
Binding-Time Analysis :

Subtyping versus Subeffecting

Guangyu Zhang

June 2008

Contents

1 Introduction 1

2 Context/Preliminaries 3
2.1 Program Analysis . 3
2.2 Type System . 3

2.2.1 Types . 3
2.2.2 Type inference . 4

2.3 Type-based Program Analysis . 4
2.4 Complexity of Type-based Program Analysis 5
2.5 Partial Evaluator . 7

3 Binding-time Analysis 8
3.1 Binding-Time Analysis . 8
3.2 Syntax of Target Language . 9
3.3 Specification of BTA-MMX . 10
3.4 Inference Algorithm . 12

3.4.1 Augmented types and annotations 12
3.4.2 Substitution . 13
3.4.3 Unification . 13
3.4.4 Constraints . 14
3.4.5 Algorithm . 15

3.5 Metrics . 17

4 Polymorphism and Polyvariance 18
4.1 Binding-Time Type Schemes . 18
4.2 Deduction Rules . 20
4.3 Generalization and Instantiation . 24
4.4 Algorithm . 24

5 Subeffecting and Subtyping 26
5.1 Subsumption rule . 26
5.2 Subeffecting . 27
5.3 Subtyping . 28
5.4 Algorithm . 29
5.5 Defaulting . 30

i

0.0

6 Comparison 31
6.1 PPX and PPE . 31
6.2 PPE and PPT . 32
6.3 Examples . 34

7 Conclusion 37
7.1 Summary . 37
7.2 Future Work . 37

ii ii 0

Abstract

Binding time analysis is an important program analysis mainly used in partial evalua-
tion. It determines which part in a program is static, that is its value is computable at
compile time and which part is dynamic. Different techniques have been described for
implementing the analysis. In this thesis, I will specify and implement different variants
of binding time analysis. Among these, the focus will be on the comparison of subtyping
and subeffecting as extensions to a polyvariant analysis on a polymorphic language.

Chapter 1

Introduction

Static program analysis predicts safe and computable approximations to the set of variable
values or behaviors of a program; this may be used to prove program correctness or in pro-
gram optimization. The expressive power of an analysis is demonstrated by the accuracy
of the predicted information. With different specifications, performing the same analysis
may result in different expressive power. Typically, more expressive power demands a
more complex implementation and higher resource consumption. Resource consumption
mainly concerns two aspects : time consumption of performing the analysis and memory
consumption. It will be helpful to discover the relations between the expressive power and
resource consumption of an analysis when we want to develop a new program analysis. My
research focus on an investigation of different implementation skills and the comparison of
expressiveness and cost for binding-time analysis. Binding-time analysis is a typical type-
based analysis and it is our hope that what we discover applies to other similar analysis
as well.

Some work have been done in the area of binding-time analysis. In [4], Heldal and
Hughes developed a polyvariant analysis for polymorphic language. Dussart, Henglein
and Mossin specified a polyvariant analysis with subtyping for monomorphic language
in [3]. Glynn, Stuckey, Sulzmann and Sondergaard designed a polyvariant analysis with
subtyping for polymorphic language in [5]. The state of the art is to combine polyvariance
with subtyping. However such a binding-time analysis is difficult to implement and has
high resource consumption. Instead of pursuing more complicated techniques, we simplify
it to see if we could gain similar expressive power while reducing the resource consumption.
In this thesis, we focus on comparing subtyping and subeffecting [9] with their expressive
power and resource consumption.

The thesis is organized into the following chapters:

• We introduce several general concepts that will be used in later chapters (Chapter
2).

• We define binding-time analysis and specify a monovariant analysis, referred as
MMX, for a monomophic language. Upon this specification, we develop an inference
algorithm similar to algorithm W(Chapter 3).

• We extend the analysis specified in previous chapter with polyvariance referred as
PPX, and extend the target language to a polymorphic language (Chapter 4).

• Based on the analysis in Chapter 4, we add the subsumption feature in forms of
subeffecting and subtyping, referred as PPE and PPT (Chapter 5).

1

1.0

• We compare two pairs of specifications of binding time analysis. We explain in which
way these analysis differ from each other in terms of expressive power and resource
consumption (Chapter 6).

2 2 1

Chapter 2

Context/Preliminaries

2.1 Program Analysis

Program analysis is the task of deriving information from programs. It uses static compile-
time techniques to predict values and behaviors of a program at runtime. One application
of program analysis is program optimization, e.g., we use strictness analysis[11] in lazy
evaluation, we use shape analysis[1] to avoid unnecessary garbage collection and we also
use binding-time analysis in partial evaluation to decrease the computation of expressions
at runtime. Another application of program analysis is program correctness which uses
analysis information to verify functionalities of programs.

One common nature of all approaches of program analysis is that they only give a
approximate analysis result. Since program analysis predicts dynamic behaviors for all
executions of a program, the results cannot be optimal. As an example, we design an
analysis that finds possible values of variables and consider a simple program[10]:

read (x); if x>0 then y:=1 else (y:=2; S); z := y

where S are some statements that do not contain assignment to y. Naturally, we predict
that the possible values of y that can reach z := y are 1 and 2. However, if we know
statements S will never terminate, the value of y will only be 1 which is a more precise
analysis result than y being both 1 and 2. Unfortunately, this is undecidable because
of the halting problem[12], that is, there does not exist a general procedure to decide
correctly for all programs P and all data whether P(data) terminates. So in general, we
expect our analysis to give a possible larger set of results than what will happen precisely
during one execution of a program. In this example, we accept the analysis result of 1
and 2 rather than the result of 1 because {1,2} is the correct result for all executions of
the program.

2.2 Type System

A type system defines how a programming language classifies values and expressions into
types, how it can manipulate those types and how they interact.

2.2.1 Types

A type identifies a value or set of values as having a particular meaning or purpose. Con-
sidering a lambda calculus, we can have types defined as:

3

2.3

τ ∈ Type
::= β type variable
| T type constant
| τ1 → τ2 composite type

Type variables represent arbitrary types to support polymorphic types[7]. They are also
used in a type inference algorithm to denote an unknown type. Type constants usually
include an integer type and a boolean type, referred to Int and Bool respectively. In this
type definition, we only have one kind of composite type, the function type τ1 → τ2 which
denotes a function with arguments of type τ1 and results of type τ2.

2.2.2 Type inference

Type inference, or implicit typing, refers to the technique that deducts types of expressions
automatically for a programming language. A type inference system usually includes two
parts: a specification of type rules that can be used to construct a proof for the correctness
of assigning a type to an expression and an inference algorithms whose inferred types
conform to those deduction rules. There are various type rules and inference algorithm,
but for modern functional languages such as Haskell and ML, their type systems are based
on Hindley-Milner’s type discipline.

Hindley-Milner rules are constructed by type judgments which have the form of:

Γ ` e : τ

which is read as expression e has type τ under type environment Γ. Here, Γ is a type
assumption or type environment. It provides type information for the free variables in
expression e. Using the type definitions from the previous section, we have type rules such
as:
[True] ∅ ` true : Bool

[App]
Γ ` e1 : τ2 7→ τ0 Γ ` e2 : τ2

Γ ` e1 e2 : τ0
The type rule [True] states that the constant value true has the type Bool. For function
application, we could infer the type of the application if the type of the second expression
matches the argument type of the first expression.

One typical feature of Hindley-Milner type discipline is polymorphism: a term is as-
signed a polymorphic type in general; only when the types of its arguments and result
can be uniquely determined from the context is it monomorphic[7]. Algorithm W, devel-
oped by Damas and Milner, is used to infer the principle type scheme[2] of a term for a
polymorphic type system.

2.3 Type-based Program Analysis

A type-based analysis is a program analysis which makes use of its type system to express
the analysis properties of interest[10]. The idea is to annotate the types with these prop-
erties. Let us take totality analysis as an example. Totality analysis determines whether
a function is total, i.e. that the application of the function to any argument results in
a terminating computation[6]. Suppose we have a type system: τ ::= Int | τ → τ and

4 4 2

2.4

we define the annotation of totality analysis as: ϕ = T | N | α where T and N rep-
resent for total and not known to be total respectively. We have the annotated types :
τ̂ ::= Int | (τ̂ → τ̂)ϕ and a function with type (Int → Int)T denotes that it is a total
function that has underlying type Int→ Int.

2.4 Complexity of Type-based Program Analysis

A type-based analysis is specified by allowing annotations on top of the type inference
system of the programming language. The annotated types are used to express both the
analysis information and type information; the original type is often called the underlying
type. Several techniques can be applied to specify type-based program analyses, which
usually result in different complexity of the analyses. We can distinguish such techniques
in the following three aspects.
Monomorphic and Polymorphic. Type system is a syntax method to make sure that
funtions or precedures are only applied on a correct set of values so that we could prevent
certain kind of erroneous behaviors such as applying addition operator on two strings.
However, the flexibility is lost in a certain degree. For example, a function like identity
function: λx.x is only allowed to be applied on one type of values and we are forced to
define different identity functions if we want to apply it on integers, booleans and etc. In
order to increase the flexibility and meanwhile to remain the correctness we gain from a
type system, polymorphism are developed.

A polymorphic type system introduces type variables to express arbitrary types. In
general, a inference algorithm tries to infer the most general type, also known as principle
type, for a term. For example in Haskell, an identity(id) function usually has a polymor-
phic type: ∀a.a → a. The quantified type variable a could be then instantiated to any
type as required. Suppose we have an expression (id id) 1, the left most id will have type:
(Int→ Int)→ (Int→ Int) where a is instantiated to Int→ Int; the second id will have
type: Int→ Int where a is instantiated to Int.

