Euler graphs, triangle-free graphs and bipartite graphs in switching classes

Jurriaan Hage Center for Software Technology, Utrecht University jur@cs.uu.nl, http://www.cs.uu.nl/people/jur

Joint work with

Tero Harju (Dept. of Mathematics, University of Turku) Emo Welzl (Institut für Theoretische Informatik, ETH Zentrum)

May 18, 2004

If you need motivation...

► The operation of switching has propped up in various places:

- sociology: modelling relations between people in a group
- mathematics: equidistant point sets in elliptic geometry and many more
- computer science: formalizing certain types of networks of processors
- ► Global transformations of a graph are achieved by local transformations
- ▶ The local transformation are, in general, group actions.
- Today only the case where the group is addition modulo 2,
- and only computational/algorithmic aspects
- Because they are there.

◀ ◀ ▶ ▶ ◀ 🗆 ● 🗵

Graphs

- $\blacktriangleright \ {\rm Graph} \ G = (V, E)$
- ▶ Set of vertices V = V(G)
- ▶ Set of nonreflexive, undirected edges E = E(G).
- Vertices have an identity.
- ▶ Restriction of G to vertex set $X \subseteq V$: $G|_X$.

Switching classes definition

• Take a graph *G*

Introductory definitions and useful results

 \times

Switching classes definition

 \blacktriangleright Take a graph G, select a set of vertices, a selector, σ

Switching classes definition

> Take a graph G, select a set of vertices, a selector, σ , **perform the switch**

- ▶ $G|_{\sigma}$ and $G|_{V-\sigma}$ do not change.
- ▶ Closed under complement, $(G^{\sigma})^{\sigma} = G$.
- Switching class generated by G: $[G] = \{G^{\sigma} \mid \sigma \subseteq V(G)\}.$

A switching class is an equivalence class

•
$$G^{\emptyset} = G$$
 (reflexivity) and $(G^{\sigma})^{\sigma} = G$ (symmetry).

► Transitivity: $(G^{\sigma_1})^{\sigma_2} = G^{\sigma}$ for $\sigma = (\sigma_1 - \sigma_2) \cup (\sigma_2 - \sigma_1)$. Example: $\sigma_1 = \{x_2, x_3, x_5\}$ and $\sigma_2 = \{x_1, x_2, x_4\}$. Symmetric difference yields selector $\{x_1, x_3, x_4, x_5\}$.

Introductory definitions and useful results

Some useful results

- Lemma: Adding G and G^{σ} edgewise (modulo 2/xor) yields the complete bipartite graph $K_{\sigma,V(G)-\sigma} = G + G^{\sigma}$.
- Proof: Switching complements edges between vertices from σ and V σ, so each of these edges is either in G or G^σ, but never both. All other edges are present in both: they drop out.[Example]

▶ The main tool for people working in switching is the following:

- Theorem: For every vertex $u \in V(G)$ and $A \subseteq V(G) u$, there is a unique graph $H \in [G]$ where u has exactly the vertices in A as neighbours.
- Proof existence: $H = (G^{N(u)})^A$ [Example]
- Proof uniqueness: compute H' + H, where H' is another one.
 * H' + H is a complete bipartite graph
 * u has no neighbours in H' + H

Three problems

- Instead of "Is G a graph of a given type?", we ask "Does [G] contain a graph of a given type?"
- A switching class contains an exponential number of graphs.
- In the paper we considered three different types
 - eulerian
 - triangle-free
 - (bipartite)
- ▶ What is the complexity of these three problems for switching classes?
- \blacktriangleright They all turn out to be polynomial in the number of vertices of G.
- Earlier results we had do not help.
- The resulting algorithms can help during further research, e.g.,
 - characterizing the switching classes which contain a graph of a certain type by a list of forbidden subgraphs.

Switching classes with even graphs

- ▶ Eulerian: path that traverses each edge once and returns to the starting vertex.
- ► Equivalent to having only vertices of even degree and being connected.
- ▶ Generalize to *even* graphs: graphs with components that are eulerian.
- Seidel proved: for graphs of odd order (that is, with an odd number of vertices), every switching class contains a unique even graph.
- For graphs of even order, either none are even, or half of them are even, the other half are odd.

