
[Faculty of Science
Information and Computing Sciences]

Heap Recycling for Lazy Languages

Jurriaan Hage
(Joint work with Stefan Holdermans)

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: jur@cs.uu.nl

Web pages: http://people.cs.uu.nl/jur/

May 15, 2008
Fun In The AfterNoon at Hertfordshire

Presented earlier at PEPM ’08, San Francisco

jur@cs.uu.nl
http://people.cs.uu.nl/jur/

[Faculty of Science
Information and Computing Sciences]

2

Announcement

I The Helium Haskell compiler is being made ready for
release 1.7.

I New website (already contains the sources of pre-1.7)

I Improved usability and standardization

I Extended logging facilities

I Bugfixes

I But what about those type classes?

[Faculty of Science
Information and Computing Sciences]

3

Lazy languages better be pure

Functional languages can be classified along several axes:

I pure vs. impure;

I strict (eager) vs. nonstrict (lazy).

�
Not all combinations make sense: reasoning about

side-effects in a nonstrict context is hard.

[Faculty of Science
Information and Computing Sciences]

4

Referential transparency

I Pure languages are referential transparent: each term can
always be safely replaced by its value.

I Referential transparency enables equational reasoning.

I Referential transparency enables memoization, common
subexpression elimination, parallel evaluation strategies,
etc.

�
Referential transparency follows directly from purity.

[Faculty of Science
Information and Computing Sciences]

5

Monads can do the job

I Referential transparency requires us to either ban
side-effects or deal with them in some special way.

I Example: monadic encapsulation of side-effects in Haskell.

main :: IO ()
main = do input ← readFile "in"

writeFile "out" (reverse input)

�
Monads come with their own programming style.

�
Reasoning about monadic code can be hard.

[Faculty of Science
Information and Computing Sciences]

6

Don’t overdo

I Combining the monadic and “ordinary” functional style is
okay if side-effects are fundamental to the program.

I If side-effects are only peripheral, a purely functional look
and feel is preferred.

I Example: use of an I/O monad makes sense for programs
that are indeed about I/O, but not for the occasional
debug statement.

revSort :: [Int]→ [Int]
revSort = (trace "applying revSort") (reverse ◦ sort)

I Similarly, monadic in-place updates make sense for the
union-find algorithm, but not for the occasional
performance tweak.

[Faculty of Science
Information and Computing Sciences]

6

Don’t overdo

I Combining the monadic and “ordinary” functional style is
okay if side-effects are fundamental to the program.

I If side-effects are only peripheral, a purely functional look
and feel is preferred.

I Example: use of an I/O monad makes sense for programs
that are indeed about I/O, but not for the occasional
debug statement.

revSort :: [Int]→ [Int]
revSort = (trace "applying revSort") (reverse ◦ sort)

I Similarly, monadic in-place updates make sense for the
union-find algorithm, but not for the occasional
performance tweak.

[Faculty of Science
Information and Computing Sciences]

7

Idiomatic list reversal

Idiomatic list reversal needs linear space to run:

reverse :: [a]→ [a]
reverse l = rev l []

where
rev [] acc = acc
rev (x : xs) acc = rev xs (x : acc)

�
rev constructs a new heap cell for every node in the input.

If the input list is used only once, we would like to reuse its
cons-nodes and only use constant space.

[Faculty of Science
Information and Computing Sciences]

8

Monadic in-place list reversal

In-place list reversal can be implemented with lazy state threads
(Lauchbury and Peyton Jones, PLDI’94):

type STList s a = STRef s (L s a)
data L s a = STNil | STCons (STRef s a) (STRef s (STList s a))

reverse ′ :: STList s a→ ST s (STList s a)
reverse ′ r = do acc ← newSTRef STNil

rev r acc
where

rev r acc = do l ← readSTRef r
case l of STNil → return acc

STCons hd tl → do r ′ ← readSTRef tl
writeSTRef tl acc
rev r ′ r

�
A lot of work for a simple performance tweak!

[Faculty of Science
Information and Computing Sciences]

9

Idiomatic in-place list reversal

We propose a small language extension:

reverse ′′ :: [a]→ [a]
reverse ′′ l = rev l []

where
rev [] acc = acc
rev l@(x : xs) acc = rev xs l@(x : acc)

�
We allow the @-construct not only at the left-hand side of
a function definition, but also at the right-hand side,
where it denotes explicit reuse of a heap node.

[Faculty of Science
Information and Computing Sciences]

10

Challenges

Q How do we ensure that in-place updates do not
compromise referential transparency?

Q How do we ensure that in-place updates make sense with
respect to the underlying memory model?

A We put statically enforced restrictions on the contexts in
which updates occur.

