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Abstract

The Dutch Tax and Customs Administration (DTCA) conducts a research
program called POWER (Program for an Ontology based Working Environ-
ment for Rules and regulations). The POWER program aims to support the
whole chain of processes from drafting the legislation to implementing the
law enforcement. Central in the POWER research program is the POWER
method. This method is based on the conceptual modeling of legislation and
regulations into formal legal specifications, and needs to produce a repre-
sentation of legislation that computers can reason with.

Within the POWER project, the conceptual models are created using the
industry standard Unified Modeling Language (UML). Part of the UML is
the Object Constraint Language (OCL), which is used to express constraints
that apply to the model.

This thesis project focuses on verifying the conceptual models to produce
well- typed models, and generating knowledge based components from the
well-typed models.

Type checking makes sure that the OCL expressions comply to the UML
model which they constrain. During the type checking process, the types of
the OCL expressions are computed. The type information acquired in this
way is used in the code generation process and for validation purposes.

In this research project, the target of the code generation process is not
directly executable. Instead we have chosen to use RBML as an intermediate
language. RBML contains all the properties for a knowledge based system
in the context of the POWER project. The generated RBML document can
be mapped to the target languages that satisfy all the properties. In this
way, we can generate code for any suitable target language.

An advantage of the RBML is that the VALENS verification tool can be used
for verifying the RBML document. VALENS is a knowledge verification tool
developed by a third party in collaboration with the POWER project.
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Chapter 1

Introduction

The Dutch Tax and Customs Administration (DTCA) has initiated a sys-
tematic translation of legislation by conducting a research program called
POWER (Program for an Ontology based Working Environment for Rules
and regulations). A detailed description of this research program can be
found in the paper by Tom M. van Engers et al. [EK98].

Central in the POWER research program is the POWER method, which
aims to support the whole chain of processes from legislation drafting to im-
plementing law enforcement. This method is based on conceptual modeling
of legislation and regulations into formal legal specifications, which wants to
produce a representation of legislation that computers can reason with.

The POWER process, as described in the paper by Tom M. van Engers et
al. [vGB+01], consists of five sub processes:

1. The translation of legislation and regulations to conceptual models,
including completion of the models by expert knowledge elicitation.

2. The refactoring of conceptual models into coherent conceptual models.

3. The verification of conceptual models, including the detection of in-
completeness and identification of missing legislation and regulations.

4. Generating knowledge-based components for application frameworks,
thus creating knowledge based systems that can be used for imple-
menting law enforcement.

5. Testing and validating knowledge components, including the involve-
ment of experts for certification of the knowledge components.

This research project is aimed to design and implement tools that can be
used to execute the POWER process. We will focus on verifying the con-
ceptual models, as in point 3, to produce well-typed models, and generating
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Introduction 2

knowledge based components from the well-typed models. In the context of
POWER project, a knowledge based component is defined as a rule based
system that supports interfaces to an application framework to perform au-
tomated knowledge intensive tasks [vGB+01].

The translation of legislation and regulations into conceptual models pro-
duces UML models. Additional constraints for the UML models are written
in the form of OCL constraints as part of the models. From now on, we will
use UML/OCL to refer to the UML models with OCL constraints.

All classes, types, interfaces, and datatypes defined in the UML model define
types within OCL. These types are called model types, which together with
the predefined OCL types form the valid OCL types. In order to have valid
OCL expressions, we need to check that each OCL expression has a type:
either a model type or one of the predefined OCL types. Type checking is
necessary to make sure that the OCL constraints defined comply to UML
model to which they belong. Also, type information is needed for generating
knowledge based components. This infomation is computed during the type
checking process.

The following examples show OCL expressions that have type errors.

let discount:Boolean = true
in discount * 0.1

In this Let expression, we declare a variable discount of type Boolean with
an initial value true. Then we use the declared variable in the body of the Let
expression by multiplying it with the numeric value 0.1. This expression is
syntactically correct, but it is not well-typed because we multiply a boolean
value and a numeric value.

if isActive=true
then 1000
else ’unknown’
endif

In this example, we assume the attribute isActive is in the current context
and of type Boolean. If the value isActive is true then an integer value
1000 is returned and otherwise the string value ’unknown’. This expression
is a syntactically correct expression too, but it is not well-typed because the
then and else parts have different types.

There are still many possible errors that can be made in writing OCL ex-
pressions. The type checking is intended to detect the type errors, and report
with appropriate error messages to help users identify and correct the errors.
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Based on the conceptual models, knowledge based components for the ap-
plication frameworks are created.

There already exists a system which generates knowledge based components
from UML/OCL within the POWER project, called FORCE. FORCE is
written in Aion, a development tool for component based expert systems
from Computer Associates.

FORCE only performs syntactic checks on the input OCL expressions. No
type checking is done. Therefore, it is possible that the generated knowledge
based components by FORCE are not well-typed and may result in run-time
exception later on.

Also, since the POWER method aims to preserve a maximum independence
of implementation issues, we would like to map our UML/OCL models to a
general system, from which we can generate code for any programming lan-
guage. This system will serve as an intermediate system between UML/OCL
and the target languages.

The general system should contain all the concepts for the knowledge based
system in the context of the POWER project [vGB+01], namely, it should
be

• Object Oriented (OO)

This requirement is a result of UML/OCL being object-oriented.

• Rule-based

A rule based system consists of a set of IF-THEN rules used to de-
rive new facts from given facts. These rules are called inference rules.
Inference rules are executed by an inference engine.

An inference engine provides an algorithm for executing potentially un-
ordered statements by finding connections between those statements
in order to resolve unknown values by means of known values. It pre-
cludes restructuring the knowledge into a procedural model that has
to be evaluated in a particular order.

Since this conceptual system does not refer to a specific industry standard
product, the choice for the system to be used has been determined in this
research project.

We choose to use the Rule Based Markup Language (RBML) for the gen-
eral system. RBML is a domain specific language for a rule based repre-
sentation [Libb]. It is developed by the LibRT, an associate partner of the
POWER project.

The reasons that RBML was chosen as our target language are:
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• RBML is object oriented and rule based.

• The generated output can be validated and verified using VALENS
verification tool. VALENS is a knowledge verification tool developed
by a third party in collaboration with the POWER project.

For more information about VALENS, see the website of the Li-
bRT [Liba].

In the code generation process, we generate the RBML document from the
input OCL expressions. The generated RBML document can be mapped to
any target language that satisfies the properties for the knowledge based
components in the context of the POWER project.

1.1 The Compiler Architecture

We now present the architecture of our UML/OCL Compiler. We will divide
the processes into several parts, each performing different responsibilities.

The UML/OCL compiler consists three main parts, namely:

• Parser

The parser does the syntactic analysis of the input OCL expressions. It
transforms OCL expressions into an OCL abstract syntax tree (AST)
according to the OCL 2.0 abstract grammar [OMG03]. If there are
syntax errors, they will be reported in terms of the source OCL ex-
pressions.

• Type Checker

If the parsing of OCL expressions succeeds, the compilation process
continues with the type checking. The type checker reads the abstract
syntax tree produced by the parser and performs the type checking.
The type errors detected will be printed in terms of the source OCL
expressions. After the type checking process, the type information is
available at the nodes of the tree.

• Code Generator

If there are no type errors found during the type checking, the compila-
tion process will continue with the code generation. The code generator
generates a RBML document from the OCL abstract syntax tree that
has been enriched with the type information. A RBML document is
an XML document that conforms to the RBML schema. RBML rep-
resents rules in the object oriented context. It is developed by LibRT,
an associate partner of the POWER project.
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Figure 1.1: Architecture of the UML/OCL compiler

Figure 1.1 shows the architecture of our design.

In the next chapters, we will explain each phase in detail.

1.2 Related Work

There are number of researches on OCL with varying purposes and ap-
proaches.

D. Moude Foko in his thesis [Fok02] has designed a first version of a com-
piler implementation for OCL, which includes parsing, type checking,
and code generation. However, the code generation process has not
been completed yet. The compiler is implemented using Haskell and
Attribute Grammar (AG) system. His research has been done in the
context of POWER project and our research can be seen as the con-
tinuation of his work.

The Dresden OCL Toolkit is a modular toolkit for OCL support [oT]. It
is based on an OCL compiler developed by Frank Finger at the Dresden
University of Technology. Detailed documentation of the compiler can
be found in the thesis of Frank Finger [Fin00]. The compiler consists
of several modules, namely a parser, semantic analysis, normalization,
and code generation. The Java source code for the parser is generated
out of a grammar description using the SableCC parser generator. The
semantic analysis does simple consistency checks and type checking.
Normalization facilitates the code generation processs by simplifying
the AST produced by the parser. The Java code for the OCL expres-
sions is generated by the code generator.
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USE (UML-based Specification Environment) is a system for the
specification of information systems [oB]. A USE specification contains
a textual description of a model using features found in UML class dia-
grams. Expressions written in the Object Constraint Language (OCL)
are used to specify additional integrity constraints on the model. The
USE tools present an approach for the validation of UML models and
OCL constraints, based on animation. It is described by Richters in
his thesis [Ric02].

This thesis is organized as follows, Chapter 2 gives an overview of the
UML/OCL. By using an example of the class diagram, we show the var-
ious kinds of OCL expressions and their use in the context of a UML model.

In Chapter 3 we explain how the parsers are implemented using the Utrecht
Parser Combinators (UPC). Chapter 4 introduces the formalization of the
OCL type system. We formalize the type rules for each construct of the
OCL, show some examples of the type derivation, and then explain the type
checking process as a whole. In Chapter 5 we explain our approaches in the
translation from OCL to RBML and present the translation schemes for the
code generation process. Finally, in Chapter 6 we conclude this work.



Chapter 2

UML/OCL

This chapter gives an overview of UML/OCL models. In Section 2.1 we give
an overview of the UML model. By using an example of the UML class
diagram, and we explain the common terms which are used to refer to a
certain element of the model. In Section 2.2 we give an overview of the OCL.
By first listing several kinds of context declarations, we then explain the
classifier context declaration. We show how the various constructs of OCL
can be written in this context declaration to constrain model of a domain.
OCL types and their predefined operations are discussed along the way,
while describing the expressions. Finally, we show the OCL type hierarchy
and explain the remainder of the context declarations.

2.1 Unified Modeling Language

The Unified Modeling Language (UML) is a language and notation for spec-
ification, construction, visualization, and documentation of models of soft-
ware systems.

The UML notation is largely based on diagrams. However, for certain as-
pects of a design, diagrams often do not provide the level of conciseness
and expressiveness that a textual language can offer. Textual annotations
are frequently used to add details to a design. For this purpose, the Object
Constraint Language (OCL) provides a framework for specifying constraints
on a model in a formal way.

OCL is a pure specification language. It is side-effect free. When an OCL
expression is evaluated, it simply returns a value. It cannot change anything
in the model. This means that the state of the system will never change
because of the evaluation of an OCL expression.

Figure 2.1 shows an example of a UML class diagram. This example will be
used to illustrate OCL in the next sections.

7
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University
name: String
address: String
foundedYear: Integer
admitStudent(student:Student)

Student
firstName: String
lastName: String
age: Integer
gender: Gender
isActive: Boolean
tuitionFee(): Real
birthdayHappens()

Course
name: String
credit: Integer
courseType: CourseType

Department
deptName: String MasterStudent

thesis: String

0..*

CourseType
preliminary
advanced
elective

<<enumeration>>

Teacher
firstName: String
lastName: String
maritalstatus: MaritalStatus
isUnemployed: Boolean

director

member

1
1

1

1

1...*0..1
teaches

universities students

departments

Program
enrollDate: Date
graduateDate : Date
tuitionFee: Real

MaritalStatus
single
married
divorced

<<enumeration>>

0..*

0..* 0..*

0..*

0..*

Gender
male
female

<<enumeration>>

Figure 2.1: Class diagram example
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We use the example class diagram to model the university system. The
class University has two associations: to the class Department and to the
class Student. In particular, these associations are association ends. An
association end can have a name. If the name is empty, we use the same
name as the name of the object at the association end, but starting with
the lower case letter. For example, we can refer to the association between
the classes Teacher and Department as department. Each association end
has a multiplicity, which can be one of the following: ”0..1”, ”*”, ”1..*”,or
”1”. A multiplicity represents the maximum number of the associated classes
at the opposite end of an assocation. When it is not specified, the default
multiplicity is 1.

The class University has three attributes: name, address, foundedYear
and one operation: admitStudent. Each attribute has a type. An operation
on the other hand can have parameters (within the brackets) and a return
type (after the brackets, preceeded by a colon). The operation admitStudent
takes one parameter and returns no type, while the operation tuitionFee
of the class Student takes no parameter and returns a real value.

If the association of two classes results in the needs for common attributes,
it ends up with creating an association class. The only association class in
this model is program. The classes University and Student can navigate
to this association class to retrieve the class Program. The class Program
owns the common attributes between the two classes.

The class MasterStudent is a subclass of Student, which means that it
inherits all the properties defined for the class Student. A property is an
attribute, operation, or association end of a class. The class Student is a
generalization of the class MasterStudent.

An enumeration defines a new type by listing all its possible values.
This model defines three enumerations: MaritalStatus, CourseType, and
Gender. We can use an enumeration datatype to define the type of attribute
or operation. For example, attribute maritalstatus of the class Teacher
has an enumeration type MaritalStatus.

In OCL, the types, classes, interfaces, associations, and datatypes from UML
model are referred to as classifiers. Each classifier defined within UML model
represents a distinct OCL type. Classifier is a base type for OCL.

For more information on UML, see the book of Fowler et al. [BJR00].

2.2 Object Constraint Language

The Object Constraint Language (OCL) is a formal language used to de-
scribe expressions in the context of a UML model. These expressions typi-
cally specify constraints that must hold for the system being modeled. An
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OCL constraint is a valid OCL expression of type Boolean. It evaluates to
true if the restriction holds.

Although OCL is initially used for describing constraints, OCL 2.0 specifies
the Object Constraint Languages as a general object query language that
can be used wherever expressions over UML models are required [OMG03].

OCL is a pure specification language, therefore an OCL expression is guar-
anteed to be sife effect free. When an OCL expression is evaluated, it simply
returns a value. It cannot change anything in the model [OMG03].

An OCL expression is always written in some syntactical contexts. The con-
text of an OCL expression within a UML model can be specified through
a so-called context declaration. A context declaration is written at the be-
ginning of an OCL expression. When we write a context declaration, we
introduce a new scope for the OCL expressions written after it.

There are three kinds of OCL context declarations, namely: classifier con-
text, operation context, and attribute or assocation context.

We first discuss the classifier context since most examples in the next sec-
tions are written under this context declaration. We will postpone the dis-
cussion of other context declarations in the last section.

A classifier context declaration is used for the expressions that can be cou-
pled to classifiers. The constraints that can be defined after this context
declaration are invariant and definition.

The syntax of the classifier context declaration is as follows:

context Typename
inv: -- some expression to constrain the classifier
def: -- a helper attribute /operation definition

Invariants

An invariant is a constraint that states a condition that must always be
met by all instances of the classifier. An invariant is described by using an
expression that evaluates to true if the invariant is met [CW02].

By using the UML class diagram example in Section 2.1, we can constrain
the attribute age of the class Student by writing the following invariant:

context Student
inv: self.age >= 18

This invariant states that every student has age at least 18. The variable
self is used to refer to the instance of the context to which the expression
is attached. In this case, self refers to the instance of the class Student.
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Definitions

A definition constraint enables us to define a helper variable or operation
which can be reused over multiple OCL expressions.

context Teacher
def: courses:Integer = self.teaches -> size()
def: teachCourse(c:String):Boolean

= self.teaches->exists(course=c)

The first constraint defines the attribute courses, which is the number
of courses taught by a teacher. The second constraint defines the operation
teachCourse. Given the name of a course, the operation determines whether
a particular teacher teaches that course.

The variables and operations defined in the def constraint are known in the
same context as any property of the classifier. Therefore, their names may
not conflict with the names of the normal properties of the classifier. The
variables and operations are used in an OCL expression in exactly the same
way as normal attributes or operations are used.

Although many def constraints can be written in one context declaration,
no mutual recursion among them is allowed. They also may not be recursive
themselves.

2.2.1 Expressions and Types

Expressions are the core of OCL. Expressions can be used in various con-
texts, for example, to define constraints such as class invariants and pre,
post conditions on operations [Ric02].

In the following section, we show all kinds of the OCL expressions based on
the OCL 2.0 specification [OMG03].

Literal Expression

A Literal expression is an expression with no arguments producing a value.
In general the result value is identical with the expression symbol. This
includes Integer, Real, Boolean, String, Collection, Tuple, and Enumeration
literals.

Integer Literal

An Integer Literal expression denotes a value of the predefined type Integer.
For example, -10, 5, 8.
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Real Literal

A Real Literal expression denotes a value of the predefined type Real. For
example, 1.5, 6.78.

Boolean Literal

A Boolean Literal expression represents the value true or false of the
predefined type Boolean.

String Literal

A String Literal expression denotes a value of the predefined type String.
For example, ’hello world’, ’this is a string’.

Collection Literal

A Collection Literal expression is a reference to a collection literal, denoting
a collection of values of the same type. The elements of a collection are
separated by commas, and surrounded by curly brackets. The kind of a
collection preceeds the curly brackets. The kinds of collection literals are
Set, OrderedSet, Bag, and Sequence.

A Set is the mathematical set. It does not contain duplicate elements. An
OrderedSet is like a Set in which the elements are ordered. A Bag is like a
set, which may contain duplicates. A Sequence is like a Bag in which the
elements are ordered.

For example,

Set{3, 5, 7, 1}
OrderedSet{1, 3, 5, 7}
Bag{1, 2, 3, 1, 3}
Sequence{1, 3, 5, 5, 7, 9}

The type of a collection literal is simply Set(T), OrderedSet(T), Bag(T),
or Sequence(T). T denotes the type of the elements of the collection. Those
collection types have an abstract supertype Collection(T). The Collection(T)
is used to describe the common properties of its subtypes.

The collection literal expressions in the above examples have types
Set(Integer), OrderedSet(Integer), Bag(Integer), and Sequence(Integer) re-
spectively.

OCL provides another alternative to write a sequence of integers through an
interval specification. The interval specification consists of two expressions
of type Integer,int-expr1 and int-expr2, separated by ’..’. It denotes all the
integers between the values of int-expr1 and int-expr2, including the values
of int-expr1 and int-expr2 themselves. Therefore, the expressions
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Sequence{ 1..(2*3) }
Sequence{ 1..6 }

are both identical to

Sequence{ 1, 2, 3, 4, 5, 6}

OCL 2.0 allows nested collections. This is different from OCL 1.4 where col-
lections were always implicitly flattened. Instead, OCL 2.0 provides flatten
operation to enable one to flatten a nested collection explicitly [OMG03].

There are many predefined operations for collection types. Operations which
are common for the Set(T), OrderedSet(T), Sequence(T), and Bag(T) are
defined under their supertype Collection(T). The common operations for
all the collection types are size, includes, excludes, includesAll, excludesAll,
count, isEmpty, notEmpty, and sum [OMG03].

Besides the common operations, there are also operations which are spe-
cific to certain collection types defined in the OCL 2.0 Standard Li-
brary [OMG03].

The predefined operations which are useful to transform a set into a bag or
sequence, a bag into a set or sequence, and a sequence into a set or bag are
asSet, asBag, and asSequence respectively.

For example, the expression Set{ 3, 3, 5, 7, 1 } is semantically not cor-
rect because a set may not contain duplicated elements. This expression can
be corrected using the operation asSet as follows:

Set{ 3, 3, 5, 7, 1 }.asSet(), which evaluates to Set{ 3, 5, 7, 1 }.

OCL also defines a number of operations to handle the elements of a collec-
tion. These operations iterate over every element in a collection and evaluate
an expression for each. The different constructs of the operations are shown
in Section 2.2.1.

Tuple Literal

The concept of tuple is added to OCL 2.0 to enable full use of OCL as a
query language. A tuple literal consists of named parts, each having a label,
an optional type, and a value. The parts are separated by commas and is
enclosed in curly brackets.

We construct an OCL tuple literal by enumerating the parts preceeded with
the keyword Tuple.

For example,

Tuple {name: String = ’John’, age: Integer = 25}
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The order of the parts is not important. Therefore, the following tuple literals
are equivalent.

Tuple {name: String = ’John’, age: Integer = 25}
Tuple {name = ’John’, age = 25}
Tuple {age = 25, name = ’John’}

The OCL tuple literal is generally known as record or struct, while the named
part is known as record field. A tuple literal has a tuple type of the form:
Tuple(l1:t1,. . . ,ln:tn),

where li denotes the label name, ti denotes the type; i ∈ 1..n.

The main operation of a tuple type is the projection of a tuple value into
one of its components. The dot notation followed by the label name projects
a tuple value to the component of that label name.

For example,

Tuple {name: String = ’John’, age: Integer = 25}.age = 25

Enumeration Literal

An Enumeration Literal expression represents a reference to an enumeration
literal. An enumeration defines a set of literals, and gives a name to it. For
example, we can refer to an enumeration literal in Figure 2.1, by writing the
following expression:

CourseType:: preliminary

This expression refers to the value preliminary of the enumeration type
CourseType.

The set of the literals forms an enumeration type of the respective name.
Enumeration types are user defined types.

For example, by using our class diagram example in Section 2.1, we can
write the following invariant.

context Teacher
inv: maritalstatus = MaritalStatus::single

The invariant states that the marital status of every teacher is single.

On the enumeration types we can perform many of the common operations,
such as testing for equality and inequality of two enumeration values, testing
for the undefined value (see Section 2.2.2).
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The OCL standard library defines several enumeration types which allow
the modeler to refer to elements defined in the UML model. Those model
element types are:

• OclModelElement, for each element in a UML model there is a corre-
sponding enumeration literal.

• OclType, for each Classifier in a UML model there is a corresponding
enumeration literal.

• OclState, for each State in a UML model there is a corresponding
enumeration literal.

Let Expression

A Let expression consists of one or more variable declarations and a body
expression (in-expression). The variable defined in the declaration is visible
in the in-expression. A Let expression allows us to define a sub- expression
which is used more than once in a constraint.

We use a Let expression to define a new variable with a type and a value.
The variable defined by a Let expression cannot change its value. In the
earlier versions of OCL, we can use a Let expression to define functions,
however it is no longer allowed in OCL 2.0 [OMG03]. Instead, we can define
a helper function using the definition constraint (see Section 2.2).

For example,

context Student inv:
let schools : Integer = self.universities->size() in
if isActive then

schools >= 1
else

schools < 1
endif

The Let expression declares the variable schools with has a value, the
number of universities where a student is registered. This variable is used
twice in the body expression to define an invariant.

