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Abstract

This thesis will investigate how strictness analysis can be done using a type-based
approach in a real life compiler. It is inspired by the work of Holdermans et al. [9].
They used relevance typing as an approach to strictness analysis. The work is done in
the context of the Utrecht Haskell Compiler (UHC). For the UHC Core language, an
implementation is defined for the analysis and the transformation.

In this thesis a monovariant analysis is chosen since there is no support for polyvariance
in the code generation. The result is that there is no good support for higher order
functions. Recursion is implemented using fixed point iteration. There is no support
for datatypes yet.

3



4



Contents

1 Introduction 7
1.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Abstract interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Recursive functions . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Higher order functions . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Data types (lists) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Abstract Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Recursive functions . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Data types (lists) . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Projection transformers . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Data types (Lists) . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Recursive functions . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Totality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Relevance typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Approach 25
3.1 Design of UHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Core language of UHC . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Constraint-based . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Syntax-driven . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Relevance typing 31
4.1 Annotated types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Type rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Constants and variables . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Abstractions and applications . . . . . . . . . . . . . . . . . 33
4.2.3 Let bindings . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Case expressions . . . . . . . . . . . . . . . . . . . . . . . . 35

5



Contents

4.2.5 Tup and FFI . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.6 Subeffecting and weakening . . . . . . . . . . . . . . . . . . 36

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation 39
5.1 Inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Constants, variables, FFI’s and tags . . . . . . . . . . . . . . 44
5.1.2 Abstractions and applications . . . . . . . . . . . . . . . . . 44
5.1.3 Let bindings . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 Case expressions . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Higher order functions . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Transformation 51
6.1 Introduction of let!’s . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Evaluation lists . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Discrepancy list . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Generate and add calls to wrappers . . . . . . . . . . . . . . . . . . . 59
6.2.1 Generate wrappers . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Add calls to wrappers . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Removing unnecessary let!’s . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Remove unnecessary let’s . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusions 67
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6



Chapter 1

Introduction

Compilers can make use of static program analysis to optimize the code that is gen-
erated. For a lazily evaluated language like Haskell, strictness analysis is such an op-
timizing analysis. For the Utrecht Haskell Compiler(UHC), strictness analysis is not
implemented yet. In this thesis, we try to tackle this problem.

1.1 Description of the problem

In static program analysis, the goal is to get information about runtime properties of a
program. The derived information about these properties must be valid for all possible
executions of the program. This information is necessarily approximative, because of
theoretical limits to decidability of these properties

The property that we are focused on in this thesis is strictness. This is explained with
the following example:

let f = λx y→ x
in f (1+2+3+4+5+6) 20

This expressions is lazily evaluated, so a thunk is created for each application. When
looking at the first argument of f , this will be a collection of nested thunks which will
consume a lot of extra memory. But when this expression is evaluated, it can safely be
stated that the first argument of f needs to be evaluated too since f simply returns its
first argument. With this information, it can be concluded that this first argument can
be evaluated eagerly (so no thunks are created for it). The result is that less memory
will be consumed and the evaluation will go quicker since no extra work has to be done
for the creation and destruction of the thunks.

Strictness analysis is used to derive whether a subexpression is guaranteed to be eval-
uated when an expression is evaluated. We say that a function is strict in an argument
when it is guaranteed that this argument is evaluated whenever the body of the function
is evaluated. A function is lazy when this cannot be guaranteed. With this information,
the optimization that is explained in the previous paragraph can be applied. So when
an argument is supplied to a strict function, this argument can be evaluated eagerly and
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1.2. Outline

its value can be passed to the function instead of the thunk. This optimisation is only
performed if we can be sure that an argument is needed. Otherwise, we safely choose
not to change the call at all.

The setting for this thesis is the Core language of UHC. The difficulty with this is that it
is a complete programming language for which an implementation is required. We are
going for the low-hanging fruit, so there is good support for simple functions. For more
advanced expressions like higher order functions and data types, there is less support.

1.2 Outline

The thesis is organized as follows:

Chapter Contents
Chapter 2: Background Background information is given. Relevant research

is presented with different approaches.
Chapter 3: Approach Information about UHC and the approach which is chosen.
Chapter 4: Relevance typing Relevance typing is defined for the Core language.

Inference rules are given for an annotated type system.
Chapter 5: Implementation Implementation of the relevance typing. A translation

is given from the type system to an actual implementation.
Chapter 6: Transformation The actual transformation is defined using the

relevance types.
Chapter 7: Conclusions Conclusions and future work.
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Chapter 2

Background

There are a number of different approaches to strictness analysis. In the following
sections the literature for each of the approaches used in the past (abstract interpreta-
tion, abstract reduction, projection analysis, totality analysis and relevance typing) is
discussed. For each of these approaches there is a general description which will be
worked out with a few examples.

2.1 Abstract interpretation

In abstract interpretation, an abstract domain is used instead of the domain of concrete
values. This domain contains values concerning the properties that are useful for this
analysis. The abstract functions also have to work on the abstract domain instead of on
the normal domain.

The first mentioning of strictness analysis was by Mycroft [13], which used abstract
interpretation. The specification of strictness which is used is that a function is strict
in an argument when the termination behavior is not changed when the argument is
evaluated. Formally, for a function f with n arguments, f is strict in the ith argument iff

f x1 . . . xi−1 ⊥ xi+1 . . . xn =⊥

for all possible values x j where (j 6= i) and⊥ denotes a diverging argument. This makes
sense because a function diverges when it gets a diverging argument that it actually
uses. An example of how this works out is the function g. g x = x + 1 This function

g is strict in its first argument. This can be concluded because the addition diverges
when it gets a diverging argument. So indeed it holds that g ⊥=⊥.

The abstract domain D# = {0,1} is used. Here 1 stands for all possible values (top) and
0 stands for all non-terminating values (bottom or ⊥). The ordering in this domain is
0 @ 1. These values in the abstract domains are used as booleans so boolean operators
can be used in the abstract functions.

For every function in a program, an abstract function is created which works on the
abstract domain. These functions are annotated with a #. For example a function
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2.1. Abstract interpretation

IF (p, x, y) = if p then x else y

is in the abstract domain

IF# (p, x, y) = p ∧ (x ∨ y)

From this abstract function it can be conlcuded that p is guaranteed to be used and x or
y is used in this function.

2.1.1 Simple functions

The conversion of the addition operator to the abstract domain becomes:

PLUS# (x, y) = x ∧ y

With this definition, you can see that the addition operator is strict in both of its argu-
ments since they are both needed (which is expressed by the ∧). The translation to the
abstract domain is done by a function called #, which is defined as follows:

# [[ c ]] = 1
# [[ x ]] = x
# [[ f E1... En ]] = f# # [[E1]] ... # [[ En]]

To determine whether a function is strict in an argument, bottom should be supplied
for that argument and top for all the other arguments. This has to be done for all the
arguments. When looking at the function f

f x y z = if (x=0) (y+z) (x-y) ,

the abstract function f# becomes:

f# x y z = # [[ if (x=0) (y+z) (x-y)]]
= # [[(x=0)]] ∧ (# [[(y+z)]] ∨ # [[(x-y)]] )
= (# [[x]] ∧ # [[0]]) ∧ ((# [[y]] ∧ #[[z]] ) ∨ (#[[x]] ∧ # [[y]]) )
= (x ∧ 1) ∧ ((y ∧ z) ∨ (x ∧ y))

Now this abstract function can be used to determine the strictness:

f# 0 1 1 = (0 ∧ 1) ∧ ((1 ∧ 1) ∨ (0 ∧ 1)) = 0 ∧ (1 ∨ 0) = 0
f# 1 0 1 = (1 ∧ 1) ∧ ((0 ∧ 1) ∨ (1 ∧ 0)) = 0
f# 1 1 0 = (1 ∧ 1) ∧ ((1 ∧ 0) ∨ (1 ∧ 1)) = 1

So the function f is strict in its first two argument and lazy in its third.
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Chapter 2. Background

2.1.2 Recursive functions

There is some added complexity when considering recursive functions. For example in
the following function:

f x y = if (x=0) y (f (x-1) y)

In the abstract domain this becomes:

f# x y = (x ∧ 1) ∧ (y ∨ (f# (x ∧ 1) y))

It can be seen from the function that it is strict in both x and y but this cannot be calcu-
lated that easily for y. Calculating the strictness of the first argument is straightforward:

f# 0 1→ (0 ∧ 1) ∧ (y ∨ (f# (0 ∧ 1) y)→ 0

So f is strict in its first argument. In general, recursive functions can lead to a non-
terminating reduction. For example, calculating the strictness of the second argument
of f:

f# 1 0→ (1 ∧ 1) ∧ (0 ∨ (f# (1 ∧ 1) 0)→ 1 ∧ (f# (1 ∧ 1) 0) = f# 1 0→ ...

It can be approximated to the upper bound (which is 1) to stop the calculation. This is
safe, but information is lost. A way of approximating it from below is by fixed point
iteration. This is done in the following manner for a function f with n arguments:

f#0 x1 ... xn = 0
f#m x1 ... xn = E [[f# := f#m−1]]

Here [[x:=y]] means that all occurrences of x are replaced by y. The first approximation
is bottom. The next approximation is the normal abstract function, where the recursive
appearances are replaced by the previous approximation. This has to be done until a
fixed point is reached (f#u = f#u+1). The resulting abstract function becomes f# = f#u.
The result for the previous example is:

f#0 x y = 0
f#1 x y = (x ∧ 1) ∧ (y ∨ (f#0 (0 ∧ 1) y) = (x ∧ 1) ∧ (y ∨ 0) = x ∧ y
f#2 x y = (x ∧ 1) ∧ (y ∨ (f#1 (0 ∧ 1) y) = (x ∧ 1) ∧ (y ∨ (f#1 x y))

= x ∧ (y ∨ (x ∧ y)) = x ∧ y

So f# x y = x ∧ y. Calculating the strictness for the second argument gives:

f# 1 0→ 0.

So f is also strict in its second argument. The real pain is in the test of equality for
two functions. For this, it has to be checked whether it gives the same result for each
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2.1. Abstract interpretation

combination of arguments. The complexity is exponential in the number of arguments,
so it can be computationally expensive to calculate the fixed point.

2.1.3 Higher order functions

A way to handle higher order functions with abstract interpretation is proposed by
Burn[3]. A new domain is created for functions, because the normal top and bottom of
the normal abstract domain do not represent the values in the new functional abstract
domain. An example of this is the function hof.

hof g a b = (g a b) + (g b b)

The first argument is a function so this is in another domain: D x D→ D. For this new
domain, a new top and bottom have to be defined:

f⊥ :: D# x D# → D#

f⊥ x y = 0

f> :: D# x D# → D#

f> x y =1

Now, the strictness of hof can be determined again by using the top and bottom from
the function domain:

hof# f⊥ 1 1 = 0
hof# f> 0 1 = 1
hof# f> 1 0 = 1

So now it can be determined that hof is only strict in its first argument. This is a safe
approximation, but a better result can be calculated. When it is given that g is strict
in both of its arguments, it can be inferred that hof is also strict in its second and third
argument. So, in this manner a lot of information is thrown away.

2.1.4 Data types (lists)

A way to handle data types is proposed by Wadler[19]. When looking at lists, an
infinite domain will be created when an abstract value is created for each concrete
value. Instead, Wadler suggests a four-point abstract domain for lists. This consists of:

• >∈ - any finite list of which no member is ⊥ (e.g. (cons 1 (cons 2 nil)))

• ⊥∈ - any finite list of which some member is ⊥ (e.g (cons 1 (cons ⊥ nil)))

• ∞ - any infinite list except ⊥ (e.g. (cons 1 ⊥))

• ⊥ - ⊥
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Chapter 2. Background

These are ordered like: ⊥@ ∞@⊥∈ @>∈. Now functions using lists should use this
domain. There are two constructor alternatives, so a function which takes a list as an
argument has two cases:

f [] = E
f (h:t) = N h t

Here, E and N are expressions where N is a function which takes two arguments and E
does not take any arguments. Then the abstract function becomes:

f# ⊥ = ⊥
f# ∞ = # [[ N ]] 1 ∞

f# ⊥∈ = (# [[ N ]] 0 >∈) ∪ (# [[ N ]] 1 ⊥∈)
f# >∈ = # [[ E ]] ∪ (# [[ N ]] 1 >∈

Additionally, there has to be support for the construction of lists. The mapping to the
abstract domain becomes:

# [[ [] ]] = >∈
# [[ E1 : E2 ]] = Cons# # [[E1]] # [[ E2]]

The Cons# is a special function defined like a mapping:

Cons# x y x = > x = ⊥
y = >∈ >∈ ⊥∈
y = ⊥∈ ⊥∈ ⊥∈
y = ∞ ∞ ∞

y = ⊥ ∞ ∞

In this way, it can be determined if a function is element strict (strict in constructors
and elements, e.g. sum), head strict (only strict in the first constructor and not in tail
or elements, e.g. isEmpty) or spine strict (only strict in the constructors and not in the
elements, e.g. length).

The complexity increases when you are using more complex element types of a list
since the number of values in the abstract domain increases. For example in a list of
lists, the domain contains six values. When using more complicated data structures,
the abstract domains becomes more complicated to construct and the complexity of the
complete analysis may explode.

2.2 Abstract Reduction

Abstract reduction is proposed by Nöcker[14]. This approach also uses an abstract
domain like in abstract interpretation. The difference is that it also takes into account
arbitrary data structures and pattern matching which is done using infinite sets. This
analysis can become an infinite calculation, but this can be prevented by using reduction
path analysis in the graph.
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2.2. Abstract Reduction

When S is the set of concrete values, the abstract power domain is used: PS#. This is
done by first taking the powerset of S and then joining every element of the set with
the set Bot of all non-terminating and undefined expressions. An important part of
this analysis is the abstract rewriting which is used to reduce terms. It is related to
the concrete function definition and the applied reduction strategy. There is a pattern
matching mechanism, which has to choose which rewriting rule should be used. In this
way, an abstract value is matched against a pattern. For this matching there are four
alternatives:

• Total match: the pattern is a superset of the value, so the value is contained in
the pattern (e.g. 0# and 0#)

• Partial match: the value is a superset of the pattern. When this is the case another
rewrite rule may be applicable (e.g. Top and Cons#)

• Bottom match: the value is bottom and the pattern is a non-variable (e.g. Bot
and Cons# x)

• No match: when non of the above alternatives match, it is a no match (e.g. Nil#

and Cons# x)

When more than one rule matches, the union of the results is taken.

