
[Faculty of Science
Information and Computing Sciences]

Making Domain Specific Languages a
Practical Reality

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

November 14, 2015

[Faculty of Science
Information and Computing Sciences]

2

The purpose of this talk

I Introduce the field of type error diagnosis

I Discuss one way of addressing the problem of type error
diagnosis:

I allow the type inference process to be modified from
outside the compiler

I Apply this idea to achieve domain specific type error
diagnosis for EDSLs in Haskell

I But mostly: to give a glimpse of what could be yours to
have, in Haskell and beyond.

[Faculty of Science
Information and Computing Sciences]

2

The purpose of this talk

I Introduce the field of type error diagnosis

I Discuss one way of addressing the problem of type error
diagnosis:

I allow the type inference process to be modified from
outside the compiler

I Apply this idea to achieve domain specific type error
diagnosis for EDSLs in Haskell

I But mostly: to give a glimpse of what could be yours to
have, in Haskell and beyond.

[Faculty of Science
Information and Computing Sciences]

3

1. Introduction

[Faculty of Science
Information and Computing Sciences]

4

From static guarantees to error diagnosis §1

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”

For the right definition of wrong

I But if a compiler or interpreter refuses to run my program,
I deserve an explanation

I Hence, the need for type error diagnosis

[Faculty of Science
Information and Computing Sciences]

4

From static guarantees to error diagnosis §1

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”
For the right definition of wrong

I But

if a compiler or interpreter refuses to run my program,
I deserve an explanation

I Hence, the need for type error diagnosis

[Faculty of Science
Information and Computing Sciences]

4

From static guarantees to error diagnosis §1

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”
For the right definition of wrong

I But if a compiler or interpreter refuses to run my program,
I deserve an explanation

I Hence, the need for type error diagnosis

[Faculty of Science
Information and Computing Sciences]

4

From static guarantees to error diagnosis §1

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”
For the right definition of wrong

I But if a compiler or interpreter refuses to run my program,
I deserve an explanation

I Hence, the need for type error diagnosis

[Faculty of Science
Information and Computing Sciences]

5

What is type error diagnosis? §1

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may include the following:
I that a program is type incorrect (duh)
I what kind of inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Functional languages have had more problems with
diagnosis ⇒ quite some research into type error diagnosis

I There is surprisingly little for O.O. languages

[Faculty of Science
Information and Computing Sciences]

6

Lehman’s sixth law applies also to languages §1

I Java has seen the introduction of parametric
polymorphism...

I ...and anonymous functions in 1.8

I What did this do to the quality of error diagnosis?

I Languages like Scala embrace multiple paradigms

I Odersky’s “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

I But: dynamic languages grow up, and become more static

I Also here, diagnosis will rear its (time-consuming) head

[Faculty of Science
Information and Computing Sciences]

6

Lehman’s sixth law applies also to languages §1

I Java has seen the introduction of parametric
polymorphism...

I ...and anonymous functions in 1.8

I What did this do to the quality of error diagnosis?

I Languages like Scala embrace multiple paradigms

I Odersky’s “type wall”: unless complicated type system
features are balanced by better diagnosis, programmers will
flock to dynamic languages

I But: dynamic languages grow up, and become more static

I Also here, diagnosis will rear its (time-consuming) head

[Faculty of Science
Information and Computing Sciences]

7

Some Haskell §1

reverse xs = foldr (flip (:)) [] xs

palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

7

Some Haskell §1

reverse xs = foldr (flip (:)) [] xs

palindrome xs = reverse xs == xs

Is this program well typed?

