect systems (and features
like polyvariance and subtyping/subeffecting) can be found in [27].

2.3.2 Abstract interpretation

Abstract interpretation was introduced by Cousot and Cousot [5]. Dynamic
or concrete semantics specify how a program behaves at run-time. Abstract
interpretation requires you to introduce a new semantics for the language that
is computable at compile-time and safely approximates the dynamic semantics.
For example, it is possible to approximate possible integer values for possible
variables in a program by only keeping the signs, or the ranges they might be
in.

Abstract interpretation is implemented by interpreting a program, but map-
ping concrete values to possible abstract values. Often this implemented by a
total, monotone function which is iterated until a fixed point is found.

This method of analysis is less important for my master thesis, for more
information we refer to [19].

2.4 Analyses

In the following sections we will describe a number of analyses which are rel-
evant to my master thesis. All the analyses expect a lazy, pure, functional
programming language. We will also include examples to show how the results
of different analyses can be used.

2.4.1 Sharing

Sharing analysis [22, 12, 14] is an analysis that determines whether or not an
expression is used at most once.

Let’s see how this information could be used, by looking at an example:

(λx → x + x ) (1 + 1) (2.1)

Since we are using lazy evaluation, the expression is evaluated in this order:
(i) evaluation of the application starts with the function; (ii) evaluation of the
function starts with its body; (iii) evaluation of the body starts with the +
function, which requires both arguments to be evaluated; (iv) the first argument
x is evaluated by evaluating the thunk it points to – (1 + 1) – and updating
it; (v) the second argument x is evaluated by using the value from the now
evaluated thunk; and lastly (vi) evaluation of +, the function body, the function
and the application return, in that exact order. The value of (1 + 1) is clearly
used twice, but it is only evaluated once. Lets take a look at another example:

(λx → x ) (1 + 1)
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This expression is similar. However, the value of (1 + 1) is only used once while
evaluating. If a thunk is guaranteed to be used at most once, it is not necessary
to include a thunk update like the one from step iv in expression 2.1.

In type and effect systems this analysis is often implemented using the lattice
1 @ ω. A 1 annotation stands for: the expression is guaranteed to be used at
most once, while a ω annotation means that an expression can be used more
than once. The subeffecting rule that can be used for sharing analysis is:

` e : τϕ
′
` ϕ v ϕ′

` e : τϕ

That way, when an expression is inferred to have a ω annotation it can still
be used as a parameter to a function whose parameter has a 1 annotation. Since
we know where we changed the ω to a 1 we can still make sure to include a thunk
update when evaluating the 1 annotated expression.

2.4.2 Uniqueness

Uniqueness analysis [1, 2, 15, 24, 7, 14, 8] determines whether or not expressions
are used at most once, just like sharing analysis.

Consider the function: writeFile :: String → File → File that writes data to
a file. Then

λf → (writeFile "1" f ,writeFile "2" f ) (2.2)

could be evaluated in two ways when applied: the file could contain either "12"
or "21", depending on the order in which the writeFile functions are evaluated.
This is obviously not a pure function.

Uniqueness typing provides us with a safe way to use functions with side
effects. With uniqueness analysis, it is possible for the writeFile-function to re-
quire that its file argument is unique. Since that is not the case in expression 2.2,
we could reject the program. Uniqueness analysis can automatically annotate
expressions with 1 and ω and will reject a program when this is not possible.
A 1 annotation indicates that an expression must be unique. A ω annotation
indicates that an expression is not necessarily unique. The subeffecting rule
that could then be used is:

` e : τϕ
′
` ϕ′ v ϕ

` e : τϕ

Note that the condition on the annotation is swapped with respect to the rule
for sharing analysis. The result is that an expression which is marked unique can
still be used as a parameter to a function which accepts non-unique parameters.

We could annotate the writeFile function: writeFile::(Stringω → (File1 → File1)
ω

)
ω

.
The ω annotations mean that the first parameter, the entire function and its
partial applications may be shared. However, the second parameter must be
unique. The file that is produced must also be used in a unique way. That is
clearly not the case in expression 2.2, a valid expression would be:

λf → writeFile "2" (writeFile "1" f )

f is now used uniquely – in contrast with expression 2.2 – and the order in which
the data is written to the file is now also clear.
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The following example explains why this analysis is tricky. Consider the

function writeFile ′ :: (File1 → (Stringω → File1)
1
)
ω

which behaves exactly like
writeFile but the parameters are swapped. A difference is that the partial
application may no longer be shared. If we would allow it, expression 2.3 would
be typeable and it would behave similar to expression 2.2.

λf → (λw → (w "1",w "2")) (writeFile ′ f ) (2.3)

So, any partial application that has access to unique values must also be unique
itself. It might seem this solves the problem, however, when the type and
effect systems includes subeffecting it is possible to change the annotation on
(writeFile ′ f ) from 1 to ω. Which means that expression 2.3 is still typeable.
This is not a trivial problem to solve.

2.4.3 Strictness

Strictness analysis [10, 35, 4, 17] is an analysis that determines whether expres-
sions are used at least once or not. If a parameter to a function is guaranteed
to be used at least once, it could be calculated directly instead of passing an
unevaluated thunk. This leads to performance benefits: passing a value on the
stack is more efficient than creating a thunk – which might even refer to more
thunks – on the heap.

A possible lattice to use with strictness is: S @ L. The meaning of the
elements is: (i) an expression is used at least once, or evaluated strictly, for S ;
and (ii) an expression is used any number of times, or possibly evaluated lazily,
for L. Even if a function has a parameter annotated S , we want to accept an
argument annotated L. That is something subeffecting can express:

` e : τϕ
′
` ϕ v ϕ′

` e : τϕ

Note that is rule is the same as for sharing analysis.

2.4.4 Absence

This analysis was found in [31]. Absence analysis is an analysis that determines
whether expressions are used or not. It is similar to dead or unreachable code
elimination.

Lets take a look at the following standard Haskell function:

const x y = x

It is easy to see that the second argument is not used. This means we don’t
have to evaluate the second argument, since there are no possible side effects.

In code written by a person there are not a lot of functions that do not use
their arguments. Even if functions like that exist, they are not frequently used.
So, this analysis might not be so useful. There are however a lot of frequently
used functions that use only a part of an argument. For example: length, fst and
snd . These functions only look at the constructors of lists and pairs respectively,
not at the values within. These functions are plenty – basically all container-like
data structures have functions like this – and they are frequently used. So it
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seems it is very important to look at data types when performing an analysis
like this. Both [26] and [36] discuss this issue shortly.

Other code that might benefit from this analysis is computer generated code.
Computer generated code is often less “smart” and might contain a lot of dead
code this analysis can detect.

2.4.5 Similarities

The question the analyses try to answer is: is an expression used (i) at most
once (sharing and uniqueness analysis); (ii) at least once (strictness analysis);
or (iii) at all (absence analysis)? So, the analyses are similar in that they all
try to count how often an expression is used.

For sharing and uniqueness even the same notation was used: 1 and ω. These
analyses differ only in subeffecting and the difficulties that arise for uniqueness
with partial application.

However, there is a clear difference between uniqueness and all the other
analyses. Since uniqueness analysis is a verifying analysis it can lead to the
rejection of programs, while the other analyses only provide information about
the program (which can then be used for optimization).

In the next chapter we will start creating a type and effect system for the
combined analysis.



Chapter 3

Constraint Generation

3.1 Overview

In this chapter we will build a type and effect system to describe our analysis
that should combine the four existing analyses. The emphasis in this chapter is
on constraint generation, in the next chapter we will discuss how the generated
constraints can be solved.

In the sections 3.2, 3.3 and 3.4 we will give definitions necessary to define
the type system. The type system is defined in section 3.5. Note that the
type system is based mainly on Appendix C in [35]. Being more general in
some places (polymorphism/polyvariance), less so in others (annotations are
finite instead of infinite). The next section (3.6) shows how the analysis can be
instantiated to a specific analysis by changing a parameter and/or the lattice.

3.2 Basic definitions

An annotation primitive (Figure 3.1) is used to describe how often something is
used: 0 means no use at all, 1 means exactly one use; and∞ means at least used
twice. We could have defined annotation primitives to encompass the entire set
of natural numbers, however none of the usage analyses require this precision.

π ::= 0 | 1 | ∞

Figure 3.1: Annotation primitives

An annotation value (Figure 3.2) is a set of annotation primitives. We also
define some special symbols for specific annotation values. Annotation values
describe how often something is used, just like annotation primitives, however
they are much more expressive. For example, we can now say that something
is used at most once ({0, 1}) or at least once ({1,∞}).

An annotation (Figure 3.3) is either a variable or an annotation value.

A use annotation (Figure 3.4) is an annotation that tells us how often a
value is used.

21
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$ ::= ∅ | {π} | $1 ∪$2

⊥ ::= ∅
0 ::= {0}
1 ::= {1}
ω ::= {∞}
> ::= {0, 1,∞}

P ($) ::= powerset of $

Figure 3.2: Annotation values

ϕ ::= β | $

Figure 3.3: Annotations

ν ::= ϕ

Figure 3.4: Use annotations

A demand annotation (Figure 3.5) is an annotation that tells us how often
a variable is used. Since a variable should always have a value, a demand
annotation is always accompanied by a use annotation.

δ ::= ϕ

Figure 3.5: Demand annotations

The definitions for ν and δ are both simply aliases to ϕ. Even though the
definitions are the same they describe different things (“use” and “demand”
respectively) and are used differently in the type system (Section 3.5).

A type (Figure 3.6) can be a type variable α, a fully applied datatype or
a function type. Definitions ηµ and ρµ are used to attach annotations to the
parameter µ, which can be either τ or σ. Since a function produces a value
we use ητ to attach a use annotation to its result type. Because the argument
is available to the body of the function as a variable we want to attach both
use and demand annotations to the argument, so we use ρτ for the argument.
Datatypes will be explained in Section 3.4.