Variable Expression

A Variable expression is an expression which consists of a reference to a
variable. For example, references to the variables self and result, and the
variables defined by the Let expressions.



UML/OCL 16

If Expression

An If expression is composed of a condition, then-expression, and else-
expression. This expression evaluates to one of two alternative expressions
depending on the evaluated value of then condition. If the condition eval-
uates to true, the then-expression is evaluated, otherwise else-expression is
evaluated. Both the then-expression and the else-expression are mandatory.

For example, referring to the example in Section 2.2.1: the invariant states
that if the status of a student is active then the number of his/her schools
should be greater than or equal to 1, and less than 1 otherwise.

Model Property Call Expression

A model property call expression is an expression that refers to a property
(operation, attribute, association end) of a Classifier in a UML model to
which the expression is attached. Its result value is the evaluation of the
corresponding property.

There are three kinds of model property call expresssions, namely: attribute
call, operation call, and navigation call.

Attribute Call Expression

An attribute call expression is a reference to an attribute of a Classifier
defined in a UML model. It evaluates to the value of the attribute.

To refer to the attribute age of a certain class, one can write: self.age. For
example, the expression self.age evaluates to the value of the age attribute
of the particular instance of Student identified by self, as in:

context Student
inv: self.age > 0

The invariant states that the age of a particular instance of the class Student
should be greater than 0.

Operation Call Expression

An operation call expression refers to the query operation defined in a clas-
sifier. A query operation means an operation without side-effect. In a class
model, an operation is defined to be side-effect-free if the isQuery attribute
of the operations is true.

If the operations have parameters, the expressions will contain a list of ar-
guments expressions. The number and types of the arguments must match
the parameters. To refer to an operation that does not take parameters,
parentheses with an empty argument list are mandatory. For example, to
refer to the operation tuitionFee of the class Student, one may write:
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context Student
inv: self.tuitionFee() > 0

The expression self.tuitionFee() invokes the operation tuitionFee on
a particular instance of the class Student. This operation call returns the
tuition fee of a student, and of type Real, see Figure 2.1. The invariant states
that the tuition fee of a student must be greater than 0.

Navigation Call Expression

In Section 2.2.1 we show the examples of collection literals. In this section we
show another way to obtain a collection through a navigation call expression.

A navigation call expression is a reference to an association end or an as-
sociation class defined in the UML model. It is used to determine objects
linked to a target object by an association.

We can refer to the other objects and their properties in the class diagram
by navigating to the opposite association end.

object.associationEndName

If the multiplicity of the association-end has a maximum of one (”0..1” or
”1”), then the value of the expression is an object, otherwise the value is a
set of objects on the other side of the associationEndName association.

For example,

context Department
inv: self.director.isUnemployed = false
inv: self.member->notEmpty()

In the first invariant, the navigation call expression self.director evalu-
ates to a Teacher because the multiplicity of the association is ”1”. Conse-
quently, we can navigate the attribute isUnemployed of the class Teacher.
The invariant states that the unemployment status of the director of a de-
partment should be false.

In the second invariant, the navigation call expression self.member evalu-
ates to a set of teachers, because the association end member has multiplicity
greater than 1. Therefore, we can apply the collection operation notEmpty
to this expression. The invariant is true if the department has at least one
member.

An important point to note is that when we navigate through more than
one association with multiplicity greater than 1, we get a bag instead of a
set [WK99].

For example,
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context Teacher
def: numberOfStudents = self.teaches.student->size()

The above example results in a bag of students because a student can partic-
ipate in many courses taught by a teacher. If we want to count the number
of students of a teacher using the above definition, we may end up with the
wrong number because a student may occur twice in the collection.

Fortunately, we can use the OCL standard operation to transform a bag into
a set. Using this operation, we can correct the definition:

context Teacher
def: numberOfStudents = self.teaches.student->asSet()->size()

When the association on the class diagram is adorned with { ordered }, the
navigation results in an ordered set.

Loop Expresssion

A loop expression is an expression that represent a loop construct over a
collection. It has an iterator variable to represent an element of the collec-
tion. The body expression is evaluated for each element in the collection.
The result of a loop expression depends on the specific kind of collection
and operation.

There are two kinds of the loop expressions, namely the iterate expression
and the iterator expression.

The iterate expression is an expression which calls the iterate operation. This
operation results in one value which is built from the evaluated value of the
body expression over every elements of a collection 1. The result can be of
any type defined by the result variable.

The syntax of iterate is as follows:

collection->iterate(elem:Type; result:Type = <expression> |
body-expression )

The variable elem is the iterator, while the variable result is the accumu-
lator. The accumulator gets an initial value expression. When the iterate
is evaluated, elem iterates over the collection and the body-expression
is evaluated for each elem. After each evaluation of body-expression, its
value is assigned to result. The value of result is built up during the
iteration of the collection.

For example, in the context of the university:
1The iterate operation is similar to the function fold in Haskell.
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context University
inv: self.students->iterate( s:Student; result:Boolean=true |

result and s.age >= 18 )

The scope of the variables s and result is the body-expression. The
body-expression is evaluated on all instances of the students, and the re-
sult is saved in the variable result. The expression will return true if all
instances of the students have an age greater than or equal to 18.

The iterator expression represents all other predefined collection operations
that use an iterator. It includes forAll, exists, select, reject, and collect. The
complete list of the iterator operations can be found in the OCL 2.0 speci-
fication [OMG03], pages 6-16 to p.6-19.

The examples of the iterator expressions are shown below:

Exists Operation

The exists operation is used to specify a boolean expression which must hold
for at least one element in a collection. The exists operation can be written
in one of the following forms:

collection->exists( boolean-expression )
collection->exists( v | boolean-expression-with-v )
collection->exists( v : Type | boolean-expression-with-v )

The exists operation will result in true if the boolean expression evaluates
to true for at least one element of the collection.

The variable v ranges over the collection. The type annotation Type is op-
tional since the type of the variable v is equal to the element type of the
collection.

The scope of the boolean expression is the element of the collection on which
the exists is invoked.

For example, in the context of the university:

context University
inv: self.students->exists( age < 18 )
inv: self.students->exists( s | s.age < 18 )
inv: self.students->exists( s:Student | s.age < 18 )

The expression self.students evaluates to a set of students. These three
expressions have identical meaning and they evaluate to true if the age of
at least one student in the set is less than 18.
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ForAll Operation

The forAll operation is used to specify a boolean expression which must hold
for all elements in a collection. Similar to exists, the forAll operation can be
written in one of the following forms:

collection->forAll( boolean-expression )
collection->forAll( v | boolean-expression-with-v )
collection->forAll( v:Type | boolean-expression-with-v )

For example, in the context of the university:

context University
inv: self.students->forAll( age <= 40 )
inv: self.students->forAll( s | s.age <= 40 )
inv: self.students->forAll( s:Student | s.age <= 40 )

These expressions evaluate to true if the age of all students are less than or
equal to 40.

Select Operation

The select operation enables one to select a subset of a collection by spec-
ifying a boolean expression which will be evaluated on each element of the
colletion. The result of this operation is a collection that contains all the
elements of the source collection for which the boolean expression evaluates
to true 2.

The select operation can be written in one of the following forms:

collection->select( boolean-expression )
collection->select( v | boolean-expression-with-v )
collection->select( v:Type | boolean-expression-with-v )

For example, in the context of the university:

context University
inv: self.students->select(age >= 18)->notEmpty()
inv: self.students->select(s | s.age > 18)->notEmpty()
inv: self.students->select(s:Student | s.age > 18)->notEmpty()

2The select operation is similar to the function filter in Haskell.
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The expression self.students evaluates to a set of students. The select
operation takes each student from the set and evaluates age >= 18 for this
student. If it evaluates to true, then the student is included in the result set.
The invariant will be true, if the resulting collection is not empty.

Reject Operation

The reject operation is identical to the select operation, but with reject
operation we get a subset of a collecton for which the boolean expression
evaluates to false.

For example, in the context of the university:

context University
inv: self.students->reject( age < 18 )->isEmpty()

The expression self.students evaluates to a set of students. The reject
operation takes each student from the set and evaluates age < 18 for this
student. If it evaluates to false, then the student is included in the result
set. The invariant will be true, if the resulting collection is not empty.

The reject operation can be expressed using select operation by specifying
the negated boolean expression. For example, the above expression can also
be written as:

context University
inv: self.students->select( not (age < 18) )->isEmpty()

Collect Operation

We have seen that the select and reject operations always result in a sub-
collection of the original collection. If we want to compute a collection from
another collection, then we can use collect operation 3.

The collect operation can be written in one of the following forms:

collection->collect( body-expression )
collection->collect( v | body-expression-with-v )
collection->collect( v:Type | body-expression-with-v )

The result of this operation is the collection of the evaluation results of the
body expression on each element of the collection.

For example, to specify the collection of the last names of all students in the
context of the university, one can write:

3The collect operation is similar to the function map in Haskell.
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self.students->collect( lastName )
self.students->collect( s | s.lastName )
self.students->collect( s:Student | s.lastName )

The first form is the simplest one. Since the scope of the body expression
is the element of the collection on which the collect is invoked, the property
lastName is taken in the scope of a student.

In the second form the iterator variable s represents an element of the col-
lection, which is a student, in this example. The body expression is qualified
by the variable, and evaluates to the last name of a student. The third form
is similar to the second one, except that the iterator variable is annotated
with its type.

The expressions results in a collection of last names. The resulting type is
not a set, but a bag because several students can have the same last names.
The bag resulting from the collect operation always has the same size as the
original collection.

The iterate expression is basic/elementary in that all other iterator opera-
tions can be written as iterate expressions. The following examples show how
the various iterator operations can be expressed using the iterate operation:

collection → forAll( v | boolean-expr-with-v )
≡ collection → iterate( v ; result: Boolean = true |

result and boolean-expr-with-v)
collection → exists( v | boolean-expr-with-v )
≡ collection → iterate( v ; result: Boolean = false |

result or boolean-expr-with-v)
collection → select( v | boolean-expr-with-v )
≡ collection → iterate( v ; result= collection |

if boolean-expr-with-v then result
else result → excluding(v) endif)

collection → reject( v | boolean-expr-with-v )
≡ collection → iterate( v ; result= collection |

if boolean-expr-with-v then result → excluding(v)
else result endif)

collection → collect( v | expr-with-v )
≡ collection → iterate( v ; result : T = kind{ } |

result → including(expr-with-v))

The type T in the iterate operation for collect is a collection type of certain
kind (Set, OrderedSet, Bag, Sequence) which has element type equal to the
type of expr-with-v. The initial value of result is an empty collection of the
same kind. The kind of the collection is equal to the kind of the initial
collection collection.
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Variants of the OCL Expressions

OCL allows some variants in writing the language constructs, mostly short-
hands intended to simplify the specification of the expressions. We should
consider these shorthands when processing OCL expressions.

Implicit Model Property Call

If we want to refer to a property (attribute, operation, association) of a
classifier, we usually write

classifierName.propertyName or
classifierName.propertyName(par1, par2, ...)

where the latter refers to a parameterized property.

However, in OCL we are allowed to refer to a property without specifying
the classifier name. So that when we write

propertyName or propertyName(par1, par2, ...),

it implicitly refers to the property of the current class or its superclass.

Shorthand for Collect

If we want to collect a property of a classifier, we normally use the iterator
expression collect. For example,

self.students->collect(firstName)

By using shorthand notation for collect, we can write it as a navigation call
through the object, as follows:

self.students.firstName

In general, if we apply a property to a collection of objects, it will automat-
ically be interpreted as a collect over the members of the collection with the
specified property [OMG03].

Therefore, for any property that belongs to the objects of a collection, the
following two expressions are identical:

collection.propertyname
collection->collect(propertyname)

and similarly for the parameterized property:
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collection.propertyname (par1, par2, ...)
collection->collect (propertyname(par1, par2, ...))

Iterator Variables

The collection types have a number of predefined iterator operations, such
as forAll, exists, select, reject, collect and iterate. When we
call the iterating methods, we can specify the iterator variable. The iterator
variable refers to an object in the collection. In general, there are three
possible forms for writing the iterator operations, namely:

collection->iterMethod( expression )
collection->iterMethod( v | expression-with-v )
collection->iterMethod( v:Type | expression-with-v )

The forAll operation has an extended variant in which multiple iterators are
allowed. Those iterators will iterate over the complete collection and must
be of the same type. For example,

context University inv:
self.students->forAll( s1, s2:Student |

s1 <> s2 implies s1.lastName <> s2.lastName)

Accumulator Variable

The iterate operation requires an accumulator variable, which should have
an initial value.

context University inv:
self.students->iterate( s:Student; acc:Boolean = true |

acc and s.isActive )

After each evaluation of the body expression acc and s.isActive, the
value is assigned to the accumulator acc. Therefore, the value of acc is
built up during the iteration over the collection.

2.2.2 The Type Hierarchy

OCL types are organized in a hierarchy. The type hierarchy shown in Fig-
ure 2.2 is based on the description in OCL 2.0 specification [OMG03].

The type hierarchy depicts the subtype relation (also known as type confor-
mance) between types. The subtype relations defined in OCL are:
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Integer

Real Boolean String Enumeration Tuple Set(T ) Sequence(T ) Bag(T )

Collection(T )

OrderedSet(T)

OclAny

OclVoid

ObjectType

Figure 2.2: OCL types hierarchy

• Integer is a subtype of Real,

• All types, except the collection and tuple types, are subtypes of
OclAny.

• OclVoid is a subtype of all other types,

• Set(T), OrderedSet(T), Sequence(T), and Bag(T) are subtypes of Col-
lection(T).

• The hierarchy of types introduced by UML model elements mirrors
the generalization hierarchy in the UML model.

OCL also includes polymorphism features. Polymorphism is the ability of
a program fragment to have multiple types [Car97]. Polymorphism can be
categorized into parametric and ad-hoc polymorphism [CW85]:

Parametric polymorphism

Parametric polymorphism is obtained when a function works uniformly on
an infinite number of types which exhibit some common structure. A para-
metric polymorphic function will execute the same code for arguments of
any admissible type. Parametric polymorphism is normally achieved by type
parameters. Collection types in OCL are an example of parametric polymor-
phism. The collection type is parameterized with its element type.

Ad-hoc polymorphism

Ad-hoc polymorphism is obtained when a function works on different types.
An ad-hoc polymorphic function may execute different code for each type
of its argument.

There are two kinds of ad-hoc polymorphism, namely overloading and coer-
cion.
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In overloading, the same variable name is used to denote different functions.
coercion on the other hand is a semantic operation which is needed to convert
an argument to the type expected by a function.

The arithmetic operators (’+’, ’-’, ’/’, ’*’) used in OCL are examples of ad-
hoc polymorphism. By allowing thoses operators applied to both Integer and
Real, the operator functions have overloaded meanings. When one of the
arguments is of type Integer and the other is of type Real, then the Integer
argument is coerced to the type Real.

Basic Types

Basic types in OCL include Integer, Real, Boolean, and String. OCL has a
set of predefined operations on the basic types.

Table 2.1 shows examples of the predefined operations on the basic types.

Type Operations
Integer *, +, -, /, abs()
Real *, +, -, /, floor()
Boolean and, or, xor, not, implies, if-then-else
String concat(), size(), substring()

Table 2.1: Operations on basic types [OMG03]

Object Types

Object types correspond to the classes of the UML models and are used to
describe the set of possible object instances. An object type is defined such
that it has the same name as the class name.

Operations on object types can be classified as follows:

• Predefined operations: operations which are implicitly defined in OCL
for all object types.

• Attribute operations: accessing an attribute value of an object in a
given system state.

• Object operations: accessing the operations of a class that do not have
side effects. Those operations are marked with the tag isQuery in the
UML model.

• Navigation operations: following an associaton link to retrieve the con-
nected objects.
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Special Types

OCL also provides some special types, namely OclAny, and OclVoid.

OclAny is the supertype of all other types except for the collection and tuple
types. The common operations on all types are defined within OclAny. All
its subtypes inherit all those operations.

The common operations on all types include equality test (=, <>), oclIsUn-
defined, oclAsType, oclIsTypeOf, oclIsKindOf, allInstances, and some other
operations.

OclVoid is the subtype of all other types. The only predefined operation of
OclVoid is oclIsUndefined.

2.2.3 Context Declarations

Besides the classifier context, OCL expressions may also be used with the
other context declarations. In the following sections, we show the syntax of
the declarations and examples of OCL expressions that are used with these
contexts.

Operation Context

The operation context declaration is used for the expressions that can be
coupled to the operation of a classifier. Those expressions include precondi-
tion, postcondition, and body expressions.

The syntax of the operation context declaration is as follows:

context Typename::operationName(param1:Type1,...):ReturnType
pre : -- some expression to constrain the parameters
post: -- some expression to constrain the result of the operation
body: -- some expression

Pre- and Postconditions

Pre- and postcondition are always specified within the context of an opera-
tion. A precondition must be true at the moment that the operation is going
to be executed. The obligations are specified by postconditions. A postcon-
dition must be true at the moment that the operation has just ended its
execution [CW02].

For example, referring to the UML class diagram that we have defined
for University, the operation admitStudent can be invoked on the
University objects. We can specify the constraints that an implementa-
tion of the operation has to fulfill, such as
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context University::admitStudent(student:Student)
pre : student.isTypeOf(Student)
post : self.students = self.students@pre->including(student)

and result = self.students

This constraint expressed two things: in the pre-clause it checks the pro-
vided argument is of the correct type, while in the post-clause, includes the
student to the set of students and return a new set of students.

We use the keyword @pre to refer to the value of a property at the start
of the operation by postfixing it after the property name. Therefore, the
property self.students@pre refers to the value of the property students
of the University at the start of the operation.

The reserved keyword result is a predefined variable that can be used for
accessing the return value of an operation.

Body Expression

The body expression is an OCL expression acting as the body of an operation.
Therefore the type of the body expression must conform to the result type
of the operation.

Evaluating the body expression gives the result of the operation at a certain
point in time.

context Student::activePrograms():Set(Program)
pre : self.isActive = true
body : self.program->select(p|p.graduateDate.isEmpty())

The above example shows the use of the body expression together with the
precondition in one operation context.

Attribute or Association Context

The attribute or association context declaration declares an attribute or an
association end. Within the context declaration, we can specify the initial
value or derivation rule of the respective attribute or association end.

The syntax is as follow:

context Typename::attributeName: Type
init: -- some expression representing the initial value

context Typename::assocRoleName: Type
derive: -- some expression representing the derivation rule
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In the following example, we use OCL expressions to indicate the initial value
and the derivation rule for the attribute isActive of the class Student.

context Student::isActive: Boolean
init: true
derive: if self.program->exists(p|p.graduateDate.isEmpty())

then true else false endif



Chapter 3

Parsing OCL Expressions

The first step in processing OCL expressions is the transformation of the
expressions into a syntax tree. This is done by a parser.

The parser takes OCL expressions as input and transforms those expressions
into OCL abstract syntax tree (AST) according to the OCL 2.0 abstract
grammar [OMG03]. During the parsing process, syntactical errors shall be
reported. The type checking process takes this abstract syntax tree as input
for further analysis.

We start this chapter by first giving an overview of parser combinators in
Section 3.1. The implementation of OCL parsers by using Utrecht Parser
Combinators (UPC) libraries is explained in Section 3.2. In the explanation,
we assume the reader has knowledge about parsing and grammar construc-
tions using EBNF notations.

3.1 Parser Combinators

When writing a parser, we may use a set of basic parsing functions. To cre-
ate a more complicated parser however, we often have to combine a number
of parsers. The functions that help us to combine parsers are called parser
combinators [JS01]. Although the basic parsing functions do not combine
parsers, they are usually also called parser combinators. Using parser com-
binators, we write parsers which closely resemble the grammar of language.

Our OCL parsers are implemented in functional language Haskell using the
Utrecht Parser Combinators (UPC). The UPC are parser combinators li-
braries developed in Utrecht University by Doaitse Swierstra [Swi]. The
parser combinators are also written in Haskell. Therefore, writing our parsers
amounts to translating the grammar to a functional program.

The advantages of the parser combinators are:

30
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• they allow us to write the parsers efficiently, and with little effort,

• they prevent us from running a separate program in order to generate
a parser, and

• they have a mechanism to repair the errors.

3.1.1 Basic Parser Combinators

In this section, we introduce some parser combinators used in our parsers.
The UPC combinators have names that depict the meaning so that they are
easy to remember.

To illustrate the use of parser combinators, let us look at following EBNF
grammar.

IfExp := ’if’ Expression ’then’ Expression
’else’ Expression ’endif’

The grammar states that an If expression, denoted by the non terminal
IfExp, is composed of a keyword ’if’ followed by an expression, a key-
word ’then’, an expression, a keyword ’else’, an expression, and a keyword
’endif’ at the end.

To construct a parser for the If expression, we need

• parsers for the keywords ’if’, ’then’, ’else’, and ’endif’,

• a parser for the Expression,

• a function that combines those parsers.

To parse a keyword, we use the parser combinator pKey defined in UPC.
pKey takes a string as an argument and returns a parser that recognizes the
string described by its argument. For example, the parser for the keyword
’if’ is pKey "if".

Since Expression is a part of the grammar, we have to create a parser for
it. The parser is not predefined in UPC libraries. Suppose we have created
a parser for Expression called pExpression.

Having all the parsers created, the last step is to combine the parsers using
parser combinators. The parser combinator <*> does the sequential compo-
sition where it combines two parsers into a single parser. The first parser
returns a function, the second parser a value, and the combined parser re-
turns the value that is obtained by applying the function to the value

The parser for the If expression will look like:
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pIfExp = pSucceed f
<*> pKey "if" <*> pExpression
<*> pKey "then" <*> pExpression
<*> pKey "else" <*> pExpression
<*> pKey "endif"

Since the combinator <*> expects a parser that returns a function as its left
argument, we add the parser pSucceed f. This parser returns the function
f.The combinator pSucceed is a special combinator which always succeeds.
Given a value, it will return a parser of that value.

Besides for sequential composition, we also need a parser for choice. For
this, we have the parser combinator <|>. Let us take the grammar for the
boolean literal expression as an example.

BooleanLiteral := ’true’ | ’false’

The grammar states that a boolean literal value is either ’true’ or ’false’.

The parser for the boolean literal expression is straightforward given the
combinator:

pBooleanLiteral = pKey "true" <|> pKey "false"

Although we are able to parse all the constructs in our grammar, we of-
ten need to postprocess the result value. In this case, we can use a new
parser combinator: <$>. This combinator takes a function and a parser as
its arguments, and applies the function to the result of the parser. Although
the combinator <$> is derived from <*>, we refer to it as a basic parser
combinator.