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

[Faculty of Science
Information and Computing Sciences]

8

What is wrong with this message? §1

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I The likely fix: foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

8

What is wrong with this message? §1

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I The likely fix:

foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

8

What is wrong with this message? §1

Occurs check: cannot construct the infinite type: t ~ [[t]]

Expected type: [t]

Actual type: [[[t]]]

In the second argument of ’(==)’, namely ’xs’

In the expression: reverse xs == xs

I It does not point to the source of the error → not precise

I It’s intimidating
I It shows an artifact of the implementation → mechanical

I “Occurs check” is part of the unification algorithm

I Generally, message not very helpful

I The likely fix: foldr should be foldl

[Faculty of Science
Information and Computing Sciences]

9

Good Error Reporting Manifesto §1

From Improved Type Error Reporting by Yang, Trinder and
Wells

1. Correct detection and correct reporting

2. Precise: the smallest possible location

3. Succint: maximize useful and minimize non-useful info

4. Does not depend on implementation, i.e., amechanical

5. Source-based: not based on internal syntax

6. Unbiased: fixed unification order leads to bias
head [False, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’]

7. Comprehensive: enough to reason about the error

Worth striving for.

[Faculty of Science
Information and Computing Sciences]

10

But in the end... §1

I Observed quality of type error diagnosis is extremely
subjective

I Depending on the programmer’s intentions that a compiler
cannot guess at

I And many other factors, including programmer experience,
and background

I So is type error diagnosis a doomed enterprise?

I I do not think so, but there is a lot to learn, and be careful
about.

[Faculty of Science
Information and Computing Sciences]

11

2. Domain Specific Type Error Diagnosis in 2003

[Faculty of Science
Information and Computing Sciences]

12

The Helium (for Haskell) compiler §2

I Constraint based approach to type inferencing

I Implements many heuristics, multiple solvers

I Existing algorithms/implementations can be emulated

I cabal install helium

cabal install lvmrun

I Haskell 98 minus type class and instance definitions

I Supports domain specific type error diagnosis

[Faculty of Science
Information and Computing Sciences]

13

What is a Domain Specific Language (DSL)? §2

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I domain-abstractions should not leak, e.g., in error reports

[Faculty of Science
Information and Computing Sciences]

13

What is a Domain Specific Language (DSL)? §2

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I domain-abstractions should not leak, e.g., in error reports

[Faculty of Science
Information and Computing Sciences]

14

Embedded Domain Specific Languages §2

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I According to Paul Hudak “the ultimate abstraction”
I Some (arguable) advantages:

I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs
I At the very least, useful for prototyping DSLs

[Faculty of Science
Information and Computing Sciences]

15

Challenges for EDSLs (in Haskell) §2

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisation and error diagnosis are also costly in a
non-embedded setting, but there we have more control.

I Can we achieve this control for error diagnosis?

[Faculty of Science
Information and Computing Sciences]

16

A (much simplified) EDSL for parsing §2

I An executable and extensible form of EBNF
I A context free grammar production like

C -> DE | a | b

is turned into executable code:

c = d <∗> e <|> token "a" <|> token "b"

I Non-terminals C,D,E are turned into Haskell functions
c, d , e that do the parsing

I We add semantics by applying a functions to the
outcome(s) of the parsing:

c = f <$> d <∗> e

I FYI, token, <∗>, <$> and <|> are called combinators

[Faculty of Science
Information and Computing Sciences]

17

A small mistake §2

pExpr = someOtherParser
<|> sem Expr Lam -- Semantics for lambda expressions
<$ pKey "\\"

<∗> pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
<∗> pKey "->"

<∗> pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

18

A closer look at the message §2

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

I Message is large and looks complicated

I You have to discover why the types don’t match yourself

I No mention of “parsers” in the error message

I It happens to be a common mistake, and easy to fix

[Faculty of Science
Information and Computing Sciences]

19

The solution in a nutshell §2

1 Bring the type inference mechanism under control
I by phrasing the type inference process as a constraint

solving problem

2 Provide hooks in the compiler’s type inference process to
change the process for certain classes of expressions

I Changing the type system is forbidden!
I Only the order of solving, and the provided messages can

be changed

[Faculty of Science
Information and Computing Sciences]

20

How is this organised? §2

I For a given source module Abc.hs, a DSL designer may
supply a file Abc.type containing directives

I The directives are automatically used when the module is
imported

I The compiler will adapt the type error mechanism based
on these type inference directives.

