[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Heap Recycling for Lazy Languages

Jurriaan Hage
(Joint work with Stefan Holdermans)

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: jur@cs.uu.nl
Web pages: http://people.cs.uu.nl/jur/

May 15, 2008
Fun In The AfterNoon at Hertfordshire
Presented earlier at PEPM '08, San Francisco

jur@cs.uu.nl
http://people.cs.uu.nl/jur/

Announcement

» The Helium Haskell compiler is being made ready for
release 1.7.

New website (already contains the sources of pre-1.7)
Improved usability and standardization

Extended logging facilities

Bugfixes

vV v v Vv Y

But what about those type classes?

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

2 N

Lazy languages better be pure

Functional languages can be classified along several axes:

> pure vs. impure;
» strict (eager) vs. nonstrict (lazy).

1= Not all combinations make sense: reasoning about
side-effects in a nonstrict context is hard.

[Faculty of Science
Information and Computing Sciences]

N
% Y % Universiteit Utrecht
3 N

Referential transparency

» Pure languages are referential transparent: each term can
always be safely replaced by its value.

» Referential transparency enables equational reasoning.

» Referential transparency enables memoization, common
subexpression elimination, parallel evaluation strategies,
etc.

&= Referential transparency follows directly from purity.

‘S\\‘Wﬂ [Faculty of Science

AW
; % Universiteit Utrecht Information and Computing Sciences]

N

Monads can do the job

> Referential transparency requires us to either ban
side-effects or deal with them in some special way.

» Example: monadic encapsulation of side-effects in Haskell.

main :: 10 ()
main = do input <— readFile "in"
writeFile "out" (reverse input)

&= Monads come with their own programming style.
1= Reasoning about monadic code can be hard.

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
5 N

Don’t overdo

» Combining the monadic and “ordinary” functional style is
okay if side-effects are fundamental to the program.

» If side-effects are only peripheral, a purely functional look
and feel is preferred.

» Example: use of an I/O monad makes sense for programs
that are indeed about 1/O, but not for the occasional
debug statement.

revSort :: [Int] — [Int]
revSort = (trace "applying revSort") (reverse o sort)

‘S\\‘Wﬂ [Faculty of Science

AW
? % Universiteit Utrecht Information and Computing Sciences]

N

Don’t overdo

» Combining the monadic and “ordinary” functional style is
okay if side-effects are fundamental to the program.

» If side-effects are only peripheral, a purely functional look
and feel is preferred.

» Example: use of an I/O monad makes sense for programs
that are indeed about 1/O, but not for the occasional
debug statement.

revSort :: [Int] — [Int]
revSort = (trace "applying revSort") (reverse o sort)

» Similarly, monadic in-place updates make sense for the
union-find algorithm, but not for the occasional

performance tweak.
‘S\\‘Wﬂ [Faculty of Science

AW
? % Universiteit Utrecht Information and Computing Sciences]

N

Idiomatic list reversal

Idiomatic list reversal needs linear space to run:

reverse :: [a] — [a]

reverse | = rev [[]
where
rev [| acc = acc

rev (z : xzs) acc = rev zs (x : acc)

IZ= rev constructs a new heap cell for every node in the input.

If the input list is used only once, we would like to reuse its
cons-nodes and only use constant space.

5&\\“’%}) [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
N

7 \

Monadic in-place list reversal

In-place list reversal can be implemented with lazy state threads
(Lauchbury and Peyton Jones, PLDI'94):

type STList s a = STRef s (L s a)
data L s a = STNil | STCons (STRef s a) (STRef s (STList s a))
reverse’ :: STList s a — ST s (STList s a)

reverse’ r = do acc «— newSTRef STNil
rev T acc
where
rev r acc = do | — readSTRef r
case [of STNil — return acc

STCons hd tl — do " < readSTRef ti
writeSTRef tl acc
rev r’ T

1 A lot of work for a simple performance tweak!

&\\‘Wﬁ)) [Faculty of Science
E N é Universiteit Utrecht Information and Computing Sciences]
8 NS

Idiomatic in-place list reversal

9

We propose a small language extension:

reverse” :: [a] — [a]

reverse’ 1 = rev][]
where
rev [| acc = acc

rev [Q(z : xs) acc = rev zs 1Q(z : acc)

1&= We allow the @-construct not only at the left-hand side of
a function definition, but also at the right-hand side,
where it denotes explicit reuse of a heap node.

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
K/

Challenges

Q How do we ensure that in-place updates do not
compromise referential transparency?

Q How do we ensure that in-place updates make sense with
respect to the underlying memory model?

5&\\“’7/} [Faculty of Science

“ o o q . .
= % Universiteit Utrecht Information and Computing Sciences]

10 N

Challenges

10

Q How do we ensure that in-place updates do not
compromise referential transparency?

Q How do we ensure that in-place updates make sense with
respect to the underlying memory model?

A We put statically enforced restrictions on the contexts in
which updates occur.