A polymorphic analysis allows polymorphic types in the underlying type system.
Monovariant and Polyvariant. Similarly, polyvariant analysis allows polymorphism
in annotations whereas monovariant analysis does not. A polyvariant annotation system
gives an analysis the ability to vary the analysis properties of an expression depending on
the context in which the expression is used.
Subsumption. Subsumption refers to certain kinds of type inference rules in a type
system. For a subsumption rule in an annotated type system:

[sub]
Γ ` t : τ̂1
Γ ` t : τ̂2

if τ̂1 ≤ τ̂2

where ≤ is a partial ordering defined on types, it generally says that if a term has type τ̂1
and τ̂1 is more precise than τ̂2, then the term can be said to be of type τ̂2 safely. There
are various ways of defining the partial ordering on annotated types. Two of these are
subtyping and subeffecting. They differ on how to define the partial ordering for com-
pound type constructors like function types. But firstly, we give the definition of a partial
ordering for simple types, which is shared by both subtyping and subeffecting:

ϕ v ϕ′

τϕ ≤ τϕ′

2 5 5

2.5

where the definition of v, partial ordering of annotations, depends on the analysis and
τ represents any kinds of basic types supported by the underlying type system. Then in
subtyping, the ordering of compound types is defined as:

τ̂ ′
1 ≤ τ̂1 ϕ v ϕ′ τ̂2 ≤ τ̂ ′

2

τ̂1
ϕ→ τ̂2 ≤ τ̂ ′

1
ϕ′
→ τ̂ ′

2

In this definition, function types have the same ordering as their result types but the
reversed ordering as their argument types. we say that the arrow or the function type
constructor which takes an argument type and a result type and produce a function type
is covariant with result types because it preserves the ordering of result types and is
contravariant with argument types because it reverses the ordering of argument types.

The reason that we define the ordering for function type this way is that a function
produces a value of its result type but consumes a value of its argument type. Let us
consider a type system which contains Real for real number, Int for integers, Nat for
natural number and function types. The ordering of types is defined as subset relation
which roughtly represents the meaning ”is more specific than”. For example, we have
Nat ≤ Int and Int ≤ Real because a natural number is more specific than an integer and
an integer is more specific than a real number. For a function type Int→ Int, it denotes
that this function produces a integer value and we can also say it produces a real number
because it is always safe to generalise what is produced. On the other hand, it is also safe
to make it more specific of what is consumed, so it is possible to give a natural number as
the arugment of this function. If we have a type system which support user defined data
type, dealing with covariance and contravariance is relatively complicate because these
types may contain the function-space constructor, and, hense can be used to construct
new contravariant and covariant constructors. So a simplified form of subsumption, subef-
fecting is introduced. Subeffecting only makes use of top level annotations to determine
the ordering of the annotated types:

τ̂1 = τ̂ ′
1 ϕ v ϕ′ τ̂2 = τ̂ ′

2

τ̂1
ϕ→ τ̂2 ≤ τ̂ ′

1
ϕ′
→ τ̂ ′

2

By combining different technologies in these three aspects, we have twelve methods of im-
plementing a type-based analysis. It is not necessary to explore all these methods because
our focus is on comparing subtyping and subeffecting. Four of them will be implemented
in later chapters. First, we give a prototype for binding-time analysis by using the MMX
method, where the first and second M represent monomophic and monovariant respec-
tively and the X stands for “no subsumption”. Although the analysis is the least powerful
one, it builds the framework of the analysis and can serve to illustrate binding time anal-
ysis. Then we extend this prototype to PPT which stands for polyvariant analysis with
polymorphic underlying type system and subtyping subsumption. PPT is expected to
give the most precise analysis, but also be the most complex one, both in terms of im-
plementation and execution. At last we simplify PPT a little to PPE with subeffecting
subsumption and compare the two to discover the differences in terms of expressive power
and cost.

6 6 2

2.5

2.5 Partial Evaluator

Partial evaluator is an automatic tool that transforms a program into a residual program
which have the same dynamic behavior as the original one but hopefully with better per-
formance. For example, we have a haskell program:

power m n = if n == 0 then 1 else m ∗ power m (n− 1)
square m = power m 2

We except a typical partial evaluator generates a residual program like:

power m n = if n == 0 then 1 else m ∗ power m (n− 1)
square m = m ∗m

In order to do that, a partial evaluator needs to know which part of the program can be
evaluated at compile time, which motivates the developing of binding-time analysis. The
partial evaluator uses the results of binding-time analysis to compute values for static
terms and generate code for dynamic terms.

2 7 7

Chapter 3

Binding-time Analysis

In this chapter, we first give a formal definition of binding-time analysis(Section 3.1) and
the target language on which our analysis applied(Section 3.2). In Section 3.3 we specify
binding-time analysis in the form of annotated type inference system. Then we explain
our implementation algorithm of the specification in detail(Section 3.4), and at last we
define the metrics that describe the expressive power and resource consumption of the
analysis.

3.1 Binding-Time Analysis

Binding-Time Analysis(BTA) is a kind of type-based program analysis that determines
what expressions of a program can be safely evaluated at specialization-time(compile-
time) and those cannot. Values that are known at specialization-time are called Static. A
Dynamic binding time indicates that we defer the computation of the value to the place
of runtime.

We simply use S to refer to static binding time and D for dynamic binding time.
Consider a program:

let x = 1 in x+ y
where x is a let-binding variable that has value of 1 and y is a free variable in this program.
The binding-time analysis for this program produces the typing for x and y as : x :: NatS

and y :: NatD. Here, x is a static natural number because its value is known to be 1
at specialization-time while y is a dynamic value as it is free in the program. In type-
based analysis, annotations such as S and D are called effect [9], and we shall call them
binding-time effects or binding-time annotations in our context of binding-time analysis.

Function types are also annotated with binding-time effects. For instance, we have
function succ

succ = λx . x+ 1
and its type

succ :: NatD S→ NatD .
The annotation D in the argument type of function succ indicates that the function does
not require its argument value to be known at specialization-time. The annotation D in
the result type indicates that succ produces a natural number that may not be evaluated
at specialization-time. The annotation S on the function arrow shows that the function
itself can be evaluated at specialization-time.

8

3.2

3.2 Syntax of Target Language

First, we define the syntax of the language that we will apply our analysis on. It is a
simple functional language with basic control structure and lambda abstraction:

p ∈ Prog ::= t
t ∈ Term terms:

::= nl numeral
| bl boolean
| xl identifier
| (fun x => t)l abstraction
| (fun rec x => t)l recursive function
| (t t)l application
| (let val x = t in t end)l local definition
| (let dyn val x :: tp in t end)l dynamic value
| (t op t)l binary operation
| (if t then t else t)l branch.

In our language, each program is represented by an element of the set Prog which simply
contains a term that defines the real content of the program. Adding this top level wrap-
per for a term enable us to perform program specific behaviors of program analysis. We
explain this in more details in later sections. In the definition of Term, n , x and b range
over natural numbers, identifiers and boolean respectively:

n ∈ N natural numbers
x ∈ Ident identifiers
b ∈ Bool boolean

::= true
| false

Furthermore, l ranges over labels, which are used to uniquely identify subterms:

l ∈ Lab labels.

Finally, op ranges over binary operations, containing both arithmetic and relation opera-
tions:

op ∈ Op binary operations.

The language is in great degree an extension of a typed lambda calculus except that we
have defined a clause of terms to introduce dynamic value explicitly. For a pure func-
tional language, such as a lambda calculus or many of its extensions, all of the closed
expressions of a program can be evaluated at specialization-time. Without side effect,
there is no dynamic factors that influence the result of executing the program, thus the
values of all expressions of a program can be determined before actually running it. Then
a binding-time analysiser will always annotate all the expressions with a static binding
time for a program written in such a language, which makes the analysis meaningless. In
order to avoid this situation, we allow defining dynamic variables whose values can only

3 9 9

3.3

be known at runtime. In a term let dyn val x :: tp in t end, tp denote the type of x,
type is defined as

tp ∈ Type ::= Nat | Bool |tp→ tp.

3.3 Specification of BTA-MMX

For a monovariant binding-time analysis with a monomorphic underlying type system and
no separate rules for subsumption, we use the following annotations to express the analysis:

ϕ ∈ Ann annotations:
::= S static binding time
| D dynamic binding time.

It is easy to define an ordering v: Ann×Ann for the set of annotation:

ϕ v ϕ S v D

and we shall write ϕ2 w ϕ1 for ϕ1 v ϕ2. A term being static is considered to be a
stronger condition because a static term could be also treated as a dynamic term whereas
a dynamic term can never be used as static one safely without further information. So
we sometimes use the word “stronger” or “smaller” for the relation v and “weaker” or
“bigger” for w. Combining the annotation with the underlying type system, we have
annotated types defined as:

τ̂ ∈ BTType annotated types:
::= Natϕ natural numbers
| Boolϕ booleans
| τ̂

ϕ→ τ̂ functions

Then we can use notations |τ̂ | to denote the top level annotation of a binding time type:

|Natϕ| = ϕ
|Boolϕ| = ϕ

|τ̂1
ϕ→ τ̂2| = ϕ

So the result of binding-time analysis are summarized as a function mapping each label
that appears in the program to an annotation:

B̂ : Lab? → Ann
B̂(l) = |τ̂l|

where τ̂l denotes the annotated type that assigned or assignable to the subterm with label
l. Binding-time analysis is motivated by partial evaluation and this suggests imposing a
well-formedness condition on types so that types like NatS D→ NatS are regarded as being
meaningless because such a type denotes a function whose definition itself is unknown but
produces known results. We use wft(τ̂) to denote the well-formedness which is defined
as:

10 10 3

3.3

• wft(Natϕ) and wft(Boolϕ): a type constant is always well-formed.

• For function type wft(τ̂1
α→ τ̂2) if α v |τ̂1|, α v |τ̂2| and wft(τ̂1) and wft(τ̂2).