τ ::= α | T ϕl τk | ρτ → ητ
ηµ ::= µν (where µ ∈ {τ , σ})
ρµ ::= ηµ

δ (where µ ∈ {τ , σ}) (also written as: µν,δ)

Figure 3.6: Types

A type scheme (Figure 3.7) can be used to express polymorphic and/or
polyvariant types. Constraints C will be explained in Section 3.3.

An environment (Figure 3.8) is a map from variable names to type schemes.
However, we also store the use and demand for each variable.
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σ ::= γ | ∀ υ . C ⇒ τ
υ ::= α | β

Figure 3.7: Type schemes

Γ ::= ε | Γ, x : ρσ

Figure 3.8: Environments

A term (Figure 3.9) describes a (part of a) program. The term language is
annotated. Since we do not know the values of the annotations before running
the analysis, we simply provide annotation variables to obtain a valid term.
The terms consist of variables x , functions λν x → e, applications e x , mutually
recursive lets let xi =ν,δ ei in e, the function seq e1 e2 to force evaluation,
constructors K ν xi and case expressions case e of Ki xij → ei. It is important
to note that function and constructor application can only take variables as
arguments. This makes analysis easier and it is possible to translate expressions
that do not maintain this invariant to expressions that do. Constructors must
always be fully applied.

e ::= x | λν x → e | e x

| let xi =ν,δ ei in e | seq e1 e2

| K ν xi | case e of Ki xij → ei

Figure 3.9: Terms

3.3 Constraints

A lot of type systems encode operations on annotations in the type rules. Since
our annotations are quite complex we start by defining some operations on
annotations using operators and provide some extra notation. This simplifies
the type rules significantly and keeps their intent clear.

Let’s start by showing which operations we need and why:

• When we look at the addition of two numbers e1 +e2, it is clear that both
expressions are needed to calculate a result. Suppose a variable x occurs
in both e1 and e2, then we need a way to combine the uses of x in both
branches to find the use of x in the expression e1 + e2. The way the uses
are combined must also reflect that both expressions are used.

• Given the expression if e then e1 else e2 it is clear that either e1 or e2

will be evaluated depending on e, but certainly not both. We need a way
to combine the uses associated with variables in the expressions e1 and
e2 that reflects that only one of the branches will be evaluated.

• A function λx → e can be applied multiple times. However, all variables
occurring in e that are defined outside of the function are used repeatedly
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for every application of the function. It might even be the case that one
of these variables is never used at all if the function is never applied. So,
we need to be able to express repeated use.

• Consider the expression let b = 0; a = b in f a. b is only used if a is
used and a is used only if f uses its argument. So, we need to be able to
express conditional use.

Now that we have a basic understanding of the operations we need we can
define them as operators (Figure 3.10). The operator ⊕ expresses the com-
bination of branches that are both used. The operator t expresses the com-
bination of branches of which only one is used. The operator · expresses re-
peated use. The notation used to define this operator is not very intuitive.
The intended meaning is: for every element m in $1, for all combinations of
m elements from $2, take the sum of the m elements. Example: suppose a
function (which is applied twice) uses a value at most once, then the value is
used: {ω} · {0,1} = {0 + 0,0 + 1,1 + 0,1 + 1} = {0,1, ω}. The operator .
expresses conditional use. The result of this operator is equal to $2 unless $1

includes 0.

$1 ⊕$2 ::= {m+ n | m ∈ $1, n ∈ $2}
$1 t$2 ::= $1 ∪$2

$1 ·$2 ::= {
∑min(m,2)
i=1 ni | m ∈ $1,∀i.ni ∈ $2}

$1 . $2 ::=
⋃
m∈$1

(m ≡ 0 ? 0 : $2)

Figure 3.10: Annotation value operators

Defining the operators for annotation values was easy since they do not
include variables. However, we want to lift the operators to annotations, types,
type schemes and environments and these can include annotation variables. An
operator requires two annotation values to calculate a result directly. Since
we might encounter annotation variables we cannot calculate a result directly.
So, we will use constraints to keep track of the relations between values and
variables.

Figure 3.11 contains an overview of all different kind of constraints. A con-
straint C can be an equality, ⊕, t, · or . constraint for either annotations, types
or type schemes. Furthermore, we have included instantiation and generaliza-
tion constraints.

C ::= ϕ1 ≡ ϕ2 | ϕ ≡ ϕ1 ⊕ ϕ2 | ϕ ≡ ϕ1 t ϕ2 | ϕ ≡ ϕ1 · ϕ2 | ϕ ≡ ϕ1 . ϕ2

| τ1 ≡ τ2 | τ ≡ τ1 ⊕ τ2 | τ ≡ τ1 t τ2 | τ ≡ ϕ1 · τ2 | τ ≡ ϕ1 . τ2
| σ1 ≡ σ2 | σ ≡ σ1 ⊕ σ2 | σ ≡ σ1 t σ2 | σ ≡ ϕ1 · σ2 | σ ≡ ϕ1 . σ2

| inst (σ) ≡ τ | gen (ρτ , C,Γ) ≡ ρσ
| C1 ∪ C2 | ∅

Figure 3.11: Constraints

Now that we know the operators we need to lift and have the constraints to
keep track of relations between variables we can start to define how the lifting
works. However, because there are a lot of operators and different things we
want to lift them to we will omit certain details:
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1. Only the operators ⊕ and · will be defined, the other operators can be
defined in a similar way. The operator t is similar to ⊕ and . is similar
to ·.

2. The flow of constraints when chaining operators will be left implicit. It
does not matter which constraints are collected first, as long as you collect
all of them.

3. Most equality constraints will be implicit. When two different antecedents
of an inference rule contain the same variable this could be implemented
as different variables with an equality constraint.

The figures 3.12, 3.13, 3.14 and 3.15 contain the definitions for the ⊕ and ·
operators for annotations, types, type schemes and environments respectively.
The rules translate the operators into most simple constraints they can. Anno-
tations, types and type schemes require their own kind of constraints and these
are included in Figure 3.11. The application of operators on environments can
be translated entirely into more simple constraints. Solving the generated con-
straints and looking at the different possible inhabitants for annotations, types
and type schemes is the task of the constraint solver (Section 4).

ϕ1 ⊕ ϕ2 = ϕ3  {ϕ3 ≡ ϕ1 ⊕ ϕ2}
ϕ-add

ϕ1 · ϕ2 = ϕ3  {ϕ3 ≡ ϕ1 · ϕ2}
ϕ-mul

Figure 3.12: Annotation operators

τ1 ⊕ τ2 = τ  {τ ≡ τ1 ⊕ τ2}
τ -add

ϕ1 · τ2 = τ  {τ ≡ ϕ1 · τ2}
τ -mul

µ1 ⊕ µ2 = µ C

µ1
ν1 ⊕ µ2

ν2 = µν  C ∪ {ν ≡ ν1 ⊕ ν2}
ηµ-add

ϕ1 · µ2 = µ C

ϕ1 · µ2
ν2 = µν  C ∪ {ν ≡ ϕ1 · ν2}

ηµ-mul

η1µ ⊕ η2µ = ηµ  C

η1µ
δ1 ⊕ η2µ

δ2 = ηµ
δ  C ∪ {δ ≡ δ1 ⊕ δ2}

ρµ-add

ϕ1 · η2µ = ηµ  C

ϕ1 · η2µ
δ2 = ηµ

δ  C ∪ {ν ≡ ϕ1 · δ2}
ρµ-mul

Figure 3.13: Type operators
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σ1 ⊕ σ2 = σ  {σ ≡ σ1 ⊕ σ2}
σ-add

ϕ1 · σ2 = σ  {σ ≡ ϕ1 · σ2}
σ-add

Figure 3.14: Type scheme operators

x ∈ (keys (Γ1) ∪ keys (Γ2) ∪ keys (Γ))
Γ1 (x )⊕ Γ2 (x ) = Γ (x ) Cx C =

⋃
x Cx

Γ1 ⊕ Γ2 = Γ C
Γ-add

x ∈ (keys (Γ2) ∪ keys (Γ)) ϕ1 · Γ2 (x ) = Γ (x ) Cx C =
⋃

x Cx

ϕ1 · Γ2 = Γ C
Γ-mul

Γ (x ) =

{
ρσ if x : ρσ ∈ Γ

(∀ {α} . α)0,0 otherwise

Figure 3.15: Environment operators

For everything that has an t-operator, we can now define additional opera-
tors:

µ1 t µ2 = µ2  C

µ1 v µ2  C

µ2 v µ1  C

µ1 w µ2  C

These operators can be used for subtyping.

3.4 Datatypes

Usually algebraic datatypes are defined like so: data T α = Ki τij , where T is
the name of the datatype, α refers to type parameters, Ki are the constructors
and each τij refers to the unannotated type of a field of a constructor. If we
were to keep these definitions we wouldn’t have a whole lot of information. We
could only annotate the datatype as a whole, while it would be interesting to
have information about both the values and the spine of a list (for example).
Then we would be able to statically determine that the values of a list are never
calculated when only the length of the list is used.

Our analysis, with datatypes, can find that: (i) the spine of xs (in Figure
3.16) is used more than once; and (ii) that the values inside xs are used exactly
once. These results allow us to apply the optimizations of both sharing and
strictness analysis to the values in xs. Without annotations for datatypes this
would not be possible.

This means we need to use annotated types for the types of the fields of
constructors. Since we don’t want every use of a datatype to have the exact
same annotations, this also implies that we need to use annotation variables to
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let l = length xs
in map (+l) xs

Figure 3.16: Example with datatypes

be able to use datatypes differently in different places. So we reserve an extra
spot for annotation variables in datatype definitions: data T β α = Ki τij .

In our implementation datatypes are not annotated algorithmically, instead
there are a number of predefined annotated datatypes. However, it is necessary
to be able to annotate dataypes algorithmically, since we don’t want to bother
the user with providing annotations. The main problem of such an algorithm is
that datatypes can be defined in a lot different ways, while it should be possible
to annotate all of them. A simple algorithm would be: (i) for each type of a
field: instantiate the top-level annotations with fresh variables and store them
in the list β and instantiate all the other annotations with >, (ii) replace every
occurrence of T with T β.