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
K/

Referential transparency at stake

In-place filter:

filter’ :: (a — Bool) — [a] — [a]
filter' p [] =[]
filter’ p 1Q(z:2s) =if puz

then [Q(z : filter’ p xs)
else filter’ p s

Putting odd numbers before even numbers:

let [= [1..10]
in filter’ odd | + filter’ even |

1z Yields [1,3,5,7,9]! What happened to [2,4,6,8,10]?

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
1 N

Keeping track of single-threadedness

» We only allow in-place updates of values that are passed
around single-threadedly.

» Single-threadedness in enforced through type-based
uniqueness analysis.

» We annotate typing judgements with uniqueness
annotations ¢: 1 for single-threaded terms, w for
multi-threaded terms (with 1 C w).

» For example: [::' [Int“] indicates that the list [is passed
around single-threadedly, but its elements may be used
multi-threadedly.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

12 N

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter' even =¥ [Int*]l —¢ [Int¥]«

g‘ﬁ% .) [Facul.ty of Science
= Y] S Universiteit Utrecht Information and Computing Sciences]
13 AN

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Int*]} =@ [Int*]~

The filter may be passed around multi-threadedly.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

13

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Int]l —¥ [Int®¥ ¥

The filter may be passed around multi-threadedly.

The elements of the argument list may be passed around
multi-threadedly.

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
K/

13)

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Int] —¥ [Int®¥ ¥

The filter may be passed around multi-threadedly.

The elements of the argument list may be passed around
multi-threadedly.

The argument list is required to be single-threaded!

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
K/

13)

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Im‘.]. —fg [Imt*]*

The filter may be passed around multi-threadedly.

The elements of the argument list may be passed around
multi-threadedly.

The argument list is required to be single-threaded!
The filter is not subjected to any containment restriction
(see paper).

\&\\‘Wf/’)‘ [Faculty of Science

= =3 . . .

= : Universiteit Utrecht Information and Computing Sciences]
YN

13

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Im‘.]. —iq [Intigl”

The filter may be passed around multi-threadedly.

The elements of the argument list may be passed around
multi-threadedly.

The argument list is required to be single-threaded!

The filter is not subjected to any containment restriction
(see paper).

The elements of the result list may be passed around
multi-threadedly.

@Wf/}) [Faculty of Science
= U < Universiteit Utrec] nformation and Computing Sciences
;U§U iteit Utrecht Inf ti d C ting Sci]
K\

13

Uniqueness analysis for in-place filter

Possible analysis for filter’ even:

‘ﬁlter’ even [Im‘.]. —f [Intgls

The filter may be passed around multi-threadedly.

The elements of the argument list may be passed around
multi-threadedly.

The argument list is required to be single-threaded!

The filter is not subjected to any containment restriction
(see paper).

The elements of the result list may be passed around
multi-threadedly.

[6] The result list may be passed around multi-threadedly.

5&\\“% [Faculty of Science
N) % Universiteit Utrecht Information and Computing Sciences]

13 %{ﬂ!\\\

Judgements for uniqueness analysis

The typing rules for uniqueness analysis are of the form
'+t ::¥ o, where o can contain annotations.

=ry>=y T F it =P mP2 P 79
FH— ©®1 E(,OQ Fgl_tg 21992 T2
'ttty 29 7

1= The auxiliary judgement I' = I'; > ['5 ensures that
single-threaded variables are not passed down to multiple
subterms.

iz ['IF @1 C g enforces a containment restriction.

The analysis allows for both type polymorphism and uniqueness
polymorphism (cf. Hage et al., ICFP 2007).

:gwyf/) [Faculty of Science
K

“ o o a . .
N) % Universiteit Utrecht Information and Computing Sciences]

v N

Fitting the memory model

» Often, a language specification does not prescribe a
particular memory model: so, we only allow updates that
are likely to be implementable in all implementations of
lazy languages.

» For example: replacing a nil-cell by a cons-cell will in most
cases be problematic and should therefore be prohibited.

» The scheme we adopt only allows updates with values built
by the same constructor.

» To keep track the constructors values are built by, we store
them in the typing context ' in bindings of the form
z Pl o, where 1) is either a constructor C' or e.

@Wﬁ' [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

i N

Rule for updates

Both aspects (referential transparency and the memory model)
show up in the typing rule for in-place updates:

= T1 > FQ
Fl(x) :1|C g0 FQ HC tl tn 2% o
'FzQ(Ct...t,) =% o

" z is required to be passed around single-threadedly.
IF= z is required to be built by C.

5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
16 K/

Properties

Using an instrumented natural semantics, with judgements of
the form

| Hinit dn Hnlsw |

(with H a heap, 77 a mapping from variables to heap locations, w a

weak-head normal form, and n the number of heap cells allocated),
we can demonstrate a subject-reduction result.

Furthermore, we can show that adding well-behaved updates to
a program preserves the meaning of the original program and
the new program requires at most the same amount of space.

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]

i N

Assessment

» Should update instructions be inferred?

» Do we need two versions of reverse? Do we need two
versions of filter? What about zip?

» Do we expose annotated types to the programmer?

» How does our system relate to Clean?

NI

[Faculty of Science
£

“ o o q . .
N) % Universiteit Utrecht Information and Computing Sciences]

18 ?{ﬂ»