2.2.1 Simple functions

An example of an simple function is f

f 0 y z = y+ z
f x y z = x− y

Note that this is the same function as f x y z = if (x=0) (y+z) (x-y), where the used
definition is written with pattern matching.

The abstract reduction becomes:

f# Bot Top Top→ Bot
f# Top Bot Top→ (Bot +# Top) ∪ (Top –# Bot)→ ...→ Bot ∪ Bot = Bot
f# Top Top Bot→ (Top +# Bot) ∪ (Top –# Top)→ ...→ Bot ∪ Top = Top

It can be concluded that f is strict in its first and second argument.

2.2.2 Recursive functions

For recursive functions, a technique called path analysis is used. The main idea is that
recursive occurrences which are needed further on in the reduction can be replaced by
bottom. Suppose a reduction path for a term t: t→∗ E (t) in which E (t) is an expression
in which t occurs. When the reduction of t is needed for the reduction of E(t) it can be
replaced by bottom, otherwise it must be replaced by top. For example in:

f 0 y = y
f x y = f (x−1) y

14



Chapter 2. Background

The strictness analysis for the second argument becomes:

f# Top Bot = (f# 0# Bot) ∪ (f# (Top\0#) Bot)
→ Bot ∪ f# ((Top\0#) –# 1#) Bot = f# ((Top\0#) –# 1#) Bot
→ f# Top Bot
→ Bot

So it can be determined that f is strict in both of its arguments.

2.2.3 Data types (lists)

For data types, similar constructs as in abstract interpretation are used (e.g. Topmem,
Botmem, Inf and Bot). These values are represented as subsets of the abstract powerset:

Bot ≡ set of all non-terminating expressions
Inf ≡ set of all infinite list ∪ Bot
BotMem ≡ set of all lists with at least one non-terminating element ∪ Inf
TopMem ≡ set of all possible lists

The recursive definitions for these values are:

Inf = Cons# Top Inf
BotMem = (Cons# Top BotMem) ∪ (Cons# Bot TopMem)
TopMem = Nil# ∪ (Cons# Top TopMem)

In a sum function on lists this works out like this:

sum# Bot → Bot
sum# Inf = sum# (Cons# Top Inf)

→ Top +# (sum# Inf)
→ Top +# Bot
→ Bot

sum# BotMem = sum# ((Cons# Top BotMem) ∪ (Cons# Bot TopMem))
→ (Top +# (sum# BotMem)) ∪ (Bot +# (sum# TopMem))
→ (Top +# (sum# BotMem)) ∪ Bot
→ Top +# (sum# BotMem)
→ Top +# Bot
→ Bot

sum# TopMem = sum# (Nil# ∪ (Cons# Top TopMem))
→ 0# ∪ (sum# (Cons# Top TopMem))
→ 0# ∪ (Top +# (sum# TopMem))
→ 0# ∪ (Top +# Top)
→ 0# ∪ Top
→ Top

It can be concluded that sum is element strict because sum# only returns Top when
TopMem is the input.
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2.3. Projection

2.3 Projection

Projection for strictness analysis was used first by Wadler and Hughes[18]. An im-
proved version of this is published by Davis and Wadler[5] which uses a more general
and powerful technique. The concept of the projection is borrowed from domain the-
ory. A projection is an idempotent function on a domain that removes information from
its argument (like abstract interpretation), but does not not change its type.

Formally, a continuous function α is a projection when

α u v u
α(α u ) = α u

The first rule says that a projection should only remove information. The second rule
says that all the information should be removed at once.

The projections form a lattice under the ordering of v. The identity function ID is the
greatest element of the lattice and BOT (which is defined as BOT u =⊥ for all u) is the
least element. An example of such a projection on pairs is:

F (u,v) = (u,⊥)
S (u,v) = (⊥,v)

A projection can be seen as specification of the minimum degree of definedness of the
argument. The unneeded part can be mapped to ⊥, the rest can be left untouched. So it
can be seen that the projection F stands for the first element of the pair and S stands for
second element of the pair. An example of how this can be used is with a function f,
which only needs the first element of the pair. A call to this function f may be replaced
by F ◦ f, where the composition with F depicts the context in which f is evaluated.
Consider for example the function reverse:

reverse (u,v) = (v,u)

When reverse is in context F it is safe to apply S to the argument, that is

F ◦ reverse = F ◦ reverse ◦ S

If it holds for certain projections α and β that α ◦ f = α ◦ f ◦ β , we write f: α ⇒ β .
To define that a certain degree of definedness is needed (for example a value has to be
more defined than bottom), a special element has to be added to the domain which is
called Abort. This is the new least element in the lattice. α u = Abort means that α

needs a value more defined than u. All functions are strict in Abort, so f Abort = Abort
for all f. Strictness is defined with the projection STR, which returns Abort when the
argument is⊥ and acts as the identity function for all the other input values. A function
f is strict when

f : STR⇒ STR

Another useful projection is ABS, which stands for absent, which returns⊥when given
any value except Abort and acts as the identity function on Abort. When a function f
does not use its argument, then f: STR⇒ ABS. The least projection is FAIL. It always
returns ⊥ independent of the argument given.
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Chapter 2. Background

The order in the lattice is FAIL v STR, FAIL v ABS, ABS v ID and STR v ID.

To handle data types, new projections are added for each constructor. For example
for lists, the NIL projection and the CONS projection generator are used. NIL only
accepts an empty list, while CONS takes two projection arguments next to the normal
argument and only accepts a non-empty list (so created with the (:) constructor). It also
applies the two argument projections to the two values of the constructor. For example
the projection CONS STR ID specifies that it is strict in the head of the list and nothing
is know about the strictness of the tail.

2.3.1 Projection transformers

For a function f with n arguments, a transformer f i is defined for every i from 1 to n.
This transformer takes a projection which is applied to the result of f and transforms
it into a projection which may safely be applied to the ith argument. According to the
safety requirement, it must hold that (when βi = f i α):

α( f u1...ui...un)v f u1...(βi ui)...un

When the safety requirement holds for f 1... f n, it holds that:

α( f u1...ui...un)v f (β1 u1)...(βn un)

for all u1, ...,un, where βi = f iα for each i from 1 to n.
Like for functions, for each expression e and each variable x, a transformer ex is defined
that takes a projection which is applied to e and transforms it into a projection which
may safely be applied to each instance of x in e. So the safety requirement must hold
again (when β = exα):

α ev e [(β x)/x]

for all values of the variables in e.
The definition of these transformers becomes (when α is strict and α 6= FAIL):

xx α = α

yx α = ABS
( f e1...en)

x α = ex
1 ( f 1 α) & · · · & ex

n ( f n α)
(case e0 of [] => e1 | y : ys => e2)x α = (ex

0 NIL & ex
1 α) t (ex

0 (CONS (ey
2 α) (eys

2 α)) & ex
2 α)

More generally, when x does not appear in e, the ABS projection can be taken. Oth-
erwise the projection α is used. The case expression is handled in more detail in
Subsection 2.3.3.

2.3.2 Simple functions

A simple example of how a projection transformers for a function works is the K com-
binator. The definition of this function is

K x y = x
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2.3. Projection

When doing the analysis, the result becomes:

K1 α = xx α = α

K2 α = xy α = ABS

where Kn stands for calculating the projection of the nth argument. In other words,
evaluating K in context α causes the first argument to be evaluated in context α and
the second argument is ignored.

2.3.3 Data types (Lists)

As stated previously, the rule for the case statement is:

(case e0 of [] => e1 | y : ys => e2)x α

= (ex
0 NIL & ex

1 α) t (ex
0 (CONS (ey

2 α) (eys
2 α)) & ex

2 α)

So in words, if the case expression is evaluated strictly, e0 must evaluate to the nil or
cons constructor. When e0 evaluates to the nil constructor, x is evaluated under the NIL
projection in e0 and under α in e1. If e0 evaluates to the cons constructor, then the head
is evaluated as much evaluated as y is in e2 under α . The tail of the list is as much
evaluated as ys is in e2 under α . In e2, x is evaluated under α .

An example is given with the head function:

head xs = case xs of
y : ys→ y

The result of the projection analysis becomes:

head α = (xsxs (CONS (yyα) (yys α)) & yxs α)
= (CONS α ABS)

As expected, it is determined that the head function is strict in the head of the argument
list and that the tail of the argument list is not used.

2.3.4 Recursive functions

To handle recursive functions, fixed point iteration is needed. This is done similar
to abstract interpretation. The first iteration is represented by FAIL, and in the next
iterations the recursive positions is filled with the answer of the previous iteration.
Some useful projections on list are FIN and INF and are defined as:

FIN α = NIL t CONS α (FIN α)
INF α = NIL t CONS α (ABS t INF α)

These projections can be read as finite and infinite and can be used in the next example.
The function length is used here to show how such a fixed point iteration is used:
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length xs = case xs of
[ ] ⇒ 0
(y : ys)⇒ 1+ length ys

The definitions to be used for the fixed point iteration are:

length0 α = FAIL
lengthi+1 α = NIL t CONS ABS (lengthi α)

The fixed point iteration becomes:

length0 STR = FAIL
length1 STR = NIL t CONS ABS FAIL

= FIN FAIL
length2 STR = NIL t CONS ABS (FIN FAIL)

= FIN ABS
length3 STR = NIL t CONS ABS (FIN ABS)

= FIN ABS

As expected, it is determined that length needs a finite list, but it ignores the elements
of the list.

2.4 Totality analysis

Totality analysis is a little different from the usual approach to strictness analysis. With
totality analysis, it is the purpose to detect values which are guaranteed to terminate,
so an expression can be evaluated before supplying it as an argument to a function. In
this way, the termination behavior is not changed. This differs from standard strictness
analysis in the sense that the purpose of the standard analysis is to detect if an argument
is used (evaluated to weak head normal form) by the function instead of detecting if
the input is terminating. Totality analysis is often defined by non-standard type infer-
encing. With this technique, extra information is added to the type. In this case, this is
the information about the totality of a function.

The first to be using non-standard type inferencing for strictness analysis are Kuo and
Mishra[11]. They use an inference algorithm based on the approach of Hindley-Milner.
The type contains the function structure in the form of arrows and a set of constraints
about the type variables. The lattice that is used for the values for the type variables
contains two values: φ for looping terms and � for all possible values such that φ ⊆
�. The form of a type is (C,τ), where C is the set of constraints and τ is the actual
type. The resulting type for an expression can be instantiated to a concrete type. This
is called an interpretation, where the constraints restrict the possible valuations of a
type. For example the function twice,

twice = λ f x. f ( f x )
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obtains the following type

({α ⊆ β} , ( β → α)→ β → α )

Two instantiations of the type are possible: (� → φ) → � → φ and (φ → φ) →
φ → φ . From the first instantiation, it can be concluded that twice is strict in f, since
when f has a diverging result, twice also has a diverging result. From the second instan-
tiation, it can be concluded that twice f is strict when f is strict. This is valid because
when f has a strict type (φ → φ), the resulting type will also be strict (φ → φ ). A
set of constraints is said to be consistent when there exists a correct interpretation. In
this way, the strictness analysis is split up into two parts: the inferencing and the con-
sistency checking. Nothing is said about the handling of non-flat domains (data types).

Another instance of totality analysis is presented by Jensen[10]. His goal was to infer
strictness properties in a polymorphic setting. For the representation of the strictness
properties he used f and t, where the former is used for the undefined terms and the
latter is used for all possible terms.

Conjunctions in the types are used to have more flexibility in the definition of the
strictness types. For example an addition which is strict in both of its arguments has
the type f→ t→ f to show that is strict in its first argument and t→ f→ f to show that
it is strict in its second argument. This can be combined to f→ t→ f ∧ t→ f→ f to
show both strictness properties at the same time.

In addition, conditional strictness properties are used. This is useful when determining
the strictness properties of a conditional construct such as an if-then-else. It is repre-
sented with a question mark. The term ϕ?α returns ϕ when α = t and f when α = f.
An example of how this can be used is in

λ x. if x then e1 else e2

which gets the type

(α → (ϕ ? α))

This says that the result is undefined if the value of x is undefined, and ϕ describes the
value of the complete if-then-else expression.

A complete inferencing algorithm is specified using an extended version of algorithm T
of Damas. The difference with algorithm W is that it deduces a property of a term and
makes assumptions on its free variables where algorithm W takes a set of properties of
free variables as an input. A set of constraints is collected which restricts the valuation
of a type. The handling of data types was left as future work.

A combination of strictness analysis and totality analysis is presented by Solberg[16].
To use a combination of these two, an extra value is added to lattice which is used for
values which are guaranteed not to be bottom. So the possibilities for the types now
become:
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tb: the value has type t and is definitely bottom
tn: the value has type t and is definitely not bottom
t>: the value has type t and it can be any value

Also, conjunctions on the type level are used. Consider for example the function twice:
λ f x. f (f x). The type becomes (Intn → Intb)→ Int> → Intb. Data types remained as
future work, but they proposed a similar way as done in abstract interpretation for lists
(as can be seen in Subsection 2.1.4).

Another approach working with constraints is presented by Glynn et al.[8]. It has
support for higher order functions, let style polymorphism and data types. The type of
a function contains a boolean constraint which can use the standard boolean functions
(AND, OR and implication). For example, for an if-then-else construct,

f x y z b = if b then x + y else z

the boolean constraint becomes

b ∧ ((x∧ y) ∨ z)

These types are represented as a combination of a type and a constraint. For the previ-
ous function this becomes:

f:(b∧ ((x∧ y)∨ z)↔ r⇒ x 7→ y 7→ z 7→ b 7→ r

Here → is used for boolean implication, 7→ is used for function types and δ ranges
over annotations. This can be easily extended to higher order functions by matching
the arguments and joining the sets of constraints. For example the functions twice (λ f
x. f (f x)) and id (λ x. x) have the following types:

twice : δ3→ δ1∧δ2→ δ1∧δ2→ δ4⇒ (δ1 7→ δ2) 7→ δ3 7→ δ4
id : δ1→ δ2⇒ δ1 7→ δ2
twice id : (δ1→ δ2∧δ3→ δ1∧δ2→ δ1∧δ2→ δ4⇒ δ3 7→ δ4) = (δ3→ δ4⇒ δ3 7→ δ4)

Also, a way of handling data types is presented. They use an annotation on the type
name, an annotation on each type variable and an annotation for each constant type in
the constructors. This is easily understood with an example. The data type Maybe

data Maybe a = Just a | Error Int

translates into the following strictness data type

Maybeδ1 β δ2 = Just β | Error δ2

Only non-recursive data types are supported. Recursive occurrences are simply dis-
carded. For example for the list data type, the type becomes: [β ]δ where δ describes
the strictness of the topmost constructor and β describes the strictness of the first ele-
ment of the list. There is no annotation for the tail because this is a recursive occurence.
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2.5 Relevance typing

Relevance typing is also an example of non-standard type inferencing. This is more
like strictness analysis since its goal is to determine if a parameter of a function is
relevant to the body of a function (i.e. guaranteed to be used).