In Figure 3.17 we can see what this algorithm does to a List definition
(data List α = Nil | Cons α (List α)). All the values of the list share the
variables ν1 and δ1, while the spine of the list is annotated with ν2 and δ2.

data List [ν1, δ1, ν2, δ2 ] [α ]
= Nil

| Cons αν1,δ1 (List [ν1, δ1, ν2, δ2 ] [α ])ν2,δ2

Figure 3.17: Annotated List datatype

Even though the algorithm works for some datatypes (even simple recursive
ones), it doesn’t work for all. For example, we have not considered mutually
recursive datatypes or datatypes where the datatype itself is used recursively
as a parameter to another datatype (like rose-trees: data Rose α = Leaf α |
Node (List (Rose α))). Also, when the number of fields increases, the num-
ber of variables increases too, without increasing the precision very much. So,
sometimes fields should share their variables to limit the number of variables.

[35], Section 5.4 contains more detailed information on annotating datatypes
algorithmically and looking at all the subtleties that arise. It also describes an
algorithm that uses different algorithms to annotate different kinds of datatypes
and falls back on a default algorithm when none of the algorithms can annotate
a datatype properly. The algorithm described above is one of the algorithms
used.

We think this is a good approach since it provides very accurate annotations
for common datatypes, while still being fully automatic.

3.5 Static semantics

Now that there are some basic definitions in place, we can define the static se-
mantics (Figure 3.18). The rules under “Sequential evaluation” and “Datatypes”
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are optional, the type system is still valid without either of these parts. Let’s
take a look at each rule individually:

The Var-rule creates a fresh σ and τ using variables. The τ must be an
instance of σ. Since the variable occurs exactly once, we say exactly that in
the environment. It is unknown how often the value will be used so a fresh ν is
created.

The Abs-rule first types the body of the function. We ensure that the type
scheme of the variable is monomorphic so we can use it as the type of the
argument of the function. The type of the body is used as the result type of the
function. The use and demand of the other variables in the environment should
be multiplied with the use of the function, for which the variable ν2 is created.

The App-rule starts with typing both the function and its argument. The
function is used exactly once. However since the function may be shared it is
important to apply subeffecting here. Since the use should include one, we fix
the way of subeffecting to v. When typing the argument, which is a variable
by definition, the variable will is found to be demanded exactly once. However,
the function specifies (using δ2) how often it demands an argument, so we set
the demand to δ2 when creating the result environment. This is also the only
place where it is necessary to use the analysis dependent subeffecting parameter
(�, explained in Section 3.6.2).

The Let-rule is by far the most complex. The first two antecedents type
the body and the definitions respectively. It is assumed that every definition
occurs in every other definition and in the body. If this is not the case a fresh
type variable with 0 use and demand can be used for the definitions that do
not occur in another definition. The third antecedent combines the parts of the
environments that do not include the variables from the let definitions. How-
ever, when a let definition is never demanded the respective environment isn’t
used either (as expressed by δj . Γj). The fourth, fifth and sixth antecedents
use essentially the same formula as the third. However, everything is done in a
monomorphic setting and it only includes the variables from the let definitions.
Also, the sixth antecedent does not contain any information about the body,
while the fourth and fifth do. This is necessary to make sure we can generalize
the definitions independently of how the body might use it. Now we have to
think what information is necessary to generalize the monomorphic τi

νi,δi to
the polymorphic σ0i

ν0i,δ0i . We include (i) all the constraints that can contain
information about the let definitions: C1 ∪ C3 ∪ C4 ∪ C5; and (ii) the environ-
ment: Γ (variables still in the environment should not be generalized over) .
The result is now simply the calculated environment, the type of the body and
all the leftover constraints.

At a first glance it might be surprising to see the use of the first argument of
seq set to 0 in the Seq-rule. However, while seq will calculate it, it is never used
in the result. Unless it is a shared expression which also occurs in the second
argument, in which case it will also receive use information from the use of the
second argument.

The Con-rule is for fully applied data constructors. We start by repeating
the predefined type information for datatypes (Section 3.4). We can create
a new instance using fresh variables ϕl and τk. Then we have to type all of
the variables used. Some of the xj might refer to the same variable, so it is
important that we do not construct the environment simply by throwing them
all in the environment with their respective type. Similar to the Abs-rule we
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reset the demand of the variables in when constructing the environment because
the demand is already provided.

The Case-rule also starts with creating a fresh instance of the datatype type
information, similar to the Con-rule. We make sure to type the expression we
match on with use 1 and subeffecting v, similar to the function expression in
the App-rule. The result type is the same as the type of all the case-arms. The
result environment is built by adding Γ0 to the combined environment of all Γi.
Since only one of the case-arms will be executed the combining is done using
the t operator.

The Sub(v)-rule is perhaps not a subeffecting rule in the traditional sense:
it is only used when it is explicitly used in the rest of the typesystem and it has
a parameter (the operator v) with which it will apply the subeffecting. The
alternative was hardcoding this simple transformation everywhere, this would
make all the inference rules look more cluttered. The fact that this rule is only
used explicitly also makes the type system syntax directed, which makes it easier
to write an implementation.

In the next chapter we will provide operational semantics and relate them
to the static semantics using theorems. Proving these theorems should ensure
the semantics are correct.

3.6 Analysis specialization

There are two ways to specialize the analysis: by changing the lattice (Section
3.6.1) or by changing how subeffecting works (Section 3.6.2). These two methods
can also be used together.

3.6.1 Lattice

Annotation values describe values of the lattice. Using the current definition
of annotations values (Section 3.2) the corresponding lattice with 8 elements is:
P ({0, 1,∞}). So, changing the lattice actually means changing the definition
of annotation values.

Why would you want to change the lattice? There is a very clear trade-
off between the precision (or size) of the lattice and the performance it would
take to solve the constraints. So it makes sense to make the lattice as small as
possible for the precision you require for a specific analysis.

If we only want to do sharing analysis, it is sufficient for the annotation
values to describe a lattice like ⊥ @ 1 @ ω. We would lose some precision,
however, the lattice consists of only 3 elements instead of the default 8. We
would also have to redefine the values ⊥, 0, 1 and > and the meaning of the
operations on annotations.

The default definition is already a specialization of the definition given by
[35], Appendix C, since the lattice corresponds to P ({0, 1,∞}) instead of
P (Nat).

3.6.2 Subeffecting

The static semantics (Section 3.5) require a value for the parameter � to specify
how subeffecting should be done. We have a couple of comparison operators
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Basics Γ ` e : ητ

x : σν,1 ` x : τν  {inst (σ) ≡ τ}
Var

Γ1, x : (∀ ∅ . ∅ ⇒ τ)ν,δ ` e : η  C1 ν2 · Γ1 = Γ2  C2

Γ2 ` λν2 x → e : (τν,δ → η)
ν2  C1 ∪ C2

Abs

Γ1 `v e : (η2
δ2 → η3)

1

 C1

x : η4
1 `� x : η2  C2 Γ1 ⊕ x : η4

δ2 = Γ2  C3

Γ2 ` e x : η3  C1 ∪ C2 ∪ C3

App

Γ0, xj : σ0j
ν0j ,δ0j ` e : η  C0

Γi, xj : (∀ ∅ . ∅ ⇒ τij)
νij ,δij ` ei : τi

νi  C1i Γ0 ⊕ (
⊕

j (δj . Γj)) = Γ C2

δ0i ⊕ (
⊕

j (δj . δij)) = δi  C3i ν0i ⊕ (
⊕

j (δj . νij)) = νi  C4i⊕
j (δj . τij) = τi  C5i C1 =

⋃
i C1i C3 =

⋃
i C3i C4 =

⋃
i C4i

C5 =
⋃

i C5i C6 =
⋃

i {gen (τi
νi,δi , C1 ∪ C3 ∪ C4 ∪ C5,Γ) ≡ σ0i

ν0i,δ0i}
Γ ` let xi =νi,δi ei in e : η  C0 ∪ C2 ∪ C6

Let

Sequential evaluation Γ ` e : ητ

Γ1 `v e1 : τ1
0  C1 Γ2 ` e2 : η2  C2 Γ1 ⊕ Γ2 = Γ C3

Γ ` seq e1 e2 : η2  C1 ∪ C2 ∪ C3

Seq

Datatypes Γ ` e : ητ

data T ul αk = Ki ρij ηj
δj = ρij [ϕl/ul ,

τk/αk ]

xj : η′j
1 ` xj : ηj  C1

⊕
j (xj : η′j

δj ) = Γ C2

Γ ` Ki
ν xj : (T ϕl τk)ν  C1 ∪ C2

Con

data T ul αk = Ki ρij
τij

νij ,δij = ρij [ϕl/ul ,
τk/αk ] Γ0 `v e : (T ϕl τk)1  C1

Γi, xij : (∀ ∅ . ∅ ⇒ τij)
νij ,δij ` ei : η  C2 Γ0 ⊕ (

⊔
i Γi) = Γ C3

Γ ` case e of Ki xij → ei : η  C1 ∪ C2 ∪ C3

Case

Subeffecting Γ `v e : ητ

Γ ` e : τν2  C

Γ `v e : τν1  C ∪ {ν1 v ν2}
Sub(v)

Figure 3.18: Static semantics

available that we could use: ≡, v and w. In Section 2.4 we have seen that
v can be used for sharing, strictness and absence, while w is proposed for
uniqueness. We will still use v for sharing, strictness and absence, however, ≡
will be used for uniqueness.