For example, we may need a parser for a boolean literal that recognizes
a string ’true’ or ’false’, but returns the result as an integer (1 or 0 re-
spectively), instead of a string. The modified version of the parser from the
previous example is as follows:

pBooleanBit = f <$> ( pKey "true" <|> pKey "false" )
where f s = if (s == "true") then 1 else 0

The parser pBooleanBit recognizes the same string as pBooleanLiteral,
but postprocesses the result using the function f. The function f is applied
to the result value of the parser pKey "true" or pKey "false", which is a
string in this example.

We have now the knowledge of basic parser combinators. There are many
variants of combinators which are derived from the basic ones. We will dis-
cuss those combinators in Section 3.2 by using the implementation of OCL
parsers as the examples.
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3.1.2 Error Recovery

We mentioned in the previous section that the UPC has a mechanism for
error recoveries. In this section we list the kinds of the recoveries and show
them in some examples. The recovery processes in the UPC have been taken
in some precautions so that they will not derail [DS03].

If there are errors found, the parser will generate a list of error messages.
The error messages indicate the corrections made to the input. There are
two kinds of correcting steps:

• Insertion step, that insert a symbol into the stream of input symbols.

• Deletion step, that remove a symbol from the input stream.

The error recovery mechanism in the UPC enables the process to continue
after the corrections.

For example, suppose we have a parser for the If expression according to the
grammar in Section 3.1. Given a file containing the following If expression
as input:

if true then 1 else 0

Since the keyword endif is missing in the above expression, the parser will
repair it by inserting the keyword. The correction that has been made is
reported as error messages as follows:

Error : at end of file
Expecting : symbol endif
Repaired by: inserting: symbol endif

On the other hand, if the parser encounters an unexpected symbol, it will
repair the error by deleting that symbol. By using the same example as the
previous one, but this time there is a typo at the keyword endif.

if true then 1 else 0 endiff

The parser does some correcting steps and produces the following error
messages:

Error : at lower case identifier endiff
Expecting : symbol < or symbol <= or symbol ...
Repaired by: deleting: lower case identifier endiff

Error : at end of file
Expecting : symbol endif
Repaired by: inserting: symbol endif
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3.2 The Parser Implementation

In this section, we will explain the implementation of OCL parsers for some
OCL constructs. The complete implementation of OCL parsers can be seen
in appendix B. The understanding of the basic parser combinators explained
in Section 3.1.1 is essential.

3.2.1 The Expressions

In this section, we will explain the parsers implementation for some OCL
constructs. The concrete syntax of a particular OCL construct preceeds each
explanation.

If Expression

Let us back to the gramar for the If expression: an If expression is composed
of a keyword ’if’ followed by an expression, a keyword ’then’, an expression,
a keyword ’else’, an expression, and a keyword ’endif’ at the end.

IfExp := ’if’ Expression ’then’ Expression
’else’ Expression ’endif’

The corresponding parser for the above grammar is as follows:

pIfExp :: Parser Token Expression
pIfExp = IfExp <$> pKeyPos "if" <*> pExpression

<* pKey "then" <*> pExpression
<* pKey "else" <*> pExpression
<* pKey "endif"

The parser is slightly different from the one in Section 3.1.1. Two new combi-
nators are introduced: pKeyPos and <*. The combinator pKeyPos is a variant
of pKey in which it parses a keyword, but returns the position of the keyword
intead of the string.

When we parse a sequence of expressions, sometimes we are not always
interested in all values returned by the parsers. In this condition, we can use
special versions of <*>: <* and *>. We use the combinator <* if we are not
interested in the value returned by the right hand side of a production once
we have recognized the keyword. Whereas the combinator <* is used on the
other way around.

In the case of the If expression, we are no longer interested in the keywords
then, else, and endif after we parse it, therefore the combinator <* is used.
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Finally, we apply the constructor function IfExp to the resulting parser
using the combinator <$>. The application results in an abstract syntax
tree (parse tree) of the If expression:

IfExp pos condition-expression then-expression else-expression.

The result of the parser pIfExp is of type Expression as denoted by the
type signature.

Let Expression

A Let expression is composed of a keyword ’let’ followed by a sequence of
variable declarations, a keyword ’in’, and an expression.

LetExp := ’let’ VariableDeclaration (’,’ VariableDeclaration)*
’in’ Expression

The parser for the corresponding concrete grammar above is implemented
as follows:

pLetExp :: Parser Token Expression
pLetExp = LetExp <$> pKeyPos "let"

<*> pList1Sep (pKey ",") pVariableDeclaration
<* pKey "in"
<*> pExpression

To parse a Let expression, we deal with a repetition of variable declarations,
denoted by the EBNF notation *. The combinator that corresponds to the *
notation is pList. Given a parser for a construct, pList constructs a parser
for zero or more occurrences of that construct. So that the EBNF expression
X* is implemented by pList pX, where pX is the parser for X.

Another EBNF notation for a repetition is + which accepts one or more
occurences of a construct. The corresponding combinator for + is pList1.
The implementation is similar to the one for pList, but we write pList1
pX instead for the EBNF expression X+.

The two combinators for repetition described above still do not meet our
needs because the repetition in our grammar expects a separator between
the elements. The combinators pListSep and pList1Sep enable us to create
the parser. These combinators take a parser for the separator and a parser
for the language construct as their arguments, and produce a new parser.
The result of the new parser is a list of a certain constructs. The separators
are of no importance.

In the parser for Let declarations, we use the combinator pList1Sep in-
stead of pLisSep because a Let expression should contain at least one
variable declaration. Therefore, corresponding parser for the grammar
VariableDeclaration (’,’ VariableDeclaration)* is
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pList1Sep (pKey ",") pVariableDeclaration

where pVariableDeclaration is the parser for VariableDeclaration.

Arithmetic Expressions

In the previous example, we showed the use of the combinator with sep-
arator. Now, we introduce the combinators in which the separator has a
meaning. These combinators are useful when we want to parse arithmetic or
logical expressions where the separators are arithmetic or logical operators.
The combinators that can be used are pChainl and pChainr, to parse left
associative and right associative sequences/list of constructions respectively.

For example, the grammar for an additive expression states that it consists
of a sequence of multiplicative expressions separated by additive operators.

AdditiveExp := MultiplicativeExp (AdditiveOp MultiplicativeExp)*
AdditiveOp := ’+’ | ’-’

Since the additive operators are left associative, we use the parser combina-
tor pChainl. The corresponding parser created for the above grammar is as
follows:

pAdditiveExp :: Parser Token Expression
pAdditiveExp =

pChainl ((\(p,op) e -> BinaryExp p e op) <$> pAdditiveOp)
pMultiplicativeExp

pAdditiveOp :: Parser Token (Pos, String)
pAdditiveOp = (\p -> (p, "+")) <$> pKeyPos "+"

<|>(\p -> (p, "-")) <$> pKeyPos "-"

BinaryExp is the constructor function for a binary expression. It takes four
arguments: a position, a left expression, an operator, and a right expression.

The combinators pChainl and pChainr take two arguments, namely a parser
for the separators and a parser for the language construct. They expect that
the parser for the separators returns a function, which is then used by chain
to combine parse trees for the elements. In the pChainl, the operator is
applied left-to-right, while in the case of pChainr is applied right-to-left.

An important thing to note is that the separators should have the same asso-
ciativity. In the example for the additive expression, the additive operators
"+" and "-" are both left associative.
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3.2.2 The Context Declarations

Our parsers for OCL context declarations are able to parse the three kinds
of context declarations described in Section 2.2 and Section 2.2.3.

The corresponding concrete syntax can be seen in Appendix A. The syntax
has incorported the requirements that a classifier context can only contain
an invariant or a definition, and that an operation context contain an pre,
post or body declaration. For example, consider the concrete syntax for the
classifier context.

ClassifierContext := ’context’ PathName InvOrDef+
InvOrDef := ’inv’ SimpleName? ’:’ Expression

| ’def’ SimpleName? ’:’ DefExpression
DefExpression := VarDecl ’=’ Expression

| Operation ’=’ Expression

The syntax states that a classifier context requires an inv or def stereotype.
In the Dresden OCL Toolkit [Fin00], this requirement is implemented as part
of the semantic analysis. In our implementation, it is implemented as part
of the syntactic analysis by the parsers. Given the above syntax, the parsers
are straightforward as follows.

pContextDeclaration :: Parser Token ContextDeclaration
pContextDeclaration =

attrorassoc <$> ...
<|> classcontext <$> pKeyPos "context"

<*> (pNameU <**> pPath )
<*> pList1 pInvOrDef

<|> opercontext <$> ...
where

attrorassoc pos nms tp exprs
= ...

classcontext pos nms decls
= ClassifierContext pos nms decls

opercontext pos nms params tp decls
= ...

pInvOrDef :: Parser Token InvOrDef
pInvOrDef =

Invariant <$> pKeyPos "inv"
<*> pMaybeName
<* pKey ":"
<*> pExpression
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<|> VariableDef <$> pKeyPos "def"
<*> pMaybeName
<* pKey ":"
<*> pVariableDeclarationDef
<*> pExpression

<|> operdef <$> pKeyPos "def"
<*> pMaybeName
<* pKey ":"
<*> (pNameLU <**> pPath)
<*> pParens (pListSep (pKey ",") pFormalParameter)
<*> pMaybeReturnType
<* pKey "="
<*> pExpression

where
operdef pos mb nms params tp e

= OperationDef pos mb (init nms) (last nms) params tp e

The parser pContextDeclaration implements the three kinds of OCL con-
text declarations: attribute or association, classifier, and operation contexts.



Chapter 4

OCL Type System

The OCL parser does the syntactic analysis on the OCL expressions. It
checks the expressions against the OCL abstract grammar. The next step
of our compilation process is to check the semantic consistencies. Our se-
mantic analysis focuses on the type checking process since type errors are
the most common semantic errors that can be found in the correctly parsed
OCL expressions. Furthermore, the type information resulting from the type
checking process are needed for the later compilation processes.

The type checker computes types of the identifiers and expressions within an
OCL expression and checks them against the expected types. It will report
the errors if there were type inconsistencies found, and return the computed
types if there were no errors found.

In this chapter, we focus on the formalization of OCL Type System. Prior
to the discussion of the OCL type sytem, we first describe the static check
process in Section 4.1. In Section 4.2 we define the type environment needed
for the formalization of the OCL type system. In Section 4.3 we define the
syntax of OCL types. An overview of a subtype relation in given in Section
4.4. In Section 4.5 we define a set of type rules which forms the OCL type
system. The use of the type rules can be seen in Section 4.6 where we
construct the derivation trees for some OCL expressions. Finally, in Section
4.7 we explain the implementation of the type checker.

4.1 Static Checks

On the correctly parsed tree, we need to perform some static checks. The
static checks are intended to detect static errors in the early stage before we
start the type checking process.

We perform the following static checks on the OCL abstract syntax tree:

39
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• Check the context declarations.

• Check that all variables are in the scope.

• Check that all model properties are in the scope.

• Check for duplicated variables.

• Check the use of keyword @pre

• Check the use of variables self and result.

Check the context declarations

A context declaration introduces a scope for OCL expressions. Within the
scope of a certain context, we can write the OCL expressions. The context
declarations refer to a classifier, an operation, an attribute, or an association
end of a UML model. If the declared context does not exist in the imported
UML model information, we report a static error.

Check that all variables are in the scope

There are several places in the abstract syntax tree where variables can enter
the scope:

• Let expression.

The variables declared in a Let expression are added to the scope.
They are passed to the body expression where we check that the body
expression uses only the variables which are in the scope.

• Loop expression.

The iterator and result variables in a loop expression are added to the
scope and then passed to their body expression. In the body expres-
sion, we check that it uses only the variables which are in the scope.

Check that all model properties are in the scope

The model properties include attributes, operations, and association ends.
The names of the properties are added to the scope from the imported UML
model information. The names are passed down into the tree where we check
that the expressions use only the properties that are in scope.

Check the duplicated variables

Duplicated variables may be found in a Let expression where variables of
the same name are declared. In the forAll iterator expression where more
than one iterator variable is allowed, we also check for duplicated variable
declarations.
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Check the use of keyword @pre

We use the keyword @pre to refer to the value of a property at the start of
the operation, as discussed in Section 2.2.3. This implies that the keyword
@pre can only be used in the operation context. If the keyword @pre is used
in the classifier context or attribute/association context, a static error will
be generated.

Check the use of variables self and result.

The variable self refers to the instance of the current context. While the
variable result is used to access the return value of an operation. Therefore,
the variables self and result may not be redefined, either as a Let variable
or an iterator.

4.2 Type Environment

The type environment carries typing assumptions about variables. We use
symbol Γ to refer to the environment.

The assumptions on variables can be grouped as follows:

• Assumptions on term variables, namely variables which are introduced
by OCL expressions. An assumption about a term variable is repre-
sented by a pair (name, Type). A term variable is written as a lower case
identifier. For instance, suppose we have the following Let expression:

context Person
inv: let income : Integer = self.job.salary->sum()

in income > 1000

The Let declaration will add a term variable binding to the environ-
ment, namely (“income”, Integer).

• Assumptions on type variables, namely variables which are introduced
by the polymorphic types, such as collection types. Our assumptions
on the type variables also carry the subtype constraints; it is of the
form T1 ≤ T2. The type variables are represented as upper case
identifiers.

We distinguish three kinds of the type environment. The syntax is shown in
Figure 4.1.
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Γ := ( ΓG , ΓC , ΓL ) type environment

ΓG := global environment
( T1 ≤ T2 )* type variable binding

ΓC := class environment
( T1 ≤ T2 )* type variable binding

ΓL := local environment
( x : T )* term variable binding

Figure 4.1: Abstract syntax of the type environment

4.2.1 Global Environment

The global environment ΓG carries assumptions about types variables. Our
initial global environment contains the following information:

UML Model Information

The UML model information stored in the global environment are:

• Types of the classes, including their attributes, operations, and asso-
ciations.

• The subtype relations between classes in a model.

Using the class diagram example in Section 2.1, the class Student and its
properties will be represented in the global environment as follows:

Student ≤ { firstName : String,
lastName : String,
age : Integer,
gender : Gender,
isActive : Boolean,
tuitionFee : () → Real,
birthdayHappens : () → OclV oid,
universities : Set(University)}

The first five fields are the attributes of the class Student, while tuitionFee
and birthdayHappens are the operations of the class, and universities is an
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association end to the class University. We use collection type Set to repre-
sent the association end with multiplicity *. The arguments of an operation
are represented by a product type. If an operation takes no arguments, we
represent it as an empty product type, written as ().

The only subtype relation between classes in the diagram is

MasterStudent ≤ Student.

Predefined Operations on All Objects

OCL primitive types and types in a UML model are subtypes of the OclAny
that they inherit all the operations defined on OclAny. The instances of
OclAny are called object. The predefined operations on all objects in the
global environment are defined as follows:

OclAny ≤ { = : OclAny → Boolean,
<> : OclAny → Boolean,
oclAsType : OclType → T,
oclIsTypeOf : OclType → Boolean,
oclIsKindOf : OclType → Boolean}
allInstances : () → Set(T )}

Since the equality and inequality operators ”=” and ”<>” are common on
all objects, they are defined as the properties of OclAny. This implies that
the expressions ”e1 = e2” or ”e1 <> e2” are always legal. However, there
is still a restriction for these expressions which states that e1 and e2 must
be of the same type.

OCL Predefined types and their operations

OCL predefined types are defined as objects with properties. Whereas the
properties are standard operations defined on those types. The assumptions
on the predefined types and their operations are defined in the global envi-
ronment as type conformances between the types and their properties. The
properties of each type are collected in a record with the operation names
and their type signatures as the record fields.

The access to a certain operation is through record projection. For example,
the expression s1.union(s2) invokes the operation union on the source ex-
pression s1 with s2 as the parameter to the operation. The type of s1 should
conform to the record containing operation union.

In the following subtype relations, we show how OCL predefined types and
their operations are defined in the global environment.
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Real ≤ { <: Real → Boolean,
>: Real → Boolean,
+ : Real → Real,
− : Real → Real,
∗ : Real → Real,
/ : Real → Real}

Integer ≤ { abs : () → Integer,
div : Integer → Integer,
mod : Integer → Integer}

Boolean ≤ {or : Boolean → Boolean,
xor : Boolean → Boolean,
and : Boolean → Boolean,
not : Boolean,
implies : Boolean → Boolean}

String ≤ { size : () → Integer,
concat : String → String,
substring : Integer → Integer → String,
toInteger : () → Integer,
toReal : () → Real}

Collection(T ) ≤ {size : () → Integer,
includes : T → Boolean,
includesAll : Collection(T ) → Boolean,
isEmpty : () → Boolean,
sum : () → T}

Set(T) ≤ { union : Set(T) → Set(T),
intersection : Set(T) → Set(T),
difference : Set(T) → Set(T),
including : T → Set(T),
excluding : T → Set(T),
symmetricDifference : Set(T) → Set(T),
asSequence : () → Sequence(T),
asBag : () → Bag(T) }

4.2.2 Class Environment

The class environment ΓC carries assumptions about the current context,
which is the context to which a certain OCL expression atttached. The class
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environment is a subset of the global environment in the sense that all infor-
mation in the class environment are also part of the global environment. For
example, in the context of the class University, we will have the following
information stored in the class environment.

University ≤ { name : String,
address : String,
foundedY ear : Integer,
students : Set(Student),
departments : Set(Department),
admitStudent : Student → OclV oid }

4.2.3 Local Environment

The local environment ΓL carries assumptions about term variables. Lo-
cal variables are only accessible within the context where they have been
defined, such as:

• Variables that are introduced by a Let expression.

• The iterator variables in the loop expresssion.

• The variables self and result.

The variable self refers to the current classifier, which is the context
to which a certain OCL expression is attached.

The variable result refers to the object returned by an operation. When
the operation has no out or in/out parameters, the type of the variable
result is the return type of the operation. For example, the type of the
variable result in the following example is Integer.

context Person::income(d:Date):Integer
post: result = age * 1000

When the operation does have out or in/out parameters, the return
type is a tuple containing the parameters and the variable result.
For example, the postcondition for the income operation with out
parameter bonus may have the following form:

context Person::income(d:Date, bonus:Integer):Integer
post: result = Tuple { bonus = ...

, result = ...
}
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Type := String constant type
| Kind ’(’ Type ’)’ collection type
| ’{’ Fields? ’}’ record type
| Type ’→’ Type function type
| ’(’ Types? ’)’ product type

Types := Type (’,’ Type)* sequence of types

Field := String ’:’ Type field of a record

Fields := Field (’,’ Field)* sequence of fields

Kind := ’Set’ | ’OrderedSet’ | ’Sequence’ collection kinds
| ’Bag’ | ’Collection’

Figure 4.2: The syntax of OCL types

In this example, the variable result has a record type with fields
bonus and result.

Although self and result are not keywords in OCL, they may not
be used as the name of a Let variable or an iterator.

4.3 The Syntax of OCL Types

Before type checking OCL expressions, we first define the syntax of OCL
types as shown in Figure 4.2.

The non terminal Type consists of five alternatives which represent the con-
stant, collection, record, function, and product types respectively.

The constant types include the primitive types, object types, enumeration
types, and special types.

The kind of a collection type is identified by the Kind. A collection type
consists of a kind and the type of its elements. For instance, Set(String),
represents a set with String as the type of its elements.

A record type consists of a set of field types separated by commas which
might be empty. The OCL tuple type is represented as a record type. For
instance, the tuple type Tuple { name:String, age:Integer } is represented
as { name:String, age:Integer }.
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A product type is used in the context of the function type to represent the
argument types. For example, (Int, String) → Boolean represents a function
type which has two arguments: the first has type Integer, the second has type
String, and the return type is Boolean. If a function takes no argument, we
represent its argument type as an empty product type, written as ().

4.4 Subtyping

Subtyping is one of the features that can be found in almost all object
oriented programming languages. Subtyping is also called subtype polymor-
phism. A subtype relation is written as a statement of the form A ≤ B,
pronounced “A is a subtype of B” (or “B is a supertype of A”), which means
that any term of type A can be used safely in the context where a term of
type B is expected [Pie02].

The subtype relation in OCL is known as type conformance. The type con-
formance in OCL satisfies the following properties:

• Reflexive, a type always conforms to itself.

• Transitive, if type A conforms to type B, and type B conforms to type
C, then type A also conforms to type C.

• Antisymmetric, if type A conforms to type B, and type B conforms
to type A, then A and B are equivalent.

The subtype relation in OCL is antisymmetric, which is not always
the case in other languages. In OCL, two records are the same when
one is a permutation of the other. The main operation on a record is
projection, i.e. accessing a field of a record by using its name. Record
projection is insensitive to the order of the fields. For example, the
record projection

{ name = ”John”, age = 25 }.age will produce the same result as

{ age = 25, name = ”John” }.age namely 25.

4.5 Type System

In the following sections, we will give the formalization of OCL type system
in the form of a set of type rules.
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4.5.1 Auxiliary Definitions

Before we continue, we first give some auxiliary definitions.

Removing elements from the environment.

Before adding an element to the environment, sometimes we need to remove
the previous references on the same variables. To remove a set of elements
V from the environment Γ, we write Γ \ V, where

Γ \ V = { (a : τ) | (a : τ) ∈ Γ , a /∈ V }

Domain of the environment.

When defining a type rule, we often encounter a pair of the form x : τ , where
usually x is a variable and τ is a type. If we want to get a list of the first
elements from the set of pairs Γ, we can write dom(Γ) where

dom(Γ) = { x | (x : τ) ∈ Γ }

Collection kinds.

In formalizing type rules for the collection types, we often have to present
the kinds of the collection types. We introduce a symbol K to represent the
set of the collection kinds, while kind represents an element of K.

K = { ’Set’, ’OrderedSet’, ’Bag’, ’Sequence’, ’Collection’ } , kind ∈ K

Variable Declarations

A variable declaration declares a variable of a certain type and may have an
initial value. It has the general form v : t = e, read “The variable v has a
type t and an initial value e”.

The use of variable declarations in expressions are shown in Table 4.1, each
having different constraints on the type annotations.

Expression Type Annotation
Let expression mandatory
Iterator expression optional
Tuple Literal expression optional

Table 4.1: The Use of variable declarations in expressions

The optional type annotation influences the formalized type rules for the
expressions. Basically, we need two type rules, one for each possibility. In
order to simplify the formalized type rules, we only formalize type rules for
the case where the annotation is omitted. If the type annotation is provided
in the expression where it is optional, an additional condition, namely that
the assigned type must conform to the annotated type, should be satisfied.
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4.5.2 Type Rules

Having defined the type environment and the type language, we now define
the type rules. A type rule introduces a formal representation on how an
expression should be typed. A collection of type rules is called a type system.