Now, the deduction rules for binding-time analysis can be described in a list of judgments
which have the form

Γ̂ `tBTA t : τ̂

where Γ̂ is an annotated type environment that maps identifiers to annotated types:

Γ̂ ∈ TEnv annotated type environments
Γ̂ ::= [] | Γ̂[x 7→ τ̂]

[num] Γ̂ `tBTA n : Natϕ

[bool] Γ̂ `tBTA b : Boolϕ

[id]
Γ̂(x) = τ̂

Γ̂ `tBTA x : τ̂

[fun]
Γ̂[x 7→ τ̂x] `tBTA t0 : τ̂0 ϕ v |τ̂0| ϕ v |τ̂x|

Γ̂ `tBTA fun x⇒ t0 : τ̂x
ϕ→ τ̂0

[rec]
Γ̂[self 7→ τ̂x

ϕ→ τ̂0][x 7→ τ̂x] `tBTA t0 : τ̂0 ϕ v τ̂0 ϕ v τ̂x
Γ̂ `tBTA fun rec x⇒ t0 : τ̂x

ϕ→ τ̂0

[app]
Γ̂ `tBTA t1 : τ̂2

ϕ→ τ̂0 Γ̂ `tBTA t2 : τ̂2 ϕ v τ̂2 ϕ v τ̂0
Γ̂ `tBTA t1 t2 : τ̂0

[let]
Γ̂ `tBTA t0 : τ̂0 Γ̂[x 7→ τ̂0] `tBTA t : τ̂

Γ̂ `tBTA let val x = t0 in t end : τ̂

[dyn]
Γ̂[x 7→ dyn(tp)] `tBTA t : τ̂

Γ̂ `tBTA let dyn val x :: tp in t end : τ̂

[op]
Γ̂ `tBTA t1 : τϕop1 Γ̂ `tBTA t2 : τϕop2

Γ̂ `tBTA t1 op t2 : τϕop

[if]
Γ̂ `tBTA t1 : Boolϕ Γ̂ `tBTA t2 : τ̂ Γ̂ `tBTA t3 : τ̂ ϕ v τ̂

Γ̂ `tBTA if t1 then t2 else t3 : τ̂

Table 1:Deduction rules for terms

Table 1 specifies all the atomic rules for binding-time analysis. The [num] rules describe
the types for integer constants. Its definition:

3 11 11

3.4

[num] Γ̂ `tBTA n : Natϕ

is an abbreviation of

[num-static] Γ̂ `tBTA n : NatS, [num-dynamic] Γ̂ `tBTA n : NatD,

and we employ a similar abbreviation in some of the other rules. The rule for dynamic
value indicates that a dynamic variable will always be assigned a dynamic binding-time
type produced by dyn(tp) which is defined by

dyn(Nat) = NatD

dyn(Bool) = BoolD

dyn(tp1 → tp2) = dyn(tp1) D→ dyn(tp2)

Rule [fun] defines how to deduce types for a lambda abstraction. The auxiliary predicates
ϕ v |τ̂0| and ϕ v |τ̂x| ensure that the infered type is well-formed. For recursive functions,
we use a special identifier self to denote the recursive function. In the [if] rule, we also
require the annotation of the condition to be smaller than the type of the whole term.
Without this requirement, a static then branch and a static else branch will always imply
the whole term to be static, which could be wrong. Because if the condition is dynamic,
we still can not determine the value of the whole term.

The superscript t in the type judgment notation `tBTA denotes that it infers the bind-
ing time type for terms. As mentioned in last section, we separate programs from terms
because a program will have the type of its term only if the type is dynamic at top level.
Here we require programs to be dynamic because we want the specializer to generate a
program for further processing rather than its value. The rule that infers the type of a
program is then defined as:

[Prog]
Γ̂ `tBTA t : τ̂ |τ̂ | = D

Γ̂ `pBTA t : τ̂

3.4 Inference Algorithm

In this section we will devise an algorithm for binding-time analysis, whose results will
be consistent with the deduction rules defined in the previous section. The algorithm
is based on the type reconstruction algorithm, algorithm W. In the algorithm, we first
traverse the abstract syntax tree and find out the relations between augmented types and
annotations, which are described in forms of unifications and constraints. Unifications are
resolved immediately during the traversal; this result in a substitution. Then we try to
solve the constraints.

3.4.1 Augmented types and annotations

First, we extend our annotated types and annotations with type variables and annotation
variables to augmented types and augmented annotations:

12 12 3

3.4

τ̂ ∈ ̂BTType augmented types
β ∈ TVar type variables
ϕ ∈ Ânn augmented annotations
α ∈ AVar annotation variables

τ̂ ::= Natϕ | boolϕ | τ̂1
ϕ→ τ̂ | β

β ::= ′1 | ′2 | ′3 | ...
ϕ ::= S | D | α
α ::= 1′ | 2′ | 3′ | ...

3.4.2 Substitution

Augmented types and annotations are only used inside the algorithm. Each time we
introduce a new type variable or an annotation variable, it is because we could not de-
termine the types of a term and its subterms based on the current information. How-
ever, in the end we must resolve all the type and annotation variables with a con-
crete or a set of concrete annotated types and annotations. So we define a substitution
θ : (TVar→fin

̂BTType)× (AVar→fin Ânn) to be a finite, partial mapping that maps
type variables to augmented types and maps annotation variables to augmented annota-
tions. A substitution θ = (θ′, θ′′) is applied to an augmented type, as follows:

θ τ̂ = θ′′ (θ′ τ̂)

θ′ Natϕ = Natϕ

θ′ boolϕ = boolϕ

θ′ τ̂1
ϕ→ τ̂2 = (θ′ τ̂1)

ϕ→ (θ′ τ̂2
θ′ β = τ̂ if θ′ β = τ̂

θ′′ Natϕ = Natθ
′′ϕ

θ′′ boolϕ = boolθ
′′ϕ

θ′′ τ̂1
ϕ→ τ̂2 = (θ′′ τ̂1)

θ′′ϕ→ (θ′′ τ̂2
θ′′ β = β

Table 2: Application of Substitution.

We write ◦ for substitution composition: (θ1 ◦ θ0)τ̂ = θ1(θ0 τ̂).

3.4.3 Unification

Unification describes that two types or two annotations are equal. It computes a substi-
tution from two augmented types. If we have θ = UBTA(τ̂1, τ̂2), then θ τ̂1 = θ τ̂2 holds.
Here we use UBTA for unification of types and U ′

BTA for unification of annotations. Table 3
shows the calculation of substitution.

3 13 13

3.4

UBTA(Natϕ1 , Natϕ2) = U ′
BTA(ϕ1, ϕ2)

UBTA(boolϕ1 , boolϕ2) = U ′
BTA(ϕ1, ϕ2)

UBTA(τ̂1
ϕ→ τ̂2, τ̂

′
1
ϕ′
→ τ̂ ′

2) = let θ0 = U ′
BTA(ϕ,ϕ

′)
θ1 = UBTA(θ0 τ̂1, θ0 τ̂ ′

1)
θ2 = UBTA(θ1(θ0 τ̂2), θ1(θ0 τ̂ ′

2))
in θ2 ◦ θ1 ◦ θ0

UBTA(τ̂ , β) =


[β 7→ τ̂] if β does no occur in τ̂

or if β equals τ̂
fail otherwise

UBTA(β, τ̂) = UBTA(τ̂ , β)

UBTA(τ̂1, τ̂2) = fail in all other cases

U ′
BTA(S,S) = id

U ′
BTA(D,D) = id

U ′
BTA(ϕ, α) = [α 7→ ϕ]

U ′
BTA(α,ϕ) = [α 7→ ϕ]

U ′
BTA(ϕ1, ϕ2) = fail in all other cases

Table 3: Unification of augmented types and annotations

3.4.4 Constraints

Similar to unification, constraints are used to describe relations between types and an-
notations, except that unification will always result in a substitution whereas constrains
may be left unresolved. In the MMX specification, only one form of inequality is present:
ϕ v τ̂ and in our constraints system that is represented by notation ≤h and have the form
ϕ ≤h τ̂ . So a constraint D ≤h Natα can be resolved and a substitution [α 7→ D] is its
result. For a constraint D ≤h β, we cannot compute a substitution that maps β to a type
because the shape of β is undetermined.
In the algorithm, we collect a list of constraints which is defined as :

c ∈ Con ::= ϕ ≤h τ̂ constraint.
cs ∈ Cons ::= [] | c : cs constraints.

We use + for the operation of list concatenation and [c] to refer to c : []. Since constraints
will not necessarily resolve to substitutions, unresolved constraints may remain. So the
algorithm that solves the constraints is described as :

ω(cs) = (cs′, cs′′, θ)

14 14 3

3.4

where ω takes a list of constraints to be resolved as its arguments and returns a list of
constraints that could be solved, a list of constraints that could not, and a substitution.

ω([]) = ([], [], id)
ω([S ≤h τ̂]) = ([S ≤h τ̂], [], id)
ω([α ≤h τ̂]) = case |τ̂ | of

S → ([α ≤h τ̂], [], [α 7→ S])
α′ → ([], [α ≤h τ̂], id)
D → ([α ≤h τ̂], [], id)
otherwise → ([], [α ≤h τ̂], id)

ω([D ≤h τ̂]) = case |τ̂ | of
S fails
α → ([D ≤h τ̂], [], [α 7→ D])
D → ([D ≤h τ̂], [], id)
otherwise → ([], [D ≤h τ̂], id)

ω(c : cs) = let (s1, s2, θ1) = ω([c])
in case s2 of

[] → let (s3, s4, θ2) = ω(θ1 cs)
in (s1 + s3, s4, θ2 ◦ θ1)

otherwise → let (s3, s4, θ2) = ω(cs)
(s5, s6, θ3) = ω((θ2 s2) + s4)

in (s3 + s5, s6, θ3 ◦ θ2)

Table 4: Algorithm of solving constraints

3.4.5 Algorithm

To infer the annotated types of a program automatically, we develop an algorithm WBTA

for binding-time analysis, which is an extension of the type reconstruction algorithm W.
It has the form:

WBTA(Γ̂, t) = (τ̂ , θ, C)

Given a type environment, the algorithm calculates the binding time type for a term to-
gether with a substitution and a set of constraints. The algorithm is described in Table 5.
The set of constraints denotes that the typing we infer is only correct if all the constraints
are valid. So after applying algorithm WBTA, we use the algorithm described in previous
section to resolve the constraints.