Section 2.4.2 shows that uniqueness with subeffecting is tricky. [7] proposes a
solution that allows subeffecting with uniqueness safely, however, it introduces
new annotations on the types. The extra annotations make types harder to
understand and the analysis in this thesis would be less generic (the annotations
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would be specific to uniqueness). The solution that [8] proposes is to keep all
the types as generic as possible and forget about subeffecting for uniqueness
altogether. This solution fits a lot better with our analysis, so lets use ≡ for
uniqueness. This way the annotated types are still the same for all analyses and
easy to read (or, to write if we allow the user to provide types).

Note that using ≡ for sharing, strictness and absence would disable subef-
fecting for those analyses, however, the results of the analysis would be valid for
all four of the analysis. It would not be necessary to run uniqueness analysis
separately.

3.6.3 Discussion

Specializing the analysis sounds interesting. However, there is a trade-off be-
tween the runtime of the analysis and the quality of the analysis results. When
looking at our own implementation, we found that:

• Using a different lattice without any other changes to the type system or
definitions gives horrible results. The reason is that certain operations
expect certain annotations to be present (exact zero, exact one) but have
to approximate when they are not. Approximations are approximated
further until finally the results are useless. The runtime of the analysis
obviously improves significantly when the lattice is smaller (and there is
less work for the constraint solver).

• Making changes to � also has a large impact on the runtime of the analysis.
However, the quality of the results of the analysis barely changes. Possibly
because there is still some hard-coded subeffecting in the type rules.
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Chapter 4

Constraint Solving

4.1 Overview

In the previous chapter we explained how constraints can be generated. In this
chapter we will describe how all of these constraints can be solved.

The different kinds of constraints can be divided into four groups: annota-
tion constraints, type constraints, type scheme constraints and generalization &
instantiation constraints. Each of these groups will be treated separately in the
sections 4.3, 4.4, 4.5 and 4.6 respectively. The function simplify :: C → C is a
function that applies all the described methods in all these sections to solve con-
straints as much as possible. The exact definition of this function is described
in Section 4.7.

4.2 Basic definitions

For some constraint sets we want to maintain a certain property, the following
definition expresses this property:

Definition 1. A constraint set C is simple if it only contains: (i) annotation
constraints; and (ii) type constraints that contain only type variables.

Examples of constraint sets that must have this property are:

1. The output of simplify .

2. The constraint sets in type schemes.

Note that there may still be certain type constraints in the simple constraint
sets. However, this is necessary if we want to be able instantiate type variables
with datatypes in some polymorphic definitions.

4.3 Annotation constraints

Equality annotation constraints (ϕ1 ≡ ϕ2) can be solved using unification. For
the other annotation constraints (ϕ ≡ ϕ1 ⊕ ϕ2, ϕ ≡ ϕ1 t ϕ2, ϕ ≡ ϕ1 · ϕ2 and
ϕ ≡ ϕ1 . ϕ2), the analysis defined in Section 4.3.1 can be used. In Section 4.3.3
it is explained how to use the analysis.
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valueAnalysis :: [C ]→ State (Map β (Set $)) ()
possibleValues :: β → State (Map β (Set $)) (Set $)

Figure 4.1: Value analysis function signatures

4.3.1 Annotation value analysis

The value analysis (Figure 4.1) determines for a set of annotation constraints
which annotation values ($) the annotation variables (β) present in the con-
straints can have.

The function possibleValues is used to query analysis results in the state
and returns for an annotation variable all the possible values it can have. So,
it returns the values associated with the variable if it is present in the map.
Otherwise it returns a set of all annotation values except ⊥. This function is
used within the analysis itself, but it can also be used to retrieve the information
after the analysis has finished.

The analysis itself is defined by the function valueAnalysis. It keeps iterating
until it reaches the fixpoint: the state stays the same. During each iteration it
loops over all the constraints. For each constraint the following is done:

• For each variable in the constraint, use possibleValues to determine which
values it might have.

• Instantiate the variables in the constraint, using their own possible values,
in all possible ways and put all these value-only constraints in a list.

• Throw away all the constraints in the list that are invalid with respect to
the definition of the associated annotation value operator (Figure 3.10).

• Limit the values of each variable in the constraint to the ones that can be
found in the same position in the constraints in the list.

This algorithm could possibly be implemented more efficiently using a worklist
algorithm.

4.3.2 Example

The analysis might not be clear, so let’s look at an example. We will use the
following constraint set:

[1 : 1 v β1, 2 : β1 v 1, 3 : β2 v >, 4 : β3 v β4, 5 : β4 v β3, 6 : 1⊕ 1 = ω ]

Note that they are only numbered to make it easier to reference them. Figure
4.2 shows the beginning of the valueAnalysis algorithm. At the beginning of the
algorithm the state is empty and while processing constraints the state starts to
contain more and more variables with associated information. After processing
all constraints it will do so again, until the state does not change anymore. The
next section describes how the information can be used to simplify the constraint
set. It might turn out that not all information can be used, however, we have
to collect all of it to find any relations between constraints.
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Description State

Start [ ]
Process constraint 1 [β1 ∈ {{1}, {0, 1}, {1,∞}, {0, 1,∞}}]
Process constraint 2 [β1 ∈ {{1}} ]
Process constraint 3 [ · · · , β2 ∈ P (>)− ∅ ]
Process constraint 4 [ · · · , β3 ∈ P (>)− ∅ ], β4 ∈ P (>)− ∅ ]
Process constraint 5 [ · · ·]
Process constarint 6 [ · · ·]

Figure 4.2: Value analysis example

4.3.3 Using the analysis

The value analysis can be used to find annotation values for annotation variables,
to find relations between variables and to remove obsolete constraints. Please
note that it can not solve all constraints, only some cases where the constraints
uniquely determine the value of a variable.

Let’s take a look at all the ways we can use the analysis. We have to start
by applying the analysis:

• Given a set of annotation constraints C, apply valueAnalysis. The state
can be initialized with the empty map.

We can now remove variables in the following ways:

• Use possibleValues to determine if there are any variables that only have
one associated value. If so, replace each of those variables with its associ-
ated value everywhere in the constraint set.

This rule makes sure that if we require that 1 v β and β v 1, we can find
that β = 1.

• For each constraint in C that contains at least two variables, determine if
the values of one the variables are always the same as the values of one of
the other variables. If so, use only one variable instead of two.

This rule makes sure that if we require that β1 v β2 and β2 v β1, we can
find that β1 ≡ β2. These constraints can be generated, for example, in
mutually recursive functions.

We can now remove constraints in the following ways:

• If a constraint in C does not contain any variables, remove the constraint.

• If a constraint in C contains one variable, and the possible values for that
variable are all annotation values except ⊥, remove the constraint.

If the analysis has not limited the possible values further than all annota-
tion values except ⊥, then the variable is not constrained at all. So, this
constraint does not matter. This rule removes constraints generated by,
for example, β v >.

So, while we cannot solve all annotation constraints, we can simplify the set
of annotation constraints a lot.
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(ρ→ η) ≡ (ρ→ η)⊕ (ρ→ η) ∅

ϕ1l ⊕ ϕ2l = ϕl  C

(T ϕl τk) ≡ (T ϕ1l τk)⊕ (T ϕ2l τk) C

(ρ→ η) ≡ ϕ · (ρ→ η) ∅

ϕ · ϕ2l = ϕl  C

(T ϕl τk) ≡ ϕ · (T ϕ2l τk) C

Figure 4.3: Type constraint rules

4.4 Type constraints

Similar to annotation constraints, the type equality constraints can be solved
using unification. The monomorphic type system in [35] uses the rules in Figure
4.3 (although they are changed here such that they generate constraints). These
rules only have cases for functions and constructors. But, since our typesystem is
polymorphic, the type constraints can contain variables. Some of the constraints
with variables can be solved in the following way:

• If one of types in the constraint is a function type, then all the other types
in the constraint must be the exact same function type. This means we
can substitute the function for each of the type variables we find and mark
the constraint as solved or fail if we find a datatype.

• If one of types in the constraint is a datatype, then all the other types
in the constraint must be the same datatype. However, the annotations
may differ. Substitute each variable we find with the datatype with fresh
annotation variables, generate the required annotation constraints and
mark the constraint as solved. In the case we find a function, the constraint
is invalid and we fail.

• If none of the types in the constraint is a function or a datatype (all the
types are variables), then we have no choice but to keep the constraint.

So, solving type constraints might lead to new annotation constraints and
there might be some type constraints left that contain only variables.

4.5 Type scheme constraints

As can be seen in Figure 4.4, when the variable and constraint sets are empty,
type scheme constraints can be transformed into type constraints. The method
from the previous section can be used to make sure the rules also work when a
constraint contains at least one type scheme with empty variable and constraint
sets and variables in the other positions.

The general case with variables and constraints is a lot harder. In order to
solve the type scheme constraints we have to take a look at the type system
(Figure 3.18) again. There are four places where type schemes are introduced
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τ1 ≡ τ2  C

∀ ∅ . ∅ ⇒ τ1) ≡ (∀ ∅ . ∅ ⇒ τ2) C

τ1 ⊕ τ2 = τ  C

(∀ ∅ . ∅ ⇒ τ) ≡ (∀ ∅ . ∅ ⇒ τ1)⊕ (∀ ∅ . ∅ ⇒ τ2) C

ϕ · τ2 = τ  C

(∀ ∅ . ∅ ⇒ τ) ≡ ϕ · (∀ ∅ . ∅ ⇒ τ2) C

Figure 4.4: Monomorphic type scheme constraint rules

[∀ υ . C⇒τ/γ ]

(∀ υ . C ⇒ τ) ≡ γ  ∅

fresh τ1 τ2 τ1 ⊕ τ2 = τ  C2

C = simplify (C1 ∪ C2) V = fv (∀ υ . C1 ⇒ τ)
V1 = fv (∀ υ . C ⇒ τ1)− V γ1 = ∀ υ ∪ V1 . C ⇒ τ1
V2 = fv (∀ υ . C ⇒ τ2)− V γ2 = ∀ υ ∪ V2 . C ⇒ τ2

(∀ υ . C1 ⇒ τ) ≡ γ1 ⊕ γ2  ∅
fresh τ2 ϕ · τ2 = τ  C2

C = simplify (C1 ∪ C2) V = fv (∀ υ . C1 ⇒ τ)
V2 = fv (∀ υ . C ⇒ τ2)− V γ2 = ∀ υ ∪ V2 . C ⇒ τ2

(∀ υ . C1 ⇒ τ) ≡ ϕ · γ2  ∅

Figure 4.5: Polymorphic type scheme constraint rules

into an environment: (i) in Abs, the argument of the function; (ii) in Case,
the arguments of the constructor; (iii) in Let, the variables in the definitions
(to allow for recursion); and (iv) in Let, the variables in the body. In the first
three cases the variable and constraint sets are forced to be empty and can be
solved the easy way. In the last case it is important to note that the result from
generalization is actually a value and not a variable. Also, this type scheme
is propagated only towards the leaves of the proof tree (Var), which can only
use variables for type schemes. This means that we can assume that the left-
hand side of a constraint is a value and the right-hand side contains variables.
This proves that the rules in Figure 4.5 match all other generated type scheme
constraints.