A type rule asserts the validity of certain judgments on the basis of other
judgments that are already known to be valid [Car97].

All type rules have the following form:

NAME :
Γ1 ` A1 . . .Γn ` An

Γ ` A

Each rule has a name so that we can refer to it later. A type rule consists of
a number of premise judgments Γi ` Ai above a horizontal line and a single
conclusion judgment Γ ` A below the line. When all of the premises are
satisfied, the conclusion must hold. The number of premises may be zero.

The formalized type rules corresponding to the subtype relation in OCL are
shown in Figure 4.3. The subtype rules consist of a collection of subtype
judgments. A subtype judgment is of the form:

Γ ` τ1 ≤ τ2

which states that a type τ1 is the subtype of a type τ2 if the information is
in the type environment Γ.

The main rule corresponds to the subtype relation is the rule S-SUB, which
states that we can conclude that one type is a subtype of the other if that
fact can be deduced from the environment. The environment is either a class
or global environment. We first look up the subtype relation in the class en-
vironment. Only if the subtype relation is not in the class environment, we
look it up in the global environment. The local environment contains no sub-
type relation information as depicted in the syntax of the type environment
in Figure 4.1.

The rule S-REF expresses the reflexivity in the subtype relation, while the
rule S-TRANS expresses the transitivity.

The subtype relation between Integer and Real means that an Integer value
can be used where a Real value is expected.

The special types in OCL, namely OclAny and OclVoid influence the for-
malization of type rules by introducing a maximum and minimum type
respectively.

OclAny is the supertype of all of the OCL types, except for the collection
and record types. The exception is to simplify the type system and also to
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S-SUB :
τ1 ≤ τ2 ∈ Γ
Γ ` τ1 ≤ τ2

S-REF : Γ ` A ≤ A

S-TRANS :
Γ ` A ≤ B Γ ` B ≤ C

Γ ` A ≤ C

S-INT : Γ ` Integer ≤ Real

S-ANY : Γ ` T ≤ OclAny

S-VOID : Γ ` OclV oid ≤ T

S-SET : Γ ` Set(T ) ≤ Collection(T )

S-ORDSET : Γ ` OrderedSet(T ) ≤ Collection(T )

S-BAG : Γ ` Bag(T ) ≤ Collection(T )

S-SEQ : Γ ` Sequence(T ) ≤ Collection(T )

S-ESET :
Γ ` T1 ≤ T2

Γ ` Set(T1) ≤ Set(T2)

S-EORDSET :
Γ ` T1 ≤ T2

Γ ` OrderedSet(T1) ≤ OrderedSet(T2)

S-EBAG :
Γ ` T1 ≤ T2

Γ ` Bag(T1) ≤ Bag(T2)

S-ESEQ :
Γ ` T1 ≤ T2

Γ ` Sequence(T1) ≤ Sequence(T2)

S-RCDWIDTH : Γ ` { li : T i∈1..n+k
i } ≤ { li : T i∈1..n

i }

S-RCDDEPTH :
for each i Γ ` Si ≤ Ti

Γ ` { li : S i∈1..n
i } ≤ { li : T i∈1..n

i }

S-RCDPERM :
{ kj : S j∈1..n

j } is a permutation of { li : T i∈1..n
i }

Γ ` { kj : S j∈1..n
j } ≤ { li : T i∈1..n

i }

Figure 4.3: Type Rules for the subtype relation in OCL
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avoid the cyclic domain definitions in the subtype relation. For example, if
OclAny were the supertype of Set(OclAny) [OMG03].

OclVoid is the subtype of all other types.

The type Collection is an abstract type, with the concrete types are its
subtypes: Set, OrderedSet, Bag, and Sequence. The subtype relation between
collection types of a certain kind are determined by the subtype relation of
their element types.

There are three rules corresponding to the subtype relation between record
types described in Benjamin C. Pierce’s book [Pie02]. These rules also apply
to the record type in OCL.

The subtype relation between record types states that a record with n+k
fields is a subtype of the record with n fields as long as the first n fields are
the same for both records. For example, suppose we have a function that
expects a parameter r1 of type { name:String, age:Integer }. We can call the
function by providing an argument r2 of type { name:String, age:Integer,
address:String } because the first two fields of r2 are the same with the
fields of r1. Therefore, r2 is a subtype of r1, which means that r2 can be
used in the expressions where r1 is expected.

The types of the fields in a record also influence its subtype relations: “two
records are in the subtype relation as long as the types of each corresponding
field in those two records are in the subtype relations”. For example, the
record type { name:String, salary:Integer } is a subtype of the record type
{ name:String, salary:Real } because types of each corresponding field are
in the subtype relations: String ≤ String, Integer ≤ Real.

Finally, the record with permutated fields is a subtype of the original record,
and vice versa.

Besides the subtype judgment, we need another kind of judgment for typing
an OCL expression. This judgment relates a type to an expression and is of
the form:

Γ ` e : τ

It asserts that the expression e has a type τ with respect to the type envi-
ronment Γ.

Our type rules are syntax directed which means that for each expression,
there is exactly one corresponding type rule (except for the variable and
iterator rules, although it never happens that two rules apply).

We now consider the OCL type rules one by one. Type rules for the literal
expressions are shown in Figure 4.4.
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TRUE : ` true : Boolean

FALSE : ` false : Boolean

INT : ` i : Integer, if i ∈ Z

REAL : ` i : Real, if i ∈ R

STRING : ` i : String, if i ∈ String

COLLECTION :

Γ ` itemi : τi
i∈1..n

Γ ` τ i∈1..n
i ≤ τ

Γ ` kind { item1, . . . , itemn } : kind(τ)

TUPLE :
Γ ` ei : τ i∈1..n

i

Γ ` Tuple{ v1 = e1, . . . , vn = en } : { v1 : τ1, . . . , vn : τn }

Figure 4.4: Type rules for the literal expressions in OCL

The first five rules correspond to the basic values in OCL. They are relatively
simple, and basically state that every basic value has its corresponding type.
For example, values true and false have type Boolean, while value 3 and 1.5
have type Integer and Real respectively. No additional information from the
environment is needed for typing the basic values.

The rule for a collection literal expression is a bit more difficult since we have
to find the common super type of all elements of the collection, before we can
conclude the type of the expression. In the OCL 2.0 specification [OMG03],
it is implicitly stated that empty collections have OclVoid as their elements
types.

A tuple literal expression has a record type, which is composed from the
types of all its elements labelled with their field names.

The type rules for the other OCL expressions are shown in Figure 4.5:

The type rule for variables consists of three rules which denote the look
up order. We first look up a variable in the local environment ΓL (rule
L-VAR). If it is not in the local environment, then we look it up in the
class environment ΓC (rule C-VAR), and finally if the variable is not in the
local environment and neither in the class environment, we look it up in the
global environment ΓG (rule G-VAR). If the variable v has type t in one of
the environments then we can conclude that the variable v is of type t.

We can view the binary expression as projecting the binary operator out of
the left expression and applying the operator to the right expression. For
example, the expression a + b can be viewed as a.+(b).

The rule for the binary operators states that if we can assign a type τ1 to the
left expression, and a type τ2 to the right expression, the type τ1 conforms
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L-VAR :
(v : t) ∈ ΓL

Γ ` v : t

C-VAR :
(v : t) ∈ ΓC v /∈ dom(ΓL)

Γ ` v : t

G-VAR :
(v : t) ∈ ΓG v /∈ dom(ΓL) v /∈ dom(ΓC)

Γ ` v : t

BINARY :

Γ ` le : τ1

Γ ` re : τ2

Γ ` τ1 ≤ { ⊕ : τ3 → τ4 }
Γ ` τ2 ≤ τ3

Γ ` le⊕ re : τ4

UNARY :

Γ ` e : τ1

Γ ` τ1 ≤ { ⊕ : τ2 }
Γ ` ⊕ e : τ2

IF :

Γ ` e1 : τ1

Γ ` τ1 ≤ Boolean
Γ ` e2 : τ2

Γ ` e3 : τ3

Γ ` τ2 ≤ τ4

Γ ` τ3 ≤ τ4

Γ ` if e1 then e2 else e3 endif : τ4

PROJ :

Γ ` e : τ1

Γ ` τ1 ≤ { i : τ2 }
Γ ` e.i : τ2

OPER :

Γ ` e : τ
Γ ` τ ≤ { m : (φ1, . . . , φn) → γ }

Γ ` argi : τ i∈1..n
i

Γ ` τi ≤ φ i∈1..n
i

Γ ` e⊕m(arg1, . . . , argn) : γ

LET :

Γ ` ei : τi
i∈1..n

Γ ` τi ≤ ti
i∈1..n

Γ \ { vi } ∪ { vi : ti } ` be : τ i∈1..n

Γ ` let v1 : t1 = e1, . . . , vn : tn = en in be : τ i∈1..n

ITERATOR :

Γ ` se : τ1

Γ ` τ1 ≤ kind(τ2)
Γ \ { v } ∪ { v : τ2 } ` be : τ3

Γ ` kind(τ2) ≤ { iteratorOp : τ4 → τ5 }
Γ ` τ3 ≤ τ4

Γ ` se → iteratorOp ( v | be ) : τ5

ITERATE :

Γ ` se : τ1

Γ ` τ1 ≤ kind(τ2)
Γ ` kind(τ2) ≤ { iterate : τ3 → τ4 }
Γ ` ie : τ5 Γ ` τ5 ≤ t Γ ` t ≤ τ4

Γ \ { v, result } ∪ { v : τ2, result : t } ` be : τ6

Γ ` τ6 ≤ τ3

Γ ` se → iterate ( v; result : t = ie | be ) : τ4

Figure 4.5: Type rules for other OCL expressions
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to the record type containing the field ⊕, and the type of right expression
conforms to the parameter type of the operator, then the type of the binary
expression is the return type of the operator.

The rule for the unary operator is similar to the one for the binary operators
except that it takes no argument.

An If expression is composed of a condition expression and two branches,
namely a then expression, and an else expression. The type of the condition
expression should conform to the type Boolean. If we can find a common
super type for the then and else types, then the type of the If expression is
the common super type of its branches.

When we navigate to an attribute or an association end of a classifier in a
UML model, we principally project the attribute or the association end from
a record containing all the attributes and association ends of the classifier.
The expression is one of the following forms:

object.attributeName
object.associationEndName

where object is a reference to an object that owns the attribute or associ-
ation end. We also refer to object as a qualifier.

An operation call expression is similar to the attribute call expression except
that it refers to an operation rather than an attribute. Therefore, it might
have arguments. The arguments of an operation are represented as a product
type (φ1, . . . , φn). We can use either a dot (’.’) or a right arrow (’→’) operator
to access the operation of a classifier.

A Let expression contains one or more variable declarations as depicted in
the type rule. The variables declared in a Let expression are only visible
in their body expression, which implies that there is no recursive declara-
tion in the Let expression in OCL. The declared variables are added to the
environment to type the body of the Let expression.

Let us compare this type rule with the type rule for the Let expression with
only one variable declaration as follows:

LET :

Γ ` e : τ1

Γ ` τ1 ≤ t
Γ \ { v } ∪ { v : t } ` be : τ

Γ ` let v : t = e in be : τ

Using this type rule, a Let expression with multiple declarations should be
transformed into a Let expression with single declaration by introducing a
nested Let expression.

For example, the Let expression
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let v1 : t1 = e1, v2 : t2 = e2

in be

is transformed to

let v1 : t1 = e1

in let v2 : t2 = e2

in be

However, in some cases the transformation results in an expression of differ-
ent meaning. Consider the following example:

let v:Integer = 1
in let v:Integer = 2,

w:Integer = v + 1
in v+w

The scope of the variable v with value 1 is the body expression, which is the
inner Let expression. The inner Let expression has two variable declarations:
v with value 2 and w with value v+1. When the value v+1 is evaluated, the
value of v in the environment is 1. Therefore, the variable w evaluates to
2. In the body of the inner Let expression, the outer v is shadowed by the
inner v of value 2. The body expression therefore evaluates to 4, which also
becomes the value of the whole Let expression.

Now, let us now look at the case where the Let expression with multiple
declarations is transformed into Let expressions with a single declaration:

let v:Integer = 1
in let v:Integer = 2

in let w:Integer = v + 1
in v+w

The inner v shadows the outer v in the innermost Let expression. So that,
when the value v+1 is evaluated, the value of v in the environment is 2 instead
of 1. Therefore, the variable w evaluates to 3. Using the known values of v and
w in the environment, the body expression of the innermost Let expression
therefore evaluates to 5.

Finally, the last two rules are type rules for the loop property call expres-
sions. An iterator expression is composed of a source expression, an iterator
variable, and a body expression. The source expression of an iterator expres-
sion must have a collection type. The type of the iterator variable conforms
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to the element type of the source collection. The scope of the iterator vari-
able is its body expression. In order to type the body expression, we add
the iterator variable which has type equal to the element type of the collec-
tion, to the environment. Before adding the variable to the environment, we
first remove all the previous references to the variable with the same name,
because they are now shadowed by the new binding. The iterator operation
iteratorOp is a function from the body type to the return type. Therefore,
the type inferred for the body expression must conform to the argument
type of the iterator operation.

The type rule for the iterate expression is similar to the type rule for the
iterator expressions, except that it requires a result variable declaration,
which has a type and an initial value. The inferred type for the initial value
of the result variable should conform to the declared type. Also, the declared
type should conform to the result type of the iterate operation. The iterator
variable and the result variable are added to the environment to type check
the body expression.

4.6 Type Derivation

In this section we give the examples of how the derivation trees are con-
structed for some OCL expressions. A derivation in a given type system is a
tree of judgments with leaves at the top and a root at the bottom. A valid
judgment is obtained if the type rules are applied correctly.

We assume the initial environment Γ contains the following information:

Γ = (ΓG ,ΓC ,ΓL)
ΓG = Γuml ∪ Γstd
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Γuml = {Student ≤ { firstName : String,
lastName : String,
age : Integer,
gender : Gender,
isActive : Boolean,
universities : Set(University),
tuitionFee : () → Real,
birthdayHappens : () → OclV oid }

, University ≤ { name : String,
address : String,
foundedY ear : Integer,
students : Set(Student),
admitStudent : Student → OclV oid }

, MasterStudent ≤ Student
}

Γstd = { Integer ≤ Real
, Real ≤ { > : Real → Boolean }
, Set(T ) ≤ Collection(T )
, Collection(T ) ≤ { forAll : Boolean → Boolean }
}

The Γuml is the environment which is created based on the class diagram
example in Section 2.1. The Γstd, on the other hand, is a subset of the
subtype relations defined in the OCL 2.0 Standard Library [OMG03].

Example 1

The following invariant is a binary expression where the left expression is
an operation call.

context Student
inv: self.tuitionFee() > 0

The context of this OCL expression is Student. Therefore, we will initialize
the class and the local environment as follows:

ΓC = { Student ≤ { firstName : String,
lastName : String,
age : Integer,
gender : Gender,
isActive : Boolean,
universities : Set(University),
tuitionFee : () → Real,
birthdayHappens : () → OclV oid }

ΓL = { self : Student }
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Premise1
0 ∈ Z

` 0 : Integer
INT Γ ` Real ≤ { > : Real → Boolean }

Γ ` Integer ≤ Real
S-INT

Γ ` self.tuitionFee() > 0 : Boolean
BINARY

where
Premise1

(self : Student) ∈ ΓL
Γ ` self : Student

L-VAR Γ ` Student ≤ { tuitionFee : () → Real }

Γ ` self.tuitionFee() : Real
OPER

Since the example expression is a binary expression, we apply the rule BI-
NARY at the top level. The rule BINARY has four premises.

The first premise corresponds to the left expression self.tuitionFee(). Since it
is an operation call, we apply the rule OPER. To type check an operation
call expression, we first have to identify the type of the qualifier. The qualifier
self is a variable, hence we apply the rule L-VAR. Since the variable self is in
the environment, we can obtain its type. After we have type of the qualifier,
we should check whether the type conforms to the record type containing
the particular operation. The environment tells us that this is the case, and
we can conclude the type of the left expression.

The second premise checks the type of the right expression. Since 0 is an
integer literal, we apply the rule INT.

The third premise checks whether the inferred type for the left expression
Real conforms to the record containing the binary operator >. Our environ-
ment states that it is the case.

The last premise checks whether the inferred type for the right expression
conforms to the argument type of the binary operator. Our environment
states that Integer ≤ Real.

Since all the premises are satisfied, we can conclude that the type of the
binary expression is equal to the return type of the binary operator, which
is Boolean.

Example 2

In this example, we construct a derivation tree for the forAll iterator ex-
pression:

context University
inv: self.students -> forAll(s | s.isActive)

The context of this OCL expression is University. Therefore, we initialize
the class and the local environment as follows:



OCL Type System 59

ΓC = { University ≤ { name : String,
address : String,
foundedY ear : Integer,
students : Set(Student),
admitStudent : Student → OclV oid }

}
ΓL = { self : University }

Premise1 Premise2 Premise3 Premise4 Premise5

Γ ` self.students → forAll(s|s.isActive) : Boolean
ITERATOR

where

Premise1

(self : University) ∈ ΓL
Γ ` self : University

L-VAR Γ ` University ≤ { students : Set(Student) }

Γ ` self.students : Set(Student)
PROJ

Premise2

Γ ` Set(Student) ≤ Collection(Student)
S-SET

Premise3

(s : Student) ∈ ΓL
Γ2 ` s : Student

L-VAR Γ2 ` Student ≤ { isActive : Boolean }

Γ2 ` s.isActive : Boolean
PROJ

Premise4

Γ ` Collection(Student) ≤ { forAll : Boolean → Boolean }

Premise5

Γ ` Boolean ≤ Boolean
S-REF

Γ2 = Γ \ { s } ∪ { s : Student }

Since the example expression is an iterator expression, we apply the rule
ITERATOR at the top level. The rule ITERATOR has five premises.

The first premise corresponds to the source expression self.students. It is a
navigation to an association end of the classifier University so we apply
the rule PROJ. In a projection, we first have to identify the type of the
qualifier. The qualifier self is a variable, hence we apply the rule L-VAR,
again. After we have type of the qualifier, we should check whether the type
conforms to the record type containing the particular association end. The
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environment tells us that this is the case, and we can conclude the type of
the source expression.

The second premise checks whether the type source expression conforms to a
Collection type. The rule S-SET in the environment matches this condition.

The third premise checks the type of the body expression s.isActive. To type
check the body expression, we add the type of the iterator variable s to
the environment. The type of s is equal to the element type of the source
collection. Before adding the variable s to the environment, we remove the
previous references to the variable with the same name. The body expression
is a navigation to an attribute of the classifier, for which we apply the
rule PROJ.

The fourth premise checks whether the type of the source collection conforms
to the record type containing the iterator operation forAll.

The last premise checks whether the type of body expression conforms to
the argument type of the iterator operation forAll. Since the types are the
same, we apply the rule S-REF.

All the premises are satisfied and we may conclude the type of the iterator
expression. It is equal to the return type of the iterator operation.

4.7 Type Checking OCL Expressions

While implementing the type checker, we divide the process into several
phases, namely:

• processing the type environment,

• passing the type environment down the syntax tree,

• computing the type at the nodes of the tree, and

• reporting the type errors if there are inconsistencies found.

The following sections explain each phase in detail, and how they are related
to each other.

4.7.1 Processing the type environment

The type environment needed for the type checking process are:

• Types from the UML model and the subtype relations between them.
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• Predefined OCL types and their operations.

In order to get the UML model information, the diagram based information
of the UML model should be exported into a stream based or file-based
interchange format. An alternative to get the model information is through
the exported XML Metadata Interchange (XMI) file 1.

The exported XMI file from the UML model is then processed into a type
environment. The type environment is a Haskell datatype representing the
subtype relations between the model types.

OCL predefined types and their operations should be defined in the type
environment as well. The information are processed from the OCL Standard
Library described in the OCL 2.0 specification [OMG03].

4.7.2 Passing down the type environment

The processed type environment from the UML model together with the
type conformances defined in the OCL Standard Library forms the global
environment. We use an attribute grammar (AG) and pass the type envi-
ronment down the tree as an inherited attribute.

The attributes for the non terminal Expression is defined as follows:

ATTR Expression
[ gamma : Gamma

|
| tp : Type
errors : Errors

]

The non terminal Expression has three attributes: one inherited attribute
and two synthesized attributes. The inherited attribute gamma is the type
environment, while the synthesized attributes tp and errors are the com-
puted type of an expression and the type errors respectively.

4.7.3 Computing the types

The computation of the types of the nodes of the tree is done bottom up.
This process follows closely the type rules that we have defined.

1The XML Metadata Interchange Format (XMI) was proposed in response to an Object
Management Group (OMG) Request for a Stream-based Model Interchange format. The
main purpose of XMI is to enable easy interchange of data and metadata between UML
modeling tools and between tools and metadata repositories in distributed heterogeneous
environments [DHO01].
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As the first example, let us look at the three type rules for variables from
Figure 4.5.

L-VAR :
(v : t) ∈ ΓL

Γ ` v : t

C-VAR :
(v : t) ∈ ΓC v /∈ dom(ΓL)

Γ ` v : t

G-VAR :
(v : t) ∈ ΓG v /∈ dom(ΓL) v /∈ dom(ΓC)

Γ ` v : t

The implementation of those type rules are shown in the code fragment
below:

SEM Expression
| VariableExp

loc.global = globalEnvironment @lhs.gamma
.context = head @lhs.path

loc.(tp, errors) =
case lookupFM (localEnvironment @lhs.gamma) @name of
Just t -> (t,[])
Nothing ->lookupVar @global @context @name @einfo

lhs.tp = @tp
lhs.errors = @errors

In the SEM section, we define the semantic rules for the attributes. We
refer to the VariableExp as a production. To refer to the attribute of a
child, we write @child.attribute. The keyword loc is used to define a
local attribute. We usually use a local attribute to represent a value which
is used several times in the production. The scope of a local attribute is in
all semantic rules of a production. The other special keyword lhs together
with the name of the attribute is used to refer to a synthesized attribute of
the nonterminal associated with a production. The complete description for
the use of AG can be found in the AG System User Manual [BSL03].

The type rules for a variable expression is implemented in one production,
the VariableExp. The code fragment also shows the look up order as denoted
in the type rules. The look up to the local environment is implemented by
the code fragment “lookupFM (localEnvironment @lhs.gamma) @name”.
The name of a variable is denoted by the name. If the variable is in the local
environment, program simply returns its type, paired with an empty list of
errors. The local attributes tp and errors is implemented as a pair (tp,
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errors) because the attribute errors refers to the errors produced when
the type of an expression is calculated.