A way of using relevance typing in strictness analysis is presented by Wright[21]. The
definition of strictness which is used here is the same as the definition of head-needed.
An expression is said to be head-needed when it is needed during beta reduction.

For the type inferencing, the arrows for the functional types are changed such that
different arrows are used in a type instead of one single sort. When a function is strict
in an argument,⇒ is used. When it is not strict, 6→ is used. For example for the identity
function λ x .x, the type is α ⇒ α since it is strict in its argument. The type of the K
combinator λ x y. x, is α ⇒ β 6→ α since it strict in its first argument and lazy in its
second.

Variables on arrows are introduced for higher order functions. For example the function
λ f x . f x becomes (α →1 β )⇒ β . Here the →n describes a variable for an arrow.
This is like a normal variable and can be instantiated to 6→ and⇒.

Boolean algebra can be used on the type level, for example conjunction. Here⇒ has
the role of 1 and 6→ has the role of 0. Conjunctions on the type level are introduced
for example in λ x. f (g x) where g : α →1 β and f : β →2 γ . The type becomes
α (→1 ∧→2) γ

Additionally, constraints are collected. For example in λ x y. f (g x) (g y) where (f :
γ→1 γ→2 β ) and (g : α→3 γ) The resulting type is α ′ (→1 ∧→′3) α ′′ (→2 ∧→′′3) β .
In addition, a set of constraints is needed that is generated for the applications. The
constraints are:

α →3 γ 6 α ′→′3 γ ′ and
α →3 γ 6 α ′′→′′3 γ ′′

This states that any head-neadedness properties from the function g (which uses→3),
must be propagated to the applications of g which are g x (→′3) and g y (→′′3).

Another approach is taken by Amtoft[1]. A distinction is made between call-by-value
evaluation and call-by-name evaluation. The former is transformed in the latter by
creating thunks to simulate lazy evaluation. For creating these thunks, the translation
T is defined:

– An abstraction λx.e translates into λx.T (e)
– An application e1 e2 translates into T(e1) (λx.T(e2)) (where x is a fresh

variable), so the computation is suspended (”thunkified”)
– A variable x translates into (x d) (where d is a dummy argument), so x is

evaluated (”dethunkified”)

The idea is, that by finding that functions are strict, less ”thunkification” and ”dethunki-
fication” is needed. The strictness types used here are→0 for strict functions and→1
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for general functions (for which it is not known if the function is strict). For example
the function

rec fλx y z→ if (z = 0) (x+ y) (f y x (z−1))

has strictness type

Int→0 Int→0 Int→0 Int

since it is strict in all of its three arguments. An inference system is presented for the
lambda calculus with constants. In addition, an algorithm for the thunkification is given
where the strictness information is used to reduce the thunkification.

Relevance typing is also used by Holdermans and Hage[9]. This is recent work on
strictness analysis and it also handles strictness annotations like seq in Haskell. They
present an inference system and a transformation in one. The strictness annotation they
use is a strict application ($!) which can be used instead of normal (lazy) application.
For the strictness information in the type, annotations on the arrows are used (

ϕ→).
These are variables which take on the value S for strict or L for lazy. An example is in
the function λx y→ x in the setting of an application:

(λx y→ y) true false

The type of the function is

(bool S→ bool L→ bool)S

Because this function is strict in its first argument, the program can be transformed into

(λx y→ x)$! true false

When including user defined strictness annotations into the language, a conservative
approach where all the information about strict applications is ignored results in poor
precision. An example is λx→ (λy→ (λz→ y)) true $! x. It cannot be inferred that z
is relevant because it is not used in the body of the function, but it is evaluated because
of the strict application.

A more ambitious attempt where the information from user defined strictness anno-
tations is used, can change the termination behavior. For example λx→ (λy→ 0) $!
(λz→ x). This evaluates to 0 independent of the argument. This approach infers that
the function is strict so when applied to an argument, this can be done strictly. Espe-
cially

λx→ (λy→ 0)$! (λz→ x)$!⊥

diverges and the termination behavior is changed.

Another approach has to be taken, which tracks information why an abstraction is
relevant. This can be achieved by adding applicativity analysis which discovers which
function will be applied. As a result, the former lambda abstraction is seen to be strict
and the latter is seen to be lazy.
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Chapter 3

Approach

After providing some information about UHC and the language that is used in the
analysis, we discuss the approach that is taken for the analysis, the implementation that
is used and the transformation.

3.1 Design of UHC

We implement our analysis in the Utrecht Haskell Compiler (UHC). This compiler
is an implementation of Haskell from the Utrecht University, where the target is to
keep the compiler implementation modular. To do this, some different intermediate
representation (or languages) are used in the compiler. The actual pipeline of these
representations in UHC is shown in Fig. 3.1.

Figure 3.1: UHC pipeline

The parts of the pipeline that are relevant for this thesis are:

Core Core is a representation of an untyped λ -calculus.

Grin Graph Reduction Intermediate Notation is a representation proposed by Boquist[2]
in which local definitions have been made sequential and the need for evaluation
has been made explicit.

Between these two languages, the conversion is made from the lazy evaluated func-
tional setting of the Core language to the eager evaluated setting of GRIN. The analy-
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sis is done at the Core level. In this way the information from the strictness analysis is
used to control the evaluation in GRIN.

At the Core language, a number of transformations has already been performed. More
information about these transformations is provided by Dijkstra et al. [6]. We have
chosen to perform the analysis at the end of the transformation pipeline, because in this
situation the other transformations will not change the code that is generated. Also,
a number of assumptions can be made about the input: it is lambda lifted and it is in
administrative normal form (ANF). That the code is lambda lifted is an invariant which
also has to hold at the end of the transformation. That the code is in ANF means that
all arguments to a function must be trivial. This notion was introduced by Flanagan et
al. [7].

3.2 Core language of UHC

The language which is used for the analysis is the Core language of UHC. It is a rep-
resentation of the untyped lambda calculus with the ability to represent data types and
calls to the Foreign Function Interface.

We assume the following syntactic categories, comprising the set of variables, the set
of characters, the set of integers and the set of data type constructors:

z ∈ Z integers
c ∈ Unicode characters
x ∈ Var variables

tag ∈ Tag datatype constructors

The syntax of the language is defined by the following abstract syntax:

e ::= z
| c
| x
| λx→ e
| e1 e2
| let bind in e
| letrec [bind ] in e
| let! bind in e
| case e of [alt ]
| tup tag
| FFI x

bind ::= x = e
alt ::= pat→ e
pat ::= x

| tup tag [x ]
| z
| c

A Core module is a representation of a normal Haskell module. A Core module consists
of nothing more than a name and one expression. This is a let binding where the body
has a call to the main function when it is the main module and an empty expression
(the integer 0) when it is a library module.
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The used expressions are normal variables, constants, function abstractions (lambdas)
and applications. Data types aren’t available in λ -calculus, so a data type constructor
is encoded by a tup. This must be used as a part of an application to create a data
type alternative or a tuple. The tag is used to determine the arity, the data type and the
constructor. In a case expression, the tup is also used in the patterns, where the destruc-
tion of data types take place. Another special construction is for the foreign function
interface, which is the FFI alternative. Its argument identifies the function to be called.
A let binding has three alternatives: a recursive binding (letrec), a strict binding (let!)
and a plain binding (let). The let! is used for evaluation in the Core language, and seq
is defined in terms of it. The language has a standard lazy semantics, with exception
of the let!. For the let! holds that when the body of the strict let expression must be
evaluated, the right hand side of the binding will also be evaluated.

This is a simplified version of the actual abstract syntax that is used in UHC. The actual
implementation is made in the UUAGC system (Utrecht University Attribute Grammar
Compiler) [17].

3.3 Analysis

The basis for the strictness analysis in this thesis is the paper written by Holdermans
and Hage[9]. They use a type based approach to strictness analysis which is based on
relevance typing.

A type system will be defined for the UHC Core language. Type rules that are given
are based on the Hindley-Milner type system[4]. Annotations on the types are used to
capture the relevance information. A new notation is introduced which is more refined.
It keeps track of the saturation of an expression instead of the applicativeness. For
the saturation, two counters are added to the types in the type environment and to the
typing judgements. These counters are used to keep track of the number of arguments
that are needed and the number of arguments that are supplied. With this notation, it is
easier to keep track of the relevance information in partial applications.

There are some differences between the language that is used in [9] and the UHC Core
language. These differences are

• UHC Core contains both plain and recursive let bindings

• Strict let bindings are used instead of strict applications

• Case expressions (which has branching) have been added

• Tup expressions are used to construct data types

• Expressions for calls to the foreign function interface have been added

The type system should therefore be extended to cover these new language constructs.

Also, a choice can be made between polyvariant analysis and monovariant analysis.
In this thesis we have chosen to do a monovariant analysis since this will not need an
extension in the pipeline in UHC. The influence of polyvariance on the code generation
is described in more detail in the master thesis of Lokhorst[12].

Further details of the analysis can be found in Chapter 4.
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3.4 Implementation

For the implementation, two options are available. These are the syntax-driven ap-
proach and the constraint-based approach.

3.4.1 Constraint-based

In a constraint-based implementation, constraints are used to express the properties of
an expression. For relevance typing, these constraints would look like ϕ1 v ϕ2. The
solving of these constraints can be done using a worklist algorithm. Since a monovari-
ant approach is taken, constraints can be solved globally. When a full language is used,
some scoping mechanism is needed. This complicates things, because now for every
(variable, scope) combination a relevance value has to be stored. This is needed be-
cause the relevance value of a variable can be different in different scopes. For example
in a case expression, a variable can have different relevance values in the different case
arms. When the constraint language and the solving have to be extended to accom-
modate all this, things get rather complicated. Also, all results of the solving have to
distributed over the abstract syntax tree (ast) again which makes it more complex. The
advantage of using constraints is that it is easier to get better precision for recursion
and let bindings can be handled in a more natural way.

3.4.2 Syntax-driven

In a syntax-driven approach, the expression influences the results directly. This leads
to a simpler implementation since no separate solver is needed. Also, the results are
in place directly so no distribution is needed. This implementation will also more
closely resemble the type rules. The advantage of using a syntax-driven approach is
that no scoping mechanism is needed since this is evident from the abstract syntax tree.
Annotated type environments are used to encode the relevance values of variables. For
example in the case expression, an annotated type environment is calculated for every
case arm. A disadvantage of this approach is that good support for recursion is harder
to implement.

After considering all advantages and disadvantages of both approaches, we have chosen
to take the syntax-driven approach.

Further details of the implementation can be found in Chapter 5.

3.5 Transformation

The target of the transformation is to introduce extra let!’s and to put them as high as
possible in the tree. For example in the following expression:

let ten = 5+5 in
let f = λx→ x+5
in f ten
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It can be determined that f is strict in its first argument, so after inspecting body of the
let binding it can be concluded that ten is also strict. Now ten can be evaluated at the
place where this is concluded (i.e. in the body of the let binding), so the body of the
let binding becomes f (let ! ten′ = ten in ten′). This is not the optimal point since this
information can be propagated to the definition in the first let binding, where it can be
evaluated. The resulting expression is:

let! ten = 5+5 in
let f = λx→ x+5
in f ten

To get these results, it needs to be calculated what variables must be evaluated and what
relevance information can be propagated further up the tree.

Since a monovariant approach is taken, something extra must be done for higher order
functions. For each function, a wrapper must be generated which evaluates the argu-
ments in which the function is strict. This is like the worker/wrapper transformation
which was first used by Peyton Jones and Launchbury [15]. The wrapper is needed
when a function is passed as a higher-order argument to another function. Consider the
following expression:

let addone = λx→ x+1 in
let app = λf x→ f x
in app addone 5

The addone function is used as an argument to app. Because a monovariant approach
is taken, the type cannot contain variables so a safe estimation has to be made for the
functional argument of app. This safe estimation is a lazy function. The consequence
is that a lazy function has to be given. In the case of addone, a wrapper has to be
generated to create a lazy function. The resulting expression is:

let addone = λx→ x+1 in
let addonewrap = λx→ let ! x′ = x in addone x′ in
let app = λf x→ f x
in app addonewrap 5

Further details of the transformation can be found in Chapter 6.
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Chapter 4

Relevance typing

This chapter introduces the inference system for the UHC Core language. First the
syntax of the types and the typing rules will be explained. Subsequently, the inference
rules will be presented. We illustrate the rules with examples.

4.1 Annotated types

The target of relevance typing is to find relevant abstractions. An abstraction λx→ e
is said to be relevant when the argument x is relevant to the body e. To keep track of
this relevance information of abstractions, annotated types (τ̂) are used. These types
are defined by:

τ̂ ::= () | τ̂1
ϕ−→ τ̂2.

So a type will be a unit type, an empty tuple, or a functional type with an annotation ϕ .
This annotation is defined by:

ϕ ::= S | L.

Here S is used to annotate relevant abstractions, and L is used when this is not known to
be the case. Relevance implies strictness, because when it is known that a variable x is
relevant to an expression e, then e is strict in x. The order in the lattice of the strictness
values is S@ L. The joins and meets for the values in this lattice are:

Stϕ = ϕ

Ltϕ = L
and Suϕ = S

Luϕ = ϕ.

Note that in the case of the Core language, no concrete information about the types is
needed since it has already been type checked. As a result, the annotated types contain
the shape of the types and the relevance information, but not the actual types like Int or
Char.
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4.2 Type rules

When designing the type rules, some problems were encountered with partial applica-
tions. To illustrate, consider

let! f = (λx y→ x+10) (5+5)
in 0

Here the evaluation of f by a strict let binding causes that the first argument that is
supplied to the lambda will be deemed relevant. But the expression (5+5) cannot be
concluded to be relevant before the function f gets another argument in a strict context.
This is because the right hand side of the binding is a partial application. To keep
better track of how many arguments are already given and how many are needed, two
counters are introduced: satl and satr. Here satl keeps track of how many arguments
are needed until the function is saturated and satr counts the number of arguments that
are passed to an expression in a strict setting.

As a result, the typing rules will feature judgements of the form

Γ̂ ` e :: τ̂(ϕ,satl ,satr),

expressing that from the annotated type environment Γ̂, it can be derived that the ex-
pression e has the type τ̂ and the relevance annotation ϕ . The expression e needs at
least satl arguments before it is saturated, and it is guaranteed to get satr arguments in
a relevant context.