3 15 15

3.5

WBTA(Γ̂, c) = let α be fresh in (Natα, id, ∅)
WBTA(Γ̂, true) = let α be fresh in (boolα, id, ∅)
WBTA(Γ̂, false) = let α be fresh in (boolα, id, ∅)
WBTA(Γ̂, x) = (Γ̂(x), id, ∅)
WBTA(Γ̂, fun x => t0) = let βx, αf be fresh

(τ̂0, θ0, C0) =WBTA(Γ̂[x 7→ βx], t0)
in (θ0 βx

αf−→ τ̂0, θ0, C0 ∪ αf ≤h θ0 βx ∪ αf ≤h τ̂0)
WBTA(Γ̂, fun rec x => t0) =

let βx, β0, αf be fresh

(τ̂0, θ0, C0) =WBTA(Γ̂[self 7→ βx
αf−→ β0][x 7→ βx], t0)

θ1 = UBTA(τ̂0, θ0 β0)

in (θ1(θ0 βx)
θ1(θ0 αf)
−→ θ1 τ̂0, θ1 ◦ θ0,

θ1 C0 ∪ θ1(θ0 αf) ≤h θ1(θ0 βx) ∪ θ1(θ0 αf) ≤h θ1 τ̂0)
WBTA(Γ̂, t1 t2) = let β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, τ̂2

αf−→ β0)
in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2)

WBTA(Γ̂, let val x = t0 in t end) = let (τ̂0, θ0, C0) =WBTA(Γ̂, t0)
(τ̂ , θ, C) =WBTA(θ0 Γ̂[x 7→ τ̂0], t)

in (τ̂ , θ ◦ θ0, C ∪ θ C0)
WBTA(Γ̂, let dyn val x :: tp in t end =WBTA(Γ̂[x 7→ dyn(tp)], t)
WBTA(Γ̂, t1 op t2) = let α be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, ταop1)
θ4 = UBTA(θ3 τ̂2, τ θ3 α

op2)
in (τ θ4(θ3 α)

op , θ4 ◦ θ3 ◦ θ2 ◦ θ1, θ4(θ3(θ2 C1)) ∪ θ4(θ3 C2))
WBTA(Γ̂, if t1 then t2 else t3) =

let α be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
(τ̂3, θ3, C3) =WBTA(θ2(θ1 Γ̂), t3)
θ4 = UBTA(θ3(θ2 τ̂1), boolα)
θ5 = UBTA(θ4 τ̂3, θ4(θ3 τ̂2))

in (θ5(θ4 τ̂3), θ5 ◦ θ4 ◦ θ3 ◦ θ2 ◦ θ1,
θ5(θ4(θ3(θ2 C1))) ∪ θ5(θ4(θ3 C2))

∪θ5(θ4 C3) ∪ θ5(θ4 α) ≤h θ5(θ4 τ̂3))

Table 5: Algorithm WBTA

16 16 3

3.5

3.5 Metrics

Two aspects need to be measured for binding-time analysis. The expressive power of the
analysis is described by the number of static subterms in a program:

power(p) = |{B̂(l)|∀l ∈ lab(p), B̂(l) = S}|,

where lab(p) calculates the set of labels that appear in program p and function B̂ is
defined in Section 3.2. The number of static terms is a very general metric to measure the
preciseness of binding time analysis. Since the main usage of binding time analysis is in
a partial evaluator, we also use another measurement: the number of static applications
which a partial evaluator is more concerned with because that is the place where a partial
evaluator reduces a term. A static application (t1 t2) means that the top level annotation
of t1 is static.

The cost of binding-time analysis is described by the time consumption for calculating
the binding time types of each expression. In algorithm WBTA, this is proportional to
the computation of substitutions from unifications and constraints. So we use the total
number of unifications and constraints to denote the cost of the analysis. The number of
recursive calls to unification is defined as :

num(UBTA(τ̂1
ϕ→ τ̂2, τ̂

′
1
ϕ′
→ τ̂ ′

2)) = let n1 = num(UBTA(τ̂1, τ̂ ′
1))

n2 = num(UBTA(ϕ,ϕ′))
n3 = num(UBTA(τ̂2, τ̂ ′

2))
in n1 + n2 + n3

num(UBTA(τ̂1, τ̂2)) = 1 in other cases
num(U ′

BTA(ϕ1, ϕ2)) = 1

Another important aspect of measuring complexity of binding-time analysis is its im-
plementation effort such as the number of modules we used, the total number of functions
defined, the lines of the program and etc. Although this information does not show runtime
performance of the program, it provides useful information of design and implementation
of the analysis.

3 17 17

Chapter 4

Polymorphism and Polyvariance

In this chapter, we extend our monomorphic language to a polymorphic typed language
and develop a polyvariant binding-time analysis for it. In the context of binding-time
analysis, ”binding-time polymorphism” is often referred to as polyvariance. As mentioned
in previous chapter, we call this analysis PPX.

4.1 Binding-Time Type Schemes

Binding-time analysis can be specified as binding-time logics, a type inference system.
A monomorphic binding-time logic only allow a single binding-time to be assigned to a
variable. This is a severe weakness of expressive power, because each variable must be
assigned with a conservative approximation of all uses of the variable. For example, we
have a program:

let val id = (fun x⇒ x1)2

in let val y = (id3 24)5

in (id6 37)8

end9

end10.

Since the result of the program should be dynamic, the expression (id 3) will have type
NatD, which leads to the function id having type NatD S→ NatD. In a monomorphic
monovariant system, variables have monomorphic types, so (id 2) has type NatD and 2
has type NatD. If we only consider expression (id 2), we could assign them with better
types: id : NatS S→ NatS and 2 : NatS. However, we have to weaken the binding time
condition to id : NatD S→ NatD and 2 : NatD because the analysis should give a safe
answer. Further more the variable y, which has nothing to do with the result of the
program, will also be assigned a dynamic annotation. In a monovariant analysis, dynamic
binding times spread easily, and pollute expressions that could have a static binding time
in a more expressive system.

A solution to this problem is to copy a variable(function) in as many variants as there
are different uses of it in a program, so that we can always give best approximation of
each variable(function), because there will be at most one use for each variable(function)
defined. For the example above, we transform the program to:

18

4.1

let val id = (fun x⇒ x1)2

in let val y = ((fun x⇒ x)3 24)5

in ((fun x⇒ x)6 37)8

end9

end10.

However the downside of this approach is obvious that the copying increases the complexity
of a program dramatically. Furthermore, it imposes a burden on the programmer who
ideally could stay completely unaware of binding time analysis and partial evaluation.

An alternative way is to use polyvariance. The idea is to assign each variable a poly-
varint binding-time property which may have binding-time parameters that can be instan-
tiated into various binding-times in line with the use context of the variable. Furthermore,
we also extend the target language to a polymorphic language to increase the expressive
power of the language itself. First we redefine annotations and binding-time types by
introducing variables.

ϕ ∈ Ânn Annotations
::= S | D
| α binding-time variable

τ̂ ∈ ̂BTType Binding-time types
::= Natϕ | Boolϕ | τ̂

ϕ→ τ̂
| β binding-time type variable

Here, we use annotation and type variables to denote arbitrary annotations and types.
This can be easily confused with their usage in an inference algorithm. In such algorithms,
we often define an augment type system which allows type variables to represent unknown
types in the process of type inference. To make it concise, we do not use new notations in
the augment type systems of our polymorphic binding-time type system but differentiate
the purpose and meaning of those variables by their use contexts. Then we define qualified
types that is qualified with constraints and type schemes which have annotation and type
variables being quantified over. Constraints are defined and explained in details in next
section.

ρ̂ ∈ ̂QualTp Qualified types
::= τ̂
| C ⇒ ρ̂ qulified types

σ̂ ∈ B̂TSch Binding-time type schemes
::= ρ̂
| ∀α. σ̂ polyvariant types
| ∀β. σ̂ polymorphic types

The toplevel operation for type shcemes is then defined as :

4 19 19

4.2

|Natϕ| = ϕ
|Boolϕ| = ϕ

|τ̂1
ϕ→ τ̂2| = ϕ
|β| = undefined undefined value

|C ⇒ σ̂| =
{
undefined if |σ̂| = undefined
|σ̂| otherwise

|∀α. σ̂| =
{
undefined if |σ̂| = undefined
|σ̂| otherwise

|∀β. σ̂| =
{
undefined if |σ̂| = undefined
|σ̂| otherwise

4.2 Deduction Rules

Intuitively, β α→ β could be a correct type of the identity function fun x⇒ x. However,
this cannot be determined by using the [fun] typing rule of the MMX deduction system,
because we have introduced variables into our type system and it is not able to devise a
rule to answer whether or not the well-formedness condition such as ϕ v |τ̂ | holds when
τ̂ and ϕ are type and annotation variables. To solve this problem, we capture this kind
of inequality relations between annotations and types in a constraint and encode them
into a type as a qualification to form a qulified type. Later on we will also find out
that subsumption relations can be easily integrated into the framework of qulified types.
Instead of assigning β α→ β to fun x ⇒ x, we expect α ≤h β ⇒ β

α→ β to be the correct
type of the function and ∀α.∀ β.α C β ⇒ β

α→ β to be the most general type or principal
type.

