
[Faculty of Science
Information and Computing Sciences]

Customizing type error diagnosis in GHC

Jurriaan Hage (collaboration with Alejandro Serrano Mena)

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

June 20, 2017

[Faculty of Science
Information and Computing Sciences]

2

Introduction and Motivation

[Faculty of Science
Information and Computing Sciences]

3

Static type systems

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis

[Faculty of Science
Information and Computing Sciences]

4

What is type error diagnosis?

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis

[Faculty of Science
Information and Computing Sciences]

5

Languages follow Lehmann’s sixth law

I Java has seen the introduction of parametric polymorphism
(and type errors suffered)

I Java has seen the introduction of anonymous functions (I
have not dared look)

I Languages like Scala embrace multiple paradigms

I Martin Odersky’s “type wall”: unless complicated type
system features are balanced by better diagnosis,
programmers will flock to dynamic languages

I And what do implicits do to type error diagnosis?

I New trends: dynamic languages becoming more static

I Again, diagnosis rears its head

[Faculty of Science
Information and Computing Sciences]

6

Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

writing atop True gives

Couldn’t match type ’QDiagram b v n m’ with type ’Bool’

or for atop cube3d plane2d might give

Couldn’t match type ’V2’ with type ’V3’

We would like to see domain terms, like ‘vector spaces’ in the

messages.

[Faculty of Science
Information and Computing Sciences]

7

Example 2: Left undischarged in Persistent

From the persistent library (Snoyman, 2012)

insertUnique :: (MonadIO m,PersistUniqueWrite backend ,
PersistEntity record)

=> record −>
ReaderT backend m (Maybe (Key record))

use of insertUnique gives rise to type class predicates that may
be left undischarged, because the programmer forgot to write a
PersistEntity instance.

We’d like to get something like:

Data type ’Person’ is not declared as a Persistent

entity. Hint: entity definition can be automatically

derived. Read more at http://www.yesodweb.com/...

[Faculty of Science
Information and Computing Sciences]

8

Example 3: Formatting (type safe printf)

hello = format (now "Hello, World!")

FormatEx-orig.hs:26:21:

Couldn’t match expected type ’T.Builder’

with actual type ’[Char]’

In the first argument of ’now’, namely

’"Hello, World!"’

In the first argument of ’format’, namely

’(now "Hello, World!")’

In the expression: format (now "Hello, World!")

It would be helpful to have a hint on how to fix the problem.

[Faculty of Science
Information and Computing Sciences]

9

Example 4: can we have a sibling, please?

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions
〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

10

Example 5: simplifying monads

okay :: IO ()
okay = (return >=> putChar) ’a’

notokay :: Maybe Char
notokay = (return >=> (\ x −> Nothing)) ’a’

Forbid to use monads unless with IO:

ClassExperiment.hs:28:12: error:

* Illegal use of monads: you are allowed to use IO,

but not the Maybe monad

According to your teacher, you have yet to pass

your monad-license

* In the expression: return >=> (\ x -> Nothing)

In the expression: (return >=> (\ x -> Nothing)) ’a’

In an equation for ’notokay’:

notokay = (return >=> (\ x -> Nothing)) ’a’

[Faculty of Science
Information and Computing Sciences]

11

Domain Specific Type Error Diagnosis

[Faculty of Science
Information and Computing Sciences]

12

What is a DSL?

Examples 1 - 4 dealt with embedded domain-specific languages.

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

12

What is a DSL?

Examples 1 - 4 dealt with embedded domain-specific languages.

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

13

Embedded Domain Specific Languages

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

I According to Hudak “the ultimate abstraction”

[Faculty of Science
Information and Computing Sciences]

14

What host language?

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In most languages we just have to make do
I In Haskell, EDSLs are simply libraries that provide some

form of “fluency”
I Consisting of domain terms and types, and special

operators with particular priority and fixity

[Faculty of Science
Information and Computing Sciences]

15

Challenges for EDSLs

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisation and error diagnosis are also costly in a
non-embedded setting, but there we have more control.

I Can we achieve this control for error diagnosis?

I Yes, says work with Bastiaan Heeren and Alejandro
Serrano Mena

I But which of these ideas can we easily build into GHC?

[Faculty of Science
Information and Computing Sciences]

15

Challenges for EDSLs

I How to achieve:
I domain specific optimisations
I domain specific error diagnosis

I Optimisation and error diagnosis are also costly in a
non-embedded setting, but there we have more control.

I Can we achieve this control for error diagnosis?