The annotated type environments map variables x to (τ̂,ϕ,satl ,satr) consisting of an
annotated type τ̂ , a relevance annotation ϕ , a satr counter and a satl counter. We write
[ ] for the empty environment, [x 7→ (τ̂,ϕ,satl ,satr)] for the singleton environment that
maps x to (τ̂,ϕ,satl ,satr), and Γ̂1 [x 7→ (τ̂,ϕ,satl ,satr)] for the environment that is
obtained by extending Γ̂1 with a binding from x to (τ̂,ϕ,satl ,satr). For merging two
Γ̂’s with a disjoint domain, Γ̂1 ++ Γ̂2 is used.

Our inference system makes use of the substructural type discipline (see Walker[20]),
which can be seen from the careful treatment of type environments throughout the
typing rules. The invariant that is maintained is that any S-annotated variable in an
annotated type environment must appear in an S-context at least once. The rules of the
type deduction system are given in the following subsections.

4.2.1 Constants and variables

The typing rules for constants are [r-int] and [r-char]; they can be found in Fig. 4.1.
The constants that are used in the UHC Core language are Chars and Ints. Constants
cannot have parameters so satl is zero. Also, they never get a parameter in a strict
setting (when the program is type correct), so satr can be safely set to zero as well. The
type of a constant is always (). The constants can be handled in both a strict and lazy
setting.

Also in Fig. 4.1, the rule [r-var] for variables is present. From this rule it can be deter-
mined that the assigned type and relevance information for a variable should match the
type and information that is available for the variable in the type environment.
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Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

[ ] ` z :: ()(ϕ,0,0)
[r-int]

[ ] ` c :: ()(ϕ,0,0)
[r-char]

[x 7→ (τ̂,ϕ,satl ,satr)] ` x :: τ̂(ϕ,satl ,satr) [r-var]

Figure 4.1: Relevance typing for constants and variables.

4.2.2 Abstractions and applications

The typing rule [r-abs] in Fig. 4.2 for a function abstraction is crucial since this is
where we detect the relevant abstractions. When looking at the typing rule, it can be
seen that the typing of the abstraction λx→ e1 depends on the typing of the body e1 in
a type environment that is extended with parameter x. To detect whether the abstraction
is relevant, the relevance of the body is set to S and satr is set to maxInt. When x is
relevant in the resulting annotated type environment of the body, it can be concluded
that the abstraction is relevant. When setting the relevance of the body to S and the satr
to maxInt, this reset also propagates to free variables that are in the body. To prevent
this from happening, we require that the none of the bindings in the resulting type
environment carries an annotation that is smaller (or stricter) than the input relevance
ϕ . Also, satr must be set to zero when the input relevance is L, since the number
of supplied arguments in a strict context is zero. This is captured in the containment
restriction I. Containment is defined as follows:

Containment ϕ I Γ̂

ϕ I [ ]
[c-nil]

SI Γ̂1

SI Γ̂1[x 7→ (τ̂,ϕ,satl ,satr)]
[c-cons-s]

LI Γ̂1

LI Γ̂1[x 7→ (τ̂,L,satl ,0)]
[c-cons-l]

A helper function is used to determine whether all the information should be propa-
gated or contained. This helper function will determine if enough arguments are sup-
plied to this function to lift the containment restriction. It is defined as follows:

prop (l,r,ϕ) | l> r = L
| otherwise = ϕ

As an input it takes the satl , the satr and the ϕ of the function. It checks if the satr is
higher than the satl . When satl is higher, L will be returned. Otherwise ϕ is returned.
Also, the counters for the saturation must match the expression. The satl of the lambda
abstraction is the satl of the body increased with one because it needs one argument
more than the body. Also the satr for the body is the satr of the lambda expresssion
decreased by one.

The typing rule for the application [r-app] is rather straightforward. The derived rele-
vance of the function is propagated to the argument only when enough arguments are
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supplied (which is also determined by the prop function). The counters for the satura-
tion will also have to be updated. This means that the satr of the expression is increased
by one to get the satr of the function. For the resulting type environment Γ̂, the meet is
taken over the two resulting type environments Γ̂1 and Γ̂2 of e1 and e2. This is a partial
function which calculates new values for the type environment pointwise. The meet
is taken over the relevance values and the maximimum is taken over the satr. This is
defined as:

[ ] u [ ] = [ ]

Γ̂1 [x 7→ (τ̂,ϕ1,satl ,satr1)]u Γ̂2 [x 7→ (τ̂,ϕ2,satl ,satr2)] =

(Γ̂1u Γ̂2) [x 7→ (τ̂,ϕ1uϕ2,satl ,max satr1 satr2)]

This corresponds to the intuition that a variable is relevant when its relevance can be
established in at least one of the two type environments.

Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

prop (satl2 +1,satr,ϕ)I Γ̂ Γ̂[x 7→ (τ̂1,ϕ1,satl1,satr1)] ` e1 :: τ̂
(S,satl2,maxInt)
2

Γ̂ ` λx→ e1 :: (τ̂1
ϕ1−→ τ̂2)

(ϕ,satl2+1,satr)
[r-abs]

Γ̂1 ` e1 :: (τ̂2
ϕ1−→ τ̂)(ϕ,satl ,satr+1) Γ̂2 ` e2 :: τ̂

(prop (satl−1,satr ,ϕ1),satl1,satr1)
2

Γ̂1u Γ̂2 ` e1 e2 :: τ̂(ϕ,satl−1,satr)
[r-app]

Figure 4.2: Relevance typing for lambdas and applications.

4.2.3 Let bindings

There are three different kinds of let bindings: plain let bindings (let), recursive let
bindings (letrec) and strict let bindings (let!).

When looking at the typing rule for the plain let binding [r-let] in Fig. 4.3, it can be
seen that the body of the binding has the same relevance type as the binding itself.
The relevance information of the right hand side of the binding e1 should be equal to
the relevance information for the identifier x in the type environment of the body. The
meet over type environments is used again to combine the type environments of the
body and the right hand side.

The typing rule for the strict let binding [r-let!] in Fig. 4.3 is similar to the typing
rule for the plain let binding. The only difference is that the relevance value ϕ of the
right hand side is the same as that of the whole expression to express that it is a strict
binding.

For the recursive let binding, the typing rule [r-letrec] in Fig. 4.3 is again almost the
same as the plain let binding. The difference is that the relevance information of the
right hand side is enforced to be the same as the relevance information that is added to
the type environment Γ̂i (i = 0, ..., n) and Γ̂. Also, the typing rule deals with a list of
bindings here so mutually recursive functions can be defined.
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Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

Γ̂1 ` e1 :: τ̂
(ϕ1,satl1,satr1)
1 Γ̂2 [x 7→ (τ̂1,ϕ1,satl1,satr1)] ` e2 :: τ̂(ϕ,satl ,satr)

Γ̂1u Γ̂2 ` let x = e1 in e2 :: τ̂(ϕ,satl ,satr)
[r-let]

Γ̂1 ` e1 :: τ̂
(ϕ,satl1,satr1)
1 Γ̂2 [x 7→ (τ̂1,ϕ,satl1,satr1)] ` e2 :: τ̂(ϕ,satl ,satr)

Γ̂1u Γ̂2 ` let! x = e1 in e2 :: τ̂(ϕ,satl ,satr)
[r-let!]

∀i.06 i6 n : Γ̂i [x0 7→ (τ̂0,ϕ0,satl0,satr0), ...,xn 7→ (τ̂n,ϕn,satln,satrn)] ` ei :: τ̂
(ϕi,satli,satri)
i

Γ̂ [x0 7→ (τ̂0,ϕ0,satl0,satr0), ...,xn 7→ (τ̂n,ϕn,satln,satrn)] ` e :: τ̂(ϕ,satl ,satr)

(Γ̂0u ...u Γ̂n)u Γ̂ ` letrec [x0 = e0, ...,xn = en ] in e :: τ̂(ϕ,satl ,satr)
[r-letrec]

Figure 4.3: Relevance typing for the plain, strict and recursive let bindings.

4.2.4 Case expressions

The case expression is special since it has branching in it. When looking at the typing
rule [r-case] in Fig. 4.4, the relevance information (τ̂,ϕ,satl and satr) should be the
same for each expression ei (where i = 0, ..., n) in the right hand side of a case alterna-
tive. This relevance information must also be the same as the information of the case
expression. The relevance of the scrutinee must be the same as that of the complete
expression. Also, a containment restriction is used for the case arms. The relevance
is set to S and satr to maxInt to get all the information from the case arms. When it
is in a lazy setting or not enough arguments are supplied, the containment restricts the
annotated type environments of all the case arms.

For the patterns, a function is used to create the type environment for the variables in
the pattern. This function getVarTys gets all the variables with the corresponding types
from a pattern and returns this information in the form of an environment. It can be
assumed that the information about tags is already available in the input Γ̂ of the whole
module.

getVarTys (pat, τ̂, Γ̂) = Γ̂

getVarTys (x, τ̂, Γ̂) = [x 7→ (τ̂,ϕ,0,0)]
getVarTys (tup tag xs, τ̂, Γ̂) = let (τ̂t , , , ) = Γ̂ [tag]

in match xs τ̂t

getVarTys (z, τ̂, Γ̂) = [ ]

getVarTys (c, τ̂, Γ̂) = [ ]

match ([Var ], τ̂) = Γ̂

match ((x : xs), τ̂1
ϕ−→ τ̂2) = (match xs τ̂2)
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For combining the information from the type environments from the different case
branches, a point wise join is used. This is justified by the fact that at least one of these
alternatives is taken. The partial function is defined as:

[ ] t [ ] = [ ]

Γ̂1 [x 7→ (τ̂,ϕ1,satl ,satr1)]t Γ̂2 [x 7→ (τ̂,ϕ2,satl ,satr2)] =

(Γ̂1t Γ̂2) [x 7→ (τ̂,ϕ1tϕ2,satl ,min satr1 satr2)]

Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

Γ̂ ` e :: τ̂
(ϕ,satl1,satr1)
1

∀i.06 i6 n : prop (satl ,satr,ϕ)I Γ̂i Γ̂i ++(getVarTys (pi, τ̂1, Γ̂i)) ` ei :: τ̂(S,satl ,maxInt)

Γ̂u (Γ̂1t ...t Γ̂n) ` case e of [p0→ e0, ...,pn→ en ] :: τ̂(ϕ,satl ,satr)
[r-case]

Figure 4.4: Relevance typing for a case expression.

4.2.5 Tup and FFI

Tups are used for the construction of datatypes. It can be assumed that strictness in-
formation about the tags is already available in the type environment (where a tag is
treated just like a variable). In this way, the typing rule for the tup looks similar to the
typing rule for variables which can be seen in [r-tup].

FFI’s are used to make calls via the foreign function interface. Just like tups, it can
be assumed that the strictness information is already present in the type environment
(where the identifier of the FFI is treated as a normal variable). When looking at the
typing rule [r-ffi], this also looks similar to the variable typing rule.

Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

[tag 7→ (τ̂,ϕ,satl ,satr)] ` tup tag :: τ̂(ϕ,satl ,satr) [r-tup]

[x 7→ (τ̂,ϕ,satl ,satr)] ` FFI x :: τ̂(ϕ,satl ,satr) [r-ffi]

Figure 4.5: Relevance typing for a tup and an ffi.

4.2.6 Subeffecting and weakening

The rule [r-sub] is used for subeffecting. This states that derivations can selectively
forget about the relevance of an expression. With this rule, more programs are con-
sidered well-typed. Informally, it states that any derivation that can be made from the
assumption that a term is not relevant is still valid if it is actually relevant.
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The rule [r-weak] is used for weakening. This expresses that any type that can be
derived for an annotated type environment Γ̂ that does not contain a mapping for the
variable x can also be derived for an annotated type environment that maps x to the L
annotation.

Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

Γ̂ ` e :: τ̂(L,satl ,0)

Γ̂ ` e :: τ̂(S,satl ,satr)
[r-sub]

x 6∈ dom (Γ̂) Γ̂ ` e :: τ̂(ϕ,satl ,satr)

Γ̂ [x 7→ (τ̂0,L,satlx,0)] ` e :: τ̂(ϕ,satl ,satr)
[r-weak]

Figure 4.6: Relevance typing for subeffecting and weakening.

4.3 Example

An example is presented. This gives a feeling what kind of outcomes can be derived
for the expressions and what a derivation looks like.

Consider a simple example:

(λx→ λy→ x) 1 2

The result of the derivation is:

(λx→ λy→ x) 1 2 :: ()(S,0,0)

This expression is saturated, so satl and satr are zero and the type is unit. When looking
at the derivation in Figure 4.7, it can be seen that the function λx→ λy→ x gets the
type (() S−→ ()

L−→ ())(S,2,2). The type implies that it is strict in its first argument and lazy
in its second. The satl of two shows that it needs two arguments before it is saturated,
while the satr of two shows that two arguments are supplied in a strict context. These
satl and satr values are also used as an input for the prop function. As a result, the type
environment does not have to be contained because we know the function body will be
evaluated.
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Chapter 5

Implementation

The implementation of the annotated type system is done in the context of the UHC
system. The starting point for the syntax-driven approach is algorithm W [4]. Just like
in the typing rules, the relevance information is added to the type environments and the
types. The counters for the saturation are incorporated as in- and output of the infer-
encing function, where satr is the input and satl is the output. Since no concrete types
are used, the part of the inference system concerning polymorphism is not used. This
system is based on the typing rules of Chapter 4. For ease of reference, the complete
set of typing rules is repeated in Fig. 5.1.
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Relevance typing Γ̂ ` e :: τ̂(ϕ,satl ,satr)

[ ] ` z :: ()(ϕ,0,0)
[r-int]

[ ] ` c :: ()(ϕ,0,0)
[r-char]

[x 7→ (τ̂,ϕ,satl ,satr)] ` x :: τ̂(ϕ,satl ,satr) [r-var]

prop (satl2 +1,satr,ϕ)I Γ̂ Γ̂[x 7→ (τ̂1,ϕ1,satl1,satr1)] ` e1 :: τ̂
(S,satl2,maxInt)
2

Γ̂ ` λx→ e1 :: (τ̂1
ϕ1−→ τ̂2)

(ϕ,satl2+1,satr)
[r-abs]

Γ̂1 ` e1 :: (τ̂2
ϕ1−→ τ̂)(ϕ,satl ,satr+1) Γ̂2 ` e2 :: τ̂

(prop (satl−1,satr ,ϕ1),satl1,satr1)
2

Γ̂1u Γ̂2 ` e1 e2 :: τ̂(ϕ,satl−1,satr)
[r-app]

Γ̂1 ` e1 :: τ̂
(ϕ1,satl1,satr1)
1 Γ̂2 [x 7→ (τ̂1,ϕ1,satl1,satr1)] ` e2 :: τ̂(ϕ,satl ,satr)

Γ̂1u Γ̂2 ` let x = e1 in e2 :: τ̂(ϕ,satl ,satr)
[r-let]

Γ̂1 ` e1 :: τ̂
(ϕ,satl1,satr1)
1 Γ̂2 [x 7→ (τ̂1,ϕ,satl1,satr1)] ` e2 :: τ̂(ϕ,satl ,satr)

Γ̂1u Γ̂2 ` let! x = e1 in e2 :: τ̂(ϕ,satl ,satr)
[r-let!]