Let’s take a closer look at the second rule in Figure 4.5 (the most complex).
To solve the type scheme constraint we need to use a type constraint (τ1⊕ τ2 =
τ  C2). However, since τ might include variables that are quantified over in
the type scheme we have to include it in the constraints of the type schemes.
But, if τ is not a variable we break the second part of the simple property, if
we include C2 directly into the constraints of the type schemes. To fix this we
first use simplify . This might then lead to new variables in the constraint set
C. We calculate which variables are new using the sets V1 and V2 and include
these in the type schemes.

So, solving type scheme constraints can lead to new type constraints (and
thus annotation constraints). However, we can remove all type scheme con-
straints completely.
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C2 = simplify C1 V = ((fv C2) ∪ (fv τ))− ((fv Γ) ∪ {ν, δ})
gen (τν,δ, C1,Γ) ≡ (∀V . C2 ⇒ τ)ν,δ  ∅

Gen

fresh υ2 φ = [υ2/υ1 ]

inst (∀ υ1 . C ⇒ τ) ≡ τ [φ ] C [φ ]
Inst

Figure 4.6: Generalization & instantiation constraint rules

4.6 Generalization & instantiation constraints

Generalization and instantiation are used to create and use expressions with
polymorphic types. The rules can be found in Figure 4.6.

The Gen-rule first simplifies the constraints. There are two reasons for this:
(i) making sure the constraints satisfy the simple property; and (ii) making
sure the constraints do not need to be solved for every instantiation. Then it
calculates the variables it needs to quantify over using the environment Γ. It is
not necessary to quantify over ν and δ, since we need the total use and demand
of a let-definition (even if instantiated differently).

The Inst-rule is only defined for type schemes values (a type scheme can also
be a variable). So, before solving instantiation constraints, make sure that all
relevant generalisation constraints have already been solved. The rule simply
creates fresh variables for each variable the type scheme quantifies over, and
substitutes these in the type and constraints.

4.7 Combining all solving methods

In the previous sections we have explained how all the constraints can be solved
individually. However, all these methods have to be applied in a very specific
order.

Let us look at how the methods depend on each other:

• Instantiation constraints can only be solved if all type scheme constraints
are solved completely, because it is impossible to instantiate a type scheme
variable.

• Type scheme constraints can only be solved if all type & annotation con-
straints are solved as far as possible. Otherwise we might quantify over
variables which are later found to be a function, a datatype or an anno-
tation value.

• Type, annotation & generalization constraints have no dependencies.

Now we can define simplify with three steps (each using the appropriate
methods defined in the previous sections):

1. Solve type, annotation & generalization constraints. This removes gener-
alization constraints completely, leaves only certain type constraints and
simplifies the annotation constraints as far as possible.

2. Solve type scheme constraints. This further removes all type scheme con-
straints.
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3. Solve instantiation constraints. This further removes all instantiation con-
straints.

If solving certain constraints generates new constraints then these must be dealt
with first, since other constraints might depend on them. The constraints that
are left satisfy the simple property, since all other constraints have been re-
moved.

If type inference where defined only by using simplify after constraint gen-
eration, then there would still be constraints left. This is something we want to
avoid.

Therefore, the top-level expression must be monomorphic. Because there
are no type variables when the expression is monomorphic, we can only have
annotation constraints left in the constraint set C. To solve these, do the fol-
lowing:

1. Set outer ν to 1 (the expression will be used exactly once when evaluating).

2. Apply valueAnalysis on C.

3. Pick a possible value for any annotation variable in C.

4. Apply simplify on C.

5. Repeat from step 2 until C = ∅.

Step 3 should be done in a smart way: don’t pick > if you can pick 0 and start
with variables that have the most influence on the rest of the program.

Constraint generation (Section 3) and Constraint solving (Section 4) describe
the static semantics. As explained in Section 2.1, these should safely approxi-
mate run-time behavior. In the next chapter we will introduce the operational
semantics to formally define the run-time behavior.
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Chapter 5

Evaluation

5.1 Overview

In this chapter we will build the operational semantics for which the analysis
provides approximations.

In addition to the definitions from the previous chapters we need a few extra
definitions which we will introduce in Section 5.2. These definitions make it
possible to write the operational semantics in Section 5.3. And finally, we will
provide some theorems in Section 5.4. It is important to note that operational
semantics we use are the same as in [35] and that a lot of figures in the sections
5.2 and 5.3 are a (nearly) exact copy of parts of that work.

5.2 Basic definitions

The language used in the operational semantics is defined in Figure 5.1. It
consists of different components: atoms A, terms M , shallow evaluation contexts
R and values V .

A lot of terms consist of multiple parts that have to be evaluated individually
and in a specific order. For an application this means: evaluate the function first
and then the argument. In this system that is done using shallow evaluation
contexts. The hole [·] denotes where the value from a previously evaluated part
can be plugged in. A term R [M ] specifies that M has to be evaluated first and
that the value of M can later be plugged into R.

It is useful in the operational semantics to be able to make distinctions
between A, M , R and V . However, now the term languages for the static and
operational semantics differ. It is easy to see that terms e can be translated
into terms M . There exists a function that does exactly that, lets call it toM .

The annotations used in these definitions might not be necessary in an actual
implementation. However, they allow us to formulate a few theorems about the
operational semantics.

When a hole of a shallow evaluation context is filled with a value we need
to know how often that value is used. The use function for shallow evaluation
contexts (Figure 5.2) determines the use of a value put in a hole of a shallow
evaluation context. For seq this means that even though the first argument is
evaluated, the value isn’t actually used.
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A ::= x

M ::= R [M ] | let xi =νi,δi Mi in M | A | V ν
R ::= [·] A | case [·] of Ki xij →Mi | seq [·] M

V ::= Ki Aj | λx → M

Figure 5.1: Language

use ([·] A) = 1
use (case [·] of Ki xij →Mi) = 1
use (seq [·] M ) = 0

Figure 5.2: Use of shallow evaluation contexts

A heap (Figure 5.3) associates variable names with use, demand and a term.

H ::= ∅ | H, x =ν,δ M

Figure 5.3: Heaps

The stack (Figure 5.4) is used to delay the evaluation of a shallow evaluation
context or a variable update to whenever a value is available to fill a hole or to
be written to the heap respectively.

S ::= ε | R,S | #ν,δ x ,S

Figure 5.4: Stacks

The use function for stacks (Figure 5.5) determines how often a value is used
when evaluating instructions that were put on the stack.

use (ε) = 0
use (R,S) = use R

use (#ν,δ x ,S) = ν ⊕ (use S)

Figure 5.5: Use of stacks

A configuration (Figure 5.6) is a collection of a heap, a term and a stack.

C ::= 〈H; M ; S〉

Figure 5.6: Configurations

The subtraction operator 	 (Figure 5.7) is an operator that subtracts anno-
tation values. Subtraction is a little more complex than addition (⊕), because
∞ represents the infinite set “at least 2 uses” and we do not have negative
numbers. We have to introduce a helper function −.
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π1 − π2 ::=

π2 \π1 0 1 ∞
0 {0} {1} {∞}
1 ∅ {0} {1,∞}
∞ ∅ ∅ {0, 1,∞}

$1 	$2 ::=
⋂
π2∈$2

⋃
π1∈$1

π1 − π2

Figure 5.7: Subtraction operator

5.3 Operational semantics

The operational semantics can be found in Figure 5.8. First we will explain
roughly how evaluation works. Then we will explain the meaning of the different
groups of rules in the operational semantics.

Given a term e, evaluation works as follows:

1. Apply type inference: ∅ ` let main = e in main : η  ∅.

2. Make sure the generalized type of main does not contain any demand
variables. Otherwise the condition Terminate might not hold.

3. Start with configuration 〈∅; toM e; ε〉.

4. Apply evaluation rules until the condition Terminate has been met.

It is important to note that all the ν and δ in e should take the form of an-
notation values (Section 3.2) after type inference, because constraint solving
(Section 4) does not leave any variables. The result is that operations like v
and 	 can be executed directly instead of generating constraints.

The rules Unwind, Reduce, Let, Lookup and Update evaluate all con-
figurations except the ones where M = V ν and S = ε. These are matched by
the condition Terminate.

The Unwind-rule evaluates a term R [M ] by first evaluating M and delaying
the evaluation of R by putting it on the stack.

When a term is finally evaluated to a value, the Reduce-rule can be used
to take a delayed shallow evaluation context from the stack, fill the hole, and
continue evaluating the resulting term. The condition use (R) v ν is there to
make sure that the value is not used more often than the annotation permits.

The Let-rule creates fresh variables to place all the definitions on the heap,
while substituting the variables everywhere necessary. If it wouldn’t use fresh
variables there might be naming collisions with other lets that use the same
names. The last step is simply a matter of evaluating the body of the let.