I Yes, says work with Bastiaan Heeren and Alejandro
Serrano Mena

I But which of these ideas can we easily build into GHC?

[Faculty of Science
Information and Computing Sciences]

16

III. Customizing type error diagnosis in GHC

[Faculty of Science
Information and Computing Sciences]

17

Over to GHC... §III

instance TypeError (Text "Cannot ’Show’ functions." :$$:
Text "Perhaps a missing argument?")

=> Show (a −> b) where ...

I Leverages type-level programming techniques in GHC
(Diatchki, 2015)

I Very restricted:
I Only available for type class and family resolution
I May not influence the ordering of constraints
I Messages cannot depend on who generated the constraint

[Faculty of Science
Information and Computing Sciences]

18

How far can we take this? §III

We provide

I control over the content of the type error message
I the same constraint may result in different messages

I (some) control over the order in which constraints are
checked

I GHC’s abstraction facilities allow for reuse and uniformity
I A type level embedded DSL for diagnosing embedded DSLs

I integrated as a patch in GHC version 8.1.20161202 (and
8.3.some)

I soundness and completeness for free!

I Expression level error messages by type level programming

[Faculty of Science
Information and Computing Sciences]

18

How far can we take this? §III

We provide

I control over the content of the type error message
I the same constraint may result in different messages

I (some) control over the order in which constraints are
checked

I GHC’s abstraction facilities allow for reuse and uniformity
I A type level embedded DSL for diagnosing embedded DSLs

I integrated as a patch in GHC version 8.1.20161202 (and
8.3.some)

I soundness and completeness for free!

I Expression level error messages by type level programming

[Faculty of Science
Information and Computing Sciences]

19

How much effort is involved (on our part)? §III

I We get a lot for a few non-invasive changes to GHC, with
TypeError and the Constraint kind as enablers

I Constraint resolution needs some changes to track
messages, and deal with priorities

I A few additions to TypeLits.hs in the base library and a
new module TypeErrors.hs (62 lines) that exposes the API

I One additional compiler pragma CHECK_ARGS_BEFORE_FN.

I We employ many language extensions:

DataKinds, TypeOperators, TypeFamilies,

ConstraintKinds, FlexibleContexts, PolyKinds,

UndecidableInstances, UndecidableSuperclasses

but the EDSL programmer only the first four, the EDSL
user none. (Since 8.3 sometimes also
AllowAmbiguousTypes)

[Faculty of Science
Information and Computing Sciences]

20

A great mistake §III

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! Please read this error message. It’s a

great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

20

A great mistake §III

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! Please read this error message. It’s a

great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

21

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id

I E qualifier to employ type level Text

I id ′ = id ensures id ′ is sound; can do completeness

I VS is a reusable type level function

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

21

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id

I E qualifier to employ type level Text

I id ′ = id ensures id ′ is sound; can do completeness

I VS is a reusable type level function

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

21

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id

I E qualifier to employ type level Text

I id ′ = id ensures id ′ is sound; can do completeness

I VS is a reusable type level function

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

21

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id

I E qualifier to employ type level Text

I id ′ = id ensures id ′ is sound; can do completeness

I VS is a reusable type level function

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

21

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id

I E qualifier to employ type level Text

I id ′ = id ensures id ′ is sound; can do completeness

I VS is a reusable type level function

I With {#- INLINE id’ -#} no run-time overhead

[Faculty of Science
Information and Computing Sciences]

22

Before we go on: Constraints §III

GHC supports a special kind Constraint so that type level
programming can be applied to constraints

type JSONSerializable a = (FromJSON a,ToJSON a)

and use type families as type-level functions:

type family All (c :: k −> Constraint) (xs :: [k]) where
All c [] = ()
All c (x : xs) = (c x ,All c xs)

so we can write All Show [Int,Bool] instead of
(Show Int, Show Bool)

This is what opens the door to manipulating constraints and
type error messages in a reusable fashion.

[Faculty of Science
Information and Computing Sciences]

23

The running example §III

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

can also be written as

atop :: (d1 ∼ QDiagram b1 v1 n1 m1,
d2 ∼ QDiagram b2 v2 n2 m2,
b1 ∼ b2, v1 ∼ v2, n1 ∼ n2,m1 ∼ m2,
OrderedField n1,Metric v1,Semigroup m1)

=> d1 −> d2 −> d1

Failure to satisfy either b1 ∼ b2 or v1 ∼ v2 should lead to
different messages.

