
[Faculty of Science
Information and Computing Sciences]

Customizing type error diagnosis in the
Glorious Glasgow Haskell Compilation

System (as of version 8.1.x)

Jurriaan Hage (collaboration with Alejandro Serrano Mena)

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

August 28, 2017

[Faculty of Science
Information and Computing Sciences]

2

Introduction and Motivation

[Faculty of Science
Information and Computing Sciences]

3

About me

I Assistant professor in Utrecht, teaching compiler
construction and formal languages (all use Haskell)

I Programming FP (first Scheme, then Haskell) since 1991
I and some non-FP languages of course

I Ran a large FP bachelor course in 2013-2016

I Maintainer of the Haskell Helium compiler

I The Utrecht compiler technology master track uses
FP/Haskell throughout

[Faculty of Science
Information and Computing Sciences]

4

Static type systems

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis

[Faculty of Science
Information and Computing Sciences]

5

What is type error diagnosis?

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis

[Faculty of Science
Information and Computing Sciences]

6

Languages follow Lehmann’s sixth law

I Languages likes Java and Haskell grow and grow

I Languages like Scala embrace multiple paradigms

I Martin Odersky’s “type wall”: unless complicated type
system features are balanced by better diagnosis,
programmers will flock to dynamic languages

I From the other direction: dynamic languages are becoming
more static (Hack, Typescript)

[Faculty of Science
Information and Computing Sciences]

7

Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

square 0.5 # fc navy
’atop’

circle 1 # fc darkgoldenrod

[Faculty of Science
Information and Computing Sciences]

7

Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

But writing atop True gives

Couldn’t match type ’QDiagram b v n m’ with type ’Bool’

[Faculty of Science
Information and Computing Sciences]

7

Example 1: domain-specific terms in Diagrams

From the diagrams library (Yorgey, 2012/2016)

atop :: (OrderedField n,Metric v , Semigroup m)
=> QDiagram b v n m −>

QDiagram b v n m −>
QDiagram b v n m

Writing atop cube3d plane2d might give

Couldn’t match type ’V2’ with type ’V3’

Instead, we would like to see domain terms, telling us about
non-matching ‘vector spaces’ in the messages.

[Faculty of Science
Information and Computing Sciences]

8

Example 2: missing instances in Persistent

From the persistent library (Snoyman, 2012)

insertUnique :: (MonadIO m,PersistUniqueWrite backend ,
PersistEntity record)

=> record −>
ReaderT backend m (Maybe (Key record))

use of insertUnique gives rise to type class predicates that may
be left undischarged, because the programmer forgot to write a
PersistEntity instance.

We’d like to get something like:

Data type ’Person’ is not declared as a Persistent

entity. Hint: entity definition can be automatically

derived. Read more at http://www.yesodweb.com/...

[Faculty of Science
Information and Computing Sciences]

9

Example 3: Formatting (type safe printf)

hello = format (now "Hello, World!")

FormatEx-orig.hs:26:21:

Couldn’t match expected type ’T.Builder’

with actual type ’[Char]’

In the first argument of ’now’, namely

’"Hello, World!"’

In the first argument of ’format’, namely

’(now "Hello, World!")’

In the expression: format (now "Hello, World!")

It would be helpful to have a hint on how to fix the problem.

[Faculty of Science
Information and Computing Sciences]

10

Example 4: big consequences

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions

〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

10

Example 4: big consequences

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions

〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗ pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

11

Example 5: simplifying monads

okay :: IO ()
okay = (return >=> putChar) ’a’

notokay :: Maybe Char
notokay = (return >=> (\ x −> Nothing)) ’a’

Forbid to use monads unless with IO:

ClassExperiment.hs:28:12: error:

* Illegal use of monads: you are allowed to use IO,

but not the Maybe monad

According to your teacher, you have yet to pass

your monad-license

* In the expression: return >=> (\ x -> Nothing)

In the expression: (return >=> (\ x -> Nothing)) ’a’

In an equation for ’notokay’:

notokay = (return >=> (\ x -> Nothing)) ’a’

[Faculty of Science
Information and Computing Sciences]

12

Domain Specific Type Error Diagnosis

[Faculty of Science
Information and Computing Sciences]

13

What is a DSL?