The Lookup-rule is used to evaluate variables. After looking up the variable
in the heap, the associated term M will be evaluated. To make sure that the
term associated with this variable is only evaluated once we place a variable-
update instruction on the stack. If the value of the evaluated term will be used
by delayed instructions on the stack we have to lower ν by that use when placing
it back on the heap. Since each lookup corresponds with a demand, δ is lowered
by one. The conditions make sure this rule is only valid if it is impossible for
the annotations to become invalid.
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Similar to the Reduce-rule, the Update-rule requires that a term has been
evaluated to a value. However, the Update-rule is used to process variable up-
date instructions placed on the stack. The variable specified by the instruction is
updated on the heap with the value of the term, along with the use and demand
specified in the instruction. The resulting term is again the value. However its
use has been lowered, with a condition ensuring that the annotation does not
become invalid.

The rules App, Case and Seq evaluate all shallow evaluation contexts if
they are provided with a value.

The App-rule expects the value to be a function, and can simply substitute
the variable of the function with the argument.

The Case-rule expects the value to be a constructor, finds the matching
case and returns the corresponding terms where the relevant variables have
been substituted.

The Seq-rule does not care about the value and simply returns the second
argument.

Operational semantics 〈H; M ; S〉� 〈H; M ; S〉

〈H; R [M ]; S〉� 〈H; M ; R,S〉
Unwind

(use R) v ν R [V ]� M

〈H;V ν ; R,S〉� 〈H; M ; S〉
Reduce

fresh yi φ = [yi/xi ]

〈H; let xi =νi,δi Mi in M ; S〉� 〈H, yi =νi,δi Mi [φ ]; M [φ]; S〉
Let

ν 	 (use S) 6≡ ⊥ δ 	 1 6≡ ⊥
〈H, x =ν,δ M ; x ; S〉� 〈H; M ; #ν	use (S),δ	1 x ,S〉

Lookup

ν1 	 ν2 6≡ ⊥
〈H;V ν1 ; #ν2,δ2 x ,S〉� 〈H, x =ν2,δ2 V ν2 ;V ν1	ν2 ; S〉

Update

Termination condition 〈H; M ; S〉

0 v νi 0 v δi
〈xi =νi,δi Mi;V

ν ; ε〉
Terminate

Evaluation of a shallow evaluation context R [V ]� M

(λx → M ) A� M [A/x ]
App

case Kk Aj of Ki xij →Mi �Mk [Aj/xkj ]
Case

seq V M � M
Seq

Figure 5.8: Operational semantics
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5.4 Theorems

When we stated in the last section that the rules of the operational semantics
cover all possible configurations, we were not entirely truthful. While their
conclusions do indeed cover all possible configurations, some of the rules have
conditions which might not always be satisfied. If any of conditions are not met,
a conclusion might not be reached.

In the static semantics we try to infer values for annotations. The operational
semantics subtract from the statically inferred annotation values for each use or
demand. If the value reaches ⊥, the inferred value was too low and evaluation
gets stuck (because of the conditions in the rules). However, a value that is too
high might never be detected since it would never reach ⊥. That is the reason for
the termination condition: if any annotation does not allow zero use / demand
at the end of the program, the annotation was clearly wrong and evaluation
gets stuck. Note that “to allow zero” means that an annotation must include
zero, not that it should be equal to zero. If we can prove that evaluation never
gets stuck we know for sure that the static semantics are correct with respect
to the operational semantics.

In this section we want to give two definitions and state two theorems that,
when proven, show that evaluation never gets stuck. These theorems also imply
soundness [38].

Definition 2. An annotation is valid if it is not equivalent to ⊥.

Definition 3. A configuration C is valid (denoted valid C) if all the annota-
tions it contains are valid.

Theorem 1 (Subject reduction). Let C1 = 〈H1; toM e1;S1〉 and C2 =
〈H2; toM e2;S2〉. If C1 � C2 and ∅ ` e1 : η and valid C1 then ∅ ` e2 : η and
valid C2.

Theorem 2 (Termination). Let C = 〈xi =νi,δi Mi; toM e; ε〉. If toM e = V ν

and ∅ ` e : η and valid C then 0 v νi and 0 v δi.

The first theorem states that the evaluation preserves both type and validity
of annotations.

The second theorem states that the termination conditions hold if a config-
uration is reached that should terminate.

Both theorems have been formalized in Coq. However, there was not enough
time to fully prove both theorems.
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Chapter 6

Heap recycling

6.1 Overview

[13] describes a method that allows a programmer to reuse heap space once it
has been used. The idea behind this paper is that if there is a case-expression
on a unique variable, then the heap cell for that variable can be reused in the
case-arms. This is safe because we know that the variable has just been used
and since it is unique it will not be used any further.

We had a couple of difficulties incorporating this analysis into our own, so it
deserves its own chapter. Since the paper uses uniqueness analysis, it is assumed
in this chapter that the analysis is configured for uniqueness analysis (Section
3.6).

6.2 Static semantics

The paper suggests a new application construct when the argument is a con-
structor. However, our analysis expects that the argument of an application is
always a variable. It turns out that this is quite simple to solve.

The language in the paper is monomorphic, only supports lists and can only
recycle a heap cell when its replacement value has the exact same constructor as
the original value (because memory sizes of different constructors might differ).
Let’s try to find a way to remove all these limitations.

The extension for the static semantics (Figure 6.1) introduces a new type,
new terms and new inference rules.

The new type #n describes a heap cell with n bytes of memory. The function
[·] is used to find out how many bytes a specific value requires in memory.

There are two new terms. The new let defines the variable x while recycling
the heap cell h and only allows values to be defined. Since the value now has a
variable to reference it, this solves the issue with the new application construct
defined in the paper. The new case matches variable x and allows its heap cell
h to be recycled in the case arms. The heap cells h are actually normal variables
in the type system. However, their types are the new heap cell descriptor type.

The Let’-rule first types the body. Then it is checked that the type of the
definition matches its use in the body. Lastly, we have to make sure that the
heap cell h has size [K ] and that it is demanded once.
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New type & terms

τ ::= ... | # n

e ::= ... | let h@x =ν,δ K ν xi in e | case h@x of Ki xij → ei

New inference rules Γ ` e : ητ

Γ1, x : (∀ ∅ . ∅ ⇒ τ)ν,δ ` e : η  C1

Γ2 ` K ν xi : τν  C2 Γ1 ⊕ Γ2 ⊕ (h : (∀ ∅ . ∅ ⇒ #[K ])ν,1) = Γ C3

Γ ` let h@x =ν,δ K ν xi in e : η  C1 ∪ C2 ∪ C3

Let’

data T ul αk = Ki ρij
τij

νij ,δij = ρij [ϕl/ul ,
τk/αk ] Γ0 ` x : (T ϕl τk)1  C1

Γi, h : (∀ ∅ . ∅ ⇒ #ni)
ν,1, xij : (∀ ∅ . ∅ ⇒ τij)

νij ,δij ` ei : η  C2

Γ0 ⊕ (
⊔

i Γi) = Γ C3 ni 6 [Ki ]

Γ ` case h@x of Ki xij → ei : η  C1 ∪ C2 ∪ C3

Case’

Figure 6.1: Extension for static semantics

The Case’-rule is very similar to the Case-rule. The main differences are
that (i) what is matched upon (x ) must be a variable (instead of any expression)
and must be used exactly once (instead of at least once); and (ii) each case-arm
has the heap cell h in the environment. It is important to note that the size of
the heap cell is different in each case-arm (since each constructor can have a
different size) and that its demand must be 1 (otherwise the heap cell might be
recycled twice). The size of the heap cell must be less or equal to its respective
constructor (ni 6 [Ki ]). Since size does not place any restrictions on the type
we could change the constructor when recycling. Also, since the size does not
have to be exact, it is possible to recycle a Cons as a Nil for example.

6.3 Operational semantics

There is no point in extending the static semantics with new language constructs
if we don’t add them to operational semantics too. The extended operational
semantics can be found in Figure 6.2.

The terms of the operational semantics are extended in the same way the
terms of the static semantics were.

The normal Let-rule creates fresh heap bindings. However, the Let’-rule
doesn’t. Since we know that h is a valid heap binding that isn’t used anymore,
we do not need to create a fresh heap binding for x . We can simply use h. To
do that we update h with M2 and replace every occurrence of x with h in M3.
However, since we are overwriting an existing heap binding we have to verify
that the existing binding has exactly zero use and demand. We should not be
overwriting heap bindings that could still be accessed.

In the Case’-rule we know that x has a heap binding. So, we can replace all
h with x in Mi and then evaluate it further as if it is a normal case-expression.
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New terms

M ::= ... | let h@x =ν,δ M1 inM2 | case h@x of Ki xij →Mi

New inference rules 〈H; M ; S〉� 〈H; M ; S〉

〈H,h =0,0 M1; let h@x =ν,δ M2 inM3; S〉� 〈H,h =ν,δ M2;M3 [h/x ]; S〉
Let’

〈H; case h@x of Ki xij →Mi; S〉� 〈H; x ; case [·] of Ki xij →Mi [x/h ],S〉
Case’

Figure 6.2: Extension for operational semantics

id1 h@[ ] = h@[ ]
id1 h@(x : xs) = h@(x : (id1 xs))

id2 = λa → case a of
[ ]→ (λb → b) a@[ ]
(x : xs)→ let tmp = id2 xs

in (λb → b) a@(x : tmp)

id3 = λa → case h@a of
[ ]→ let h@b = [ ] in b
(x : xs)→ let tmp = id3 xs

in let h@b = x : tmp in b

Figure 6.3: Identity function for lists

6.4 Improvement

Let’s take a look at some examples. The figures 6.3 and 6.4 contain the functions
id and reverse respectively. Both work on lists. In each of these figures the first
version looks somewhat readable and shows the intent of the function. The
second version uses the notation from the original paper and the last version
uses the notation from this chapter.

