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Introduction and Motivation
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About me

I Assistant professor in Utrecht, teaching compiler
construction and formal languages (all use Haskell)

I Programming FP (first Scheme, then Haskell) since 1991
I and some non-FP languages of course

I Ran a large FP bachelor course in 2013-2016

I Maintainer of the Haskell Helium compiler

I The Utrecht compiler technology master track uses
FP/Haskell throughout
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Static type systems

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis
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What is type error diagnosis?

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis
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Languages follow Lehmann’s sixth law

I Languages likes Java and Haskell grow and grow

I Languages like Scala embrace multiple paradigms

I Martin Odersky’s “type wall”: unless complicated type
system features are balanced by better diagnosis,
programmers will flock to dynamic languages

I From the other direction: dynamic languages are becoming
more static (Hack, Typescript)
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Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

square 0.5 # fc navy
’atop’

circle 1 # fc darkgoldenrod
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Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

But writing atop True gives

Couldn’t match type ’QDiagram b v n m’ with type ’Bool’
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Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

Writing atop cube3d plane2d might give

Couldn’t match type ’V2’ with type ’V3’

Instead, we would like to see domain terms, telling us about
non-matching ‘vector spaces’ in the messages.
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Example 2: missing instances in Persistent

From the persistent library (Snoyman, 2012)

insertUnique :: (MonadIO m,PersistUniqueWrite backend ,
PersistEntity record)

=> record −>
ReaderT backend m (Maybe (Key record))

use of insertUnique gives rise to type class predicates that may
be left undischarged, because the programmer forgot to write a
PersistEntity instance.

We’d like to get something like:

Data type ’Person’ is not declared as a Persistent

entity. Hint: entity definition can be automatically

derived. Read more at http://www.yesodweb.com/...
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Example 3: Formatting (type safe printf)

hello = format (now "Hello, World!")

FormatEx-orig.hs:26:21:

Couldn’t match expected type ’T.Builder’

with actual type ’[Char]’

In the first argument of ’now’, namely

’"Hello, World!"’

In the first argument of ’format’, namely

’(now "Hello, World!")’

In the expression: format (now "Hello, World!")

It would be helpful to have a hint on how to fix the problem.



[Faculty of Science
Information and Computing Sciences]

10

Example 4: big consequences

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions

〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]
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Example 5: simplifying monads

okay :: IO ()
okay = (return >=> putChar) ’a’

notokay :: Maybe Char
notokay = (return >=> (\ x −> Nothing)) ’a’

Forbid to use monads unless with IO:

ClassExperiment.hs:28:12: error:

* Illegal use of monads: you are allowed to use IO,

but not the Maybe monad

According to your teacher, you have yet to pass

your monad-license

* In the expression: return >=> (\ x -> Nothing)

In the expression: (return >=> (\ x -> Nothing)) ’a’

In an equation for ’notokay’:

notokay = (return >=> (\ x -> Nothing)) ’a’
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Domain Specific Type Error Diagnosis
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What is a DSL?

Examples 1 - 4 dealt with embedded domain-specific languages.

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I As we say: “domain-abstractions should not leak”
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Embedded Domain Specific Languages

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

I According to Hudak “the ultimate abstraction”
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What host language?

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In Haskell, EDSLs are simply libraries that provide some
form of “fluency”

I Consisting of domain terms and types, and special
operators with particular priority and fixity

I But how can we teach the Haskell compiler to
communicate with the programmer in domain terms?
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III. Customizing type error diagnosis in GHC
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A great mistake §III

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! Please read this error message. It’s a

great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True
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Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[ ’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$ :
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b ]
] => a −> b

id ′ = id

I What is code and what is type?

I :� : and :$$: simply put error messages (type level texts)
together (next to or on top of eachother)

I a :6∼: b means: if we know that input and output of id ′ can
never become equal, give the message after the :V:
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Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[ ’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$ :
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b ]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id , and it’s just
Haskell
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Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[ ’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$ :
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b ]
] => a −> b

id ′ = id

I E qualifier to employ type level Text
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Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[ ’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$ :
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b ]
] => a −> b

id ′ = id

I id ′ = id ensures id ′ is sound; can do completeness
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Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[ ’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$ :
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b ]
] => a −> b

id ′ = id

I VS is a reusable type level function
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A bit more on apartness §III

Examples of types that are not apart:

I Int and Int

I a and Int, since a can still become an Int

I a −> b and Bool −> [a ]

These are:

I Int and Bool

I [a ] and b −> b

Apartness implies we have a type error, non-apartness by itself
does not give information.