∀i.06 i6 n : Γ̂i [x0 7→ (τ̂0,ϕ0,satl0,satr0), ...,xn 7→ (τ̂n,ϕn,satln,satrn)] ` ei :: τ̂
(ϕi,satli,satri)
i

Γ̂ [x0 7→ (τ̂0,ϕ0,satl0,satr0), ...,xn 7→ (τ̂n,ϕn,satln,satrn)] ` e :: τ̂(ϕ,satl ,satr)

(Γ̂0u ...u Γ̂n)u Γ̂ ` letrec [x0 = e0, ...,xn = en ] in e :: τ̂(ϕ,satl ,satr)
[r-letrec]

Γ̂ ` e :: τ̂
(ϕ,satl1,satr1)
1

∀i.06 i6 n : prop (satl ,satr,ϕ)I Γ̂i Γ̂i ++(getVarTys (pi, τ̂1, Γ̂i)) ` ei :: τ̂(S,satl ,maxInt)

Γ̂u (Γ̂1t ...t Γ̂n) ` case e of [p0→ e0, ...,pn→ en ] :: τ̂(ϕ,satl ,satr)
[r-case]

[tag 7→ (τ̂,ϕ,satl ,satr)] ` tup tag :: τ̂(ϕ,satl ,satr) [r-tup]

[x 7→ (τ̂,ϕ,satl ,satr)] ` FFI x :: τ̂(ϕ,satl ,satr) [r-ffi]

Γ̂ ` e :: τ̂(L,satl ,0)

Γ̂ ` e :: τ̂(S,satl ,satr)
[r-sub]

x 6∈ dom (Γ̂) Γ̂ ` e :: τ̂(ϕ,satl ,satr)

Γ̂ [x 7→ (τ̂0,L,satlx,0)] ` e :: τ̂(ϕ,satl ,satr)
[r-weak]

Figure 5.1: Relevance typing including saturation.
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5.1 Inference algorithm

Guided by the formal specification of the relevance typing defined in Chapter 4, an
inference algorithm Wrel is defined which reconstructs the types and determines the
relevance values and saturation. This type inference algorithm for relevance typing
analysis is based on the classical algorithm W developed for the Hindley/Milner poly-
morphic type system [4].

The differences of this implementation with algorithm W lies in how equalities on
types are derived. An often used implementation of algorithm W uses unification and
substitution. In this inference algorithm, the substitutions are implemented by returning
an updated type environment. Unification uses the join on types. The result is a little
less precise but resembles the substructural typing discipline that is used in the formal
specification more closely.

The inference algorithm is defined according to the following scheme:

Wrel (Γ̂,e,ϕ,satr) = (Γ̂, τ̂,satl)

The inference algorithm Wrel takes four arguments: an annotated type environment Γ̂,
an expression e, the relevance value ϕ and the counter satr. Here the Γ̂ maps variables
to relevance information which consists of the τ̂ , ϕ , satl and satr. The relevance value
ϕ denotes the relevance of the expression and the counter satr gives information on
how many arguments are supplied to this expression. The result of the inference al-
gorithm Wrel consists of three parts: an annotated type environment Γ̂, an annotated
type τ̂ and the counter satl . The output Γ̂ reflects the changes in the relevance infor-
mation for variables after analysing the expression. The τ̂ gives the annotated type of
the expression, and the counter satl gives how many arguments are needed before the
expression is saturated. The starting point for the inference of a top-level expression
e is a Γ̂ containing the information about the tag’s and FFI’s that are in scope and the
satr set to zero.

The inference algorithm Wrel is defined in Fig. 5.2.
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Type Inference Algorithm Wrel (Γ̂,e,satr) = (Γ̂, τ̂,satl)

Wrel (Γ̂,z,ϕ,satr) = (Γ̂,(),0)
Wrel (Γ̂,c,ϕ,satr) = (Γ̂,(),0)
Wrel (Γ̂,x,ϕ,satr) =

let (τ̂,ϕ1,satl ,satrx) = Γ̂ (x)
Γ̂1 = Γ̂ [x 7→ (τ̂,ϕ uϕ1,satl , if ϕ ≡ S then max (satr,satrx)

else satrx)]

in (Γ̂1, τ̂,satl)
Wrel (Γ̂, tup tag,ϕ,satr) =

let (τ̂,ϕ1,satl ,satrt) = Γ̂ (tag)
Γ̂1 = Γ̂ [tag 7→ (τ̂,ϕ uϕ1,satl , if ϕ ≡ S then max (satr,satrt)

else satrt)]

in (Γ̂1, τ̂,satl)
Wrel (Γ̂,FFI x,ϕ,satr) =

let (τ̂,ϕ1,satl ,satr f ) = Γ̂ (x)
Γ̂1 = Γ̂ [x 7→ (τ̂,ϕ uϕ1,satl , if ϕ ≡ S then max (satr,satr f )

else satr f )]

in (Γ̂1, τ̂,satl)
Wrel (Γ̂,λx→ e,ϕ,satr) =

let Γ̂1 = Γ̂ [x 7→ ((),L,0,0)]
(Γ̂2, τ̂2,ϕ2,satl) = Wrel (Γ̂1,e,S,maxInt)
(τ̂x,ϕx,satlx,satrx) = Γ̂2 (x)
Γ̂res = (if (satl +1)> satr ∧ ϕ ≡ S then Γ̂2 else Γ̂) \ {x}

in (Γ̂res, τ̂x
ϕx−→ τ̂2,satl +1)

Wrel (Γ̂,e1 e2,ϕ,satr) =
let (Γ̂1, τ̂1

ϕ1−→ τ̂,ϕ2,satl1) = Wrel (Γ̂,e1,ϕ, if ϕ ≡ L then 0 else satr +1)
(Γ̂2, τ̂2,ϕ2,satl2) = Wrel (Γ̂1,e2,prop (satl1,satr +1,ϕ1),0)

in (Γ̂2, τ̂,satl1−1)
Wrel (Γ̂, let x = e1 in e2,ϕ,satr) =

let (Γ̂1, τ̂1,satl1) = Wrel (Γ̂,e1,S,maxInt)
(Γ̂2, τ̂2,satl2) = Wrel (Γ̂ [x 7→ (τ̂1,L,satl1,0)],e2,ϕ,satr)
(τ̂x,ϕx,satlx,satrx) = Γ̂2 (x)
Γ̂res = if ϕx ≡ S ∧ satlx 6 satrx then Γ̂1u Γ̂2 else Γ̂2

in (Γ̂res \ {x}, τ̂2,satl2)

Figure 5.2: Inference Algorithm for Monovariant Relevance Typing
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Wrel (Γ̂, let! x = e1 in e2,ϕ,satr) =
let (Γ̂1, τ̂1,satl1) = Wrel (Γ̂,e1,S,maxInt)

(Γ̂2, τ̂2,satl2) = Wrel (Γ̂ [x 7→ (τ̂1,ϕ,satl1,0)],e2,ϕ,satr)
(τ̂x,ϕx,satlx,satrx) = Γ̂2 (x)
Γ̂res = if ϕx ≡ S ∧ satlx 6 satrx then Γ̂1u Γ̂2 else Γ̂2

in (Γ̂res \ {x}, τ̂2,satl2)
Wrel (Γ̂, letrec [x0 = e0, ...,xn = en ] in e,ϕ,satr) =

let ∀i.06 i6 n
Γ̂ = Γ̂++[xi 7→ ((),L,0,0)]

Γ̂−1 = Γ̂

∀i.06 i6 n
(Γ̂i, τ̂i,satli) = Wrel (Γ̂(i−1),ei,S,maxInt)
Γ̂ = Γ̂++[xi 7→ (τ̂i,L,satli,0)]

(Γ̂b, τ̂b,satlb) = Wrel (Γ̂,e,ϕ,satr)
∀i.06 i6 n

(τ̂i,ϕi,satli,satri) = Γ̂b (xi)

Γ̂b = if ϕi ≡ S ∧ satli 6 satri then Γ̂iu Γ̂b else Γ̂b

in (Γ̂b \ {x0, ...,xn}, τ̂b,satlb)
Wrel (Γ̂,case e of [p0→ e0, ...,pn→ en ],ϕ,satr) =

let (Γ̂e, τ̂e,satle) = Wrel (Γ̂,e,ϕ,0)
∀i.06 i6 n

(Γ̂i, τ̂i,satli)] = Wrel (Γ̂e ++(getVarTys (pi, τ̂e,L, Γ̂)),e1,S,maxInt)
Γ̂i = Γ̂i \ (getVars (pi))

Γ̂iter = Γ̂e
satlres = 0
∀i.06 i6 n

satlres = max satlres satli
Γ̂iter = Γ̂iter t Γ̂i

Γ̂res = if ϕ ≡ S ∧ satlres 6 satr
then Γ̂iter

else Γ̂e
τ̂res = τ̂0
∀i.16 i6 n

τ̂res = τ̂rest τ̂i

in (Γ̂res, τ̂res,satlres)

Figure 5.3: Inference Algorithm for Monovariant Relevance Typing (Continued)

Two auxiliary functions are used. The (\) function takes two arguments, a Γ̂ and a
set of variables. The returned Γ̂ will be the input Γ̂ from which the set of variables is
removed. In addition, the function getVars is used which retrieves all the variables in a
pattern and returns it as a set.
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In the actual implementation, the algorithm is specified in the attribute grammar sys-
tem. The input is defined by inherited attributes and the output is defined by synthesized
attributes.

The inference algorithm is described in the following Subsections.

5.1.1 Constants, variables, FFI’s and tags

The inference for constants is straightforward. The input satr and ϕ are ignored. A
constant always gets a unit type and satl is zero since it does not require any arguments.
Also the annotated type environment is returned unchanged.

For variables, the output Γ̂ is updated for the variable that is analysed. The context
information (the input of the function) satr and ϕ is used. A lookup for the variable in
the input type environment is required first to retrieve the relevance information. The
returned Γ̂ is the input Γ̂ where the variable maps to updated relevance information. The
ϕ and satr are only updated with the new versions when this is an ”improvement” of
the information. With an improvement, a higher satr or a ϕ that is more strict is meant.
The τ̂ and satl remain unchanged. The resulting satl of this expression is looked up in
the input annotated type environment.

An FFI construct, (for the foreign function interface) is handled the same as the vari-
ables. The annotated type environment is updated for the variable of the FFI when this
is necessary. The ϕ and satr of the context are used for this.

For the tup tag combination, the same is done as for the FFI expression. The rele-
vance information for the tag is updated in the annotated type environment when this
is necessary.

5.1.2 Abstractions and applications

For function abstractions, a context reset is done for the body. This means that the ϕ

is set to S and the satr is set to maxInt. The input Γ̂ of the lambda is extended with
a mapping for a parameter before it is propagated to the body. The Γ̂ that is returned
for the lambda depends on the containment. When the input relevance is S and enough
arguments are guaranteed to be supplied, the containment restriction is lifted and the
annotated type environment from the body is propagated. When the relevance is L
or not enough arguments are supplied in an S context, the input Γ̂ of the lambda is
returned. This is justified by the fact that the body is not allowed to change the output
Γ̂ of the lambda, because it will not be guaranteed to be evaluated. For the annotated
type, the type from the body is used to which an extra arrow is added at the front. On
top of this arrow comes the relevance value that can be established for the parameter
in the body. The satl of the expression is the satl of the body increased by one since it
needs an additional argument before it is saturated.

For applications, two separate analyses are done for the function and the argument.
For the analysis of the function, the relevance ϕ of the expression is used as the input.
The satr that is used for the function is the satr of the expression increased by one
(since it gets one additional argument). The satr also depends on the value of ϕ since
it only counts the arguments supplied in a strict context. When ϕ is L, the satr is set
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to zero. The input Γ̂ is propagated directly to the function. The output of the analysis
of the function influences the input of the analysis of the argument. When a strict type
is found for the function, the argument is also analysed in a strict context if enough
arguments are guaranteed to be supplied. The resulting type environment is calculated
by taking the meet over the two type environments obtained for the function and the
argument. So when it can be derived that a variable is relevant in one of the two sub-
analyses, it can be concluded to be relevant in the resulting type environment. The satl
is determined by decreasing the satl of the function by one since it needs one argument
less before it is saturated. The resulting τ̂ is constructed by removing the first argument
of the τ̂ of the function. This is because one argument is applied to the function.

5.1.3 Let bindings

When using a syntax-driven approach, it is rather hard to make an efficient implemen-
tation for the let binding. This is because there is a mutual dependency between the
body and the binding. It originates in the fact that in the body of the let binding the
relevance types of the identifiers should be known. This is because when the rhs is a
function and the identifier gets applied in the body, the relevance of the function can
be propagated to the arguments. On the other hand, the satr and the relevance of the
identifier should be known for the input of the analysis of the right hand side. Consider,
for example:

let f = λx y→ x+ y
in f 5 6

For the analysis of the right hand side of the let binding, a ϕ and satr is needed as an
input. The ϕ and satr for f are not available because the body is not analysed yet. But
if we analyse the body first, there is not a type for f derived yet and the arguments of f
cannot get the correct input relevance.

We have chosen to use the idea of the containment restriction to overcome this problem.
The bindings are analysed first, where the input relevance is set to S and the satr to
maxInt. In this way, all the possible relevance information can be found from the right
hand side of the binding. The Γ̂ that is supplied to the analysis of the binding is the
same as the Γ̂ of the whole expression. The input Γ̂ of the body is the input Γ̂ of the
let expression where a mapping is added for the bound variable with the τ̂ and satl that
were determined by the analysis. For this variable, the ϕ is set to L and the satr is set
to zero.