The first thing we see is that both notations look very similar. The second
thing to note is that we have to introduce a tmp variable to make sure the in-
variants regarding function and constructor application are not broken (Section
3.2, under the definition of terms). This means that an extra heap cell is allo-
cated for every cons. This is the case in both id and reverse, while we’d expect
them to do no extra allocations. Without heap recycling it would be worse (2
extra heap cell allocations for every cons). However, it is still worse than our
expectation. So, we should try to improve it.

It is important that we maintain the invariants regarding function applica-
tion and constructor application. If we don’t, all the rules in the analysis might
become overly complex. Are there any ways we can keep the new variable, but
avoid the extra allocation? Lets make another observation: both id and reverse
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reverse1 l =
let rev [ ] acc = acc

rev h@(x : xs) acc = rev xs h@(x : acc)
in rev l [ ]

reverse2 =
let rev = λl → λacc → case l of

[ ]→ acc
(x : xs)→ let tmp = rev xs

in tmp l@(x : acc)
inλl → let f = rev l in f Nil

reverse3 =
let rev = λl → λacc → case h@l of

[ ]→ acc
(x : xs)→ let tmp = rev xs

in let h@r = x : acc in tmp r
inλl → let f = rev l in f Nil

Figure 6.4: Reverse function for lists

actually return a value directly from a heap binding.
So, one way of solving the issue would be to introduce a new let construct

that requires the value of the definition to be associated directly with a heap
binding. This would also need an analysis to verify that this is the case. Then
the new let would not have to allocate a heap cell.

A more simple approach would be to detect these cases at runtime. This
would avoid a complex static analysis. Currently a runtime configuration con-
sists of 〈H; M ; S 〉. Changing this to 〈H; M ; Maybe x ; S 〉 would allow us to track
at runtime whether or not M is associated directly with a heap cell; and if so,
which one. The Let-rule in the operational semantics would have to be altered
to only allocate a new heap cell when there is no heap cell associated with M .

Further research is necessary to determine the best way to solve this issue.
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Example

7.1 Overview

In this chapter we will take a look at a simple example. With this example
we attempt to show how the static semantics, the dynamic semantics and heap
recycling work in practice.

First, the example is introduced in Section 7.2. Then, we will look at how
we should type (and thus annotate) the program (Section 7.3). Lastly we will
run the program (Section 7.4).

7.2 Code

Lets look at a simple example:

swap h@(a, b) = h@(b, a)

main = swap (0, 1)

The idea behind the swap function is that it swaps the elements of the pair
without doing any additional heap allocations.

Unfortunately this code is not usable directly in our system, so it has to be
transformed to fit our type system. The result of the transformation can be
found in Figure 7.1.

let main =
let swap = λx → case h@x of

MkPair a b → let h@r = MkPair b a in r
in let zero = Z
in let one = S zero
in let v = MkPair zero one
in swap v

in main

Figure 7.1: Transformed code
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data Pair [β1, β2, β3, β4 ] [α1, α2 ]

= MkPair α1
β1,β2 α2

β3,β4

data Nat [β1, β2 ] [ ]
= Z

| S Natβ1,β2

Figure 7.2: Annotated datatype definitions

let main :: (Pair [0,0, 0, 0 ] [Nat [0,0 ] [ ],Nat [0, 0 ] [ ]]) 1

main =1,1

let swap :: (∀ {α1, α2, β1, β2, β3, β4, β5} . [ ]⇒
(Pair [β1, β2, β3, β4 ] [α1, α2 ])1,1 →
(Pair [β3, β4, β1, β2 ] [α2, α1 ])β5) 1

swap =1,1λ1 x → case h@x of
MkPair a b → let h@r =1,1 MkPair1 b a in r

in let zero :: (∀ {β1, β2} . [ ]⇒ Nat [β1, β2 ] [ ]) 0

zero =0,ω Z 0

in let one :: (∀ {β1, β2} . [ ]⇒ Nat [β1, β2 ] [ ]) 0

one =0,1 S0 zero
in let v :: (∀ {β1, β2, β3, β4, β5, β6, β7, β8} . [ ]⇒

Pair [β1, β2, β3, β4 ] [Nat [β5, β6 ] [ ],Nat [β7, β8 ] [ ]]) 1

v =1,1 MkPair1 zero one
in swap v

in main

Figure 7.3: Annotated code

The transformed code contains some datatypes that are not yet defined.
Figure 7.2 contains the annotated datatype definitions.

7.3 Type inference

The next step is to let the type inference algorithm annotate the source code
(Figure 7.3). Nothing uses the result of the main expression, so let’s set the
use/demand variables within its result to 0 (for simplicity’s sake). Also, the
outer ν has been set to 1 to drive evaluation, as required in Section 4.7. In
the type of swap we can see that the argument is required to be unique, which
is logical if we consider that the associated heap binding will be reused. Since
the function does not use the values of the pair, its types and annotations are
variables.

Please note that main, swap and v are all used exactly once. So, we could
perform all the optimizations associated with sharing analysis (requires “at most
once”) and strictness analysis (requires “at least once”). The expressions zero
and one are not used at all, so the optimizations for absence analysis could be
used. The optimizations are described in Section 2.4.
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let main =1,1

let swap =1,1 (λx → case h@x of

MkPair a b → let h@r =1,1 (MkPair b a)1 in r) 1

in let zero =0,ω Z 0

in let one =0,1 (S zero)0

in let v =1,1 (MkPair zero one)1

in ([·] v) [swap ]
in main

Figure 7.4: Evaluable code

7.4 Evaluation

Evaluation uses yet another representation of the code, so lets start by trans-
forming the result from type inference to the valid representation (Figure 7.4).

The valid representation can be put directly into a configuration. For com-
pleteness we included the entire evaluation sequence. There is not a whole lot
to explain, since each configuration forces us to use one specific evaluation rule
to go to the next configuration.

Start with:

〈∅;
let swap =1,1 · · · in
let zero =0,ω · · · in
let one =0,1 · · · in
let v =1,1 · · · in
([·] v) [swap ];
ε〉

Apply Let multiple times:

〈swap =1,1 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
([·] v) [swap ];
ε〉

Apply Unwind:

〈swap =1,1 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
swap;
[·] v , ε〉

Apply Lookup:
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〈zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
(λx → · · · ) 1;

#0,0 swap, [·] v , ε〉

Apply Update:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
(λx → · · · ) 1;
[·] v , ε〉

Apply Reduce, App:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
case h@v of

MkPair a b → · · · ;
ε〉

Apply Unwind:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 · · · ;
v ;
case [·] of MkPair a b → [v/h ] · · · ,
ε〉

Apply Lookup:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
(MkPair zero one)

1
;

#0,0 v ,
case [·] of MkPair a b → [v/h ] · · · ,
ε〉

Apply Update:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =0,0 · · · ;

(MkPair zero one)
1
;

case [·] of MkPair a b → [v/h ] · · · ,
ε〉
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Apply Reduce:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =1,1 MkPair one zero;
v ;
ε〉

Apply Lookup:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ;
MkPair one zero;

#0,0 v , ε〉

Apply Update:

〈swap =0,0 · · · ,
zero =0,ω · · · ,
one =0,1 · · · ,
v =0,0 MkPair one zero,
MkPair one zero;
ε〉

Since we evaluated to a value and the stack is empty, this is where the
program terminates. Note that the termination condition does not hold. This
is because we cheated a little bit during type inference. The generalized type
of main contained demand variables (which is not allowed according to Section
5.3). These were all set to 0 for simplicity. The demand variables express
the demand on zero and one, and these are exactly the values that make the
termination condition fail.

So, we should not have evaluated this program in this way to begin with.
However, swap and v are indeed correctly annotated with 0,0.
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Chapter 8

Implementation

An implementation of the analysis described in this paper has been made. The
language used for the implementation was Haskell and the library to parse and
represent the language was haskell-src-exts.

The implementation can be found in the folder prototype/ and only does
constraint generation (Section 3) and constraint solving (Section 4). Evaluation
(Section 5) was omitted. However, a partial proof of the theorems in Section
5.4 can be found in the folder proofs/.

Figure 8.1 contains an overview of the important folders and files.

proofs/Data.v Definitions from sections 3.2 and 5.2
proofs/Dynamic.v Proof tree representation for Figure 5.8
proofs/Proofs.v Partial proof of theorems in Section 5.4
proofs/Static.v Proof tree representation for Figure 3.18
prototype/src/Data Environments, types, annotations, variables, etc.
prototype/src/Utils Utilities (substitution, monads)
prototype/src/Datatypes.hs Annotated definitions of common datatypes
prototype/src/Main.hs Main
prototype/src/Inference.hs Constraint generation
prototype/src/Simplify.hs Constraint solving

Figure 8.1: Overview of important folders and files
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Chapter 9

Related Work

Until the early 1990s a lot of work on the different analyses has been done
using abstract interpretation (Section 2.3.2): Hudak [18], Goldberg [11], Benton
[3], Nöcker [28], Marlow [23]. However, interest in abstract interpretation has
faded because it is difficult to analyze higher order functions, which occur very
often in functional languages. Very recently abstract interpretation has been
used again for the GHC compiler (Sergey [31], Sergey et al. [32]). Here, due to
aggressive inlining, there are fewer higher order functions. When precise analysis
of higher-order functions is not required, implementing abstract interpretation
is said to be faster.

In the meantime the most popular approach was type and effect systems
(Section 2.3.1), which has been used in this master thesis. A lot of work has
been done on individual analyses, while the papers that do look at more than
one analysis are relatively recent. In the following paragraphs several important
papers will be discussed.

Launchbury et al. [22] present one of the first papers on sharing analysis.
The targeted language is based on the one used by Jones et al. [20], which
introduces an abstract machine for implementing functional languages and is
actually used in GHC. Annotations in this paper are of the form: (i) Zero,
never used; (ii) One, used at most once; and (iii) Many, used any number of
times. So it is always safe to decide on One over Zero or on Many over One
and – by transitivity – on Many over Zero when annotating an expression. The
analysis is not polymorphic or polyvariant, however, it does have subeffecting.