[Faculty of Science
Information and Computing Sciences]

10

Challenges

Q How do we ensure that in-place updates do not
compromise referential transparency?

Q How do we ensure that in-place updates make sense with
respect to the underlying memory model?

A We put statically enforced restrictions on the contexts in
which updates occur.

[Faculty of Science
Information and Computing Sciences]

11

Referential transparency at stake

In-place filter:

filter ′ :: (a→ Bool)→ [a] → [a]
filter ′ p [] = []
filter ′ p l@(x : xs) = if p x

then l@(x : filter ′ p xs)
else filter ′ p xs

Putting odd numbers before even numbers:

let l = [1 . . 10]
in filter ′ odd l ++ filter ′ even l

�
Yields [1, 3, 5, 7, 9]! What happened to [2, 4, 6, 8, 10]?

[Faculty of Science
Information and Computing Sciences]

12

Keeping track of single-threadedness

I We only allow in-place updates of values that are passed
around single-threadedly.

I Single-threadedness in enforced through type-based
uniqueness analysis.

I We annotate typing judgements with uniqueness
annotations ϕ: 1 for single-threaded terms, ω for
multi-threaded terms (with 1 v ω).

I For example: l ::1 [Intω] indicates that the list l is passed
around single-threadedly, but its elements may be used
multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω

1

[Intω

2

]1

3

→ω

4

[Intω

5

]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω

2

]1

3

→ω

4

[Intω

5

]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω
2

]1

3

→ω

4

[Intω

5

]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω
2

]1
3
→ω

4

[Intω

5

]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω
2

]1
3
→ω

4
[Intω

5

]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω
2

]1
3
→ω

4
[Intω

5
]ω

6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter ′ even:

filter ′ even ::ω
1

[Intω
2

]1
3
→ω

4
[Intω

5
]ω
6

1 The filter may be passed around multi-threadedly.

2 The elements of the argument list may be passed around
multi-threadedly.

3 The argument list is required to be single-threaded!

4 The filter is not subjected to any containment restriction
(see paper).

5 The elements of the result list may be passed around
multi-threadedly.

6 The result list may be passed around multi-threadedly.

[Faculty of Science
Information and Computing Sciences]

14

Judgements for uniqueness analysis

The typing rules for uniqueness analysis are of the form
Γ ` t ::ϕ σ, where σ can contain annotations.

Γ = Γ1 ./ Γ2 Γ1 ` t1 ::ϕ1 τ2
ϕ2 →ϕ0 τϕ

Γ
 ϕ1 v ϕ0 Γ2 ` t2 ::ϕ2 τ2

Γ ` t1 t2 ::ϕ τ

�
The auxiliary judgement Γ = Γ1 ./ Γ2 ensures that
single-threaded variables are not passed down to multiple
subterms.

�
Γ
 ϕ1 v ϕ0 enforces a containment restriction.

The analysis allows for both type polymorphism and uniqueness
polymorphism (cf. Hage et al., ICFP 2007).

[Faculty of Science
Information and Computing Sciences]

15

Fitting the memory model

I Often, a language specification does not prescribe a
particular memory model: so, we only allow updates that
are likely to be implementable in all implementations of
lazy languages.

I For example: replacing a nil-cell by a cons-cell will in most
cases be problematic and should therefore be prohibited.

I The scheme we adopt only allows updates with values built
by the same constructor.

I To keep track the constructors values are built by, we store
them in the typing context Γ in bindings of the form
x ::ϕ|ψ σ, where ψ is either a constructor C or ε.

[Faculty of Science
Information and Computing Sciences]

16

Rule for updates

Both aspects (referential transparency and the memory model)
show up in the typing rule for in-place updates:

Γ = Γ1 ./ Γ2

Γ1(x) =1|C σ0 Γ2 ` C t1 ... tn ::ϕ σ

Γ ` x@(C t1 ... tn) ::ϕ σ

�
x is required to be passed around single-threadedly.

�
x is required to be built by C.

[Faculty of Science
Information and Computing Sciences]

17

Properties

Using an instrumented natural semantics, with judgements of
the form

H; η; t ⇓n H ′; η′; w

(with H a heap, η a mapping from variables to heap locations, w a

weak-head normal form, and n the number of heap cells allocated),

we can demonstrate a subject-reduction result.

Furthermore, we can show that adding well-behaved updates to
a program preserves the meaning of the original program and
the new program requires at most the same amount of space.

[Faculty of Science
Information and Computing Sciences]

18

Assessment

I Should update instructions be inferred?

I Do we need two versions of reverse? Do we need two
versions of filter? What about zip?

I Do we expose annotated types to the programmer?

I How does our system relate to Clean?