The input satr and ϕ for the body come directly from the expression itself. For the
calculation of the output Γ̂ of the let expression, it has to be determined if the bound
variable is used saturated in a strict context in the body of the binding. When this is
the case, the meet over the output environment of the rhs and the output environment
of the body is returned. Otherwise, the output environment of the body is returned as
the output environment of the let expression. The resulting τ̂ and satl comes directly
from the body.

The definition of Wrel for the strict let bindings is quite similar to that of the plain let
binding. The only difference is that when the relevance information is added to the Γ̂,
the ϕ is set to S instead of L.
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For the recursive let bindings, the difference in the inference algorithm is that a map-
ping is added to the Γ̂ for the variable of each binding. In this way, the recursive usages
can be analysed. Additionally, a list of bindings is used instead of a single binding. As
a result, all the identifiers have to be updated after the right hand sides are analysed.
An improvement in precision in the analysis of recursive let binding is presented in
Section 5.2.

5.1.4 Case expressions

For the inference of the case expression, the scrutinized expression and the expressions
in the case alternatives are analysed first. The input ϕ as well as the Γ̂ for the scrutinized
expression comes from the case expression. The input satr is set to zero. The output
Γ̂ of the scrutinee is used for the input Γ̂ of the expressions in the case alternatives.
The Γ̂ that is passed to a case alternative is the input Γ̂ extended with a mapping for
the variables in the patterns. The satr and ϕ of the case expression are maxInt and
satr to resemble the resetting of the context. The output satl is determined by taking
the maximimum of the satl’s of the case alternatives. The relevance type is calculated
by taking the join over the relevance types of the alternatives. This uses the join over
annotated types which is defined as:

(τ̂11
ϕ1−→ τ̂12)t (τ̂21

ϕ2−→ τ̂22) = (τ̂11t τ̂21)
ϕ1tϕ2−−−→ (τ̂12t τ̂22)

() t () = ()

The resulting type environment Γ̂ combines the information that is gathered from the
case alternatives. The Γ̂’s are combined using the join over type environments. For the
environments, the containment restriction will be active when not enough arguments
are supplied or when the expression is not used in a strict context.

5.2 Recursion

In Section 5.1, nothing really special was done for recursive let bindings. The only
difference between a normal and recursive let binding is that in the latter the names
of all the bindings were added to the environment before the right hand sides of the
bindings were inspected.

This gives a relatively good result for common recursive functions. Consider, for ex-
ample the following function for calculating a fibonacci number.

letrec fib = λx→ let! x′ = x
in case x′ of

0→ 0
1→ 0
n→ let l = fib (x−1)

r = fib (x−2)
in l+ r

in 0

It can be determined that the function is strict in its first argument x since it is evaluated
by a let!. The resulting type for the function is () S−→ () which is the optimal result.
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More information can be derived when using fixed point iteration. This can be useful
since the pessimistic assumption made for the recursive calls can influence the resulting
relevance type. This is the case when an argument of the function is used as a parameter
for the recursive call. An example of this is the following function f :

letrec f = λx y→ case x≡ 0 of
True → y
False→ f (x−1) y

in 0

When this is inspected in the previously defined way, the function f will obtain type
()

S−→ ()
L−→ (). The first argument is relevant because it is relevant to the scrutenee of the

case expression. For the second argument it can never be established that it is relevant,
even though it can be easily seen that this is the case. A solution for this is to use fixed
point iteration. The starting point of the iteration is that every function is strict in all of
its arguments. Then all the bindings are inspected. The corresponding type is updated
in the type environment when it is changed. This iterates until a fixed point is reached.

The fixed point iteration is defined as a worklist algorithm in Fig. 5.4.

Fixed point iteration fixRec (binds, Γ̂) = Γ̂

fixRec(binds, Γ̂) = do
worklist :={ }
dependencies :=[ ]
codemap :=[ ]

∀ (x = e) in binds do
Γ̂ [x ] :=(createStrictTy (satl (e)),L,0,0)
worklist :=worklist∪{x}
codemap [x ] := e
∀ x′ in fv(e) do
dependencies [x′ ] :=dependencies [x′ ]∪{x}

while worklist 6= { } do
let V1]{x}= worklist

( , τ̂x, ) = Wrel (Γ̂,codemap [x ],S,maxInt)
in do worklist :=V1

if τ̂x 6= Γ̂ [x ]
then do Γ̂ [x ] :=(τ̂x,L,0,0)

worklist :=worklist∪dependencies[x ]
return Γ̂

createStrictTy (Int) = τ̂

createStrictTy (n) = if n<1 then () else () S−→ (createStrictTy (n−1))

Figure 5.4: Fixed point iteration for recursive bindings.
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This algorithm employs a worklist, a dependency mapping and a code environment.
The worklist keeps track of the bindings which have to be analysed. The dependency
mapping keeps track of dependencies between bindings. So it contains the bindings
that should be analysed when the relevance type of a certain binding has changed.
The building of this dependency mapping uses the fv function which returns the free
variables of an expression. The code environment is a mapping from variables to a
piece of code. Also an annotated type environment is used to keep track of annotated
types of the bindings. It is assumed that the function satl is given which determines the
satl of an expression. The function createStrictTy is used to generate strict types of a
certain length.

With this all in place, fixed point iteration can be performed. In an iteration, a binding
name is taken from the worklist and is looked up in the code environment. This code
is supplied to the function Wrel to determine the τ̂ of the code. When this has changed
in comparison with the τ̂ from the annotated type environment, the τ̂ of the binding is
updated in the Γ̂ and the dependencies are added to the worklist. This proceeds until the
worklist is empty, and a fixed point has been reached. Then the current Γ̂ is returned.

The inference algorithm for the recursive let bindings is changed to use this optimiza-
tion. The defintion is given in Fig. 5.5.

W (Γ̂, letrec [x0 = e0, ...,xn = en ] in e,ϕ,satr) =
let Γ̂−1 = fixRec ([x0 = e0, ...,xn = en ], Γ̂)
∀i.06 i6 n

(Γ̂i, τ̂i,satli) = W (Γ̂(i−1),ei,S,maxInt)
Γ̂ = Γ̂++[xi 7→ (τ̂i,L,satli,0)]

(Γ̂b, τ̂b,satlb) = W (Γ̂,e,ϕ,satr)
∀j.06 j6 n

(τ̂i,ϕi,satli,satri) = Γ̂b [xi ]

Γ̂b = if ϕi ≡ S then Γ̂it Γ̂b else Γ̂b

in (Γ̂b, τ̂b,satlb)

Figure 5.5: New definition of inference algorithm for letrec.

Note that the resulting type environment of the fixed point iteration is used as the input
for the analysis of the bindings (and not as input of the analysis for the body). This is
done to get the correct type environment of the bindings in place, which is useful for
the transformation, as explained in Chapter 6.

We apply the algorithm to the expression

letrec f = λx y→ case x≡ 0 of
True → y
False→ f (x−1) y

in 0

which was given earlier.
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The starting point for the first iteration is:

worklist = {f }
dependencies= [f 7→ f ]

Γ̂ = [f 7→ (()
S−→ ()

S−→ (),S,0,0)]
codemap = [f 7→ f = λx y→ case x≡ 0 of

True → y
False→ f (x−1) y ]

After the first iteration, the worklist becomes empty. Since the annotated type also
has not changed, the fixed point is reached immediately. The resulting Γ̂ contains the
mapping for f to the relevance type ()

S−→ ()
S−→ (). So it can be concluded that the

function is strict in both of its arguments.

5.3 Higher order functions

When using a monovariant approach, there is not much support for higher order func-
tions. This becomes clear when looking at the following example that defines the
higher order function hof

let hof = λf x y→ f x y in
let fst = λx y→ x in
let snd = λx y→ y
in (hof fst 1 2)+(hof snd 1 2)

Since there is monovariance, there are no variables in the type. The consequence is that
one general type has to be used for the type of the parameter. This type must be a safe
estimation, which is a function that is lazy in all of its arguments. As a result, the type
for hof becomes (() L−→ ()

L−→ ())
S−→ ()

L−→ ()
L−→ ().

The fact that the first parameter is a function does not have any result for the further
transformation. That is why a unit type is used for a functional argument and the type
for the function hof is () S−→ ()

L−→ ()
L−→ ().

5.4 Data types

Data types occur in two places: the construction and the destruction. At both sites,
strictness annotations can be added in Haskell. For the construction, annotations can
be used on the parameters of a constructor. Consider for example the data type defini-
tion data StrictMaybe a = StrictJust ! a | StrictNothing. Here the data type constructor
StrictJust is strict in its first argument. When looking at the destruction of a data type
value in a case statement, annotations can also be used in patterns to introduce strict-
ness. For example in Haskell syntax, f ! x = True. In this example f is strict in its
argument because of the bang pattern.

Bang patterns are transformed into let!’s in the Core langauge in a previous stage,
so nothing extra has to be done. The data type annotations can be used both at the
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construction and destruction. At construction, the strictness can be enforced for the
parameters that are given. This information is available in an environment for each tag,
so a relevance type can be generated for a data type constructor. For example for the
constructor StrictJust, the relevance type is ()

S−→ () which represents the presence of
the data type annotation on the first field.

At destruction, information can be used that parts of the patterns are already evaluated
when the data type was constructed. This is useful for the transformation, since the
variables from the patterns which are relevant in the expression will not need to be
evaluated since they already are. Consider for example:

case x of
StrictJust x→ x+10
Nothing → 5

For the first case arm, it can be concluded that x is relevant and should be evaluated.
When taking the strictness annotations into account, it can be concluded that x is al-
ready evaluated at the construction. As a result, no let! has to be introduced for the
evaluation of x.
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Transformation

The transformation consists of three parts. The first part is the insertion of the let!’s at
the correct places. The second part is the usage of wrappers which handle the evalua-
tion of the strict arguments. At certain places, these wrappers have to be called instead
of the original functions. The third part is a postprocessing step, where unnecessary
let!’s and let’s are removed. We elaborate on the three parts in the following sections.

6.1 Introduction of let!’s

In order to know when a let! has to be introduced, first it should be calculated where
exactly a variable can be evaluated. This information is exactly what is provided by the
annotated type environments. An additional data structure, an evaluation list, is used
to encode what variables should be evaluated.

6.1.1 Evaluation lists

An evaluation list is nothing more than a list of variables. The evaluation list can be
seen as an annotation for an expression, where it contains the variables that should be
evaluated at that expression. To calculate an evaluation list, a boundary has to be found
where the relevance value of a variable goes from S to L. Such a boundary is between
an expression and a subexpression. Consider the following expression:

let f = 5+5
inλx→ case x of

True → f
False→ 4

Here it is clear that f is relevant to the first case arms, but not to the whole case ex-
pression. The boundary that is determined is the first case arm, because the relevance
of f goes from S in the first case arm to L in the case expression. As a result, f can
be evaluated when entering the first case arm. To determine such a boundary, the dif-
ferences between two type environments are calculated. In this case, the difference is
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calculated between the type environment of the first case arm and type environment of
the complete case expression. Because the code is in administrative normal form, the
evaluation lists will only have to contain variables and not complete expressions.

The function tyEnvDiff is used to determine the differences between two Γ̂’s:

tyEnvDiff (Γ̂1, Γ̂2) = lvars (Γ̂1)∩ svars (Γ̂2)

lvars Γ̂ = toVarsSet (filter (λ(x 7→ ( ,ϕ,satl , ))→ ϕ ≡ L ∧ satl ≡ 0) Γ̂)

svars Γ̂ = toVarsSet (filter (λ(x 7→ ( ,ϕ,satl , ))→ ϕ ≡ S ∧ satl ≡ 0) Γ̂)

In this function, the intersection is taken over two sets of variables. The first set con-
tains all the variables which have a ϕ of L in Γ̂1. The second set contains all the
variables which have a ϕ of S in Γ̂2. Additionally, the satl of the variables must be zero
because only saturated expressions must be evaluated. Note that the order in which
the arguments are supplied is important. First the Γ̂ of the whole expression shoud be
supplied and secondly the Γ̂ of the subexpression.

When this approach is applied to a let binding, the difference should be calculated
between the Γ̂ of the right hand side of the binding and the Γ̂ of the body of the binding,
when the corresponding variable is not relevant to the body (because then the Γ̂ of the
rhs must be contained). An example of this is the following expression:

let g = 5+5 in
let f = λx→ x+g
in 0

Looking at this expression, g is relevant to the body of the lambda in the right hand
side of f . Because the right hand side of a binding is inspected in an S context and
the satr is set to maxInt, the relevance of the body of the lambda will also be S. The
containment restriction is lifted and the relevance of g propagates through the lambda.
Since f is not relevant to the body of the binding, the evaluation list is calculated for
the Γ̂ of the rhs and the Γ̂ of the body. From this it can be concluded that g should be
evaluated in the rhs of f . The result of the transformation is:

let g = 5+5 in
let f = let ! g′ = g inλx→ x+g′

in 0

However, this is not entirely correct. The variable g is not relevant to the lambda itself
but only to the body of the lambda. The correct transformed expression must be:

let g = 5+5 in
let f = λx→ let ! g′ = g in x+g′

in 0

This is a problem since the resetting of the relevance for the right hand side of the let
binding causes the lambda to propagate too much information. The evaluaton list that
is determined at the let should be pushed back into the right hand side of the binding.
This is done using discrepancy lists which is explained in the following section.
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6.1.2 Discrepancy list

The idea of the discrepancy list is similar to that of the evaluation list. For every vari-
able that is in scope, it is detected when the relevance has changed between the input
and output environment. Such a change in relevance is called a discrepancy. The dif-
ference is that the discrepancy list can also be propagated to a subexpression when this
is needed. This is useful for let expressions, since now the calculated discrepancy list
can be pushed deeper into the right hand side of a binding when this is needed. The
general idea is to check whether an expression is saturated or not. When an expres-
sion is saturated, the discrepancy list becomes the evaluation list because the variables
can be evaluated. Otherwise, the discrepancy list is propagated into the expression to
determine the right place for the evaluation.

In the following definition of discTrans, the evaluation lists are expressed by adding a
let! for every variable in the evaluation list. The function discrTrans takes an expression
and a discrepancy list as input. The result is the transformed expression.