The language used by Turner et al. [33] (also on sharing analysis), is similar
to the one used by Launchbury et al. [22]. However, annotations are changed
to: (i) 1, used at most once; and (ii) ω, used any number of times. This analysis
also allows lists to be used and carefully considers recursion. Even though it
is mentioned, polymorphism and polyvariance are not used. It does include a
dynamic semantics – which were missing from [22] – and proves the analysis
sound.

Mogensen [26] adds the 0 annotation back to the work of Turner et al. [33],
which they had removed from Launchbury et al. [22]. However, lists are removed
from the analysis. Instead, tuples are added, including a special language con-
struct to access both parts of a tuple while maintaining a single use of the value.
This paper does not include polymorphism or polyvariance. It does contain sub-
typing and subeffecting. A soundness proof is omitted, however, they argue it is
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similar to that of Turner et al. [33]. Instead they focus on solving the generated
constraints by transforming them into Horn-clauses. The least solution can be
found in time linear in the size of the constraint set.

Wansbrough and Jones [36] extend the work of Turner et al. [33] with poly-
morphism and algebraic data types. It includes subtyping and subeffecting.
Polyvariance is not used, because the authors argue it is to expensive and does
not provide enough additional precision compared to subeffecting. It also shows
which program transformations can be used if usage information is available.
The language includes recursive lets, constructors and case statements. Types
can now contain data types and it is possible to use type schemes. The anno-
tations are still the same as in [33]. For algebraic data types the annotation is
placed on the type itself, but not on the arguments. It does discuss a couple
of options for annotating data types. However, we think Gedell et al. [9] ex-
plain this more clearly, so we will not discuss it now. The paper does include a
soundness proof.

Wansbrough and Jones [37] present new work, based on their previous paper:
Wansbrough and Jones [36]. The sharing analysis in the earlier paper turned
out to be worthless in practice. It turns out that the inferred usage informa-
tion is very bad when functions are curried. They argue that polyvariance is
needed, but that constrained polyvariance would cost too much. The new algo-
rithm they present has polymorphism, unconstrained polyvariance, subtyping
and subeffecting. In the paper they have omitted data types, however, these are
supported in the implementation they have built. Measurements show an av-
erage 3% decrease in run-time. The algorithm still works worse than expected,
the authors argue this is due to their treatment of data types – for which they
use only a single annotation. As future work they suggest an extension to the
7-point Bierman lattice with the elements: = 0, = 1, >1, 6 1, 6≡ 1, > 1 and
⊥. This could lead to a system that provides usage, strictness and absence
information.

The paper of Wansbrough and Jones [37] is later accompanied by a PhD
thesis by Wansbrough [35]. It contains the same sharing analysis, however, with
more attention to details like data types, implementation and proofs. Especially
Appendix C is interesting, where the author provides a concept for an extended
lattice. Which – when restricted – is similar to the Bierman lattice. This
extended lattice could provide sharing, strictness and absence information. A
language, static semantics and dynamic semantics are all provided. The static
semantics do not support polymorphism or polyvariance. However, recursive
lets, data types, subtyping and subeffecting are supported. Another interesting
point is that demand and actual use are separated in this type system. Since
this is only a (very detailed) concept, no implementation or proofs are provided.

Gedell et al. [9] study the effects of polymorphism/polyvariance, subtyp-
ing/subeffecting, whole program optimization, data type annotations and ex-
isting optimizations on sharing analysis. They have an implementation of a
sharing analysis for GHC where they can enable/disable any of these features.
The options they consider for the different features are:

• Polymorphism/polyvariance: polymorphism with (i) monovariance; (ii) poly-
variance, with type schemes where the usage variables may not be con-
strained; (iii) monovariant recursion/constrained polyvariance; or (iv) poly-
variant recursion.
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• Subtyping/subeffecting: subeffecting, either on or off.

• Algebraic data types: given a data type definition data T α = K1 τ1 | · · · |
Kn τn, annotate each type at the right-hand with a fresh usage variable
and store it in u. Then alter the definition of T to: data T u α = K1 τ ′1 |
· · · | Kn τ ′n and replace recursive occurrences of T with T u. Mutually
recursive data types need to be annotated simultaneously. This process is
very simple, however, it can lead to a huge number of usage variables.

The different approaches to annotating algebraic data types are thus de-
fined by how they limit the number of variables. The approaches are:
(i) no limitations; (ii) limit the number of fresh variables per data type,
reuse the variables by cycling through them (used limits where 100, 10
and 1); or (iii) assign ω to each type (so no variables at all).

• Whole program optimization: either on or off.

• Existing optimizations: either on or off.

They did not test all combinations of all the options, instead they chose some
sensible configurations. Results showed that with each extra enabled feature,
and the higher the precision, the performance increase lowered. Which is ex-
pected, since many features overlap. Most important results where: (i) data
type annotations barely matter if existing optimizations are used; (ii) whole
program optimization has a large impact on runtime and memory consumpton;
and (iii) results – even for the most precise analysis – are pretty poor.

De Vries et al. [7] implement uniqueness analysis assuming there is a sharing
analysis available. It uses the sharing information everywhere, but places some
extra constraints to deal with the problems specified in Section 2.4.2: (i) In the
abstraction rule: functions have an extra annotation, whenever a function has
access to a unique parameter this is set to unique. (ii) In the application rule:
the usual annotation on the function may not exceed the extra annotation of
the function. This way it is possible to keep subtyping and subeffecting enabled:
whenever it is applied to a function on which it shouldn’t, it is impossible to
use it thanks to the extra constraint in the application rule.

The first paper with an analysis that can be instantiated (with a single
parameter) to two different analyses is written by Hage et al. [14]. The language
is polymorphic, polyvariant and includes subeffecting. The parameter specifies
how the subeffecting rule works, which is one of the only differences between
the analyses (see Section 2.4.5). However, the other differences are intentionally
ignored. This can lead to problems, as De Vries et al. [8] later point out.
Subtyping is also intentionally left out, since it is not necessary when types are
generic enough. They also felt it would make the analysis overly complex. The
paper also includes dynamic semantics, which are used to provide a theorem for
soundness.

De Vries et al. [8] write a new paper that reimplements their previous work
– De Vries et al. [7] – in a more elegant way. Uniqueness attributes are now
special type constructors, constraints are removed and encoded as boolean ex-
pressions and subtyping has been made obsolete. This enabled the authors to
delete the extra annotation on functions that was introduced in their previous
work. Instead of marking something unique when subtyping could lift it to
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non-unique, the annotation is left a variable. However, when something is nec-
essarily unique – like functions with access to unique parameters – it is marked
unique. The authors have a formal proof of Soundness and an implementation
for the language “Morrow”.

Hage and Holdermans [13] present a uniqueness analysis, based on the earlier
work by Hage et al. [14]. However, usage analysis has been removed and the
problems with uniqueness analysis w.r.t. referential transparency have been
fixed using the method by De Vries et al. [7] (an extra annotation on functions).
The analysis is polymorphic, polyvariant and includes subeffecting. A new
language construct is added that allows the programmer to perform destructive
updates on heap cells whenever it is used uniquely. Special care is taken to
ensure that heap cells are of sufficient size, since different constructors have
different sizes. The paper also includes a soundness theorem and a property
that states that the updates do not change the meaning of the program or
negatively impact the space behaviour.

Holdermans and Hage [17] introduce a strictness analysis. The language is
extended with booleans, integers and most importantly a special “strict applica-
tion” construct that allows a programmer to force an argument to be evaluated.
Languages like Haskell and Clean contain similar constructs, it is interesting
to see how this influences a strictness analysis. The analysis is monomorphic,
monovariant and contains subeffecting. Normally strictness analyses only keep
track of whether a value is demanded or not. However, to improve precision
this analysis also keeps track of whether or not a value will be applied to an
argument. The authors call this “applicativeness”. No dynamic semantics is
included, however the paper does include a proof sketch for the correctness of
the analysis. I have implemented a polymorphic and polyvariant version of this
paper during the APA course (with Gabe Dijkstra).
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Conclusion and Further
Research

The main contribution of this thesis is extending the type system from [35]
with polymorphism/polyvariance and adding the option for uniqueness analysis.
There are two important things to note about uniqueness analysis:

• You can’t simply “swap” the subtyping/subeffecting operator used in shar-
ing analysis to get one for uniqueness analysis. This leads to the problem
described in 2.4.2. We have solved this by using equality, effectively dis-
abling subtyping/subeffecting for uniqueness analysis. This leads to a loss
of precision in some cases [39].

• Analysis dependent subtyping/subeffecting should only be used for the
argument of an application. The rest of the places in the type system that
use subtyping/subeffecting use the same rule as sharing analysis uses. Us-
ing analysis dependent subtyping/subeffecting in these other places would
actually make the type system more restrictive than necessary and thus
less usable.

Although an implementation was made to show that it is possible to solve
all the relatively complex constraints, it isn’t very fast. It is possible to optimize
this particular implementation. However, in the end it might still be quite slow
because of all the complexity. Even though the results are very precise, the
trade-off between running the analysis (and thus increased compile time) and
the run-time improvement the results might give should be considered when
implementing this in an actual compiler.

We have not written a lot about deriving a annotated datatype definition
from an unannotated one. Since there are relatively few papers that talk about
datatypes at all, this might still be something interesting to study.

Section 4 provided an algorithm to solve the constraints. There is no guar-
antee that it is correct (we suspect it is though). To prove this correct it would
be necessary to implement it in Coq (or another theorem prover) and verify
that it works as intended.

Section 6 showed an elegant way to integrate heap recycling from [13] into
the analysis. However, it also showed that only allowing variables as arguments
to function and constructor application requires more lets, and thus more heap
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allocations. This invariant is quite convenient when defining a counting analysis
and we have seen it used in a lot of papers. Further research is required to
investigate if: (a) we should do away with this invariant entirely; or (b) we can
keep the invariant, but solve the issue using additional analysis; or (c) we can
keep the invariant, but solve the issue using some run-time tricks.
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