[Faculty of Science
Information and Computing Sciences]

21

A specialized type rule (1/3) §2

Consider one of the parser combinators, for instance <$>
(which today is not the generalized Functor field member!).

<$> :: (a→ b)→ Parser s a→ Parser s b

We create a specialized type rule for expressions in which <$>
is given two argument expressions x and y

Γ H̀M x : a→ b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

[Faculty of Science
Information and Computing Sciences]

22

A specialized type rule (2/3) §2

I Rewrite rule to make constraints explicit

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

22

A specialized type rule (2/3) §2

I Rewrite rule to make constraints explicit

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a→ b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Split up the type constraints in ”smaller” unification steps.

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

[Faculty of Science
Information and Computing Sciences]

23

Specializing a type rule (3/3) §2

x : τ1 y : τ2
x <$> y : τ3


τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1

t2 == Parser s1 a2

t3 == Parser s2 b2

s1 == s2

a1 == a2

b1 == b2

[Faculty of Science
Information and Computing Sciences]

24

Special type error messages §2

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

s1 == s2 : parser has an incorrect symbol type

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This
message is reported if the corresponding constraint cannot
be satisfied. Constraints checked top to bottom.

[Faculty of Science
Information and Computing Sciences]

25

Example §2

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message:

Type error: right operand is not a parser

[Faculty of Science
Information and Computing Sciences]

26

Error message attributes §2

In the rule we can add important context-specific information:

x :: t1; y :: t2;

x <$> y :: t3;

...

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a

expression : @expr.pp@ parser

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@

...

[Faculty of Science
Information and Computing Sciences]

27

Example §2

test :: Parser Char String
test = map toUpper <$> "hello, world!"

This results in the following type error message (including the
inserted error message attributes):

(2,21): The right operand of <$> should be a parser

expression : map toUpper <$> "hello, world!"

right operand : "hello, world!"

type : String

does not match : Parser Char String

[Faculty of Science
Information and Computing Sciences]

28

Variations §2

x :: t1; y :: t2;

x <$> y :: Parser s b;

constraints x

t1 == a1 -> b : left operand is not a function

constraints y

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to ...

I Interpolate constraints into the rule (cf. Parser s b): no
effort for default behaviour

[Faculty of Science
Information and Computing Sciences]

29

Other facilities §2

I Automatic check for soundness and completeness

I Phasing for more global control

I Siblings: suggest program fixes to replace + by ++ for
incorrect Haskell expressions like let y = 2 in "" + y

I Add your favourite siblings:

siblings <$> , <$

siblings ++ , +, .

[Faculty of Science
Information and Computing Sciences]

30

3. DOMSTED in 2015

[Faculty of Science
Information and Computing Sciences]

31

The DOMSTED project §3

I Take the previous ideas and scale them to Haskell 2010

I Alejandro Serrano Mena started November 2013

[Faculty of Science
Information and Computing Sciences]

32

Isn’t Haskell 98 complicated enough? §3

Maybe, but
Extension # Hackage # Top 20

FlexibleInstances 332 10
MultiParamTypeClasses 321 9
FlexibleContexts 232 3
ScopedTypeVariables 192 3
ExistentialQuantification 149 6
FunctionalDependencies 139 4
TypeFamilies 114 1
OverlappingInstances 108 3
Rank2Types 100 3
GADTs 88 3
RankNTypes 81 1
UnboxedTuples 20 4
KindSignatures 20 0

[Faculty of Science
Information and Computing Sciences]

33

What have we accomplished §3

I Conditionals in type rules

I Regular tree expressions

I Implementation on top of OutsideIn(X). Experiment at
http://cobalt.herokuapp.com/ with the latest syntax.