The definition of the discTrans is given in Fig. 6.1.

discrTrans (e, [x ]) = e

discrTrans (c,ds) = c
discrTrans (n,ds) = n
discrTrans (x,ds) = if x ∈ ds then let ! x′ = x in x′ else x
discrTrans (tup tag,ds) = tup tag
discrTrans (FFI x,ds) = FFI x
discrTrans (λx→ e,ds) = λx→ (discrTrans (e,(tyEnvDiff Γ̂lam Γ̂e)++ds))
discrTrans (e1 e2,ds) =

if satl e1 <2
then (discrTrans (e1,filter (λx→ (relval Γ̂e1 [x ])≡ S) ds))

(discrTrans (e2,filter (λx→ (relval Γ̂e2 [x ])≡ S) ds))
else addEval (ds,e1 e2)

Figure 6.1: Transformation where discrepancy lists are used.
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discrTrans (let x = e1 in e2,ds) =

let (τ̂x,ϕx,satlx,satrx) = Γ̂e2 [x ]
(e′1, isRel) = if ϕx ≡ S ∧ satrx > satlx ∧ satl e2 <1

then (discrTrans (e1, [ ]),True)
else (discrTrans (e1, tyEnvDiff Γ̂let Γ̂e1),False)

e′2 = if satl e2 <1
then discrTrans (e2, [ ])
else discrTrans (e2,ds)

elet = if isRel
then let! x = e′1 in e′2
else let x = e′1 in e′2

in if satl e2 <1
then addEval (ds,elet)
else elet

discrTrans (let! x = e1 in e2,ds) =
let (τ̂x,ϕx,satlx,satrx) = Γ̂e2 [x ]

(e′1, isRel) = if ϕx ≡ S ∧ satrx > satlx ∧ satl e2 <1
then (discrTrans (e1, [ ]),True)
else (discrTrans (e1, tyEnvDiff Γ̂let Γ̂e1),False)

e′2 = if satl e2 <1
then discrTrans (e2, [ ])
else discrTrans (e2,ds)

elet = let! x = e′1 in e′2
in if satl e2 <1

then addEval (ds,elet)
else elet

discrTrans (letrec [x0 = e0, ...,xn = en ] in e,ds) =
let ∀i.06 i6 n
(τ̂xi,ϕxi,satrxi,satlxi) = Γ̂e [xi ]
e′i = if ϕxi ≡ S ∧ satlxi > satrxi ∧ satl e<1

then discrTrans (ei, [ ])

else discrTrans (ei, tyEnvDiff Γ̂let Γ̂ei)
e′2 = if satl e<1

then discrTrans (e2, [ ])
else discrTrans (e2,ds)

elet = letrec [x0 = e′0, ...,xn = e′n ] in e′2
in if satl e<1

then addEval (ds,elet)
else elet

discrTrans (case e of [p0→ e0, ...,pn→ en ],ds) =
let for 06 i6 n

dsi = tyEnvDiff Γ̂case Γ̂ei
in if max [satl p0, ...,satl pn ]>0

then case e of [p0→ discrTrans (e0,ds0 ++ds), ...,pn→ discrTrans (en,dsn ++ds)]
else let e′ = case e of [p0→ discrTrans (e0,ds0), ...,pn→ discrTrans (en,dsn)]

in addEval (ds,e′)

Figure 6.2: Transformation where discrepancy lists are used (Continued).
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For the defintion of discrTrans, it is assumed that the function satl is given which
determines the satl of an expression. This does the same as the calculation of the satl
in the definition of Wrel . Also the Γ̂ is used in combination with expression names in
subscript (for example Γ̂case). This is just the output Γ̂ from the inference algorithm for
the correspondig expression. The function addEval is used which takes an expression
and a list of variables which have to be evaluated by a let!. The result is an expression
where these evaluations have been added including substitutions.

addEval (e,(d : ds)) = let ! d′ = d in [d 7→ d′ ] (addEval (e,ds))
addEval (e, [ ]) = e

In the definiction of addEval, substitutions are applied to the variables in an expression.
The used syntax is [x1 7→ x2 ]e. Here the variable x1 is replaced by the variable x2 in the
expression e.

The definition of discrTrans is intertwined with Wrel (especially the satl and Γ̂), so the
actual implementation in AG is done together. In the AG, the expressions is annotated
with evaluation lists and the evaluation is done in a separate step of the transformation.

The function discrTrans is explained for all the expressions in the following sections.

Constants, variables, FFI’s and tags

For the transformation of constants, nothing special needs to be done. Constants are
always strict since they cannot be evaluated any further. That is why no extra evaluation
needs to be added.

For variables, the incoming discrepancy list should be checked if the variable is an
element of the list. When it is present in the list, the variable can be evaluated at this
place. For example for a variable x where the incoming discrepancy list is [x ], x has to
be evaluated at this place. The resulting code is let! x′ = x in x′.

When the variable is not in the incoming discrepancy list, nothing has to be done. So
when a variable x occurs and the incoming discrepancy is empty, the expression x is
the result.

For FFI’s and tags, nothing has to be done. These expressions can be treated as con-
stants because no extra evaluation can be done in these expressions.

Lambdas and applications

When the input discrepancy list for a lamba is non-empty, the discrepancy is caused by
the body of the lambda. As a result, all the discrepancies are propagated into the body
of the lambda. Consider, for example the simple lambda function λx→ ten, where ten
is in scope and the input discrepancy list is [ten]. This discrepancy is propagated into
the body of the lambda since that is the only place where it could have came from. In
the body, the variable ten is encountered right away. As a result, it can be evaluated at
that place. The resulting function becomes λx→ let! ten′ = ten in ten′.

For an application, it has to be determined whether it is saturated. If it is saturated,
an actual calculation takes place. This is why the elements of the discrepancy list
can be evaluated at this place. Consider, for example the application ten− 5 where
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ten is in scope and the input discrepancy list is [ten ]. This is a saturated application
since the subtraction operator gets both its arguments. As a result, the evaluation of
the variables in the discrepancy list can be done right away. The transformed code is
let! ten′ = ten in ten′−5.

With non-saturated applications, the source of the discrepancy has to be found. This
is done by using the output Γ̂’s of the function and the argument. For each of the two,
the variables from the incoming discrepancy list are looked up in the type environment.
Only when it is relevant in a Γ̂ of a subexpression, the discrepancy is propagated to the
discrepancy list of the corresponding subexpression. Consider the following example:
(λx y→ x+ 5) ten, where ten is in scope and the discrepancy list is [ten]. Now it has
to be calculated from which part of the application (the function or the argument), the
discrepancy arises. When looking at the Γ̂ of the function, it can be determined that
ten is not relevant to the function, so the variable is not propagated into the discrepancy
list of the function. After performing a lookup for ten on the Γ̂ of the argument, it can
be seen that it is relevant to the argument so it must be propagated into the discrepancy
list of the argument. There it is immediately concluded that it can be evaluated. The
transformed code is (λx y→ x+5) (let ! ten′ = ten in ten′).

Let bindings

For a let binding, the bound variable is not guaranteed to be used in the body. Here a
discrepancy will be created for all the variables that are relevant in the right hand side
of the binding when the bound variable is not used in a relevant and saturated manner
in the body. This discrepancy list is propagated to the right hand side to be resolved.

The let binding also has an input discrepancy list. The elements of this list can be
evaluated when the body has a satl of zero. If this is not the case (so the body is not
saturated), the discrepancy must be propagated to the body of the let binding.

Consider the example:

let g = 5+5 in
let f = λx→ x+g
in 0

The calculation of the discrepancy list for the right hand side of f results in [g]. This is
then propagated into the right hand side of f to be resolved. The result is:

let g = 5+5 in
let f = λx→ let! g′ = g in x+g′

in 0

Also, when the bound variable is used saturated in a relevant context, a plain let binding
can be transformed into a strict let binding. For example in the following expression:

let ten = 5+5 in
let f = λx y→ x
in f ten 5

The variable ten is used in a relevant context because the function f is strict in its first
argument, and the function gets all of its arguments. Now it can be concluded that ten
can be evaluated when it is defined. The resulting expression is:
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let! ten = 5+5 in
let f = λx y→ x
in f ten 5

Note that f is also in a relevant context in the body, but evaluation has no consequences
since it is a lambda.

Strict let bindings are similar to plain let bindings. The only difference is that it does
not have to be transformed into a strict binding when it is found to be relevant and
saturated in the body since it is already known to be strict.

Recursive let bindings are also handled similarly. The difference with respect to the
plain let binding is that it has a list of bindings. So for each binding in the list, the same
has to be done as is done for a binding in a plain let binding. Also no transformation
into a strict binding has to be done as it cannot be strict and recursive at the same time.

Cases

For a case expression, first the discrepancy lists for the case alternatives have to be
calculated. Here the Γ̂ of each of the arms is compared against the Γ̂ of the complete
case expression. The outcoming discrepancy lists are propagated to the corresponding
case arms.

Second, the input discrepancy lists of the case arms depend on the saturatedness of
the expressions in the case alternatives. If they are saturated, the variables in the in-
coming discrepancy list can be evaluated immediately. For example in the following
expression:

let ten = 5+5 in
let five = 2+3 in
let v = case True of

True → ten−five
False→ ten

in 0

the discrepancy list of v contains ten. Since the arms of the case expression are satu-
rated, ten can be evaluated before the case expression. When calculating the difference
between Γ̂ of the first case alternative and the Γ̂ of the case expression, it can be con-
cluded that five needs to be added to discrepancy list of the first case alternative. This
is a saturated application, so five is evaluated immediately in the first case arm. So the
transformed expression is:

let ten = 5+5 in
let five = 2+3 in
let v = let ! ten = ten′

in case True of
True → let ! five′ = five in ten′−five′

False→ ten′

in 0

When the case arms are not saturated, the discrepancy list is propagated to each of
the case arms. This is done since in the analysis it is already determined that all the
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variables in the discrepancy list are relevant in all of the case arms. Now, the correct
places for the evaluation is found when the expressions in the case arms are given the
discrepancy list. For example, in the expression:

let ten = 5+5 in
let plus = λx y→ x+ y in
let min = λx y→ x− y in
let f = case True of

True → plus ten
False→ min ten

in 0

the discrepancy list of f contains ten. This list is propagated downwards since the case
arms are not saturated. This discrepancy list is propagated to the variable ten in both
case arms, where it is evaluated. The result becomes:

let ten = 5+5 in
let plus = λx y→ x+ y in
let min = λx y→ x− y in
let f = case True of

True → plus (let ! ten′ = ten in ten′)
False→ min (let ! ten′ = ten in ten′)

in 0

Another thing that is important for the case expressions are the variables from the pat-
terns. Since the pattern variables are still in Γ̂, they are found when calculating the
difference between the two Γ̂’s. In this way, the variables are added to the discrep-
ancy list of the expression of the same case arm when this is necessary. For example,
consider:

let f = case Just 5 of
Nothing→ 20
Just x → x+5

in 0

For the second case arm, it is determined that x is relevant. Now, the variable x is added
to the discrepancy list of this case alternative. There is a saturated application, so it is
evaluated at that place. The result of the transformation is:

let f = case Just 5 of
Nothing→ 20
Just x → let! x′ = x in x′+5

in 0

The evaluation of these pattern variables can be optimized by taking the strictness
annotations on constructor fields into account. The variables that correspond to strict
data fields do not have to be evaluated when they are present in a discrepancy list. This
is because they are already evaluated at the construction of the data type value. This
optimization can be performed when the unnecessary let!’s are removed.
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6.2 Generate and add calls to wrappers

The generation of wrappers and adding the calls to these wrappers is the second step in
the transformation. As discussed in Section 5.3, something has to be done for higher
order functions. This is done with a worker/wrapper transformation[15]. The workers
are the original functions and wrappers take care of the evaluation.

6.2.1 Generate wrappers

For higher order functions, a different version of the function must be generated. When
a function is strict, it expects an evaluated argument. This cannot be guaranteed when
it is used higher order. That is why a wrapper is generated which does the evaluation
of the lazy arguments which are expected to be strict in the normal function. Consider
for example the following piece of code:

let id = λx→ x in
let app = λf x→ f x
in app id (5+5)

The inferred type for id is τ̂
S−→ τ̂ , while the type of app is (τ̂

L−→ τ̂)
S−→ τ̂

L−→ τ̂ . From
the type of app it can be seen that a safe estimation is made because the input function
is lazy. But when a strict function is used as the first argument of app (like id ), this
function may get an unevaluated argument. To prevent this from happening, a wrapper
is generated which is lazy but evaluates the thunks that can be passed as strict arguments
to the normal function which is referred to as the worker. A wrapper is generated for
each binding with a lambda on the right hand side. This is shown in the transformed
version of the example which contain the functions idwrap and appwrap:.

let id = λx→ x in
let idwrap = λx→ let ! x′ = x in id x′ in
let app = λf x→ f x
let appwrap = λf x→ app f x
in app id (5+5)

For partial applications on the right hand side of a let binding, wrappers can also be
generated. When the wrappers for partial applications are generated, lambdas are in-
troduced to do the evaluation. These lambdas are not guaranteed to be on the top-level,
because partial applications can also occur in a local definition. So these new lambdas
will break the invariant that the code is lambda lifted. By making only wrappers for
lambdas, the code is still lambda lifted because the wrappers are also on the top-level.

A possible solution for this is to do lambda lifting after the generation of the wrappers.
The wrapper and the function must be lifted to the same level to keep them together.
Because the arity of the functions can become higher after lambda lifting, the func-
tionality of the wrapper can break because nothing is known about the relevance of the
argument that is added to the function.

To keep things easy, we have chosen to replace calls to lambdas in partial applications
with the calls to the top-level wrappers. In this way, the partial applications can be
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safely used as a higher order argument and no wrappers have to be generated for these.
The adding of the calls to the wrappers is explained further in Section 6.2.2.

The function genWrap adds all the wrappers for the lambdas. It takes an expression
and returns the same expression where the wrappers are added.

The function genWrap is defined in Fig. 6.3.

genWrap (e) = e

genWrap (z) = z
genWrap (c) = c
genWrap (x) = x
genWrap (tup tag) = tup tag
genWrap (FFI x) = FFI x
genWrap (λx→ e) = λx→ (genWrap e)
genWrap (e1 e2) = (genWrap e1) (genWrap e2)
genWrap (let x = e1 in e2) =

if isLam e1
then let x = e1 in let xwrap = wrap (relTy e1,x) in (genWrap e2)
else let x = e1 in (genWrap e2)

genWrap (let! x = e1 in e2) =
if isLam e1
then let! x = e1 in let xwrap = wrap (relTy e1,x) in (genWrap e2)
else let! x = e1 in (genWrap e2)

genWrap (letrec [x1 = e1, ...,xn = en ] in e) =
let bs = [ ]

foreach xi = ei in [x1 = e1, ...,xn = en ]
bs = if isLam ei

then [xi = ei,xwrap = wrap (relTy ei,x)]
else [xi = ei ]

in letrec bs in (genWrap e)
genWrap (case e of [p1→ e1, ...,pn→ en ]) =

case e of [p1→ (genWrap e1), ...,pn→ (genWrap en)]

Figure 6.3: Generating the wrapper functions.