If the variable is not in the local environment, we implement the code
“lookupVar @global @context @name @einfo”. The function lookupVar
first looks up the variable in the class environment context. It only looks up
the global environment global if the variable is not in the class environment.

The type rule for the If expression from Figure 4.5 is as follows:

IF :

Γ ` e1 : τ1

Γ ` τ1 ≤ Boolean
Γ ` e2 : τ2

Γ ` e3 : τ3

Γ ` τ2 ≤ τ4

Γ ` τ3 ≤ τ4

Γ ` if e1 then e2 else e3 endif : τ4

The implementation of the above type rule is shown in the following code
fragment:

SEM Expression
| IfExp

loc.global = globalEnvironment @lhs.gamma
.csupertp = commonSuperType @global

[@thenpart.tp, @elsepart.tp]
loc.(tp, errors) =
if subType @global @condition.tp booleanTp
then
if @csupertp == anyTp
then (voidTp,[CommonTypeError

[@thenpart.tp,@elsepart.tp] @einfo])
else (@csupertp, [])

else (voidTp, [SubTypeError @condition.tp
booleanTp @einfo] )

lhs.tp = @tp
lhs.errors = @condition.errors ++

@thenpart.errors ++
@elsepart.errors ++ @errors

The three sub expressions of the If expression are denoted by condition,
thenpart, and elsepart, which correspond to the e1, e2, and e3 in the type
rule. The inferred type for each sub expression is accessible through the
synthesized attribute tp. For example, to refer to the inferred type of the
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condition expression, we write @condition.tp. Therefore, @condition.tp,
@thenpart.tp, @elsepart.tp correspond to τ1, τ2, τ3 in the type rule.

The code “if subType @global @condition.tp booleanTp ...” checks
whether the inferred type for the condition expression conforms to the
type Boolean as stated in the second premise in the type rule. If this premise
is satisfied, then we try to find the common super type for the thenpart
and elsepart types. This corresponds to the last two premises in the type
rule, which implies that τ4 is the common super type. The type of the If
expression is the common super type found.

If the type conformance check fails, a subtype error will be created in errors
attribute.

The function commonSuperType tries to find the common super type of two
types. However, the feature of the top type OclAny makes the function
always succeed. For example, consider the following expression

if true then 1 else ’hello’ endif

The then-part has type Integer, while the else-part has type String. Both
types does not conform to each other, and therefore should return a
type error. Using the function commonSuperType to find the common
super type for Integer and String will return OclAny, and the type er-
ror becomes undetected. To avoid this peculiarity, we have taken an an-
ticipation by returning an error if the function commonSuperType ends
up with OclAny. The code “if @csupertp == anyTp then ..(error)..
else (@csupertp, [])” does the check. The common super type returned
by the function commonSuperType is stored in the local attribute csupertp.

4.7.4 Reporting type errors

Type errors are collected during the type checking process. When the pro-
cess encounters an inconsistency, a type error will be reported. The type
errors are passed a synthesized attribute to the top of the tree. Besides the
type information, the type error also records the sources and location where
an error occurred. It is intended to report an appropriate and accurate er-
ror message. The type error message is reported in terms of the original
expression.

4.7.5 The Restrictions

Because of the time limitation, there are some OCL constructs that our
current implementation of the type checker can not cope with. Therefore,
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the implementation poses the restrictions that the OCL constructs explained
in the following sections can not be used. However, those constructs are not
used often while modeling constraints in the POWER project, so that we
put the implementation of the special constructs at the second priority. Also,
there are already alternatives to write those constructs in their normal forms.

Shorthand for Collect

In Section 2.2.1, we show the variants of OCL expressions. One of the vari-
ants is the possibility to write the iterator expression collect using a short-
hand notation. For example, consider the following expression.

self.students.firstName

The expression will be parsed as an attribute call expression, not as an
iterator expression. Consequently, the type checker will apply the projection
rule instead of the iterator rule where an error will be reported because the
set of students does not have the property firstName.

In order to be able to type check this expression, a normalization process
will be necessary to transform all the shorthands for collect into their normal
forms.

Navigation over Associations with Multiplicity Zero or One

A navigation over associations with multiplicity zero or one results in an
object at the association end. OCL allows a single object to be used as a
set by treating it as a set containing one object. The usage as a set is done
through an arrow operator followed by a property of the set. For example,
consider the following expression.

context Department
inv: self.director->notEmpty()

The sub-expression self.director results in an object of type Teacher
because the multiplicity of the association end is one. Because of the use of
the arrow operator, the expression self.director then should have type
Set(Teacher).

By default, the type checker produces a type error because the object
Teacher does not have the property isEmpty. This situation implies that
in order to compute the type of the sub-expression, we have to know which
operator applied to it. If an arrow operator is applied, a collection type is
returned. If a dot operator is applied a single object type is returned.
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Code Generation

The last phase in our compilation process is the code generation. In the
code generation process, we do not generate code for a specific programming
language. Instead, we generate the RBML documents from the input OCL
expressions. The main reason for this choice is that we would like to have a
general system which is independent of the implementation issues.

RBML fulfills all the requirements needed for a general system in the con-
text of the POWER project, namely rule basedness and object orientedness.
Although the RBML document is not a programming language, we refer
to this process as a code generation. The reason is that once we have the
generated RBML document, it is possible to generate code for any target
language that satisfies all the required properties.

The advantage of generating RBML document is that we can use the
VALENS verification tool for verifying the document. VALENS is a knowl-
edge verification tool developed by a third party in collaboration with the
POWER project.

The formalization of how OCL constructs are translated to RBML are given
in the form of translation schemes.

In the implementation of the code generator, we first define the data types
which represent the RBML structures. The RBML generator reads in the
augmented OCL abstract syntax tree (from the type checking process), gen-
erates the data representation for each OCL construct, and subsequently
creates an RBML document from the generated data representation.

This chapter is organized as follows: in Section 5.1 we will give an overview
of RBML, in Section 5.2 we present our approaches in the code generation
process, and in Section 5.3 we formalize the translation schemes to RBML.
Finally, in Section 5.4 we explain our implementation of the code generator.

66
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5.1 RBML

RBML is an XML schema to represent rules in the object oriented context.
It is developed by LibRT, one of the partners in the POWER project. RBML
satisfies the properties required for the knowledge based components in the
context of the POWER project, namely object-orientedness and rule based-
ness. The design and implementation of the code generator in this research
project are based on the RBML v1.8 [Libb].

One of the major characteristics of RBML is that the rule is always written
as a pair of premise and action. RBML can conceptually be used to describe
a rule based system in which knowledge is represented as a set of if-then
expressions (rules).

The premise represents a condition that evaluates to true or false.

The action represents the achievements if the premise is true. The action is
in one of the following forms:

• Attribute value assignment: the assignment of a value to an attribute.

• Instance creation: the creation of an instance of a class.

• Association establishment: the establishment of an association between
instances of the classes.

• Untyped method call: the call to a method (which may be not part of
the business logic, such as: raise an exception, or print a message).

RBML contains all the concepts needed for defining a rule in the object
oriented context. The root element of RBML is called Rulebase. The elements
that form the Rulebase element are Class, Rule, Association, and DataType.
Every element has the attributes id and name as its properties.

We will describe the syntax of those elements by using EBNF notations.

5.1.1 Class

The Class element contains the object oriented aspects in RBML. A class
element contains the class information (id and name) and a list of proper-
ties. The properties of a class include attributes, methods, instances, and
subclasses.

Class := Attribute* (PrimitiveMethod | DomainMethod)*
Instance* SubClass*
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5.1.2 Rule

The Rule element is the element in RBML to represent rule based concepts.
A rule has a scope, a rule definition or a free-text rule, and zero or more
bindings.

Rule := Scope (RuleDef | RuleText) Binding*
RuleDef := ElseOf? Premise Action
Premise := Condition | Premise BinaryLogicalOperator?
BinaryLogicalOperator = LogicalOperator (Condition | Premise)
LogicalOperator := ’and’ | ’or’
Action := AttributeValueAssignment

| AssociationEstablishment
| InstanceCreation
| UntypedMethod

Binding := ClassRef

There are two alternatives for defining a rule, namely:

• RuleDef, defines a rule by specifying the premise and action for that
rule.

The ElseOf is used when a rule definition refers to another rule defini-
tion. For example, the if-then-else expression results in two rules: the
rule for the then-part and the rule for the else-part. In the else-part
rule, the ElseOf element contains a reference to the then-part rule.

The premise consists of one or more conditions separated by the logical
operators.

• RuleText, defines a free-text rule. This alternative can be used when
it is not possible to write the rule in the form of premise and action.
RuleText makes it possible to store a rule in an unstructured format.

A binding binds a variable to a class to which the rule will apply. Both Scope
and Binding elements refer to a certain class in the rule based system.

5.1.3 Association

The Association element can represent associations in a model, in our case
associations between classes. An association has a source and destination,
each having a certain multiplicity in the association. The multiplicity is in
one of the following values: ”1”, ”0..1”, ”0..*”, or ”1..*”. Within an asso-
ciation, we can optionally specify the role name for both directions of the
association.
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Association := Source Destination Role? InverseRole?

The Source element is a reference to the source class of an association.
Whereas the Destination element refers to the destination class of an asso-
ciation. The two ends of an association may have a name. Role name refers
to the association from source to destination. While InverseRole name
refers to the association from destination to source.

5.1.4 Data Type

The DataType element represents user defined datatypes, which may be the
subset of the primitive types, boolean, string, integer, real, and time.

DataType := Parent? ( Constraint* | EnumValue* )
Constraint := Range+

There are two alternatives for defining a user defined datatype, namely:

• By specifying a constraint, which gives a range of valid values. For
example, (>0...<100)

• By enumerating the values. For example, (’red’, ’yellow’, ’blue’)

The Parent element allows us to define a hierarchy of the data types.

5.2 The Approaches

This section discusses our approaches in the translation from OCL to RBML.
Before we discuss each approach, we will first discuss the two main ap-
proaches, namely: the generic rule based translation and the conditional
rule based translation.

The generic rule based translation introduces a rule attribute for each OCL
expression. The value of a rule attribute determines the truth value of an
OCL expression. The generated rules for an OCL expression result in actions
which set the rule attributes to true or false based on a set of premises.
Therefore, the rule based system contains a collection of rules determining
the truth value of the OCL expressions. By using this approach, we can
validate a case with data by using a collection of rules, but we can not
derive new data from it. The detailed explanation with examples are given
in Section 5.2.2.



Code Generation 70

The conditional rule based translation, on the other hand, does not introduce
a rule attribute for the OCL expression. From an input OCL expression,
we generate rules with actions that may assign values to the attributes.
Therefore, by using this approach we are able to derive new data from the
existing cases given a collection of rules. However, not all OCL constructs
support this translation since RBML has a restriction on the constructs
that can be used. In Section 5.2.3, we show examples of constructs which
are supported by this approach.

The details of our approaches in the code generation process are discussed
in the following sections. In our examples we give both translations at the
same time, but note that they are in no way dependent on each other. They
form as it were two different programs.

5.2.1 Pattern Matching Rule

We use the pattern matching rules in our translation to RBML. The pattern
matching rule iterates over many instances of a class, or over instances of
several classes. When an instance meets a certain condition, the action of
the rule will be executed.

A pattern matching rule consists of bindings and a rule definition. The
bind binds a variable to a class. The pattern matching rule can have multiple
bindings. The rule definition consists of an ifmatch clause, a where clause,
and a then clause.

The ifmatch clause lists the binding variables that may be used in the
rule, the where clause defines the condition that needs to be satisfied, while
the then clause defines the action that will be executed if the condition is
satisfied.

For example, let us look at the following pattern matching rule written in
the Aion syntax (see Aion Manual [Ass]):

bind p toPerson
rule”Allowance”
ifmatch p
where p.age > 18
then p.allowance := 800
end

This rule applies to every instances of the class Person, and sets the value
of the attribute allowance to 800, if the age is greater than 18.

Since a pattern matching rule iterates over instances of a class, it makes
it possible for us to translate OCL iterator expressions using the pattern
matching rules.
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For OCL iterator expressions, the binding will be a collection of instances to
which the expressions belong. For non-iterator expression, the binding will
be the context in which the expression is defined.

The corresponding RBML rule for the above syntax is as follows:

Rule {name = "Allowance" }
RuleDef

Premise : p.age > 18
Action : p.allowance := 800

Binding {name = "p" }
Class {idref = "Person"}

The where clause becomes a Premise, the then clause becomes an Action,
while the bind clause becomes Binding. Both the Rule and Binding element
in RBML have an attribute name to store the name of the rule and the
binding respectively. The attribute idref under the Binding refers to the
class to which the binding variable becomes bound.

Notice the reordering of information. This will also be the case in the fol-
lowing examples.

5.2.2 Generic Rule Based Translation

In the generic rule based translation, we generate a unique attribute Rn to
represent the value of each rule. Those attributes belong to a generic class
RBMLBase and have initial value unknown. This approach will generate two
rules, namely:

first rule: the premise is the original OCL expression, and the action is an
assignment of true to the rule attribute.

second rule: the premise is the negation of the original OCL expression,
and the action is an assignment of false to the rule attribute.

For example, suppose we have the following OCL expression:

context Person
inv: self.married implies self.age > 18

The translation of the OCL invariant to RBML is then as follows:
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Rule { id= 1, name = R1.1 }
Scope { idref = Person }
RuleDef

Premise : not (person.married) or (person.age > 18)
Action : R1 := true

Binding { id= 2, name = person }
Class { idref = Person }

;Rule { id= 3, name = R1.2 }
Scope { idref = Person }
RuleDef

Premise : (person.married) and not (person.age > 18)
Action : R1 := false

Binding { id= 4, name = person }
Class { idref = Person }

In the above translation, we generate a unique id and name for each rule.
The scope of this rule is the context to which the OCL expression belongs.

In the first rule, the premise is the original OCL expression which is trans-
lated to its logical equivalence, namely: E1 implies E2 ≡ not E1 or E2.
The action is the assignment of true to the rule attribute R1. R1 is the meta
attribute which is generated by the system to hold the truth value of the
OCL expression. It is not part of the OCL expression.

In the second rule, the premise is the negation of the original
expression with the translation to its logical equivalence, namely:
not (not E1 or E2) ≡ (E1 and not E2). The action is the assignment
of false to the rule attribute R1.

Since we use the pattern matching rule approach in our translation, as dis-
cussed in Section 5.2.1, we need to create bindings on which a certain rule
will be executed. In most OCL expressions, the binding variable will be
bound to the context where the OCL expressions are introduced. All the
attributes in the expression are qualified by their binding variables. We use
binding variables which have the same name as the class name, but starting
with a lower case letter.

In our example, we replace all the occurrences of self with person, because
the attributes are now bound to this binding variable. Therefore, we now
write person.married and person.age.

5.2.3 Conditional Rule Based Translation

In the conditional rule based translation, we first check whether a particular
OCL expression can be written in the form of a pair of premise and action.
The translation will only be done if it is possible.
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Using this approach, the implication expression ”E1 implies E2” will
be translated into two if-then expressions which are logically equivalent,
namely:

if E1 then E2

if not E2 then not E1

The if-then expressions can be easily written as a pair of premise and action
in RBML, where the if-part becomes a premise, and the then-part becomes
an action of the rule definition.

This approach has some restrictions: the expression which acts as an ac-
tion, namely E2 and not E1 should satisfy the requirements for an action
in RBML as discussed in Section 5.1. The requirements state that the ex-
pression should be able to be written as an attribute value assignment, an
instance creation, an association establishment, or an untyped method.

Our example from the previous section is translated into two if-then expres-
sions, namely:

if self.married then self.age > 18 (1)
if not (self.age > 18) then not (self.married) (2)

However, the translations to RBML for these expressions are not supported
since the then-part of the expression (1) can not be written in form of action
in RBML.

Table 5.1 shows several possible forms of the implication expressions and how
they are translated to RBML by using the conditional rule based approach.
The translation results in two rules which, together, represent the same logic
as the initial OCL expressions. If one of the translations is not supported,
then the other rule will not be generated either. As we can see from the
examples, the actions of the rules assign values to the attributes. Given
these rules and a set of cases, we are able to derive values for the attributes.

The fact that we assign a value to an attribute does not mean that we change
the value of the attribute since the value assigned the attribute is derived
from the constraint itself: an equality constraint or a boolean attribute. In
the case of a boolean attribute, we derive the value true or false depending
on the constraint.

We summarize the expressions that are supported in translation of logical
implication expression E1 implies E2 by using the conditional rule based
translation:

The premise of the implication E1 should be in one of the following forms:
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E1 implies E2 if E1 then E2 if not E2 then not E1

x implies y Premise: x Premise: not y
Action: y := true Action: x := false

x implies y>0 Premise: x Premise: not (y>0)
Action:(not supported) Action: x := false

x=18 implies y=18 Premise: x = 18 Premise: not (y=18)
Action: y := 18 Action:(not supported)

x<>18 implies y=18 Premise: x <> 18 Premise: not (y=18)
Action: y := 18 Action: x := 18

x=true implies y=false Premise: x = true Premise: not (y=false)
Action: y := false Action: x := false

Table 5.1: Some examples translation implication expression to RBML

• Boolean attribute, e.g. ”isMarried”, ”isEmployed”.

• Boolean equality expression, e.g. ”x = true”.

• Inequality expression, e.g. ”x <> 0”.

The action of the implication E2 should be in one of the following forms:

• Boolean attribute.

• Equality expression.

As a consequence of this approach, the generated rules are not complete
because of the limited number of supported constructs.

5.3 Translation Schemes

A translation scheme defines how a certain language construct is translated
to the target language by writing the target languages as a function of the
language construct [DS03].

Scheme[[Construct]](p1, . . . , pn)
≡ TargetLanguagePart1;

TargetLanguagePart2;
. . .
TargetLanguagePartn;
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The scheme is applied to an OCL construct to produce a sequence of target
language constructs which are separated by semicolons. The extra informa-
tion needed for the translation is given in form of parameters (p1,. . . ,pn).

We might need many different schemes depending on the language construct.
The translation scheme for the OCL expression is called E . Although we use
the concrete syntax in the argument of a scheme, the translation scheme
follows the structure of the abstract syntax.

Besides the translation schemes for the OCL expressions, we also define a
translation scheme for the attribute value assignment, called A. We distin-
guish the translation schemes because an attribute value assignment is not
an OCL expression.

To increase the readability, the output of the translation is written in a tree
like document rather than in the form of the XML document. However, the
actual output will be an XML document.

The translation scheme for the attribute value assignment is as follows:

A[[ v := e ]] env
≡ Action

AttributeValueAssignment
AttributeReference

Attribute { idref = env[v]id }
TypedExpression

E [[e]]

An attribute value assignment results in action of a rule based system. The
attribute reference is a reference to the attribute of a particular instance
of a class within the system. For this translation, we need an additional
parameter env, which is the environment containing the class information
and its properties. env[v]id extracts the id for v out of the environment env.

The corresponding RBML document for the above translation will be:

<Action>
<AttributeValueAssignment>

<AttributeReference>
<Attribute idref = "..."/>
<TypedExpression >

...

...
</TypedExpression >

</AttributeReference>
</AttributeValueAssignment>

</Action>
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5.3.1 Literal

RBML defines a number of predefined literals, such as true, false, null, un-
known, etc. The list of predefined literals is passed as the parameter prede-
fLit. If a literal is an element of the predefined literal, then the literal value is
saved to the attribute predefined, and to the attribute freeformat otherwise.

The translation scheme for the literal expression is as follows:

E [[ lit ]] predefLit
≡ TypedExpression

if lit elem predefLit then
Literal { freeformat=””, predefined=lit }

else
Literal { freeformat=lit, predefined=”” }

5.3.2 Binary Expression

We distinguish several translation schemes for the binary expression ”e1 ⊕
e2”. Each scheme corresponds to a set of binary operators as follows:

• Arithmetic Expression corresponds to the operators { ’+’, ’-’, ’*’, ’/’ }.

• Relational Expression corresponds to the operators { ’<’, ’>’, ’<=’,
’>=’, ’=’, ’<>’, ’and’, ’or’ }.

• Implication Expression corresponds to the operator { ’implies’ }.

Arithmetic Expression

The translation scheme for the arithmetic expression is as follows:

E [[ le ⊕ re ]]
≡ ArithmeticExpression

LeftHand
E [[ le ]]

ArithmeticOperator { operator = O[[⊕]] }
RightHand

E [[ re ]]

where ⊕ ∈ { ’+’, ’-’, ’*’, ’/’ }

The binary operators introduce a new translation scheme, namely O. For
each binary operator in OCL, there is a corresponding operator in RBML.
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O[[ + ]]
≡ plus

O[[ − ]]
≡ minus

O[[ ∗ ]]
≡ times

O[[ / ]]
≡ divided-by

Relational Expression

The relational expression is a binary expression where its operator is the
element of { ’<’, ’>’, ’<=’, ’>=’, ’=’, ’<>’, ’and’, ’or’ }. We can only
perform the generic rule based translation for these expressions, since they
do not satisfy the requirements for a conditional rule based translation,
except for the equality expression.

The translation scheme for the relational expression is as follows:

E [[ le ⊕ re ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ ( le ⊕ re ) and cond ]]
A[[Rn := true]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.2 }

RuleDef
E [[ not ( le ⊕ re ) ]]
A[[Rn := false]]

B[[ ctx ]] (ctr, env)

if (⊕==”=”) and (isAttribute le) then
; Rule { id = ctr, name = Rn.3 }

RuleDef
E [[true]]
A[[le := re]]

B[[ ctx ]] (ctr, env)
endif
if (⊕==”=”) and (isAttribute re) then
; Rule { id = ctr, name = Rn.4 }

RuleDef
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E [[true]]
A[[re := le]]

B[[ ctx ]] (ctr, env)
endif

where ⊕ ∈ { ’<’, ’>’, ’<=’, ’>=’, ’=’, ’<>’, ’and’, ’or’ }
cond = (Rn = true or Rn = unknown)
ctr = freshId()
n = freshRuleNumber()
isAttribute (AttributeCall ) = True
isAttribute = False

The first two rules in the scheme correspond to the generic rule based trans-
lation approach. For each expression where this approach is applied, we
generate a rule attribute Rn. This attribute belongs to the generic class
RBMLBase, as described in Section 5.2.2. Since we use the pattern match-
ing rule, we add an additional condition (Rn = true or Rn = unknown) to
ensure that the attribute Rn is only set to true if the premise is satisfied by
all the instances of the class where the rule applied. Therefore, our example
in Section 5.2.2 is not complete yet. We should add this additional condition
to the premise in order for the rule to be correct.