First, we refine the constraint system. We capture two kinds of inequality relations
between annotations and types. We use ϕ1 ≤a ϕ2 to denote that ϕ1 is weaker than ϕ2

and we use ϕ ≤h τ̂ to denote that ϕ is weaker than the top level annotation of τ̂ . So we
have the binding-time constraint defined as:

c ∈ Con ::= ϕ1 ≤a ϕ2 | ϕ ≤h τ̂ binding-time constraint.
cs ∈ Cons = P(Con) binding-time constraints.

Here, notation P denotes power set. Thus constraints are defined as the set of constraint
so they could be manipulated by set operations such as conjunction and set difference.
Similarly to type rules, we define constraint rules in term of constraint judgment which
has the form:

C ` c .
This judgment indicates that a certain constraint c holds under the assumption of con-
straints C holds. The inference rules of the constraint system are specified in Table 6.

20 20 4

4.2

[C-Sta] C ` S ≤a ϕ C ` S ≤h τ̂

[C-Dyn] C ` ϕ ≤a D

[C-Elem]
c ∈ C
C ` c

if c =


α ≤a ϕ
ϕ ≤a α
ϕ ≤h β

[CA-Refl] C ` ϕ ≤a ϕ

[CA-Trans]
C ` ϕ1 ≤a ϕ2 C ` ϕ2 ≤a ϕ3

C ` ϕ1 ≤a ϕ3

[CH-Chan]
C ` ϕ1 ≤a ϕ2 |τ̂ | = ϕ2

C ` ϕ1 ≤h τ̂

[C-Cons]
∀c ∈ C2 . C1 ` c

C1 |= C2

Table 6: Binding-time constraint rules
Most of the rules are quite straightforward, for example the transitivity rule shows that
the partial ordering of annotations is transitive and the C-Refl rule shows the reflexivity
of it. For convenience, we also define the judgment for constraints as in the rule [C-Cons]
which is quite obvious that if any constraint in C2 holds under constraints C1 then C2

holds in the context of C1.

Using the constraint defined above we develop a new form of typing judgment:
C, Γ̂ `tBTA t : σ̂

Besides typing environment, we add a constraints environment and they together form
called a typing context. Then we reformulate the MMX deduction rules in Table 7. Most
rules remain the same as before with simple extending from typing environments to typ-
ing context except for lambda abstraction and branch(if...then...else...) terms. When we
derive the type of a lambda abstraction, instead of requiring the condition that the an-
notation of the function must not be more dynamic than its argument type and result
type, we make sure that the constraints that represent those inequality relations holds
under a certain typing context. So for function funx ⇒ x we come up with its typing
{α ≤h β}, [] `tBTA fun x⇒ x : β α→ β. The proof is shown below:

[x 7→ β](x) = β

{α ≤h β}, [x 7→ β] `tBTA x : β
α ≤h β ∈ {α ≤h β}
{α ≤h β} ` α ≤h β

α ≤h β ∈ {α ≤h β}
{α ≤h β} ` α ≤h β

{α ≤h β}, [] `tBTA fun x⇒ x : β α→ β

4 21 21

4.2

[num] C, Γ̂ `tBTA n : Natϕ

[bool] C, Γ̂ `tBTA b : Boolϕ

[id]
Γ̂(x) = σ̂

C, Γ̂ `tBTA x : σ̂

[fun]
C, Γ̂[x 7→ τ̂x] `tBTA t0 : τ̂0 C ` ϕ ≤h τ̂0 C ` ϕ ≤h τ̂x

C, Γ̂ `tBTA fun x⇒ t0 : τ̂x
ϕ→ τ̂0

[rec]
C, Γ̂[self 7→ τ̂x

ϕ→ τ̂0][x 7→ τ̂x] `tBTA t0 : τ̂0 C ` ϕ ≤h τ̂0 C ` ϕ ≤h τ̂x
C, Γ̂ `tBTA fun rec x⇒ t0 : τ̂x

ϕ→ τ̂0

[app]
C, Γ̂ `tBTA t1 : τ̂2

ϕ→ τ̂0 C, Γ̂ `tBTA t2 : τ̂2 C ` ϕ ≤h τ̂1 C ` ϕ ≤h τ̂2
C, Γ̂ `tBTA t1 t2 : τ̂0

[let]
C, Γ̂ `tBTA t0 : σ̂0 C, Γ̂[x 7→ σ̂0] `tBTA t : τ̂

C, Γ̂ `tBTA let val x = t0 in t end : τ̂

[dyn]
C, Γ̂[x 7→ dyn(tp)] `tBTA t : τ̂

C, Γ̂ `tBTA let dyn val x :: tp in t end : τ̂

[op]
C, Γ̂ `tBTA t1 : τϕop1 C, Γ̂ `tBTA t2 : τϕop2

C, Γ̂ `tBTA t1 op t2 : τϕop

[if]
C, Γ̂ `tBTA t1 : Boolϕ C, Γ̂ `tBTA t2 : τ̂ C, Γ̂ `tBTA t3 : τ̂ C ` ϕ ≤h τ̂

C, Γ̂ `tBTA if t1 then t2 else t3 : τ̂

Table 7: Deduction rules for terms

So far, we have successfully infered the type judgement {α ≤h β}, [] `tBTA fun x ⇒
x : β α→ β. But it is not precise enough to prove the correctness of assigning a cer-
tain type to an expression because such a typing is always made under certain con-
straints as long as its constraints environment is not empty. It is necessary to de-
velop rules to eliminate constraints in the typing context by puting them into the type
as qualifications, so that we are able to infer the typing with empty typing context
∅, [] `tBTA fun x ⇒ x : {α ≤h β} ⇒ β

α→ β for the identitiy function. In addition,
we also have to develop rules to introduce polyvariance and polymorphism.

22 22 4

4.3

[Qual]
C1 ∪ C2, Γ̂ `tBTA t : ρ̂

C1, Γ̂ `tBTA t : C2 ⇒ ρ̂

[Res]
C1, Γ̂ `tBTA t : C2 ⇒ ρ̂ C |= C1 C |= C2

C, Γ̂ `tBTA t : ρ̂

[TpGen]
C, Γ̂ `tBTA t : σ̂ β /∈ ftv(Γ̂) β /∈ ftv(C)

C, Γ̂ `tBTA t : ∀β.σ̂

[TpInst]
C, Γ̂ `tBTA t : ∀β.σ̂

C, Γ̂ `tBTA t : [β 7→ τ̂]σ̂

[AnnGen]
C, Γ̂ `tBTA t : σ̂ α /∈ fav(Γ̂) α /∈ fav(C)

C, Γ̂ `tBTA t : ∀α.σ̂

[AnnInst]
C, Γ̂ `tBTA t : ∀α.σ̂

C, Γ̂ `tBTA t : [α 7→ ϕ]σ̂

Table 8:Non-syntax directed rules
Here, ftv and fav are functions that compute free type variables and free annotation var-
ialbes for typing contexts. To make it concise, we treat these two functions as overloaded
functions and give their definitions as:
Definition of free type variables:
ftv(Natϕ) = ∅ ftv(Boolϕ) = ∅
ftv(β) = β ftv(τ̂1

ϕ→ τ̂2) = ftv(τ̂1) ∪ ftv(τ̂2)
ftv(C ⇒ ρ̂) = ftv(ρ̂) ftv(∀α. σ̂) = ftv(σ̂)
ftv(∀β. σ̂) = ftv(σ̂)− {β}
ftv([]) = ∅ ftv(Γ̂[x 7→ σ̂]) = ftv(Γ̂) ∪ ftv(σ̂)
ftv(ϕ1 ≤a ϕ2) = ∅ ftv(ϕ ≤h τ̂) = ftv(τ̂)
ftv(C) =

⋃
{ftv(c)|∀c ∈ C}

Definition of free annotation variables:
fav(S) = ∅ fav(D) = ∅
fav(α) = {α}
fav(Natϕ) = fav(ϕ) fav(Boolϕ) = fav(ϕ)
fav(β) = ∅ fav(τ̂1

ϕ→ τ̂2) = fav(τ̂1) ∪ fav(τ̂2) ∪ fav(ϕ)
fav(C ⇒ ρ̂) = fav(ρ̂) fav(∀α. σ̂) = fav(σ̂)− {α}
fav(∀β. σ̂) = fav(σ̂)
fav([]) = ∅ fav(Γ̂[x 7→ σ̂]) = fav(Γ̂) ∪ fav(σ̂)
fav(ϕ1 ≤a ϕ2) = fav(ϕ1) ∪ fav(ϕ2) fav(ϕ ≤h τ̂) = fav(τ̂) ∪ fav(ϕ)
fav(C) =

⋃
{fav(c)|∀c ∈ C}

4 23 23

4.4

4.3 Generalization and Instantiation

With the specification, we develop an algorithm of a ML-style polymorphism. The idea is
to infer the most generalized types which are usually type schemes for let-bound variables
and then instantiate them into different types according to there use context.
Generalization. Generalization function takes a type and a typing context as arguments
and generates a type scheme. It finds all type and effect variables that are free in the type
but not free in the typing context and quantifies over these variables. The gen function
is defined as

gen(ρ̂, Γ̂, C) = ∀α1...∀αn. ∀β1...∀βm. ρ̂ where

{
{α1...αn} = fav(ρ̂)− fav(C)− fav(Γ̂)
{β1...βm} = ftv(ρ̂)− ftv(C)− ftv(Γ̂)

Instantiation. Opposite to generalization, instantiation function turns a type scheme
into a binding-time type.

inst(ρ̂) = ρ̂
inst(∀αi. σ̂) = θi inst(σ̂) where θi = [αi 7→ α′

i] and α′
i /∈ fav(∀αi. σ̂)

inst(∀βi. σ̂) = θi inst(σ̂) where θi = [βi 7→ β′
i] and β′

i /∈ ftv(∀βi. σ̂)

4.4 Algorithm

When adapt our algorithm to the new deduction rules, we need to introduce polymorphism
into our algorithm. We can dispense with explicit rules for polymorphism by integrating
generalization and instantiation into all syntax-direct rules. Alternatively, we only incor-
porate polymorphism where it is really needed: generalization in let rule and instantiation
in variable rule.