Eulerian switching classes

Switching classes with eulerian graphs

- For G = (V, E), does [G] contain a connected even graph?
- Odd order: use Seidel's constructive proof and check for connectedness
- Even order: if [G] has even graphs, then [G] contains an eulerian graph unless the complete graph $K_V \in [G]$.
- \blacktriangleright K_V is the only connected graph in $[K_V]$ and it is odd, not even.

Proof:

- Let G be even, assume v to be isolated.
 - * There is always an even G with such a v.
- Find x, y in G v such that x and y **not** adjacent.
- Now, $G^{\{x,v\}}$ is even and connected.
- Does not work if x and y do not exist, but then $K_V \in [G]$.

Triangle-free switching classes

- \blacktriangleright G is triangle-free iff it does not contain any induced triangle K_3 .
- \blacktriangleright K_5 has switches $K_4 \cup K_1$ and $K_3 \cup K_2$: no triangle-free switches
- Polynomially reduce the decision problem

"Does [G] contain a triangle-free graph?"

to 2SAT (which has a polynomial solution).

- ▶ 2SAT: every formula is a conjunction of disjunctions where every disjunction contains at most two literals: $\phi = \overline{u} \land (u \lor v)$
- ▶ Selector σ satisfies 2SAT formula $\phi \iff \sigma(u) = 0$ and $\sigma(v) = 1$.

The basic situation

- Assume G contains an isolated vertex v and set $\sigma(v) = 1$ (no restriction).
- ▶ If G contains K_4 , then answer **no**.
- ▶ If G is triangle-free then answer **yes**.
- Construct a formula, satisfiable by a selector σ only if G^{σ} is triangle-free. It guarantees all triangles are removed, and no new ones introduced.
- We need to consider only one arbitrary triangle.
- So, let $T = \{u_1, u_2, u_3\}$ be any triangle.
- \blacktriangleright To remove T, exactly one or two vertices of T must be switched.
- However, switching only one of them gives a triangle with v and the two others.

Constructing the formula: the triangle

Formula so far: $v \overline{u_2} u_1 u_3$

ln this example we chose $u = u_2$.

Constructing the formula: all neighbours of u_2

Formula so far: $v \overline{u_2} u_1 u_3 \mathbf{u_6}$

Constructing the formula: a bipartite subgraph

Formula so far: $v \overline{u_2} u_1 u_3 u_6 (\mathbf{u_4} \lor \mathbf{u_5}) (\overline{\mathbf{u_4}} \lor \overline{\mathbf{u_5}})$

Constructing the formula: the final triangles

Final formula: $v \overline{u_2} u_1 u_3 u_6 (u_4 \vee u_5) (\overline{u_4} \vee \overline{u_5}) \overline{u_4} u_5$

- $\blacktriangleright \overline{u_4}$ because of $\{u_1, u_3, u_4\}$
- \blacktriangleright u_5 because of $\{u_3, u_5, u_6\}$

Bipartite switching classes

- Solved similarly by reduction to 2SAT
- Main idea: every bipartite graph switches to a 4-colourable graph such that it consists of two disjoint, arbitrarily connected complete bipartite subgraphs.

Bipartite switching classes

Our approach

- Fix an arbitrary vertex u to go "up" (no restriction).
- \blacktriangleright 2SAT formula specifies which vertex must go down if u is up.
 - Note: in the triangle-free case it specified a selector.
- Same for a vertex v which goes down (this is a restriction).
- \blacktriangleright Hence, we must try all possible choices for v.
- \blacktriangleright If none works, then G is a not a switch of a bipartite graph.
- Hence we solve a linear number of 2SAT problems.
- ▶ We can do a little better: consider {*u*, *v*₁, *v*₂} which induces a subgraph with an odd number of edges.
 - if u goes up then one of the others must go go down.
- Only two 2SAT problems need to be solved.

Conclusion and future work?

- Three non-trivial algorithms for problems lifted from graphs to switching classes. All are polynomial.
- ► Hard to find algorithms that become NP-complete.
 - In fact, Kratochvíl and Nešetřil and Zýka are the only ones to do so.
- ► Algorithms can be used to solve a problem we could not yet solve:

Characterize switching classes which do not have a bipartite graph by means of set of forbidden subgraphs.

A characterization for triangle-free would be nice, but probably not by forbidden subgraphs.