The last two rules in the scheme correspond to the conditional rule based
translation approach. This approach can only be applied to the equality ex-
pression where it requires that the expression is an attribute call expression.
The function isAttribute does the check.

In above translation scheme, we also introduce a translation scheme for
binding, which is called B, as follows:

B[[ nm ]] (i, env)
≡ Binding { id = i, name = nm }

Class { idref = env[nm]id }

We use the helper functions freshId and freshRuleNumber to return a fresh
id and a fresh rule number respectively. The function freshId is called every
time we want to assign a fresh id to an element. Whereas the function
freshRuleNumber is called only once for each OCL expression.

Example Translation

The examples of the translation in this section and the following sections
are written in the pattern matching rule syntax. The main reason is to make
it easier to understand. In addition, the pattern matching rule syntax has a
straightforward translation to RBML syntax as described in Section 5.2.1.
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context University
inv: self.yearFounded = 1900

The translation of the above example to RBML produces three rules. The
generated rules Rn.1 and Rn.2 correspond to the first two rules in the trans-
lation scheme for the relational expression. Since the binary operator and
the left expression match the condition in the scheme, we also generate the
third rule.

In the generated rules, the qualifier self is replaced with the binding variable
university.

Rn.1 bind university to University
ifmatch university
where (university.yearFounded = 1900)

and (Rn = true or Rn = unknown)
then (Rn := true)
end

Rn.2 bind university to University
ifmatch university
where (not university.yearFounded = 1900)
then (Rn := false)
end

Rn.3 bind university to University
ifmatch university
where true
then (university.yearFounded := 1900)
end

Implication Expression

The translation scheme for the implication expression is as follows:

E [[ le implies re ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ not le or re and cond ]]
A[[Rn = true]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.2 }

RuleDef
E [[ le and ( not re ) ]]
A[[Rn := false]]
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B[[ ctx ]] (ctr, env)

if (isPremise le) and (isAction re) then
; Rule { id = ctr, name = Rn.3 }

RuleDef
E [[ le ]]
A[[ re := true ]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.4 }

RuleDef
E [[ not re ]]
A[[ le := false ]]

B[[ ctx ]] (ctr, env)
endif

where cond = (Rn = true or Rn = unknown)
ctr = freshId()
n = freshRuleNumber()
isPremise (BinaryExp "<>" )= True
isPremise (BinaryExp "=" (BooleanLiteral ))= True
isPremise (BooleanLiteral ) = True
isPremise = False

isAction (BinaryExp "=" ) = True
isAction (BooleanLiteral ) = True
isAction = False

The first rule translates the implication expression to its logical equivalence,
while the second rule translates to the negation of the expression. The last
two rules require that both the left and right expressions fulfill the conditions
for the translation of the implication expression to RBML, as discussed in
the section 5.2.3.

Example Translation

context Student
inv: self.course.notEmpty() implies self.isActive

Rn.1 bind student to Student
ifmatch student
where (not student.course.notEmpty() or student.isActive)

and (Rn = true or Rn = unknown)
then (Rn := true)
end
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Rn.2 bind student to Student
ifmatch student
where (student.course.notEmpty() and not student.isActive
then (Rn := false)
end

Rn.3 bind student to Student
ifmatch student
where student.course.notEmpty()
then (student.isActive := true)
end

Rn.4 bind student to Student
ifmatch student
where not student.isActive
then (student.course.notEmpty() := false)
end

5.3.3 Unary Expression

The translation scheme for the OCL unary expression is the simple one since
the unary expression is basically a negation of an expression. The premise
and condition element in RBML include the attribute not. This attribute
has a default value false. When we want to create a negation of a premise
or a condition, we simply set the attribute not to true.

E [[ ⊕ e ]]
≡ E [[ e ]] isnot

where: isnot = true
⊕ ∈ { ’-’, ’not’ }

The parameter isnot carries the value of the attribute not. Translating an
unary expression is equal to translating the expression, and then set the
attribute not according to the value of the parameter isnot.

5.3.4 If Expression

The OCL If expression is typical for the translation to RBML since all
other expressions are translated to a kind of if-then form in RBML. The
translation scheme for the If expression is as follows:

E [[ if ce then te else ee endif ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }
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RuleDef
E [[ce]]
A[[Rn := Rte]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.2 }

RuleDef
E [[ not ce ]]
A[[Rn := Ree]]

B[[ ctx ]] (ctr, env)

if (isAction te) and (isAction ee) then
; Rule { id = ctr, name = Rn.3 }

RuleDef
E [[ ce ]]
A[[ te ]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.4 }

RuleDef
ElseOf { idref = env[Rn.3]id }
E [[ true ]]
A[[ ee ]]

B[[ ctx ]] (ctr, env)
endif

where ctr = freshId()
n = freshRuleNumber()

We perform both generic and conditional rule based translations for the If
expression. The conditional rule based translation requires that both the
then and else expressions can be translated to the action in RBML. The
function isAction does the checks. The ElseOf element in the last rule refers
to the previous rule as shown in its id reference idref. This element denotes
that the rule represents an else part of another rule.

Example Translation

context Course
inv: if courseType = CourseType :: preliminary

then self.credit = 5
else self.credit = 6
endif

Rn.1 bind course to Course
ifmatch course
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where (course.courseType = CourseType :: preliminary)
then (Rn := R(credit=5))
end

Rn.2 bind course to Course
ifmatch course
where (not course.courseType = CourseType :: preliminary)
then (Rn := R(credit=6))
end

Rn.3 bind course to Course
ifmatch course
where (course.courseType = CourseType :: preliminary)
then (credit := 5)
end

Rn.4 bind course to Course
elseof Rn.3
ifmatch course
where true
then (credit := 6)
end

5.3.5 Attribute Call Expression

The attribute call expression has a straightforward translation in RBML.
It is a reference to the attribute of the instance of a class identified by
the qualifier se. If the qualifier is empty, then this expression refers to the
attribute of the object in the current scope.

E [[ se.attrname ]] env
≡ AttributeReference

Qualifier E [[se]]
Attribute { idref = env[attrname]id }

5.3.6 Operation Call Expression

The operation call expression will be translated to the TypedMethod in
RBML. It is a reference to the method of the instance of a class identi-
fied by the qualifier se. The passed arguments should match the arguments
of the referred method. The translation scheme is as follows:

E [[ se → op (arg1, . . . , argn)]] env
≡ TypedMethod

CalledMethod
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Qualifier E [[se]]
Method { idref = env[op]id }

P[[arg1]] (env, op, 1), . . . ,P[[argn]] (env, op, n)

P[[ arg ]] (env, op, n)
≡ PassedArgument

Argument { idref = env[ arg(op, n) ]id }
ArgumentExpression E [[ arg ]]

The translation scheme for the parameter of an operation is called P. It
expects three parameters: the class information env, the operation name
op, and the nth argument of the operation. The helper function arg(op,n)
returns the name of the nth argument of an operation.

5.3.7 Loop Expression

The loop expressions have the most complicated translations. For each iter-
ator method, we have different translation scheme.

forAll

We generate four rules in the translation of the forAll iterator expression
into RBML.

In addition to the binding to a context, written as B[[ ctx ]], two new bindings
are introduced: a binding to the element of the source collection B[[ elem ]],
and a binding to the source collection B[[ sourceColln ]]. Since a loop ex-
pression works on a collection, these bindings are necessary to enable us to
access the properties of an element of the collection, to relate the element
to the collection, and to relate the context to the collection.

The translation scheme is as follows:

E [[ se → forAll ( be ) ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ cond2 and cond3]]
A[[Rn := true]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.2 }

RuleDef
E [[ ctxforAll = false ]]
A[[ Rn := false ]]
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B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.3 }

RuleDef
E [[ elem.be and cond1 and cond4 ]]
A[[ sourceColln.forAll := true ]]

B[[ elem ]] (ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]] (ctr, env)

; Rule { id = ctr, name = Rn.4 }
RuleDef

E [[ not (elem.be) and cond1 ]]
A[[ sourceColln.forAll := false ]]

B[[ elem ]] (ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]] (ctr, env)

where ctxforAll = ctx.sourceColln.forAll
elem = ctx.sourceColln.elem
cond1 = (sourceColln includes elem)

and (sourceColln = ctx.sourceColln)
cond2 = (ctxforAll = true or ctxforAll = unknown)
cond3 = (Rn = true or Rn = unknown)
cond4 = (sourceColln.forAll = true

or sourceColln.forAll = unknown)
ctr = freshId()
n = freshRuleNumber()

The translation scheme above can be described as follows:

To represent the source collection of an iterator expression, a system gen-
erated class sourceColln is generated for each iterator expression. The con-
vention for naming the system generated collection class is:

element_type_name + "Coll" ++ counter

For example, StudentColln is to name a collection of elements of type Stu-
dent in the nth iterator expression. This class has an attribute to store the
evaluation value for every instance of the class. This attribute has the same
name with the name of the iterator operation. For example, if we operate
on the iterator operation forAll, the attribute is named forAll.

In the scope of an element of the source collection, the rules Rn.3 and Rn.4
are evaluated on every instance of the class elem which is associated to the
source collection. The result of the evaluation is stored in the attribute forAll
of the class sourceColln.
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The additional condition sourceColln includes elem and (sourceColln =
ctx.sourceColln) is to prevent the expression to be evaluated on every in-
stances of the class elem. Instead, it is only evaluated on the instances of
elem which are associated to the sourceColln.

The condition (sourceColln.forAll = true or sourceColln.forAll
= unknown) is to prevent the attribute forAll is set to true if at least one of
the instances of the class elem does not match the condition be.

In the scope of the context ctx, the rules Rn.1 and Rn.2 are evaluated on
every instance of the class sourceColln which is associated to the class ctx.
The result of the evaluation determines the truth value of the expression,
represented by the attribute Rn.

The condition (forall= true or forall= unknown) is to prevent the
rule is set to true if the attribute forAll of one of the instances of
the class sourceColln has value false. Similary for the second condition
(Rn = true or Rn = unknown), if the rule has been set to false, there
is no way for it to be set to true again.

In the rules Rn.3 and Rn.4, we create three bindings of different types:

• binding for the element of the source collection (elem),

• binding for the source collection of the iterator expression
(SourceColln), and

• binding for the current context (ctx).

The name of the binding is equal to the name of the referred class, started
with a lower case letter.

Example Translation

context University
inv: self.students -> forAll(isActive)

The source expression self.students evaluates to a set of students. There-
fore, we create a class to represent the source collection in the iterator expres-
sion, called StudentColln. The class StudentColln has one attribute: the
attribute forAll. The attribute is of type Boolean, and has an initial value
unknown. The class StudentColln is associated to the class University and
the class Student as shown below.

StudentColl n

forAll: Boolean = unknown
Student

isActive: Boolean
...

University
...

1 0..*1 1
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The name of each association end is the same as the name of the class at
the association end, starting with a lower case letter.

The translation to RBML is as follows:

Rn.1 bind university to University
ifmatch university
where (university.studentColln.forall = true

or university.studentColln.forall = unknown)
and (Rn = true or Rn = unknown)

then (Rn := true)
end

Rn.2 bind university to University
ifmatch university
where (university.studentColln.forall = false)
then (Rn := false)
end

Rn.3 bind student to Student
bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where student.isActive

and (studentColln includes student)
and (studentColln = university.studentColln)
and (studentColln.forAll = true or

studentColln.forAll = unknown)
then (studentColln.forAll := true)
end

Rn.4 bind student to Student
bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where (not student.isActive)

and (studentColln includes student)
and (studentColln = university.studentColln)

then (studentColln.forAll := false)
end

exists

The translation scheme for the exists iterator expression is similar with the
one for the forAll, except for the additional conditions to be checked. In
the exists operation, the rule will be true if one of the instances of the class
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satisfies the condition. In the forAll operation, the rule will only be true if
all instances of the class satisfy the condition.

E [[ se → exists ( be ) ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ (ctxexists = true or ctxexists = unknown) ]]
A[[Rn := true]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.2 }

RuleDef
E [[ ctxexists = false and (Rn = unknown)]]
A[[ Rn := false ]]

B[[ ctx ]] (ctr, env)
; Rule { id = ctr, name = Rn.3 }

RuleDef
E [[ elem.be and cond ]]
A[[ sourceColln.exists := true ]]

B[[ elem ]] (ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]](ctr, env)

; Rule { id = ctr, name = Rn.4 }
RuleDef

E [[ not (elem.be) and cond (sourceColln.exists = unknown) ]]
A[[ sourceColln.exists := false ]]

B[[ elem ]](ctr, env)
B[[ SourceColln ]](ctr, env)
B[[ ctx ]] (ctr, env)

where cond = (sourceColln includes elem)
and (sourceColln = ctx.sourceColln)

ctxexists = ctx.sourceColln.exists
ctr = freshId()
n = freshRuleNumber()

Example Translation

context University
inv: self.students -> exists(firstName = ’Eelco’)

Rn.1 bind university to University
ifmatch university
where (university.studentColln.exists = true
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or university.studentColln.exists = unknown)
then (Rn := true)

Rn.2 bind university to University
ifmatch university
where (university.studentColln.exists = false)

and (Rn = unknown)
then (Rn := false)

Rn.3 bind student to Student
bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where (student.firstName = ′Eelco′)

and (studentColln includes student)
and (studentColln = university.studentColln)

then (studentColln.exists := true)
Rn.4 bind student to Student

bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where not (student.firstName = ′Eelco′)

and (studentColln includes student)
and (studentColln = university.studentColln)
and (studentColln.exists = unknown)

then (studentColln.exists := false)

select

The select iterator expression itself is not an invariant since it returns a
collection, not a boolean value. Consequently, we can not perform the generic
rule based translation on this expression. However, the resulting collection
can be used by another expression to create an invariant.

E [[ se → select ( be ) ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ elem.be and cond ]]
A[[ sourceColln.select := including(sourceColln.select, elem) ]]

B[[ elem ]](ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]](ctr, env)

where cond = (sourceColln includes elem)
and (sourceColln = ctx.sourceColln)
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ctr = freshId()
n = freshRuleNumber()

We use the method including to include an element to a collection. This
method belongs to the Domain class (see Section 5.4.1).

Example Translation

The following example shows the use of the select iterator expression within
an operation call expression size and how they are translated to RBML.

context University
inv: self.students -> select(lastName = ’Visser’)->size() > 0

Rn.1 bind student to Student
bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where (student.lastName = ′Visser′)

and (studentColln includes student)
and (studentColln = university.studentColln)

then studentColln.select := including (studentColln.select, student)
end

Rn.2 bind studentColln to StudentColln
bind university to University
ifmatch studentColln, university
where studentColln select.size() > 0

and (Rn = true or Rn = unknown)
then (Rn := true)
end

Rn.3 bind studentColln to StudentColln
bind university to University
ifmatch studentColln, university
where (not studentColln select.size() > 0)
then (Rn := false)
end

The rule Rn.1 in the above example implements the translation scheme for
the select operation. This rule results in an intermediate collection value that
are used by the other rules: Rn.2 and Rn.3. The rules Rn.2 and Rn.3 imple-
ment the translation scheme for the relational expression (see Section 5.3.2).
We use a canonical name studentColln select to refer to the intermediate
collection.
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reject

The translation of the reject iterator expression is similar with the one for
the select iterator expression, except that it rejects the instances that satisfy
the condition.

E [[ se → reject ( be ) ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ not (elem.be) and cond ]]
A[[ sourceColln.reject := including(sourceColln.reject, elem) ]]

B[[ elem ]] (ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]] (ctr, env)

where cond = (sourceColln includes elem)
and (sourceColln = ctx.sourceColln)

ctr = freshId()
n = freshRuleNumber()

Example Translation

context University
inv: self.students -> reject(isActive) -> isEmpty()

Rn.1 bind student to Student
bind studentColln to StudentColln
bind university to University
ifmatch student, studentColln, university
where (not isActive)

and (studentColln includes student)
and (studentColln = university.studentColln)

then studentColln.reject := including (studentColln.reject, student)
end

Rn.2 bind studentColln to StudentColln
bind university to University
ifmatch studentColln, university
where studentColln reject.isEmpty()

and (Rn = true or Rn = unknown)
then (Rn := true)
end

Rn.3 bind studentColln to StudentColln
bind university : University
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ifmatch studentColln, university
where (not studentColln reject.isEmpty())
then (Rn := false)
end

The rule Rn.1 in the above example implements the translation scheme for
the reject operation. This rule results in a intermediate collection value that
are used by the other rules. We use a canonical name studentColln reject to
refer to the intermediate collection.

collect

The translation of the collect iterator expression results in a collection. This
collection is used by another expression to create an invariant.

E [[ se → collect ( be ) ]] (env, ctx)
≡ Rule { id = ctr, name = Rn.1 }

RuleDef
E [[ cond ]]
A[[ sourceColln.collect := including(sourceColln.collect, elem.be ]]

B[[ elem) ]] (ctr, env)
B[[ SourceColln ]] (ctr, env)
B[[ ctx ]] (ctr, env)

where cond = (sourceColln includes elem)
and (sourceColln = ctx.sourceColln)

ctr = freshId()
n = freshRuleNumber()

Example Translation

The following example shows the use of the collect iterator expression within
another expression to create an invariant. We can also see that the collection
is used as an intermediate value in the translation of the complete expression.

context University
inv: self.students -> collect(firstName) -> size() > 0

Rn.1 bind student : Student
bind studentColln : StudentColln
bind university : University
ifmatch student, studentColln, university
where ((studentColln includes student)
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and (studentColln = university.studentColln)
then studentColln.collect := including (studentColln.collect, student.firstName)

Rn.2 bind studentColln : StudentColln
bind university : University
ifmatch studentColln, university
where studentColln collect.size() > 0

and (studentColln = university.studentColln)
and (Rn = true or Rn = unknown)

then (Rn := true)
Rn.3 bind studentColln : StudentColln

bind university : University
ifmatch studentColln, university
where (not studentColln collect.size() > 0)

and (studentColln = university.studentColln)
then (Rn := false)

5.3.8 Let Expression

There is no representation of Let expression in RBML. The translation of a
Let expresion is equal to the translation of the body expression, where all
the occurences of the variables in the body expression are replaced by their
definition. A Let declaration is of the form { var = value }. The operator
(⇒) performs the substitution.

The translation scheme for the Let expression is as follows:

E [[let decls in be]]
≡ E [[e]]

wheree = (decls ⇒ be)

Example Translation

context University
inv: let numberOfStudents : Integer = self.students.size()

in numberOfStudents > 0

Rn.1 bind university to University
ifmatch university
where (self.students.size() > 0)

and (Rn = true or Rn = unknown)
then (Rn := true)
end
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Rn.2 bind university to University
ifmatch university
where not (self.students.size() > 0)
then (Rn := false)
end

The rules Rn.1 and Rn.2 in the above example implement the translation
scheme for the relational expression > (see Section 5.3.2), where the oc-
curence of the variable numberOfStudents has been replaced by its defini-
tion.

5.3.9 Message Expression

Since there is no representation for the OCL message expression in RBML,
we translate the input expression into a RuleText element in RBML as de-
scribed in Section 5.1.2.

The translation scheme is straightforward because we simply translate the
input expression into a rule text value.

E [[ te⊕ name (arg1, . . . , argn) ]]
≡ Rule { id = ctr, name = Rn.1 }

RuleText { value = te⊕ name (arg1, . . . , argn) }

where ⊕ ∈ { ’ˆ’, ’ˆˆ’ }

5.4 Generating RBML Document

The implementation of the RBML code generator consists of several phases,
namely

• processing the code generation environment,

• passing the environment to the nodes of the tree,

• generating the RBML data representation for the OCL constructs, and

• creating an RBML document from the generated data representation.

The following sections explain the process of each phase in detail.



Code Generation 95

5.4.1 Processing the Environment

In Section 4.7.1, we discussed the process of creating a type environment
needed for the type checking process. The type environment contains the
subtype relations between types. For the code generation process, we define
an environment that is different from the one for the type checking process.

Although these environments are processed from the same model informa-
tion, we distinguish them in order to simplify the implementation process.
As a result, for each process, we provide only the information which are
needed.

The environment for the code generation contains

• the classes, their properties (attributes and methods), and their sub-
classes,

• the associations between classes, and

• the user defined datatypes.

Each element in the environment has a unique id associated with it. We use
the ids from the XMI file which are globally unique, called uuid.

Besides the classes from the UML model, we also initialize the environment
with two system generated classes, namely:

• The RBMLBase class.

This class owns the rule attributes which are generated in the generic
rule based translation approach, as discussed in Section 5.2.2. At the
time of the initialization, this class contains no attributes.

• The Domain class.

The primitive types and the collection types in OCL have a number
of predefined methods. These methods are not defined in the UML
model. Therefore, we introduce a class that acts as a superclass of all
the other classes of the model, which is called Domain class.

All the predefined methods in OCL will be the methods of the Domain
class. When there is a call to the OCL predefined method, we refer to
the method of this class.

5.4.2 Passing the Environment

The code generation environment is passed to the nodes of the tree as a
chained attribute. We pass it as a chained attribute instead of as an inherited
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attribute, because during the process in the sub trees, the environment will
be enriched with system generated attributes and classes.

The enriched environment will be passed back to the parent node, where
they will be used to generate the RBML document in the remainder of the
translation.

5.4.3 Generating the RBML Data Representation

Having all the information needed for the code generation process available,
the next step is to generate the RBML data representation for each OCL
construct. The data representation is defined in Haskell. The complete data
type definition can be seen in Appendix C.

The Haskell data definition for RBML is generated using a package contain-
ing a collection of utilities for Haskell and XML, called HaXml. The version
of HaXml that we use in the implementation is HaXml-1.11 [HaX].

In the paper of Wallace et al. [WR99], two alternatives for representing XML
in Haskell are presented. In this implementation, we choose to use a compo-
nent of HaXml called DtdToHaskell, which derives the Haskell data defini-
tion based on a specific DTD. Besides the data definition, DtdToHaskell also
derives appropriate class instance declarations for each generated type. The
instance declarations allow us to the read and write a data representation
as an XML document.

The first step concerning this implementation is translating the RBML
schema into a what we call RBML DTD, and subsequently generate the
Haskell data definition from it.

The following AG attribute definition shows a number of attributes needed
for generating the code, see AG System User Manual [BSL03] for the com-
plete description about the use of AG.