The idea of polymorphism is that we allow the same term to be assigned to different
types in different use contexts. In our source language, one term is used in variant contexts
through two kinds of variable binding: let-binding which binds local variables with their
definitions and lambda-binding which binds formal arguments with actual arguments. So
these two places are the places that need to incorporate generalization and we call them
let polymorphism and lambda polymorphism. And integrating polymorphism in terms
of other syntax constructors is not necessary because we have to instantiate the types
immediately after we generalize them, which makes both generalization and instantiation
meaningless. Since let-polymorphism and lambda-polymorphism are essentially the same,
in this thesis, we focus on let-polymorphism. Luis Damas and Robin Milner had proved
soundness and completeness of a let polymorphism algorithm, Algorithm W, for a poly-
morphic type system[2], which can be then extended to annotated type system. Table 9
shows the refined inference algorithm for a polyvariant analysis on polymorphic language.
It differs from the old one in two cases, the local definition and variables. The type we
infer for the local definition is generalized into a type scheme and then the local variable
is instantiated into different types in its use context.

24 24 4

4.4

WBTA(Γ̂, c) = let α be fresh in (Natα, id, ∅)
WBTA(Γ̂, true) = let α be fresh in (boolα, id, ∅)
WBTA(Γ̂, false) = let α be fresh in (boolα, id, ∅)
WBTA(Γ̂, x) = let C ⇒ τ̂ = inst(Γ̂(x))

in (τ̂ , id, C)
WBTA(Γ̂, fun x => t0) = let βx, αf be fresh

(τ̂0, θ0, C0) =WBTA(Γ̂[x 7→ βx], t0)
in (θ0 βx

αf−→ τ̂0, θ0, C0 ∪ αf ≤h θ0 βx ∪ αf ≤h τ̂0)
WBTA(Γ̂, fun rec x => t0) =

let βx, β0, αf be fresh

(τ̂0, θ0, C0) =WBTA(Γ̂[self 7→ βx
αf−→ β0][x 7→ βx], t0)

θ1 = UBTA(τ̂0, θ0 β0)

in (θ1(θ0 βx)
θ1(θ0 αf)
−→ θ1 τ̂0, θ1 ◦ θ0,

θ1 C0 ∪ θ1(θ0 αf) ≤h θ1(θ0 βx) ∪ θ1(θ0 αf) ≤h θ1 τ̂0)
WBTA(Γ̂, t1 t2) = let β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, τ̂2

αf−→ β0)
in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2)

WBTA(Γ̂, let val x = t0 in t end) = let (τ̂0, θ0, C0) =WBTA(Γ̂, t0)
σ̂0 = gen(C0 ⇒ τ̂0, Γ̂, ∅)
(τ̂ , θ, C) =WBTA(θ0 Γ̂[x 7→ σ̂0], t)

in (τ̂ , θ ◦ θ0, C ∪ θ C0)
WBTA(Γ̂, let dyn val x :: tp in t end =WBTA(Γ̂[x 7→ dyn(tp)], t)
WBTA(Γ̂, t1 op t2) = let α be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, ταop1)
θ4 = UBTA(θ3 τ̂2, τ θ3 α

op2)
in (τ θ4(θ3 α)

op , θ4 ◦ θ3 ◦ θ2 ◦ θ1, θ4(θ3(θ2 C1)) ∪ θ4(θ3 C2))
WBTA(Γ̂, if t1 then t2 else t3) =

let α be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
(τ̂3, θ3, C3) =WBTA(θ2(θ1 Γ̂), t3)
θ4 = UBTA(θ3(θ2 τ̂1), boolα)
θ5 = UBTA(θ4 τ̂3, θ4(θ3 τ̂2))

in (θ5(θ4 τ̂3), θ5 ◦ θ4 ◦ θ3 ◦ θ2 ◦ θ1,
θ5(θ4(θ3(θ2 C1))) ∪ θ5(θ4(θ3 C2))

∪θ5(θ4 C3) ∪ θ5(θ4 α) ≤h θ5(θ4 τ̂3))

Table 9: Algorithm WBTAfor PPX

4 25 25

Chapter 5

Subeffecting and Subtyping

In this chapter, we first specify the subsumption rule as an extension to our existing type
system(section 5.1). Then we explain two form of subsumption: subeffecting (section 5.2)
and subtyping (section 5.3). At last we describe an algorithm (section 5.4) that handles
subtyping and subeffecing.

5.1 Subsumption rule

Many mathematical concepts are useful in computer science, such as graphs, lists and sets.
A type is essencial a set of values that have a certain kind of similarity. For example, a
type Real can be seen as a set containing all the real numbers and a type Nat identifies
natural numbers.

Let us consider a function add which takes two real numbers as arguments and returns
the sum of these two number. Then it has type : Real→ Real→ Real. In mathematics,
natural number is a subset of real number or a natural number can be coerced to a real
number, so intuitively function add should also be able to apply on integer arguments.
However, under the type system defined in previous chapter, such a function application
will lead to a type error because the Nat type and Real type do not match. A subsumption
typing rule solve this problem by allowing an expression of type A to have type B if A is
a subset of B or values of A can be coerced to values of B.

Considering an annotated type system, subsumption enables the analysis to give a more
precise result. Suppose our add function has binding-time type: NatD S→ NatD

S→ NatD.
Then, for a expression add 1 (2 + 3), we will infer such typing:

∅, [] `tBTA 1 : NatD ∅, [] `tBTA 2 : NatD

∅, [] `tBTA 3 : NatD ∅, [] `tBTA (2 + 3) : NatD .

If we have subsumption rule allowed, we will infer typings:

∅, [] `tBTA 1 : NatS ∅, [] `tBTA 2 : NatS

∅, [] `tBTA 3 : NatS ∅, [] `tBTA (2 + 3) : NatS

because a static value can also be seen as a dynamic value. To increase the expressive
power of the analysis, we extend our type system with a subsumption rule:

26

5.2

[Sub]
C, Γ̂ `tBTA t : τ̂1 C ` τ̂1 ≤t τ̂2

C, Γ̂ `tBTA t : τ̂2

It indicates that if a term has type τ̂1 also has type τ̂2 if between these two types, there
exists an ordering relation which is abstracted by notation ≤t. Such an ordering between
binding-time types is also a kind of inequation so that can be formulated into our existing
constraints system with a little refining.

c ∈ Con ::= ϕ1 ≤a ϕ2 | ϕ ≤h τ̂ | τ̂1 ≤t τ̂2.

The rules for deriving the new constraints are defined in two ways, subeffecting and
subtyping.

5.2 Subeffecting

Subeffecting is a kind of subsumption, where only the effects of terms are concerned when
defining the partial order of types. In our binding-time analysis, the effect of a term is rep-
resented by the toplevel annotation of its binding-time type, so the ordering between two
types is specified with the ordering of effects or annotations. Table 8 shows the constraint
rules extended with subeffecting. Similar to the definition of effect ordering ≤a, ≤t also
has the properties of reflexivity and transitivity. The rules [CT −Atom] and [CT −Fun]
indicate that the ordering of binding-time types is uniquely determined by their toplevel
annotations. For example we could derive the following constraint from our constraints
system.
C ` NatS ≤t NatD C ` NatD S→ NatD ≤t NatD

D→ NatD

5 27 27

5.3

[C-Sta] C ` S ≤a ϕ C ` S ≤h τ̂

[C-Dyn] C ` ϕ ≤a D

[C-Elem]
c ∈ C
C ` c

if c =


α ≤a ϕ
ϕ ≤a α
ϕ ≤h β
β ≤t τ̂
τ̂ ≤t β

[CA-Refl] C ` ϕ ≤a ϕ

[CA-Trans]
C ` ϕ1 ≤a ϕ2 C ` ϕ2 ≤a ϕ3

C ` ϕ1 ≤a ϕ3

[CH-Chan]
C ` ϕ1 ≤a ϕ2 |τ̂ | = ϕ2

C ` ϕ1 ≤h τ̂

[CT-Atom]
C ` ϕ1 ≤a ϕ2

C ` Natϕ1 ≤t Natϕ2

C ` ϕ1 ≤a ϕ2

C ` Boolϕ1 ≤t Boolϕ2

[CT-Fun]
C ` ϕ1 ≤a ϕ2 C ` ϕ2 ≤h τ̂1 C ` ϕ2 ≤h τ̂2

C ` τ̂1
ϕ1→ τ̂2 ≤t τ̂1

ϕ2→ τ̂2
[CT-Refl] C ` τ̂ ≤t τ̂

[CT-Trans]
C ` τ̂1 ≤a τ̂2 C ` τ̂2 ≤a τ̂3

C ` τ̂1 ≤a τ̂3

[C-Cons]
∀c ∈ C2 . C1 ` c

C1 |= C2

Table 10: Binding-time constraint rules with subeffecting

5.3 Subtyping

The partial order of annotated types defined within subeffecting is simple because it only
concerns toplevel annotations of types. A more complicate but more powerful form of
subsumption is subtyping where the partial order of types is indicated by extending the
ordering of effects to a shape-comformant ordering on types. The only difference between
subeffecting and subtyping is the [CT-Fun] rules:

[CT-Fun]
C ` τ̂ ′

1 ≤t τ̂1 C ` ϕ ≤a ϕ′ C ` τ̂2 ≤t τ̂ ′
2 C ` ϕ ≤h τ̂2 C ` ϕ′ ≤h τ̂ ′

1 C ` ϕ′ ≤h τ̂ ′
2

C ` τ̂1
ϕ1→ τ̂2 ≤t τ̂1

ϕ2→ τ̂2

It shows that the ordering of effects is applied recursively into arguments types and result
types. The ordering is called shape-comformant because the two types within a subtyping

28 28 5

5.4

or subeffecting relation have the same structure of their underlying types. In our case,
specifically the two types have the same underlying types for both subtyping and subef-
fecting. So we do not capture such subsumption relation as NatS ≤t RealS, because our
interests focus on the ordering on analysis properties.