[Faculty of Science
Information and Computing Sciences]

34

Conditional matching in type rules §3

I Why does Haskell have map and fmap?
I Part tradition, part error diagnosis

I Alternative solution: provide only fmap, but tailor the error
for fmap for the case of lists

I IF we can decide before an error is discovered that we are
working on lists, THEN a special rule kicks in

I Other applications:
I Monad comprehensions vs. list comprehensions
I Forbidding certain instances of generic constructions to

novice students
I And the list goes on...

[Faculty of Science
Information and Computing Sciences]

34

Conditional matching in type rules §3

I Why does Haskell have map and fmap?
I Part tradition, part error diagnosis

I Alternative solution: provide only fmap, but tailor the error
for fmap for the case of lists

I IF we can decide before an error is discovered that we are
working on lists, THEN a special rule kicks in

I Other applications:
I Monad comprehensions vs. list comprehensions
I Forbidding certain instances of generic constructions to

novice students
I And the list goes on...

[Faculty of Science
Information and Computing Sciences]

35

Regular tree expressions (RTE) §3

I A more general way to describe AST patterns
I Beyond, for example, x <$> y and map id xs

I RTEs add repetition and choice to describe our expression
patterns

I Disadvantage: if you use RTEs soundness check is
approximated by random testing à la QuickCheck

I Alejandro is currently making progress on fixing this.

[Faculty of Science
Information and Computing Sciences]

36

Example: arithmetic expressions with a GADT §3

I Consider (polymorphic) arithmetic expressions of type
Expr a

data Expr a where
Plus :: Expr a → Expr a → Expr a
Mult :: Expr a → Expr a → Expr a
Lit :: Num a ⇒ a → Expr a

I Type of literals determines type of expressions: we can
have Float expressions and Int expressions, but these may
not be mixed in one expression

I execute :: ∀ a.Expr a → a evaluates such an expression

[Faculty of Science
Information and Computing Sciences]

37

Without syntax §3

execute :: ∀ a.Expr a → a

We pattern match on expressions that apply execute to some
Expr a.

Then we have checks that

I all leafs are themselves correctly typed

I they all agree on the instance for a

I the instance is in the Num class

I etc. in that order

I Each check has its specialized type error message.

[Faculty of Science
Information and Computing Sciences]

38

Conclusions §3

I have

I introduced the problem of type error diagnosis

I introduced specialized type rules to achieve domain-specific
type error diagnosis

I informed you about some recent developments

[Faculty of Science
Information and Computing Sciences]

39

Ongoing and future work §3

I Light-weight approaches, i.e., directly in Haskell

I Integrating impredicativity and higher-ranked types into
OutsideIn(X) as implemented into UHC/GHC

I Changes to syntax are ongoing

I One MSc student just started on adding this to Elm

I Another will probably shortly start on dependently typed
languages (Agda, Idris, Coq).

I Interactively writing specialized type rules

I Experiment with library developers and users

I Spread the gospel (to other statically typed languages)?

[Faculty of Science
Information and Computing Sciences]

39

Ongoing and future work §3

I Light-weight approaches, i.e., directly in Haskell

I Integrating impredicativity and higher-ranked types into
OutsideIn(X) as implemented into UHC/GHC

I Changes to syntax are ongoing

I One MSc student just started on adding this to Elm

I Another will probably shortly start on dependently typed
languages (Agda, Idris, Coq).

I Interactively writing specialized type rules

I Experiment with library developers and users

I Spread the gospel (to other statically typed languages)?

[Faculty of Science
Information and Computing Sciences]

40

Credits §3

The following people have contributed to this talk:

I Alejandro Serrano Mena, current PhD student

I Bastiaan Heeren, PhD student between 2000-2004

I Patrick Bahr, visiting postdoc in 2014

I Atze Dijkstra, implementor of UHC

I Doaitse Swierstra, for initiating it in the first place

I Many people contributed to the Helium compiler (see the
website)

[Faculty of Science
Information and Computing Sciences]

41

Questions, anyone?

	Introduction
	Domain Specific Type Error Diagnosis in 2003
	DOMSTED in 2015