Examples 1 - 4 dealt with embedded domain-specific languages.

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I As we say: “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

13

What is a DSL?

Examples 1 - 4 dealt with embedded domain-specific languages.

I Walid Taha:
I the domain is well-defined and central
I the notation is clear,
I the informal meaning is clear,
I the formal meaning is clear and implemented.

I Missing is:
I and an implementation of the DSL can communicate with

the programmer about the program in terms of the domain

I As we say: “domain-abstractions should not leak”

[Faculty of Science
Information and Computing Sciences]

14

Embedded Domain Specific Languages

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding the DSL syntax inside
that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

I According to Hudak “the ultimate abstraction”

[Faculty of Science
Information and Computing Sciences]

15

What host language?

I Some languages provide extensibility as part of their
design, e.g., Ruby, Python, Scheme

I Others are rich enough to encode a DSL with relative ease,
e.g., Haskell, C++

I In Haskell, EDSLs are simply libraries that provide some
form of “fluency”

I Consisting of domain terms and types, and special
operators with particular priority and fixity

I But how can we teach the Haskell compiler to
communicate with the programmer in domain terms?

[Faculty of Science
Information and Computing Sciences]

16

III. Customizing type error diagnosis in GHC

[Faculty of Science
Information and Computing Sciences]

17

A great mistake §III

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! Please read this error message. It’s a

great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

17

A great mistake §III

intid :: Int
intid = id ′ True

FormatEx.hs:17:9: error:

* Hi! Please read this error message. It’s a

great error message.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id’ True

In an equation for ’intid’: intid = id’ True

[Faculty of Science
Information and Computing Sciences]

18

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I What is code and what is type?

I :� : and :$$: simply put error messages (type level texts)
together (next to or on top of eachother)

I a :6∼: b means: if we know that input and output of id ′ can
never become equal, give the message after the :V:

[Faculty of Science
Information and Computing Sciences]

18

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ is a type error aware wrapper for id , and it’s just
Haskell

[Faculty of Science
Information and Computing Sciences]

18

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I E qualifier to employ type level Text

[Faculty of Science
Information and Computing Sciences]

18

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I id ′ = id ensures id ′ is sound; can do completeness

[Faculty of Science
Information and Computing Sciences]

18

Our wrapped, highly tailored identity function §III

id ′ :: CustomErrors
’[’ [a : 6∼: b

:V: E .Text "Hi! Please read this error message."

:� : E .Text " It’s a great error message."

:$$:
E .Text "The argument and result types of ’id’"

:� : E .Text " do not coincide: " :� : VS a b]
] => a −> b

id ′ = id

I VS is a reusable type level function

[Faculty of Science
Information and Computing Sciences]

19

A bit more on apartness §III

Examples of types that are not apart:

I Int and Int

I a and Int, since a can still become an Int

I a −> b and Bool −> [a]

These are:

I Int and Bool

I [a] and b −> b

Apartness implies we have a type error, non-apartness by itself
does not give information.

Apartness is simply a check, and does not imply a
unification/inference step

[Faculty of Science
Information and Computing Sciences]

20

The EDSL-developer facing API (version 1) §III

Apartness (= can never become equal again) is represented by
the operator :6∼:

We can deal with two kinds of failure:

data ConstraintFailure =
∀ t . t :6∼: t | Undischarged Constraint

A CustomError is then a failure and a message

data CustomError =
ConstraintFailure :V: ErrorMessage | Check Constraint

The latter if we want the default message.

[Faculty of Science
Information and Computing Sciences]

21

Running back to our example §III

atop :: CustomErrors [
d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram",
b1 :6∼: b2

:V: Text "Back-ends do not coincide",
...
Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)
] => d1 −> d2 −> d1

[Faculty of Science
Information and Computing Sciences]

22

Abstraction and reuse §III

For consistency and conciseness we can define a type level
implementation for the checks of back-ends, vector spaces, etc.

type DoNotCoincide what a b =
a :6∼: b :V: Text what :� : Text " do not coincide: "

:� : ShowType a :� : Text " vs. " :� : ShowType b

Note that ShowType and type level Texts are provided by GHC.