ATTR Expression
[
| cid : Int

crule : Int
| typedexp : TypedExpression

premise : Premise
action : Action
rattr : String

]

ATTR OclFile PackageDeclaration ContextDeclaration
ContextDeclarations InitOrDerive InitOrDerives
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InvOrDef InvOrDefs PrePostOrBodyDecl PrePostOrBodyDecls
Expression Expressions
[ | gammaG : GammaG | rules: {[Rule]} ]

The process for generating the rules is done in the non-terminal Expression.
In the code generation, we introduce several attributes for passing and col-
lecting the information through the tree.

The chained attribute cid is a unique counter for the system generated ele-
ments (attribute, condition, rule, binding), while crule is a unique counter
for the generic rule attribute. The values of cid and crule are threaded
through the tree, and incremented along the way each time we create a new
element or a new rule.

Each expression may produce a typed expression, a premise, an action,
and/or a rule. The values are passed through the synthesized attributes
typedexp, premise, action, and rattr to their parent nodes so that they
can be used to generate rules.

At the top of the tree OclFile, we are only interested in the generated
rules, and the collected environment gammaG.

To get a better idea on how the code generator is implemented, let us look at
the code fragment for the Integer and Boolean literal. The implementation
are based on the translation scheme for a literal defined in Section 5.3.1.

SEM Expression
| IntegerLiteral

lhs.typedexp = TypedExpressionLiteral (str2Literal @value)
lhs.premise = noPremise
lhs.action = noAction
lhs.rattr = voidAttr
lhs.rules = []

| BooleanLiteral
lhs.typedexp = TypedExpressionLiteral (str2Literal @value)
lhs.premise = (premiseC False

(unaryCondition (@lhs.cid) False
(unaryLiteral "true"))

Nothing )
lhs.action = noAction
lhs.rattr = voidAttr
lhs.rules = []
lhs.cid = @lhs.cid + 1
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The IntegerLiteral produces only a literal typed expression, and no
premise, action, and rule. The BooleanLiteral produces a literal typed
expression and a premise, but no action and rule.

The If expression produces several rules in the generation process. The fol-
lowing code implements the translation scheme which is defined in Section
5.3.4.

SEM Expression
| IfExp

loc.premise = @condition.premise
.rattr = ’R’:(show @lhs.crule)

loc.(rules,cid) =
( [ rule (@lhs.cid+1) @sid Nothing @premise -- (R1)

(actionAssignment
(attrAssignment @elements False

@rattr @thenpart.rattr))
,rule (@lhs.cid+2) @sid Nothing @negpre -- (R2)

(actionAssignment
(attrAssignment @elements False

@rattr @elsepart.rattr))
] ++
if isAction @thenpart.action && isAction @elsepart.action
then
[ rule (@lhs.cid+3) @sid Nothing @premise -- (R3)

@thenpart.action
,rule (@lhs.cid+4) @sid -- (R4)

(Just (elseOf (@lhs.cid+5)))
(premiseC False

(unaryCondition (@lhs.cid+6) False
(unaryLiteral "true"))

Nothing)
@elsepart.action

]
else []

, if isAction @thenpart.action && isAction @elsepart.action
then @lhs.cid+7 else @lhs.cid+3 )

lhs.rules = @condition.rules ++ @thenpart.rules ++
@elsepart.rules ++ @rules

lhs.cid = @cid
lhs.premise = @premise
lhs.rattr = @rattr
lhs.crule = @lhs.crule + 1
lhs.gammaG = addRule2Env (@rattr,(show @lhs.cid,"RBMLBase"))
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(attribute (show @lhs.cid) @rattr "boolean")
@lhs.gammaG

Due to space limitation, the above code is slightly modified from the actual
code. However, they still preserve the main ideas, namely the rule generation.

The If expression has three sub expressions, namely condition, thenpart,
and elsepart. We introduce the local attribute premise because the value
is used several times while generating the rules. The local attribute rattr
stands for rule attribute, which is also the name of the synthesized attribute
of the If node.

To generate a rule, we call a function rule and pass the arguments: element
id, scope id, optional else-of, premise, and action. The generated rules R1
and R2 correspond to the generic translation approach (the first two rules in
the translation scheme). The rules R3 and R4 correspond to the conditional
translation approach, where certain conditions have to be met before these
rules are generated.

The generated rules, together with the rules from the sub expressions are
passed to the parent node. Finally, the new rule attribute is added to the
environment gammaG.

5.4.4 Creating an RBML Document

The final phases of our code generation process is to create an RBML doc-
ument from the input OCL expressions. First, we compose a Rulebase value
from the generated RBML data representation and the collected environ-
ments. Then, we write the Rulebase value as an XML document conforming
to the RBML DTD, which is derived from the RBML schema. The output
is statically however to be correct with respect to the DTD [WR99].
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Conclusion

This research project is aimed to design and implement tools that can be
used to execute the POWER process. We focus on verifying the concep-
tual models created within the POWER project. Specifically, we design and
implement a tool that type checks UML/OCL models, and then generates
RBML document from the well-typed models. The design and implementa-
tion of this tool consists of three phases, namely parsing, type checking, and
code generation.

A number of shorthands in writing OCL expressions influence the design de-
cisions of our compiler. Although we manage to parse all the OCL constructs,
we have set some restrictions in the type checking process (see Section 4.7.5).

We have formalized a set of type rules for OCL. The application of the type
rules are shown in some examples of derivation trees. The type rules are also
used as our guidance in the implementation of the type checker.

In the code generation to RBML, we introduced two main approaches: the
generic rule based and the conditional rule based translations. We also dis-
cussed how each translation should be done, and what the advantages of
each are. There are no restrictions on which approach to be chosen since it
depends on the purpose of the rule based system. However, we have imple-
mented the two approaches in the code generation process.

The difference in paradigm between OCL, a constraint based language, and
RBML, a a rule based language, makes the mapping for some language con-
structs rather difficult. However, the workarounds taken during the design
have been considered carefully so that they preserve the meaning of the
initial OCL expressions.

The output of the code generation process is an RBML document. The col-
lection of rules within the RBML document are then validated and verified
by the VALENS verification tool. The verification tool checks the consisten-
cies and completeness of the generated rules.

100
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6.1 Contributions

The main contributions of this thesis project are two folds.

Firstly, we have formalized the OCL type system in the form of a set of
type rules. The existence of subtype relations in OCL has been incorporated
completely while formalizing the type rules. Our implementation of the type
checker are able to detect the type errors within OCL expressions, given the
UML model information to which these expressions belong.

Secondly, we have successfully implemented the transformation of OCL as a
constraint based language into a rule based language RBML. The transfor-
mation has been done for a big set of OCL expressions. Some OCL constructs
such as message expression, collection literal, and tuple literal are not en-
tirely supported in RBML. The translation of those constructs to RBML
are done by generating a free text rule, and free text literals respectively.

6.2 Future Work

The motivation of this project is the generation of knowledge based com-
ponents from well-typed UML/OCL models. In this project, we present the
type checking OCL expressions and the code generation to the rule based
system RBML. Although we have implemented the code generator, there
are still a lot of things that should be improved.

In the following section, we list some possibilities for future research.

6.2.1 Extending RBML

RBML has limitations in the number of supported constructs. In following
section, we list some possible extensions, which makes the translation from
OCL to RBML possible or more natural.

Collection Literal

In OCL, one can write a collection literal, such as

Set{’red’, ’green’, ’blue’}
Sequence{2, 4, 6, 8, 10}

The collection literals have the notion of lists in many other languages. We
can apply many useful operations to the collection literals, such as checking
for emptiness, counting the number of elements, joining two collections, etc.
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The notion of collection in RBML is introduced by the association with
multiplicity greater than 1. However, the collection literals are not supported
in RBML. Since the collection literals are very useful, it would be nice to
have this feature also in RBML.

Tuple Literal

The OCL tuple literal enables one to group several values into an aggregate
value. Each value within the aggregate value has a name attached to it.
Consider the following example,

context University
def: statistics:Set(TupleType(dept:Department,

numTeachers:Integer))
= departments-> collect( d |

Tuple{dept:Department = d,
numTeachers:Integer = d.member->size()})

In the context University, we define the attribute statistics which record
the number of the teachers on each department of a university. The tuple
literal is used to group the name of a department and the number of teachers
on the department into a single tuple value.

In most languages, the OCL tuple literal is known as a record. There are
many situation where the use of OCL tuple literals is helpful. Therefore,
having this feature in RBML will be advantageous.

Collecting and Checking Constraints

Referring to our example in Table 5.1 for the unsupported constructs. For
example, consider the expression

x implies y>0

Instead of not supporting the translation for this construct, we could record
it as a constraint in a collection of constraints using a certain method. Sup-
pose we have the method remember which does the process, the translation
will then become

Premise: x
Action: remember(y>0)

Premise: not (y>0)
Action: x:=false
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The method remember records the constraint y>0 in the collection of con-
straints for the premise x. This constraint states that if the value of x is true
then y should be greater than 0.

In addition to the method remember, we also need a method which checks
a constraint against the existing constraints. For example, consider the ex-
pression

x implies y=-1

For the same premise x, there is a contradiction with the constraint from
the first example about y. The generated rules are as follows:

Premise: x
Action: checkfor(y=-1)

Premise: not (y=-1)
Action: x:=false

We use the method checkfor to check the constraint y=-1. If the constraint
contradicts the existing constraints, the inconsistency is reported.

The bottom line is that predicates are not always true or false: their truth-
fulness is simply not yet known. The methods remember and checkfor allow
us to deal with postponing certain checks in a elegant way.

The Action of a Rule Definition

A rule definition in RBML consists of a premise and an action. The action
part supports a limited number of constructs, see Section 5.1. This limi-
tation causes many translations using a conditional based approach not to
be supported either. We propose that the action is extended to include a
method call.

Using a certain method call, we can wrap up any constraint so that it can
be used later on to derive other information. For example, the call to the
method remember discussed in Section 6.2.1. The unsupported construct is
passed an argument to the method where it will be recorded in the collection
of constraints.

6.2.2 Schema based XML Data Bindings

The existing XML data bindings for Haskell, including HaXml, translate
DTDs to Haskell datatypes. The translation of considerably complicated
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XML schema is not supported yet. In the technical report by Atanassow
et al. [ACJ03], a tool for translating of XML Schema types into Haskell is
presented. This tool is implemented as a generic program in Generic Haskell.

Since RBML itself is an XML schema, it is important to study how this tool
can be used to translate an XML schema to Haskell datatypes. And how the
Haskell datatypes can be read back into an XML document that conforms
to the schema.

6.2.3 From RBML to an Executable Code

RBML is not a programming language, instead it is an XML schema to rep-
resent rules in the object oriented context. An XML document conforming
to RBML schema is referred to as an RBML document. In this project, we
have successfully implemented the translation from UML/OCL to RBML.
Despite the needs for the extensions discussed in Section 6.2.1, RBML is
potentially suitable as a rule based representation system for UML/OCL
models. RBML has elements that support both UML and OCL representa-
tion.

The most suitable way to test the generated knowledge based components
in form of the RBML document, is to translate them to an executable code.
The correct translation results in an application that performs automated
law enforcement tasks. There is no restriction on which target language to be
generated, although some languages will be more suited than others. Object
oriented languages, such as Java or C++, are likely possibilities.
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OCL Concrete Syntax

The following OCL concrete syntax is created based on the concrete syntax
described in OCL 2.0 specification [OMG03]. However, we have extended the
grammar specification with the precedence rules for operations. For instance,
the multiplicative operators have higher precedence than the additive oper-
ators, and the logical operators have higher precedence than the relational
operators.

Expressions

Expression := LetExp | ImplicationExp

LetExp := ’let’ VarDecl (’,’ VarDecl)*

’in’ Expression

VarDecl := SimpleName (’:’ TypeSpecifier)? (’=’ Expression)?

ImplicationExp := LogicalExp (’implies’ LogicalExp)*

LogicalExp := (RelationalEqExp LogicalOp)* RelationalEqExp

LogicalOp := ’and’ | ’or’ | ’xor’

RelationalEqExp := RelationalExp (RelationalEqOp RelationalExp)?

RelationalEqOp := ’=’ | ’<>’

RelationalExp := AdditiveExp (RelationalOp AdditiveExp)?

RelationalOp := ’<’ | ’>’ | ’>= ’| ’<=’

AdditiveExp := MultiplicativeExp (AdditiveOp MultiplicativeExp)*

AdditiveOp := ’+’ | ’-’

MultiplicativeExp := UnaryExp (MultiplicativeOp UnaryExp)*

MultiplicativeOp := ’*’ | ’/’

UnaryExp := UnaryOp PropertyCallExp

| PropertyCallExp
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UnaryOp := ’-’ | ’not’

PropertyCallExp := AttributeCall

| OperationCall

| NavigationCall

| PathCall

| IterateExp

| IteratorExp

| MessageExp

AttributeCall := PrimaryExp ’.’ Name (’@pre’)?

OperationCall := PrimaryExp ’.’ Name (’@pre’)? ’(’ Expressions? ’)’

| PrimaryExp ’->’ Name ’(’ Expressions? ’)’

NavigationCall := PrimaryExp ’.’ Name (’@pre’)? ’[’ Expressions? ’]’(’@pre’)?

PathCall := PrimaryExp (’.’ Name ’::’ Name)*

IterateExp := PrimaryExp ’->’ Name ’(’ (VarDecl ’;’)? VarDecl ’|’ Expression ’)’

IteratorExp := PrimaryExp ’->’ Name ’(’ (VarDecl (’,’VarDecl)? ’|’)? Expression ’)’

MessageExp := PrimaryExp (’^^’ | ’^’) Name ’(’MessageArgs?’)’

MessageArgs := MessageArg (’,’ MessageArg)*

MessageArg := ’?’ (’:’ Type)? | Expression

Expressions := Expression (’,’ Expression)*

PrimaryExp := LiteralExp | PropertyCallExp | ParensExp | IfExp

LiteralExp := StringLiteral

| RealLiteral

| IntegerLiteral

| BooleanLiteral

| EnumLiteral

| CollectionLiteral

StringLiteral := ’’’<String>’’’

RealLiteral := <String>

IntegerLiteral := <String>

BooleanLiteral := ’true’ | ’false’

EnumLiteral := PathName ’::’ SimpleName

TypeSpecifier := ’Tuple’ ’(’ TypeDeclarations? ’)’

| CollectionId ’(’ TypeSpecifier ’)’

| PathName

TypeDeclarations := TypeDeclaration (’,’ TypeDeclaration)*

TypeDeclaration := SimpleName ’:’ TypeSpecifier



OCL Concrete Syntax 107

CollectionLiteral := CollectionId ’{’ CollectionItems? ’}’

CollectionId := ’Collection’| ’Set’ | ’OrderedSet’ | ’Bag’| ’Sequence’

CollectionItems := CollectionItem ( ’, ’ CollectionItem)*

Collection Item := Expression | Expression ’...’ Expression

ParensExp := ’(’ Expression ’)’

IfExp := ’if’ Expression ’then’ Expression

’else’ Expression ’endif’

PathName := SimpleName (’::’ SimpleName)*

SimpleName := <String>

Package and Context Declarations

OclFile := PackageDeclaration

PackageDeclaration := ’package’ PathName ContextDeclaration* ’endpackage’

| ContextDeclaration+

ContextDeclaration := ClassifierContext | OperationContext | AttrOrAssocContext

ClassifierContext := ’context’ PathName InvOrDef+

OperationContext := ’context’ Operation PrePostOrBodyDecl+

AttrOrAssocContext := ’context’ PathName ’:’ TypeSpecifier InitOrDerive+

InvOrDef := ’inv’ SimpleName? ’:’ Expression

| ’def’ SimpleName? ’:’ DefExpression

DefExpression := VarDecl ’=’ Expression

| Operation ’=’ Expression

Operation :=

PathName ’::’ SimpleName ’(’ FormalParameters? ’)’ (’:’ TypeSpecifier)?

| SimpleName ’(’ FormalParameters? ’)’ (’:’ TypeSpecifier)?

FormalParameters := FormalParameter (’,’ FormalParameter)*

FormalParameter := SimpleName ’:’ TypeSpecifier

PrePostOrBodyDecl := ( ’pre’ | ’post’ | ’body’ ) SimpleName? ’:’ Expression

InitOrDerive := ( ’init’ | ’derive’ ) ’:’ Expression
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OCL Parsers

module OclParser where

import OclSyntax

import OclScanner

import OclTypes

import UU.Parsing

import UU.Scanner.Token

import UU.Scanner.TokenParser

import UU.Scanner.Position

pOclFile :: Parser Token OclFile

pOclFile = OclFile <$> pPackageDeclaration

pPackageDeclaration :: Parser Token PackageDeclaration

pPackageDeclaration =

PackageDeclaration <$ pKeyPos "package"

<*> pList1Sep (pKey "::") pName

<*> pList pContextDeclaration

<* pKey "endpackage"

<|> ContextDeclarations <$> pList1 pContextDeclaration

pContextDeclaration :: Parser Token ContextDeclaration

pContextDeclaration =

attrorassoc <$> pKeyPos "context"

<*> (pNameU <**> pPath )

<* pKey ":"

<*> pTypeSpecifier

<*> pList1 pInitOrDer

<|> classcontext <$> pKeyPos "context"

<*> (pNameU <**> pPath )

<*> pList1 pInvOrDef

<|> opercontext <$> pKeyPos "context"

<*> (pNameU <**> pPath )

<*> pParens (pListSep (pKey ",") pFormalParameter)

<*> pMaybeReturnType

<*> pList1 pPrePostOrBodyDecl

where
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attrorassoc pos nms tp exprs

= AttrOrAssocContext pos (init nms) (last nms) tp exprs

classcontext pos nms decls

= ClassifierContext pos nms decls

opercontext pos nms params tp decls

= OperationContext pos (init nms) (last nms) params tp decls

pPath :: Parser Token (Name -> Names)

pPath =

(pathf <$ pKey "::" <*> pList1Sep (pKey "::") pNameLU)

‘opt‘ namef

where pathf nms nm = (nm:nms)

namef nm = [nm]

pInitOrDer :: Parser Token InitOrDerive

pInitOrDer = uncurry InitOrDerive <$> pStereoInit

<* pKey ":"

<*> pExpression

pStereoInit :: Parser Token (Pos, String)

pStereoInit = (\p -> (p, "init")) <$> pKeyPos "init"

<|> (\p -> (p, "derive")) <$> pKeyPos "derive"

pInvOrDef :: Parser Token InvOrDef

pInvOrDef =

Invariant <$> pKeyPos "inv"

<*> pMaybeName

<* pKey ":"

<*> pExpression

<|> VariableDef <$> pKeyPos "def"

<*> pMaybeName

<* pKey ":"

<*> pVariableDeclarationDef

<*> pExpression

<|> operdef <$> pKeyPos "def"

<*> pMaybeName

<* pKey ":"

<*> (pNameLU <**> pPath)

<*> pParens (pListSep (pKey ",") pFormalParameter)

<*> pMaybeReturnType

<* pKey "="

<*> pExpression

where

operdef pos mb nms params tp e

= OperationDef pos mb (init nms) (last nms) params tp e

pPrePostOrBodyDecl :: Parser Token PrePostOrBodyDecl

pPrePostOrBodyDecl =

uncurry PrePostOrBodyDecl <$> pStereotype

<*> pMaybeName

<* pKey ":"

<*> pExpression

pStereotype :: Parser Token (Pos, String)
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pStereotype = (\p -> (p, "pre")) <$> pKeyPos "pre"

<|> (\p -> (p, "post")) <$> pKeyPos "post"

<|> (\p -> (p, "body")) <$> pKeyPos "body"

pFormalParameter :: Parser Token FormalParameter

pFormalParameter = FormalParameter <$> pName

<* pKey ":"

<*> pTypeSpecifier

pInitOrDerive :: Parser Token (Pos, String)

pInitOrDerive = (\p -> (p, "init")) <$> pKeyPos "init"

<|> (\p -> (p, "derive")) <$> pKeyPos "derive"

pExpression :: Parser Token Expression

pExpression = pLetExp <|> pLogicalImplication

pLetExp :: Parser Token Expression

pLetExp = LetExp <$> pKeyPos "let"

<*> pList1Sep (pKey ",") pVariableDeclaration

<* pKey "in"

<*> pExpression

pVariableDeclaration :: Parser Token VariableDeclaration

pVariableDeclaration =

VariableDeclaration <$> pName

<*> pMaybeReturnType

<*> pMaybeEqExpression

pVariableDeclarationDef :: Parser Token VariableDeclaration

pVariableDeclarationDef =

(\nm -> VariableDeclaration nm NothingTypeSpecifier

NothingExpression

) <$> pName

<* pKey "="

<|>(\nm tp->VariableDeclaration nm (JustTypeSpecifier tp)

NothingExpression

) <$> pName

<* pKey ":"

<*> pTypeSpecifier

<* pKey "="

<|>(\nm tp e->VariableDeclaration nm (JustTypeSpecifier tp)

(JustExpression e)

) <$> pName

<* pKey ":"

<*> pTypeSpecifier

<* pKey "="

<*> pExpression

<* pKey "="

pLogicalImplication :: Parser Token Expression

pLogicalImplication =

pChainr ((\p e -> BinaryExp p e "implies")<$>(pKeyPos "implies"))

pLogicalExp
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pLogicalExp :: Parser Token Expression

pLogicalExp =

pChainl ((\(p,op) re -> BinaryExp p re op) <$> pLogicalOp )

pRelationalEqExp

pLogicalOp :: Parser Token (Pos, String)

pLogicalOp = (\p -> (p, "and"))<$> pKeyPos "and"

<|>(\p -> (p, "or")) <$> pKeyPos "or"

<|>(\p -> (p, "xor"))<$> pKeyPos "xor"

pRelationalEqExp :: Parser Token Expression

pRelationalEqExp = pRelationalExp <**> opt pRelationalEqTailExp id

pRelationalEqTailExp :: Parser Token (Expression -> Expression )

pRelationalEqTailExp =

(\(p,op) re -> \le ->BinaryExp p le op re )<$> pRelationalEqOp

<*> pRelationalExp

pRelationalEqOp :: Parser Token (Pos, String)

pRelationalEqOp = (\p -> (p, "=")) <$> pKeyPos "="

<|> (\p -> (p, "<>")) <$> pKeyPos "<>"

pRelationalExp :: Parser Token Expression

pRelationalExp = pAdditiveExp <**> opt pRelationalTailExp id

pRelationalTailExp :: Parser Token (Expression -> Expression)

pRelationalTailExp =

(\(p,op) re -> \le -> BinaryExp p le op re )<$> pRelationalOp

<*> pAdditiveExp

pRelationalOp :: Parser Token (Pos, String)

pRelationalOp = (\p -> (p, ">")) <$> pKeyPos ">"

<|>(\p -> (p, "<")) <$> pKeyPos "<"

<|>(\p -> (p, ">=")) <$> pKeyPos ">="

<|>(\p -> (p, "<=")) <$> pKeyPos "<="

pAdditiveExp :: Parser Token Expression

pAdditiveExp =

pChainl ((\(p,op) e -> BinaryExp p e op) <$> pAdditiveOp)

pMultiplicativeExp

pAdditiveOp :: Parser Token (Pos, String)

pAdditiveOp = (\p -> (p, "+")) <$> pKeyPos "+"

<|>(\p -> (p, "-")) <$> pKeyPos "-"

pMultiplicativeExp :: Parser Token Expression

pMultiplicativeExp =

pChainl ((\(p,op) e -> BinaryExp p e op) <$> pMultiplicativeOp)

pUnaryExp

pMultiplicativeOp :: Parser Token (Pos, String)

pMultiplicativeOp = (\p -> (p, "*")) <$> pKeyPos "*"

<|>(\p -> (p, "/")) <$> pKeyPos "/"
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pUnaryExp :: Parser Token Expression

pUnaryExp = (\(p,op) e -> UnaryExp p op e ) <$> pUnaryOp

<*> pPropertyCallExp

<|> pPropertyCallExp

pUnaryOp :: Parser Token (Pos,String)

pUnaryOp = (\p ->(p, "-")) <$> pKeyPos "-"

<|> (\p ->(p,"not"))<$> pKeyPos "not"

pPropertyCallExp :: Parser Token Expression

pPropertyCallExp = pPrimaryExp

<??> ( propcall <$> pList1 pPropertyCallExpTail)

propcall fs = \pe -> foldl g pe fs

where g :: Expression -> (Expression -> Expression) -> Expression

g exp f2 = f2 exp

pPropertyCallExpTail =

attrcall <$> pKey "."