From the definitions, it is easy to prove that a subeffecting relation is also a subtyping
relation. Subtyping expresses richer relations on types than subeffecting. For example,
we can infer the following ordering on types:

C ` NatD S→ NatS ≤t NatS
S→ NatS or C ` NatD S→ NatS ≤t NatD

S→ NatD,

whereas we cannot derive any types that is bigger than NatD S→ NatS within subeffecting.

5.4 Algorithm

To adape our algorithm to the subsumption rule, one method is to apply it to each syntax-
directed case, which is safe but introduce unnecessary resource consumption. Similar to
the situation of introducing polymorphism, we want to find out only part of the syntax
cases where applying the subsumption rule has the same expressive power as applying
subsumption rule to all syntax cases. The subsumption rule increases the expressive power
of the analysis by allowing the type of a term to be static when it is unified with a dynamic
term. So we only need to use subsumption rule where there are unifications. Three cases
are included, application case, operation case and if then else case. The adaped algorithm
is shown below.

WBTA(Γ̂, t1 t2) = let β2, β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, β2

αf−→ β0)
C3 = τ̂2 ≤t β2

in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2 ∪ θ3 C3)
WBTA(Γ̂, t1 op t2) = let α be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
C3 = θ2 τ̂1 ≤t ταop1
C4 = θ3 τ̂2 ≤t τ θ3 α

op2

in (ταop, θ2 ◦ θ1, θ2 C1 ∪ C2 ∪ C3 ∪ C4)
WBTA(Γ̂, if t1 then t2 else t3) =

let α, β be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
(τ̂3, θ3, C3) =WBTA(θ2(θ1 Γ̂), t3)
θ4 = UBTA(θ3(θ2 τ̂1), boolα)
C4 = θ4(θ3 τ̂2) ≤t β
C5 = θ4 τ̂3 ≤t β

in (θ4 τ̂3, θ4 ◦ θ3 ◦ θ2 ◦ θ1,
θ4(θ3(θ2 C1)) ∪ θ4(θ3 C2)

∪θ4 C3 ∪ θ4 α ≤h θ4 τ̂3 ∪ C4 ∪ C5)

5 29 29

5.5

In [13], Geoffrey designed a similar type inference algorithm for a polymorphic language
with subtyping and proved its syntax soundness and completeness. Although we do not
give a formal prove for our algorithm, we have the faith that it is consistent with our
specification.

5.5 Defaulting

When we generalise the type of local definition, we also generalise the constraints that are
generated from the local definition. Then these constraints are instantiated as many times
as the local variable is instantiated, which greatly increases the number of constraints that
need to be solved. However not all the constraints we generalised relate to the inference
of types. For example, we have a program:

let val y = (fun x⇒ x) 10 in y + y + y + y + y end

Normally, an algorithm assigns the type Natα1
α2→ Natα1 to term (fun x⇒ x) and Natα3

to 10. It also generates constraints α2 ≤a α1 and α3 ≤a α1. After generalization, the
type schema for y is ∀α1.(α2 ≤a α1, α3 ≤a α1) ⇒ Natα1 . Since variable y are used five
times in the body of let-term, the two constraints are also instantiated into ten different
constraints. However, α2 and α3 do not appear in the type of the local variable, the values
of them do not affect the type inference outside the scope of the local definition. So we are
free to choose the value of those kind of annotation variables at the point of generalization
to make the constraints generated by local definition as simple as possible as long as the
values we select conform those constraints where they are related. In this case, we choose
both α2 and α3 to be S and S ≤a α1 is obviously valid, so the type schema of y is a simple
∀α1.Nat

α1 . This procedure is called defaulting.
For a typical local definition let val x = t0 in t end, assume (τ̂0, θ0, C0) =WBTA(Γ̂, t0).

The algorithm of defaulting is described in the following steps,

• Find all free annotation in τ̂0 and (̂Γ), regarded as set1 = {α1, ..., αm}.

• Find all free annotation in C0 but not in set1, regarded as set2 = {α′
1, ..., α

′
n}.

• For each annotation α′
i in set2, find all annotations that are smaller than α′

i in set1,
regarded as set′i.

• For each set′i, if there exists an upper bound α′′
i , generate a subsititution α′

i 7→ α′′
i .

• Combine all subsititution and simplify C0 to C ′
0.

30 30 5

Chapter 6

Comparison

6.1 PPX and PPE

Expressive Power. A polyvariant analysis allows us to defer the time of assigning the
binding time property to a variable from the point of its definition to the point when it is
used. However, it does not capture the ordering between types. The power of subeffecting
is shown by allowing a function to be applied to a term which has a different type from the
argument type of the function as long as these two types fulfill a certain ordering relation.

Let us consider a simple program:

let val id = fun x⇒ x
in id 1
end

In a polyvariant analysis, we are able to infer the type for the id function defined in the let
term: ∀β, α.α ≤h β ⇒ β

α→ β. Then it is instantiated into type NatD S→ NatD because
the result type of id must be dynamic. In PPX, the term 1 has type NatD because id
requires a dynamic integer whereas in PPE, both NatS and NatD could be the type for
term 1 because both static and dynamic term is acceptable for a function which expects
a dynamic argument.

Now let us see a more complicate example with a higher order function whose second
argument is also the argument of its first argument,

let val apply = fun f ⇒ fun x⇒ f x
in let val id = fun x⇒ x

in apply id 1
end

end

So in the type system without subsumptions, the type shcema of apply is
∀β1, β2, α1, α2, α3.
α2 ≤a α1, α2 ≤a α3, α1 ≤h β1, α1 ≤h β2, α3 ≤h β1, α3 ≤h β2

⇒ (β1
α1→ β2) α2→ β1

α3→ β2

which will further refered as τx. In the type system with subeffecting, the type shcema is
∀β1, β2, β3, α1, α2, α3.
α2 ≤a α1, α2 ≤a α3, α1 ≤h β1, α1 ≤h β2, α3 ≤h β3, α3 ≤h β2, β3 ≤t β1

31

6.2

⇒ (β1
α1→ β2) α2→ β3

α3→ β2

which is refered as τe. If we limit β3 to be β1 then τe becomes τx. So τe is a more general
type than τx and can be instanciate into more types than τx.
Resouce Comsumption. Although subeffecting increases the expressive power of the
analysis in a certain extent, it also complicates the algorithm by introducing more con-
straints. The main difference between the algorithm of PPX and PPE is in the application
case. In PPX,

WBTA(Γ̂, t1 t2) = let β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, τ̂2

αf−→ β0)
in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2)

The key step of infering types for (t1 t2) in PPX is to unify the type of t2 with the expected
argument type of t1. In PPE we have,

WBTA(Γ̂, t1 t2) = let β2, β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ3 = UBTA(θ2 τ̂1, β2

αf−→ β0)
C3 = τ̂2 ≤t β2

in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2 ∪ θ3 C3)

With subsumption rule, it is not necessary the type of t2 has to be the same as the type
of t1 argument. We first unify t1’s argument type with a newly introduced type variable
β2 which only serves as a representitive of it. Then we generate a constraint between the
type of t2 and β2. To make the comparsion more clear, we change the algorithm of PPX
a little as PPX ′,

WBTA(Γ̂, t1 t2) = let β2, β0, αf be fresh

(τ̂1, θ1, C1) =WBTA(Γ̂, t1)
(τ̂2, θ2, C2) =WBTA(θ1 Γ̂, t2)
θ′
3 = UBTA(θ2 τ̂1, β2

αf−→ β0)
θ3 = UBTA(θ′

3 β2, τ̂2) ◦ θ′
3

in (θ3 β0, θ3 ◦ θ2 ◦ θ1, θ3(θ2 C1) ∪ θ3 C2)

This increases one more unification by using the intermedia type variable β2. The com-
plexity difference between algorithm with and without subsumption lies on that between
constraints and unifications. In PPE, it generates more constraints than in PPX but less
unifications. In most cases, a constraint is more complicated to deal with than a unifica-
tion. For example, the result of a unification UBTA(β,NatD

α→ NatD) is simply a subsiti-
tution mapping from β to that function type whereas a constraint β ≤t NatD

α→ NatD

will result in a subsititution [β 7→ NatD
α′
→ NatD] and a new constraint α′ ≤a α.

6.2 PPE and PPT

Expressive Power. The difference between subtyping and subeffecting is how they
define the parital ordering, or subtype relation, between types. In our type system, two

32 32 6

6.3

type constants Nat and Bool and one compound type, function type, are presented. In
the cases of type constants, both subtyping and subeffecting share the same definition. For
function types, subtyping applies the subtype relation recursively into the argument and
result types. As shown in previous chapter, in our inference algorithm, the subsumption
rule is used in the case of function application, where parameter’s type can be smaller than
the argument type of the function. So subtyping may be beneficial more than subeffecting
the function is a higher function, that it takes another function as arguments.