[Faculty of Science
Information and Computing Sciences]

23

The EDSL-developer facing API (version 2) §III

Some constraints can be checked independently: partition
constraints into a list of lists.

atop :: CustomErrors [
[d1 :6∼: QDiagram b1 v1 n1 m1

:V: Text "Arg. #1 to ’atop’ must be a diagram",
d2 :6∼: QDiagram b2 v2 n2 m2

:V: Text "Arg. #2 to ’atop’ must be a diagram"],
[DoNotCoincide "Back-ends" b1 b2,
DoNotCoincide "Vector spaces" v1 v2,
DoNotCoincide "Numerical fields" n1 n2,
DoNotCoincide "Query annotations" m1 m2],

[Check (OrderedField n1),Check (Metric v1),
Check (Semigroup m1)]

] => d1 −> d2 −> d1

[Faculty of Science
Information and Computing Sciences]

24

Alternatives and conversions §III

I diagrams distinguishes vectors from points

I You can compute the perpendicular of a vector (but not a
point (pair)) with perp

I Can we provide a hint on how to convert a pair to a vector
if the argument happens to be a pair?

* Expecting a 2D vector but got a tuple.

Use ’r2’ to turn the tuple into a vector.

It may not be what the programmer intends, but the change
will resolve the type error.

[Faculty of Science
Information and Computing Sciences]

25

The EDSL-developer facing API (version 3) §III

perp :: CustomErrors [

[v : 6∼: V2 a :V?:

([v ∼ (a, a) :V!:
Text "Expecting a 2D vector but got a tuple."

:$$: Text "Use r2 to turn a tuple into a vector."

],

Text "Expected a 2D vector, but got "

:� : ShowType v)],
[Check (Num a)]] => v −> v

With every apartness check we can associate a list of further
checks on what in this case v might actually be.

[Faculty of Science
Information and Computing Sciences]

26

A Very Short Time to Format §III

Go there, now!

[Faculty of Science
Information and Computing Sciences]

27

How did we achieve this? §III

I Piggybacking on the TypeError class and the Constraint
kind in GHC

I Constraint resolution needs some changes to track
messages and deal with priorities

I A few changes to TypeLits.hs in the base library and a new
module TypeErrors.hs (62 lines) that exposes the API

I One additional compiler pragma CHECK_ARGS_BEFORE_FN.

I We employ many GHC language extensions:

DataKinds, TypeOperators, TypeFamilies,

ConstraintKinds, FlexibleContexts, PolyKinds,

UndecidableInstances, UndecidableSuperclasses

but the EDSL programmer only the first four, the EDSL
user none. (Since 8.3 sometimes AllowAmbiguousTypes)

[Faculty of Science
Information and Computing Sciences]

28

What else? §III

I We have worked out some rules for
I path, diagrams, persistent, formatting
I map, Eq, foldr and foldl
I Students have worked on a few more

I I omitted
I siblings: suggest a similar function that has a type that fits
I the monad license example

I Alejandro is presenting this at IFL in Bristol this week

[Faculty of Science
Information and Computing Sciences]

29

I’ll leave you with our slogan §III

Expression level type error messages
by

type level programming

Wanna play?
Contact us at J.Hage@uu.nl or A.SerranoMena@uu.nl

[Faculty of Science
Information and Computing Sciences]

30

Restricting the Monad §III

(>=>) :: CustomErrors
[

[m :6∼: IO :V: E .Text "Illegal use of monads: ... "

:� : ShowType m
:� : E .Text " monad"

:$$:
E .Text "...to pass your monad-license"

]
] => (a −> m b) −> (b −> m c) −> a −> m c

(>=>) = (M. >=>)

[Faculty of Science
Information and Computing Sciences]

31

Questions you could have asked §III

I Does this work with type classes?

I Can we specialize per instance?

I Can you apply your work to your error diagnosis EDSL?

I What do I see in ghci when I ask for the type of now?

I And what about Haddock?

I Can I help? Mail me J.Hage@uu.nl

	Customizing type error diagnosis in GHC