Apartness is simply a check, and does not imply a
unification/inference step
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The EDSL-developer facing API (version 1) §III

Apartness (= can never become equal again) is represented by
the operator :6∼:

We can deal with two kinds of failure:

data ConstraintFailure =
∀ t . t :6∼: t | Undischarged Constraint

A CustomError is then a failure and a message

data CustomError =
ConstraintFailure :V: ErrorMessage | Check Constraint

The latter if we want the default message.
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Running back to our example §III

atop :: CustomErrors [
d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram",
b1 :6∼: b2

:V: Text "Back-ends do not coincide",
...
Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)
] => d1 −> d2 −> d1
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Abstraction and reuse §III

For consistency and conciseness we can define a type level
implementation for the checks of back-ends, vector spaces, etc.

type DoNotCoincide what a b =
a :6∼: b :V: Text what :� : Text " do not coincide: "

:� : ShowType a :� : Text " vs. " :� : ShowType b

Note that ShowType and type level Texts are provided by GHC.
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The EDSL-developer facing API (version 2) §III

Some constraints can be checked independently: partition
constraints into a list of lists.

atop :: CustomErrors [
[d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram"],
[DoNotCoincide "Back-ends" b1 b2,
DoNotCoincide "Vector spaces" v1 v2,
DoNotCoincide "Numerical fields" n1 n2,
DoNotCoincide "Query annotations" m1 m2 ],

[Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)]

] => d1 −> d2 −> d1
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Alternatives and conversions §III

I diagrams distinguishes vectors from points

I You can compute the perpendicular of a vector (but not a
point (pair)) with perp

I Can we provide a hint on how to convert a pair to a vector
if the argument happens to be a pair?

* Expecting a 2D vector but got a tuple.

Use ’r2’ to turn the tuple into a vector.

It may not be what the programmer intends, but the change
will resolve the type error.
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The EDSL-developer facing API (version 3) §III

perp :: CustomErrors [

[v : 6∼: V2 a :V?:

([v ∼ (a, a) :V!:
Text "Expecting a 2D vector but got a tuple."

:$$ : Text "Use r2 to turn a tuple into a vector."

],

Text "Expected a 2D vector, but got "

:� : ShowType v)],
[Check (Num a)]] => v −> v

With every apartness check we can associate a list of further
checks on what in this case v might actually be.
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A Very Short Time to Format §III

Go there, now!
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How did we achieve this? §III

I Piggybacking on the TypeError class and the Constraint
kind in GHC

I Constraint resolution needs some changes to track
messages and deal with priorities

I A few changes to TypeLits.hs in the base library and a new
module TypeErrors.hs (62 lines) that exposes the API

I One additional compiler pragma CHECK_ARGS_BEFORE_FN.

I We employ many GHC language extensions:

DataKinds, TypeOperators, TypeFamilies,

ConstraintKinds, FlexibleContexts, PolyKinds,

UndecidableInstances, UndecidableSuperclasses

but the EDSL programmer only the first four, the EDSL
user none. (Since 8.3 sometimes AllowAmbiguousTypes)
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What else? §III

I We have worked out some rules for
I path, diagrams, persistent, formatting
I map, Eq, foldr and foldl
I Students have worked on a few more

I I omitted
I siblings: suggest a similar function that has a type that fits
I the monad license example

I Alejandro is presenting this at IFL in Bristol this week
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I’ll leave you with our slogan §III

Expression level type error messages
by

type level programming

Wanna play?
Contact us at J.Hage@uu.nl or A.SerranoMena@uu.nl
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Restricting the Monad §III

(>=>) :: CustomErrors
[

[m :6∼: IO :V: E .Text "Illegal use of monads: ... "

:� : ShowType m
:� : E .Text " monad"

:$$ :
E .Text "...to pass your monad-license"

]
] => (a −> m b) −> (b −> m c) −> a −> m c

(>=>) = (M. >=>)
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Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl
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