[Faculty of Science
Information and Computing Sciences]

24

The EDSL-developer facing API (version 1) §III

Apartness (= can never become equal again) is represented by
the operator

infixl 5 :6∼:

We deal with two kinds of failure:

data ConstraintFailure =
∀ t . t :6∼: t | Undischarged Constraint

A CustomError is then a failure and a message

infixl 4 :V:
data CustomError =

ConstraintFailure :V: ErrorMessage | Check Constraint

The latter if we do not want a message.

[Faculty of Science
Information and Computing Sciences]

25

Running back to our example §III

atop :: CustomErrors [
d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram",
b1 :6∼: b2

:V: Text "Back-ends do not coincide",
...
Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)
] => d1 −> d2 −> d1

CustomErrors is a type family that builds the constraint
structure. To the programmer, a syntactic wrapper around
his/her diagnosis.

[Faculty of Science
Information and Computing Sciences]

26

Abstraction and reuse §III

For consistency and conciseness we can define a type level
implementation for the checks of back-ends, vector spaces, etc.

type DoNotCoincide what a b =
a :6∼: b :V: Text what :� : Text " do not coincide: "

:� : ShowType a :� : Text " vs. " :� : ShowType b

Note that ShowType and type level Texts are provided by GHC.

[Faculty of Science
Information and Computing Sciences]

27

The EDSL-developer facing API (version 2) §III

Some constraints can be checked independently: partition
constraints into a list of lists.

atop :: CustomErrors [
[d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram"],
[DoNotCoincide "Back-ends" b1 b2,
DoNotCoincide "Vector spaces" v1 v2,
DoNotCoincide "Numerical fields" n1 n2,
DoNotCoincide "Query annotations" m1 m2],

[Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)]

] => d1 −> d2 −> d1

[Faculty of Science
Information and Computing Sciences]

28

Return of the giant siblings §III

If we write

(〈$〉) :: Sibling "(<$>)" (Applicative f) ((a −> b) −> f a −> f b)
"(<$)" (a −> f b −> f a)
fn

=> fn

this has the effect that in a type incorrect expression with (〈$〉)
we can see whether a related operator (〈$) would fix the error,
and if so provide a hint: For f :: Char −> Int,

f 〈$〉 [1 :: Int] 〈∗〉 "a"

might lead to

* Type error in ’(<$>)’, do you mean ’(<$)’

* In the first argument of ’(<*>)’, namely

’f <$> [1 :: Int]’

...

[Faculty of Science
Information and Computing Sciences]

29

Alternatives and conversions §III

I diagrams distinguishes vectors from points

I You can compute the perpendicular of a vector (but not a
point (pair)) with perp

I Can we provide a hint on how to convert a pair to a vector
if the argument happens to be a pair?

* Expecting a 2D vector but got a tuple.

Use ’r2’ to turn the tuple into a vector.

As with siblings this may not be what the programmer intends,
but the change will resolve the type error.

[Faculty of Science
Information and Computing Sciences]

30

The EDSL-developer facing API (version 3) §III

perp :: CustomErrors [

[v : 6∼: V2 a :V?:

([v ∼ (a, a) :V!:
Text "Expecting a 2D vector but got a tuple."

:$$: Text "Use r2 to turn a tuple into a vector."

],

Text "Expected a 2D vector, but got "

:� : ShowType v)],
[Check (Num a)]] => v −> v

With every apartness check we can associate a list of further
checks on what in this case v might actually be.

[Faculty of Science
Information and Computing Sciences]

31

Restricting the Monad §III

(>=>) :: CustomErrors
[

[m :6∼: IO :V: E .Text "Illegal use of monads: ... "

:� : ShowType m
:� : E .Text " monad"

:$$:
E .Text "...to pass your monad-license"

]
] => (a −> m b) −> (b −> m c) −> a −> m c

(>=>) = (M. >=>)

[Faculty of Science
Information and Computing Sciences]

32

Time to Format §III

Go there, now!

[Faculty of Science
Information and Computing Sciences]

33

What we did on our holidays §III

I We have worked out some rules for
I path
I diagrams
I persistent
I map, Eq, and making foldr and foldl siblings
I formatting
I Students are working on uulib, copilot and a few more

[Faculty of Science
Information and Computing Sciences]

34

Recapping our slogan §III

Expression level type error messages
by

type level programming

[Faculty of Science
Information and Computing Sciences]

35

Thank you for your attention

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help?

Mail me J.Hage@uu.nl

[Faculty of Science
Information and Computing Sciences]

36

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

	Customizing type error diagnosis in GHC