Considering the following example:

let val apply = fun f ⇒ fun x⇒ f x
in let dyn val g :: (Nat→ Nat)→ Nat

in apply g (fun x⇒ 1)
end

end

Function apply is defined the same as in last example, so it has type:
∀β1, β2, β3, α1, α2, α3.
α2 ≤a α1, α2 ≤a α3, α1 ≤h β1, α1 ≤h β2, α3 ≤h β3, α3 ≤h β2, β3 ≤t β1

⇒ (β1
α1→ β2) α2→ β3

α3→ β2

It takes a dynamic function as its first argument, where the dynamic function is also
a higher order function that takes a function from natural number to natural number
as its argument. So we can infer that β1 is instantiated to NatD

D→ NatD and β2 is
instantiated to NatD. Assume the second argument of apply, the term fun x ⇒ 1, has
type β4, then we have subtype relations: β4 ≤t β3 and β3 ≤t β1 which can be simplified
to β4 ≤t NatD

D→ NatD. With subeffecting system, β4 can only be subsitituted to
NatD

S→ NatD so the term 1 is marked as a dynamic integer. However, in subtyping
system, β4 can be subsitituted to NatD S→ NatS according to the constraints rules and
the term 1 in this way is a static integer.
Resouce Comsumption. Subtyping and Subeffecting have different algorithm for
resolving constraints between compound types which are function types in our type system.
These constraints can be categorized into two forms which is either β ≤t τ̂1

α→ τ̂2 or
τ̂1

α→ τ̂2 ≤t τ̂ ′
1
α′
→ τ̂ ′

2. Let us first consider a simple case of the first form:

β ≤t NatS
S→ NatD.

In subeffecting system, the algorithm generates a subsititution [β 7→ NatS
α→ NatD]

for β and a new constraint α ≤a S. While in subtyping, it generates a subsititution
[β 7→ β1

α→ β2] and three more constraints α ≤a S, NatS ≤t β1 and β2 ≤t NatD where
the latter two further generate two new subsititution β1 7→ Natα1 and β2 7→ Natα2 and
two new constraints S ≤a α1 and α2 ≤a D. In a general case,

β ≤t τ̂1
α→ τ̂2,

applying subeffecting algorithm always results in one subsititution and one constraint. But
the algorithm of subtyping will generate at least three subsititutions and five constraints
when τ̂1 and τ̂2 are basic types and even more subsititutions and constraints if τ̂1 or τ̂2 is
also function type. Roughly the number of constraints the algorithm resolves for a single
constraint β ≤t τ̂1

α→ τ̂2 is proportional to the complexity of the function type τ̂1
α→ τ̂2.

To resolve a constraint of form τ̂1
α→ τ̂2 ≤t τ̂ ′

1
α′
→ τ̂ ′

2, both system generate the constraint
α ≤a α′ and after that subtyping system generates another two constraints τ̂ ′

1 ≤t τ̂1
and τ̂2 ≤t τ̂ ′

2 whereas subeffecting system only perform two unifications UBTA(τ̂1, τ̂ ′
1) and

UBTA(τ̂2, τ̂ ′
2). So it still takes more resource to resolve constraints in a subtyping system.

6 33 33

6.3

6.3 Examples

In this section, we use a list of examples which explore all the language features including
lambda abstration, function application, local definition and if then else control struc-
ture. We show the analysis result of these examples with three techniques: PPX, PPE
and PPT. For simple examples, we also show the result by annotating each subterm of the
program with the toplevel annotation of the type of that subterm directily. For complete
examples, we only give the statistic result.
Example 1 : Simple lambda abstraction

fun x⇒ x

All the three analysis annotated the program to be (fun x⇒ x)D and the statistic data is:

PPX PPE PPT
Number of terms 2 2 2

Number of static terms 0 0 0
Number of static application 0 0 0

Number of constraints 1 1 1
Number of unification 0 0 0

Example 2 : Simple function application

(fun x⇒ x) (42 + 12)

The analysis result of PPX is ((fun x⇒ xD)S (42D +12D)D)D while both PPE and PPT
annotate the program to be ((fun x⇒ xD)S (42S + 12S)S)D. The statistic data is:

PPX PPE PPT
Number of terms 6 6 6

Number of static terms 1 4 4
Number of static application 1 1 1

Number of constraints 1 8 10
Number of unification 5 3 3

Example 3 : if then else structure

if true then 1 else 2

The analysis result of PPX is (if trueS then 1D else 2D)D while both PPE and PPT
annotate the program to be (if trueS then 1S else 2S)D. The statistic data is:

PPX PPE PPT
Number of terms 4 4 4

Number of static terms 1 3 3
Number of static application 0 0 0

Number of constraints 1 6 6
Number of unification 2 1 1

34 34 6

6.3

Example 4 : Higher order function

((fun f ⇒ (fun x⇒ (f x))) (fun y ⇒ y)) 42

The analysis result of PPX is:

(((fun f ⇒ (fun x⇒ (fS xD)D)S)S (fun y ⇒ yD)S)S 42D)D

PPE shows the result of:

(((fun f ⇒ (fun x⇒ (fS xS)D)S)S (fun y ⇒ yD)S)S 42S)D

PPT annotates the program to be:

(((fun f ⇒ (fun x⇒ (fS xS)D)S)S (fun y ⇒ yS)S)S 42S)D

The statistic data is:

PPX PPE PPT
Number of terms 10 10 10

Number of static terms 5 7 8
Number of static application 3 3 3

Number of constraints 5 12 27
Number of unification 9 7 7

This example shows that with higher order function involved, PPE and PPT may have
different expressive power on the number of static terms.
Example 5 : nested branch structure
if true == (let dyn val x :: Nat in (if 1 == 1 then false else x == 2) end)
then 10
else 10 + (if 2 == 1 then 1 else 2)

The statistic data is:

PPX PPE PPT
Number of terms 21 21 21

Number of static terms 6 15 15
Number of static application 0 0 0

Number of constraints 1 36 45
Number of unification 16 3 3

Example 6 : nested local definition
let val x = 1
in let val id = fun z ⇒ z

in if x == 10
then if (fun x⇒ x+ 1) 9 == x

then id x
else id id x

else let val succ = fun x⇒ x+ 1 in succ x end
end

end
The statistic data is:

6 35 35

6.3

PPX PPE PPT
Number of terms 34 34 34

Number of static terms 16 25 25
Number of static application 5 5 5

Number of constraints 1 44 80
Number of unification 27 15 15

Example 7 : different number of static function application
The six examples above shows no difference in the number of static applications between
PPE and PPT. That is because they all have very simple dynamic terms. In the next
example, we define a complicated dynamic variable. As a consequence, we have different
number of static applications between PPT and PPE.

let dyn val f :: (Nat→ Nat→ Nat)→ Nat
in let val id = fun z ⇒ z

in let val add = fun x⇒ fun y ⇒ x+ y
in (fun x⇒ fun y ⇒ fun z ⇒ f x+ x y z) add 1 2

end
end

end
The statistic data is:

PPX PPE PPT
Number of terms 28 28 28

Number of static terms 5 12 13
Number of static application 3 4 5

Number of constraints 5 37 70
Number of unification 26 14 14

In this example, the dynamic variable we introduce is a higher order function. So when
unifying function add with the argument of f , PPE and PPT have different results. Since
subeffecting only allows weakening on top level annotation, the type for add is NatD S→
NatD

D→ NatD whereas in PPT, the type of add is infered as NatD S→ NatD
S→ NatD.

36 36 6

Chapter 7

Conclusion

We conclude by summarise what we have done in this thesis and discuss some future work.

7.1 Summary

In this thesis, we first proposed a list of specifications of binding time analysis and the
corresponding inference algorightms, which specifically are:

• A monovariant analysis for a monomorphic source language with no subsumption
(MMX)

• A polyvariant analysis for a polymorphic source language with no subsumption
(PPX)

• A polyvariant analysis for a polymorphic source language with subeffecting sub-
sumption (PPE)

• A polyvariant analysis for a polymorphic source language with subtyping subsump-
tion (PPT)

Then we compare the expressive power and resource consumption between two pairs of
analyses:

• between PPX and PPE

• between PPE and PPT

We identify the expressive power that the subsumption rule adds to and the difference
between the two kinds of subsumption, subeffecting and subtyping. We observe that when
higher order functions are involved, PPE and PPT may differ in the number of static terms
and only when dynamic values contain higher order functions, PPE and PPT may differ
in the number of static applications.

7.2 Future Work

In this thesis, we focus on implementing a binding time analysiser and discussing the result
of the analysiser. A futrue work could be implementing a partial evaluator[8]. Because in

37

7.2

Figure 7.1: A Partial Evaluation System

practice, a binding time analysiser is always combined with the use of a partial evaluator[8].
The binding time analysiser calculate the binding time for each term of a program, thus
generates an annotated program. The partial evaluator then takes the annotated program
as input and evaluates it, specialising static terms into intermediate values. At last the
partial evaluator generate an residual program which has the same dynamic behavior as
the original program but more efficience. Figure 1 illustrate the workflow of a analysiser
and a partial evaluator.

38 38 7

Bibliography

[1] Neil Vachharajani Bolei Guo and David I. Shape analysis with inductive recursion
synthesis. 2007.

[2] L. Damas and R. Milner. Principal type schemes for functional programs. 1982.

[3] Fritz Henglein Dirk Dussart and Christian Mossin. Polymorphic recursion and sub-
type qualifications: Polymorphic binding-time analysis in polynomial time. 1995.

[4] Rogardt Heldal and John Hughes. Binding-time analysis for polymorphic types. 2001.

[5] Martin Sulzmann Kevin Glynn, Peter J. Stuckey and Harald Soendergaard. Boolean
constraints for binding-time analysis. 2001.

[6] Flemming Nielson Kirsten Lackner Solberg Gasser, Hanne Riis Nielson. Strictness
and totality analysis. 1998.

[7] Robin Milner. A theory of type polymorphism in programming. 1978.

[8] Carsten K. Gomard Neil D. Jones and Peter Sestoft. Partial evaluation and automatic
program generation. 1993.

[9] Flemming Nielson and Hanne Riis Nielson. Type and effect system. 1999.

[10] Flemming Nielson and Hanne Riis Nielson. Principles of program analysis. 2005.

[11] I. V. Ramakrishnan R. Sekar and P. Mishra. On the power and limitations of strictness
analysis. 1997.

[12] Henry Gordon Rice. Classes of recursively enumerable sets and their decision prob-
lems. 1953.

[13] Geoffrey Seward Smith. Polymorphic type inference for languages with overloading
and subtyping.

39