Some auxiliary functions are used. The function isLam returns True when the input
expression is a lambda and False for any other expression. Also, the function relTy is
used, which returns the τ̂ of the input expression. Additionally, the function wrap is
used to generate the actual wrapper, which takes a τ̂ and a function name as an input.
For example for a function f with a τ̂ of () S−→ ()

L−→ ()
S−→ (), the generated wrapper is:

λx y z→ let ! x′ = x in let ! z′ = z in f x′ y z′.

When looking at the definition of genWrap, it can be seen that the only work is done
when any kind of let binding is found where the right hand side is a lambda abstraction.
The τ̂ of the right hand side is calculated with which the wrapper is generated. This
wrapper is added to the expression.
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6.2.2 Add calls to wrappers

For adding the calls to the wrappers, first the names of the variables which have a wrap-
per must be collected. When such a variable is used as an argument in an application,
the call to the normal variable must be changed into a call to the wrapper. Additionally,
calls to the wrappers are added in the right hand side of a binding when this rhs is a
partial application.

Consider the example from Section 6.2.1:

let id = λx→ x in
let idwrap = λx→ let! x′ = x in id x′ in
let app = λf x→ f x
let appwrap = λf x→ app f x
in app id (5+5)

Here, id is used as the first argument of app. As a result, id is replaced by a call to the
wrapper of id , idwrap. The transformed expression is:

let id = λx→ x in
let idwrap = λx→ let! x′ = x in id x′ in
let app = λf x→ f x
let appwrap = λf x→ app f x
in app idwrap (5+5)

Also for partial applications in right hand sides, calls to wrappers have to be added as
was discussed in Section 6.2.1. Consider the following example where the wrappers
are already present:

let ten = 5+5
let f = λx y→ x+ y in
let fwrap = λx y→ let! x′ = x in let! y′ = y in f x′ y′ in
let g = f ten
in 0

Here, the right hand side of g contains a partial application. As a result, the calls to
the lambdas have to be replaced by the calls to wrappers of the lambdas. The resulting
expression is:

let ten = 5+5
let f = λx y→ x+ y in
let fwrap = λx y→ let! x′ = x in let! y′ = y in f x′ y′ in
let g = fwrap ten
in 0

Adding the calls to the wrappers is performed by the function addWrapCalls. It takes
an expression, a list of variables which have a wrapper and a boolean. This boolean
determines if the normal calls should be replaced by calls to the wrapper for the input
expression.

The function addWrapCalls is defined in Fig. 6.4
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addWrapCalls (e, [x ],Bool) = e

addWrapCalls (z,ws,b) = z
addWrapCalls (c,ws,b) = c
addWrapCalls (x,ws,b) = if b ∧ x ∈ ws then xwrap else x
addWrapCalls (tup tag,ws,b) = tup tag
addWrapCalls (FFI x,ws,b) = FFI x
addWrapCalls (λx→ e,ws,b) = λx→ (addWrappCalls (e,ws,b))
addWrapCalls (e1 e2,ws,b) = (addWrapCalls (e1,ws,b))

(addWrapCalls (e2,ws,True))
addWrapCalls (let x = e1 in e2,ws,b) =

let e′1 = if ¬ (isWrap x) ∧ ¬ (isLam e1) ∧ (satl e1 >0)
then (addWrapCalls (e1,w,True))
else e1

ws′ = if isLam e1 ∧ ¬ (isWrap e1)
then x : ws
else ws

in let x = e′1 in (addWrapCalls (e2,ws′,b))
addWrapCalls (let! x = e1 in e2,ws,b) =

let e′1 = if ¬ (isWrap x) ∧ ¬ (isLam e1) ∧ (satl e1 >0)
then (addWrapCalls (e1,ws++ws′,True))
else e1

ws′ = if isLam e1 ∧ ¬ (isWrap e1)
then x : ws
else ws

in let x = e′1 in (addWrapCalls (e2,ws′,b))
addWrapCalls (letrec [x0 = e0, ...,xn = en ] in e,ws,b) =

let ws′ = [ ]
∀i.06 i6 n

e′i = if ¬ (isWrap xi) ∧ ¬ (isLam ei) ∧ (satl ei >0)
then (addWrapCalls (ei,ws++ws′,True))
else ei

ws′ = if isLam ei ∧ ¬ (isWrap xi)
then xi : ws′

else ws′

in letrec [x0 = e′0, ...,xn = e′n ] in (addWrapCalls (e,ws++ws′,b))
addWrapCalls (case e of [p0→ e0, ...,pn→ en ],ws,b) =

case (addWrapCalls (e,ws,b)) of
[p0→ (addWrapCalls (e0,ws,b)), ...,pn→ (addWrapCalls (en,ws,b))]

Figure 6.4: Adding the calls to the wrappers.

For this definition, some auxiliary functions are used. The function isWrap gets a
variable and determines if this variable corresponds to a wrapper. The function isLam
takes an expression. It returns True if the expression is a lambda and False for any other
expression. In addition, the function satl is used to determine the satl of an expression.
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The function addWrapCalls only adds calls to the wrapper when the input boolean is
True. This can be seen at the definition of variables, where a variable is only changed
into a wrapper variable when the input boolean is True and the name of the variable is
in the list of wrapper names. For the handling of lambdas, nothing special is done. All
the input (boolean and wrapper list) is propagated to the body of the lambda since no
variable can be changed. For the application, the boolean for the argument is always
set to True. This is because the higher order arguments must always be transformed
into a call to the wrapper. The function part of the application gets the same input as
the application itself. The let bindings is where the list of the wrapper names is filled.
This is done with the list ws′ which gets the name of the binding added to it when the
right hand side is a lambda, but not a wrapper. In this way, the list of wrappers contains
the original names and the lookup of the variable in the list of wrapper names can be
done directly. Additionally, the boolean of the right hand side of the binding is set to
True when this is a partial application. For the case expression, the input boolean and
wrapper list is just propagated to the scrutinee and all the case alternatives.

6.3 Removing unnecessary let!’s

After the let!’s are introduced, it can be the case that a variable that is evaluated by a
let! (so a variable on the right hand side of the let!) is already evaluated previously.
That a variable is already evaluated can be derived from a previous let!, a parameter
of a lambda which is relevant or from variables in a pattern which match strictness
annotated constructor fields.

When a let! is encountered and right hand side only contains a variable, it should be
determined if it is already evaluated. Consider the following expression:

let! five = 3+3
in let! five′ = five in five′+3

Here it can be seen that five is evaluated when it is introduced, because a let! is used.
But after that, five is evaluated again in the second binding. Here it can be determined
that five is already evaluated by the first binding, so the second let! can be removed.
The transformed code is:

let! five = 3+3
in let five′ = five in five′+3

For lambda abstractions, a relevance type is determined during the analysis. When a
function is strict in an argument, it can be safely assumed that the argument that is
supplied is already evaluated. This information can also be used to determine if a let!
is unnecessary. For example in the following function:

λx y→ let! x′ = x in y

This function obtains the type ()
S−→ ()

S−→ (). So it can be concluded that x and y are
already evaluated in the body. As a result, the strict let binding for x can be transformed
into a plain binding. The resulting function is:

λx y→ let x′ = x in y
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As is previously stated, some evaluation of the variables in the patterns can be removed.
When a variable in a pattern matches with a constructor field which has a strictness
annotation on it, it can be concluded that the variable is already evaluated. Consider
the data type StrictMaybe:

data StrictMaybe a = StrictJust ! a | StrictNothing

When a variable is matched against the first field of StrictJust, it can be concluded that
it is already evaluated. For example in the following case expression:

case x of
StrictJust y → let ! y′ = y in y′+10
StrictNothing→ 5

For the variable y it can be concluded that it is already evaluated because of the strict-
ness annotation on the constructor field. That is why the let! can be transformed into a
normal let. The resulting expression is:

case x of
StrictJust x → let x′ = x in x′+10
StrictNothing→ 5

All these parts are incorporated into the function removeLetBang. This function takes a
list of variables and an expression. The idea is that the list contains the variables that are
already evaluated. When such a variable is encountered in the right hand side of let!,
the let! is transformed into a plain let binding. The function returns the transformed
version of the input expression.

The function removeLetBang is defined in Fig. 6.5.

removeLetBang (e, [x ]) = e

removeLetBang (z,vs) = z
removeLetBang (c,vs) = c
removeLetBang (x,vs) = x
removeLetBang (tup tag,vs) = tup tag
removeLetBang (FFI x,vs) = FFI x
removeLetBang (λx→ e,vs) =

let (τ̂1
ϕ−→ τ̂2) = relTy (λx→ e)

e′ = if ϕ ≡ S
then removeLetBang (e,(x : vs))
else removeLetBang (e,vs)

in (λx→ e′)
removeLetBang (e1 e2,vs) =

(removeLetBang (e1,vs)) (removeLetBang (e2,vs))

Figure 6.5: Removing the let!’s that are unnecessary.
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removeLetBang (let x = e1 in e2,vs) =
let e′1 = removeLetBang (e1,vs)

e′2 = removeLetBang (e2,vs)
in let x = e′1 in e′2

removeLetBang (let! x = e1 in e2,vs) =
let e′1 = removeLetBang (e1,vs)

e′2 = removeLetBang (e2,(x : vs))
in if isVar e1

then if (getVar e1) ∈ vs
then (let x = e′1 in e′2)
else (let! x = e′1 in e′2)

else let! x = e′1 in e′2
removeLetBang (letrec [x0 = e0, ...,xn = en ] in e,vs) =

let ∀i.06 i6 n
e′i = removeLetBang (ei,vs)

e′ = removeLetBang (e,vs)
in (letrec [x0 = e′0, ...,xn = e′n ] in e′)

removeLetBang (case e of [p0→ e0, ...,pn→ en ],vs) =
let e′ = removeLetBang (e,vs)
∀i.06 i6 n

vi = strictVarsPattern (pi)
e′i = removeLetBang (ei,vs++ vi)

in (case e′ of [p0→ e′0, ...,pn→ e′n ])

Figure 6.6: Removing the let!’s that are unnecessary (Continued).

Some auxiliary functions are used in this definition. The function relTy is used to
determine the relevance type of an expression. To determine whether an expression
is a variable, the function isVar is used. To extract a variable from an expression,
the function getVar is used. This is only used when isVar has returned true for that
expression. For the patterns, the function strictVarsPattern is used to determine which
variables are strict. For a constructor pattern, the tag is used to look up which fields are
strict. When a pattern is a variable, this is also added to the strict variables since it is
evaluated before the case expression.

6.4 Remove unnecessary let’s

After removing the strictness on let bindings, normal let bindings remain. These plain
binding can be simple renamings, so an extra transformation can be done to remove
these. These two steps could be done together, but the second step is already available
in UHC on the Core leve. In this way, the code is separated and easier to maintain.
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Chapter 7

Conclusions

This last chapter presents the conclusions of this thesis and includes pointers for future
work.

7.1 Conclusion

This thesis investigated how strictness analysis can be implemented in the context of
a real Haskell compiler (in this case UHC). The UHC Core language was chosen for
the language under analysis since this was the last lazy functional language in the
pipeline of UHC. Inspired by the work of Holdermans and Hage [9] which used a type
based approach to strictness analysis (relevance typing), a more refined type system
was defined using saturation. The saturation in the typing rules was needed to handle
both partial applications and user defined strictness annotations. For the saturation, two
counters were introduced to keep track of the number of arguments that are needed by
an expression and the number of arguments that are already passed to an expression.

The type system was used as a basis for a syntax directed implementation. For the
actual implementation, this definition is transformed into AG code. In addition, a def-
inition is given to handle recursion. Fixed point iteration is used to get more precise
types for recursive bindings.

Finally, the transformation was presented which determines which variables can be
evaluated at what places. For this, the annotated type environments from the analysis
are used. In addition, wrappers are added which take care of the evaluation. These
wrappers are used when a function is an argument to a higher order function.

7.2 Future work

In Chapter 5, a definition is given to get more precise results for determining the rel-
evance types of recursive let bindings. The implementation of this in UHC is left as
future work.
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More strictness information can already be gained for higher order functions without
using a polyvariant approach. When a higher order function is not exported, the join
over all the call sites can be calculated to get the minimal strictness of the higher order
function. So if all functions are strict in a certain parameter, it can be safely established
that this also holds for the higher order function and this can be propagated into the
type of the higher order function. For example consider that hof is not exported in the
following expression:

let hof = λf x y→ f x y in
let plus = λx y→ x+ y in
let snd = λx y→ x
in hof plus 1 2+hof snd 1 2

Here plus and snd obtain the types () S−→ ()
S−→ () and ()

S−→ ()
L−→ (). Taking the join over

these types, the result is () S−→ ()
L−→ (). The type for hof can be: (() S−→ ()

L−→ ())
S−→ ()

S−→
()

L−→ (), because both plus and snd are strict in their first argument.

For data types, extra annotations can be added. Instead of only one annotation which
describes whether it can be evaluated to WHNF, annotations can be added for construc-
tor fields. In this way, something can be said about the strictness of a function in certain
fields of a data type.

Another possibility to improve the precision for higher order functions is to add poly-
variance. By allowing variables in the relevance types, the functions that are used
higher order can have a variable type. Constraints can be put in the type to link the
variables to each other. Consider, for example the expression:

let fst = λx y→ x in
let snd = λx y→ y in
let app = λf x y→ f x y
in app fst 1 2+app snd 1 2

The type for app is:

{ϕ1 v ϕ4,ϕ2 v ϕ5,ϕ3 v ϕ6}⇒ (()
ϕ1−→ ()

ϕ2−→ ())
ϕ3−→ ()

ϕ4−→ ()
ϕ5−→ ()ϕ6

The input function determines the concrete type since hof fst gets the type {ϕ4 v
ϕ6} ⇒ ()

ϕ4−→ ()
ϕ5−→ ()ϕ6 since fst is strict in its first argument. On the other hand,

hof snd gets the type {ϕ5 v ϕ6}⇒ ()
ϕ4−→ ()

ϕ5−→ ()ϕ6 , because snd is strict in its second
argument.

An important issue here is code generation. This becomes a lot harder when using
polyvariant types since for every higher order function, multiple versions have to be
generated. For example for hof , different code has to be generated for each combina-
tion of relevance values on the input functions. So four different versions have to be
available for hof . This may lead to a considerable amount of code duplication.
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