<*> pName

<*> pPre

<|> opercall <$> pKey "."

<*> pName

<*> pPre

<*> (pParens (pListSep (pKey ",") pExpression))

<|> navcall <$> pKey "."

<*> pName

<*> (pBracks (pListSep (pKey ",") pExpression))

<*> pPre

<|> pathcall <$> pKey "."

<*> pNameU

<* pKey "::"

<*> pName

<|> opercall2 <$> pKey "->"

<*> pName

<*> (pParens (pListSep (pKey ",") pExpression))

<|> iterexp <$> pKey "->"

<*> pIterateName

<* pOParen

<*> pVarDeclIterate

<*> pExpression

<* pCParen

<|> iterexp <$> pKey "->"

<*> pIteratorName

<* pOParen

<*> pVarDeclIterator

<*> pExpression

<* pCParen

<|> msgexp <$> pMessageOp

<*> pName

<*> pParens (pListSep (pKey ",") pMessageArgument)

where

attrcall op nm pre = \pe ->AttributeCall pe op nm pre

opercall op nm pre args = \pe ->OperationCall pe op nm pre args
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navcall op nm args pre = \pe ->NavigationCall pe op nm args pre

opercall2 op nm args = \pe ->OperationCall pe op nm False args

iterexp op nm decls e = \pe ->LoopPropertyCall pe op nm decls e

msgexp (pos,op) nm args = \pe ->MessageExp pos pe op nm args

pathcall op nm nm2 =

\pe ->PathCall pe op (init(nm:[nm2])) (last(nm:[nm2]))

pVarDeclIterate :: Parser Token VariableDeclarations

pVarDeclIterate =

(\a b -> a:[b])<$> pVariableDeclaration

<* (pKey ";" )

<*> pVariableDeclaration <* pKey "|"

<|> (\a -> [a]) <$> pVariableDeclaration <* pKey "|"

pVarDeclIterator :: Parser Token VariableDeclarations

pVarDeclIterator =

(\a b -> a:[b])<$> pVariableDeclaration

<* (pKey "," )

<*> pVariableDeclaration <* pKey "|"

<|> (\a -> [a]) <$> pVariableDeclaration <* pKey "|"

<|> pSucceed []

pMessageOp :: Parser Token (Pos, String)

pMessageOp = (\p -> (p, "^^")) <$> pKeyPos "^^"

<|> (\p -> (p, "^")) <$> pKeyPos "^"

pMessageArgument ::Parser Token MessageArgument

pMessageArgument =

TypeArgument <$> pKeyPos "?" <*> pSucceed "?"

<*> pMaybeReturnType

<|> ExpArgument <$> pExpression

pPre :: Parser Token Bool

pPre = ((\a b-> True)<$>pKey "@" <*> pKey "pre" ) ‘opt‘ False

pPrimaryExp :: Parser Token Expression

pPrimaryExp = pLiteral

<|> pFeatureCall

<|> pParens pExpression

<|> pIfExp

<|> pVariableExp

pVariableExp :: Parser Token Expression

pVariableExp = VariableExp <$> pName

pLiteral :: Parser Token Expression

pLiteral = pStringLiteral <|> pRealLiteral

<|> pIntegerLiteral <|> pBooleanLiteral

<|> pEnumLiteral <|> pCollectionLiteral

<|> pTupleLiteral

pStringLiteral :: Parser Token Expression

pStringLiteral =(\(s, pos) -> StringLiteral pos s)<$> pStringPos
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pBooleanLiteral :: Parser Token Expression

pBooleanLiteral =

(\p -> BooleanLiteral p "True") <$> pKeyPos "true"

<|>(\p -> BooleanLiteral p "False") <$> pKeyPos "false"

pIntegerLiteral :: Parser Token Expression

pIntegerLiteral = (\(v,p)-> IntegerLiteral p v )<$> pIntegerPos

pRealLiteral :: Parser Token Expression

pRealLiteral = (\(v,p) k i -> RealLiteral p (v++k++i) )

<$> pIntegerPos

<*> pKey "."

<*> pInteger

pEnumLiteral :: Parser Token Expression

pEnumLiteral =

pNameLU <**> (enumf <$ pKey "::" <*> pList1Sep (pKey "::") pNameLU)

where enumf nms = \nm->EnumLiteral (init (nm:nms)) (last (nm:nms))

pCollectionLiteral :: Parser Token Expression

pCollectionLiteral =

uncurry CollectionLiteral

<$> pCollectionIdentifier

<*> pCurly (pListSep (pKey ",") pCollectionItem)

pCollectionItem :: Parser Token CollectionItem

pCollectionItem = CollectionRange <$> pExpression

<* pKey ".."

<*> pExpression

<|> CollectionExp <$> pExpression

pCollectionIdentifier:: Parser Token (Pos,String)

pCollectionIdentifier =

(\p ->(p, "Sequence")) <$> pKeyPos "Sequence"

<|> (\p ->(p, "Set")) <$> pKeyPos "Set"

<|> (\p ->(p, "Bag")) <$> pKeyPos "Bag"

<|> (\p ->(p, "OrderedSet")) <$> pKeyPos "OrderedSet"

pTupleLiteral :: Parser Token Expression

pTupleLiteral =

TupleLiteral <$> pKeyPos "Tuple"

<*> pCurly (pList1Sep (pKey ",") pVariableDeclaration)

pIfExp :: Parser Token Expression

pIfExp = IfExp <$> pKeyPos "if"

<*> pExpression

<* pKey "then"

<*> pExpression

<* pKey "else"

<*> pExpression

<* pKey "endif"

pFeatureCall = pNameLU <**> pFeatureCallAlts

pFeatureCallAlts =
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propcall3<$> pPre

<*> (opercall3

<$> pParens (pListSep (pKey ",") pExpression)

‘opt‘ attrcall3

)

<|> navcall3 <$> pBracks (pListSep (pKey ",") pExpression) <*> pPre

<|> pathopercall <$ pKey "::"

<*> pName

<*> pParens (pListSep (pKey ",") pExpression)

where

propcall3 pre f = \nm -> f nm pre

opercall3 args = \nm pre -> ImplicitOperationCall nm pre args

attrcall3 = \nm pre -> ImplicitAttributeCall nm pre

navcall3 args pre = \nm -> ImplicitNavigationCall nm args pre

pathopercall nm2 args =

\nm ->PathOperationCall (init (nm:[nm2])) (last (nm:[nm2])) args

pName :: Parser Token Name

pName = (\(nm,pos) -> Name pos nm )<$> pVaridPos

pNameU :: Parser Token Name

pNameU = (\(nm,pos) -> Name pos nm ) <$> pConidPos

pNameLU :: Parser Token Name

pNameLU = pName <|> pNameU

pIterateName:: Parser Token Name

pIterateName = (\p -> Name p "iterate") <$> pKeyPos "iterate"

pIteratorName:: Parser Token Name

pIteratorName = (\p -> Name p "forAll")<$> pKeyPos "forAll"

<|> (\p -> Name p "exists") <$> pKeyPos "exists"

<|> (\p -> Name p "select") <$> pKeyPos "select"

<|> (\p -> Name p "reject") <$> pKeyPos "reject"

<|> (\p -> Name p "collect")<$> pKeyPos "collect"

pMaybeName = mkMaybeParser JustName NothingName pName

pMaybeNameU = mkMaybeParser JustName NothingName pNameU

pMaybeTypeSpecifier =

mkMaybeParser JustTypeSpecifier NothingTypeSpecifier pTypeSpecifier

pMaybeExpression =

mkMaybeParser JustExpression NothingExpression pExpression

pMaybeReturnType =

mkMaybeParserSep JustTypeSpecifier NothingTypeSpecifier

(pKey ":") pTypeSpecifier

pMaybeEqExpression = mkMaybeParserSep JustExpression NothingExpression

(pKey "=") pExpression

pTypeSpecifier :: Parser Token TypeSpecifier

pTypeSpecifier =

TupleType <$> pKeyPos "Tuple"

<*> pParens (pListSep (pKey ",") pTypeDeclaration)

<|> (\(pos,nm) tp -> CollectionType (Name pos nm) tp)

<$> pCollectionIdentifier
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<*> pParens pTypeSpecifier

<|> pNameU

<**> ((pathtp <$ pKey "::" <*> pList1Sep (pKey"::") pNameU)

‘opt‘ objTp

)

where

pathtp nms = \nm -> PathType (init (nm:nms)) (last (nm:nms))

objTp = \nm -> PathType [] nm

pTypeDeclaration :: Parser Token TypeDeclaration

pTypeDeclaration = TypeDeclaration <$> pNameU

<* pKey ":"

<*> pTypeSpecifier

-----------------

-- Utilities

-----------------

mkMaybeParserSep semJust semNothing sep p

= semJust <$ sep <*> p <|> pSucceed semNothing

mkMaybeParser semJust semNothing p

= semJust <$> p <|> pSucceed semNothing
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RBML Data Representation

To intermediate the translation from OCL to RBML, we define the following
Haskell data representation for RBML:

data Action = ActionAttributeValueAssignment AttributeValueAssignment

| ActionAssociationEstablishment AssociationEstablishment

| ActionUntypedMethod UntypedMethod

| ActionArithmeticExpression ArithmeticExpression

data Association = Association Association_Attrs Source Destination

(Maybe Role) (Maybe InverseRole)

data Association_Attrs = Association_Attrs

{ associationId :: String

, associationName :: String

, associationComment :: String

}

data AssociationEstablishment =

AssociationEstablishment AssociationEstablishment_Attrs

RoleReference InverseRoleReference

data AssociationEstablishment_Attrs = AssociationEstablishment_Attrs

{ associationEstablishmentObjectqueryexpression :: String }

data Argument = Argument Argument_Attrs (Maybe Type)

data Argument_Attrs = Argument_Attrs

{ argumentId :: String

, argumentName :: String

, argumentComment :: String

, argumentArgumenttype :: String

, argumentDefaultvalue :: String

}

data ArgumentRef = ArgumentRef { argumentRefIdref :: String }
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newtype ArgumentExpression = ArgumentExpression TypedExpression

data ArithmeticExpression =

ArithmeticExpression LeftHand ArithmeticOperator RightHand

data ArithmeticOperator = ArithmeticOperator

{ arithmeticOperatorOperator :: ArithmeticOperator_operator }

data ArithmeticOperator_operator =

ArithmeticOperator_operator_plus

| ArithmeticOperator_operator_minus

| ArithmeticOperator_operator_times

| ArithmeticOperator_operator_divided_by

| ArithmeticOperator_operator_int_div

| ArithmeticOperator_operator_mod

data Attribute = Attribute Attribute_Attrs (Maybe Type)

data Attribute_Attrs = Attribute_Attrs

{ attributeId :: String

, attributeName :: String

, attributeComment :: String

, attributeAccess :: String

, attributeStatic :: String

, attributeInitialvalue :: String

, attributeConstant :: String

}

data AttributeReference = AttributeReference (Maybe Qualifier) AttributeRef

data AttributeRef = AttributeRef { attributeRefIdref :: String }

data AttributeValue = AttributeValue AttributeValue_Attrs AttributeRef

data AttributeValue_Attrs = AttributeValue_Attrs

{ attributeValueId :: String

, attributeValueName :: String

, attributeValueComment :: String

, attributeValueValue :: String

}

data AttributeValueAssignment =

AttributeValueAssignment AttributeValueAssignment_Attrs

AttributeReference TypedExpression

data AttributeValueAssignment_Attrs =

AttributeValueAssignment_Attrs {attributeValueAssignmentRetractable::String}

data BinaryLogicalExpression =

BinaryLogicalExpression BinaryLogicalExpression_Attrs LeftHand RightHand

data BinaryLogicalExpression_Attrs = BinaryLogicalExpression_Attrs

{ binaryLogicalExpressionOperator :: BinaryLogicalExpression_operator }
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data BinaryLogicalExpression_operator =

BinaryLogicalExpression_operator_eq

| BinaryLogicalExpression_operator_gt

| BinaryLogicalExpression_operator_ge

| BinaryLogicalExpression_operator_lt

| BinaryLogicalExpression_operator_le

| BinaryLogicalExpression_operator_ne

| BinaryLogicalExpression_operator_includes

| BinaryLogicalExpression_operator_elementof

data BinaryLogicalOp = BinaryLogicalOp BinaryLogicalOp_Attrs Condition

data BinaryLogicalOp_Attrs = BinaryLogicalOp_Attrs

{ binaryLogicalOpValue :: BinaryLogicalOp_value }

data BinaryLogicalOp_value = BinaryLogicalOp_value_and

| BinaryLogicalOp_value_or

data BinaryLogicalOperator =

BinaryLogicalOperatorCondition BinaryLogicalOperator_Attrs Condition

| BinaryLogicalOperatorPremise BinaryLogicalOperator_Attrs Premise

data BinaryLogicalOperator_Attrs = BinaryLogicalOperator_Attrs

{ binaryLogicalOperatorValue :: BinaryLogicalOperator_value }

data BinaryLogicalOperator_value = BinaryLogicalOperator_value_and

| BinaryLogicalOperator_value_or

data Binding = Binding Binding_Attrs ClassRef

data Binding_Attrs = Binding_Attrs

{ bindingId :: String

, bindingName :: String

}

data BoolLiteral = BoolLiteral

{ boolLiteralFreeformat :: String

, boolLiteralPredefined :: String

}

data BooleanAttribute = BooleanAttribute (Maybe Qualifier) AttributeRef

data BooleanMethod = BooleanMethod CalledMethod [PassedArgument]

data BooleanEnumValue = BooleanEnumValue (Maybe Qualifier) EnumValueRef

newtype Calculation = Calculation TypedExpression

data CalledMethod = CalledMethod (Maybe Qualifier) Method

data Class = Class Class_Attrs [Attribute]

[(OneOf2 PrimitiveMethod DomainMethod)] [Instance] [SubClass]

data Class_Attrs = Class_Attrs
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{ classId :: String

, className :: String

, classComment :: String

}

data ClassRef = ClassRef { classRefIdref :: String }

data Condition = Condition Condition_Attrs

(OneOf2 UnaryLogicalExpression BinaryLogicalExpression)

(Maybe BinaryLogicalOp)

data Condition_Attrs = Condition_Attrs

{ conditionId :: String

, conditionNot :: String

}

data Constraint = Constraint Constraint_Attrs (List1 Range)

data Constraint_Attrs = Constraint_Attrs

{ constraintId :: String

, constraintName :: String

, constraintComment :: String

}

data DataType =

DataType DataType_Attrs (Maybe Parent) (OneOf2 [Constraint] [EnumValue])

data DataType_Attrs = DataType_Attrs

{ dataTypeId :: String

, dataTypeName :: String

, dataTypeComment :: String

, dataTypePrimitivetype :: DataType_primitivetype

}

data DataType_primitivetype = DataType_primitivetype_boolean

| DataType_primitivetype_string

| DataType_primitivetype_integer

| DataType_primitivetype_real

| DataType_primitivetype_date

| DataType_primitivetype_time

data DataTypeRef = DataTypeRef { dataTypeRefIdref :: String }

data Destination = Destination

{ destinationIdref :: String

, destinationMultiplicity :: String

}

data DomainMethod =

DomainMethod DomainMethod_Attrs (Maybe Type) [Argument]

(OneOf5 GetAccessor SetAccessor Calculation Premise Action)

data DomainMethod_Attrs = DomainMethod_Attrs

{ domainMethodId :: String
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, domainMethodName :: String

, domainMethodComment :: String

, domainMethodAccess :: String

, domainMethodStatic :: String

}

data ElseOf = ElseOf { elseOfIdref :: String }

data EnumValue = EnumValue

{ enumValueId :: String

, enumValueAlias :: String

, enumValuePredefinedvalue :: String

, enumValueFreeformatvalue :: String

, enumValueComment :: String

}

data EnumValueReference = EnumValueReference (Maybe Qualifier) EnumValueRef

data EnumValueRef = EnumValueRef { enumValueRefIdref :: String }

data GetAccessor = GetAccessor (Maybe Qualifier) AttributeRef

data Goal = Goal AttributeReference RoleReference InverseRoleReference

data Inference =

Inference Inference_Attrs Scope [PostedRuleSet] [Goal] [PostedRule]

data Inference_Attrs = Inference_Attrs

{ inferenceId :: String

, inferenceName :: String

, inferenceChainmode :: String

, inferenceComment :: String

}

data Instance = Instance Instance_Attrs [AttributeValue]

data Instance_Attrs = Instance_Attrs

{ instanceId :: String

, instanceName :: String

, instanceComment :: String

}

data InverseRole = InverseRole

{ inverseRoleId :: String

, inverseRoleName :: String

, inverseRoleComment :: String

}

data InverseRoleReference =

InverseRoleReference (Maybe Qualifier) InverseRoleRef

data InverseRoleRef = InverseRoleRef { inverseRoleRefIdref :: String }

newtype LeftHand = LeftHand TypedExpression
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data Literal = Literal

{ literalFreeformat :: String

, literalPredefined :: String

}

data Method = Method { methodIdref :: String }

data Parent = Parent { parentIdref :: String }

data PassedArgument = PassedArgument ArgumentRef ArgumentExpression

data PostedRule = PostedRule

{ postedRuleIdref :: String

, postedRulePriority :: String

}

data PostedRuleSet = PostedRuleSet

{ postedRuleSetIdref :: String

, postedRuleSetPriority :: String

}

data Premise = Premise Premise_Attrs (OneOf2 Condition Premise)

(Maybe BinaryLogicalOperator)

data Premise_Attrs = Premise_Attrs { premiseNot :: String }

data PrimitiveMethod =

PrimitiveMethod PrimitiveMethod_Attrs Type [Argument]

data PrimitiveMethod_Attrs = PrimitiveMethod_Attrs

{ primitiveMethodId :: String

, primitiveMethodName :: String

, primitiveMethodComment :: String

, primitiveMethodAccess :: String

, primitiveMethodStatic :: String

, primitiveMethodImplementation :: String

}

data PrimitiveType = PrimitiveType { primitiveTypeName :: String }

data Qualifier = QualifierTypedMethod TypedMethod

| QualifierAttributeReference AttributeReference

| QualifierClassRef ClassRef

| QualifierRoleReference RoleReference

| QualifierInverseRoleReference InverseRoleReference

| QualifierDataTypeRef DataTypeRef

data Range = Range

{ rangeStartvalue :: String

, rangeStartvalueincluded :: String

, rangeEndvalue :: String

, rangeEndvalueincluded :: String

}
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newtype RightHand = RightHand TypedExpression

data Role = Role

{ roleId :: String

, roleName :: String

, roleComment :: String

}

data RoleReference = RoleReference (Maybe Qualifier) RoleRef

data RoleRef = RoleRef { roleRefIdref :: String }

data Rule = Rule Rule_Attrs Scope RuleDef [Binding]

data Rule_Attrs = Rule_Attrs

{ ruleId :: String

, ruleName :: String

}

data RuleDef = RuleDef (Maybe ElseOf) Premise Action

data RuleSet = RuleSet RuleSet_Attrs Scope [PostedRule] [PostedRuleSet]

data RuleSet_Attrs = RuleSet_Attrs

{ ruleSetId :: String

, ruleSetName :: String

, ruleSetComment :: String

}

data Rulebase = Rulebase Rulebase_Attrs (List1 Class) [DataType]

[Association] (List1 Rule) [RuleSet] [Inference]

data Rulebase_Attrs = Rulebase_Attrs

{ rulebaseVersion :: String

, rulebaseName :: String

, rulebaseComment :: String

}

data Scope = Scope { scopeIdref :: String }

data SetAccessor = SetAccessor (Maybe Qualifier) AttributeRef

data Source = Source

{ sourceIdref :: String

, sourceMultiplicity :: String

}

data SubClass = SubClass

{ subClassId :: String

, subClassName :: String

, subClassComment :: String

}
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data Type = TypeDataTypeRef Type_Attrs DataTypeRef

| TypePrimitiveType Type_Attrs PrimitiveType

| TypeClassRef Type_Attrs ClassRef

data Type_Attrs = Type_Attrs { typeMultiplicity :: String }

data TypedMethod = TypedMethodCalledMethod CalledMethod

| TypedMethodPassedArgument [PassedArgument]

data TypedExpression =

TypedExpressionArithmeticExpression ArithmeticExpression

| TypedExpressionAttributeReference AttributeReference

| TypedExpressionTypedMethod TypedMethod

| TypedExpressionLiteral Literal

| TypedExpressionEnumValueReference EnumValueReference

| TypedExpressionRoleReference RoleReference

| TypedExpressionInverseRoleReference InverseRoleReference

data UnaryLogicalExpression =

UnaryLogicalExpressionBoolLiteral BoolLiteral

| UnaryLogicalExpressionBooleanAttribute BooleanAttribute

| UnaryLogicalExpressionBooleanMethod BooleanMethod

| UnaryLogicalExpressionBooleanEnumValue BooleanEnumValue

data UntypedMethod = UntypedMethod CalledMethod [PassedArgument]
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