
Utrecht University
Department of Information and Computing Sciences

Automatic program analysis for
data parallel kernels

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science

Author:
Călin Juravle

Supervisor:
Utrecht University Prof. Dr. S. Doaitse Swierstra

Daily supervisors:
Utrecht University Dr. Jurriaan Hage

Vector Fabrics Dr. Alexey Rodriguez

July 2011

Abstract

It is widely known that GPUs have more computational power and expose a far greater level of parallelism
than conventional CPUs. Despite their high potential, GPUs are not yet a popular choice in practice,
mainly because of their high programming complexity. The complexity derives from two factors. First,
the existing programming models are tied to the underlying GPU architectures. Because of this, GPU
programming methodology is different from conventional CPU programming, and forces developers to
think in different terms. Second, a lot of architectural details that heavily influence program performance
are not exposed to the programmer. The consequence is that in order to get fast programs developers
must have a deep understanding of the targeted GPU platform.

Moreover, mapping existing sequential programs to GPU is even more difficult. The reason is that not
every part of a given program is suitable to be mapped to the GPU. Identifying those suitable parts
implies looking for dependencies and recognizing data parallel patterns. This is not an easy task if the
program code base is very large.

The aim of this thesis is to ease the problem of mapping existing sequential programs to a GPU. To
this end, we explore automatic program analyses that enable automatic and guided transformation of
sequential programs to data parallel GPU kernels. Our main contributions consist of identification and
implementation of key program analyses that enable such transformations. The result is a system that can
identify kernel regions in a sequential program, detect GPU specific optimisations and provide additional
kernel information that can be used to estimate performance. The work serves as a foundation for an
automatic GPU parallelization system.

Contents

1 Introduction 3

1.1 Context and motivation . 3

1.2 Problem definition and goals . 4

1.3 Organization of this thesis . 5

2 Background 6

2.1 CUDA platform . 6

2.1.1 CUDA architecture . 6

2.1.2 CUDA programming model . 8

2.1.3 CUDA execution model . 10

2.1.4 The problem with CUDA platform? . 11

2.2 Program analysis . 12

2.2.1 Static program analysis . 12

2.2.2 Dynamic program analysis . 13

3 General approach 14

4 Identifying GPU friendly loops 18

4.1 GPU friendliness test . 18

4.2 Detecting kernel parameters . 19

5 Detecting optimisations 23

5.1 Coalescing analysis . 25

5.2 Shared memory analysis . 29

5.2.1 Reconstruction of 2D access . 34

5.2.2 Reducing the need for shared memory . 35

6 Instantiating the results 37

6.1 Instantiation procedure . 37

6.2 Trading soundness for precision . 39

7 Symbolic computation 41

7.1 Expressiveness . 41

7.2 Operations and algorithms . 43

1

CONTENTS

7.3 Algorithmic complexity . 46

7.4 Soundness discussion . 47

8 Analyses 48

8.1 Overview . 48

8.2 Intermediate program representation . 49

8.3 Symbolic range analysis . 52

8.3.1 Lattice . 53

8.3.2 Algorithm . 55

8.3.3 Example . 59

8.4 Expression reconstruction analysis . 60

8.5 Sign analysis . 62

8.6 Loop invariant analysis . 65

8.7 Adding context sensitiveness - ongoing work . 66

8.7.1 Motivation . 66

8.7.2 Technique . 67

9 Sample report 69

10 Related work 72

11 Conclusions 75

Bibliography 77

2

1
Introduction

1.1 Context and motivation

Modern processor architectures have embraced parallelism as an important step to satisfy the ever in-
creasing need for performance. For some architectures this meant an increase in the number of processing
units. For others, already parallel, it meant an increase in programmability. Typical examples include
Central Processing Units (CPUs) for the former and Graphical Processing Units (GPUs) for the latter.
CPUs, faced with the technical challenges of higher clock speeds in a fixed power envelope, have improved
performance by adding multiple cores. GPUs have evolved from fixed function rendering devices into
programmable parallel processors, promising big performance improvements for some classes of problems.

While multi-core CPUs have been around for quite some time already, GPUs became fully programmable
just recently. This, combined with the advantages of GPUs over CPUs (more floating-point computational
power, greater level of parallelism), has opened new research topics and trends with respect to program
parallelization.

One such topic concerns the development of new general programming models. The goal is to help
software developers take full advantage of the GPU platform. Programming models like CUDA [38],
OpenCL [21], or APP [2] emerge particularly for this purpose.

Another topic, driven by the high complexity of parallel programming in general and of GPU program-
ming in particular, focuses on assisted and automatic parallelization of existing sequential code. The
importance of this area exploded with the introduction of the many-core, programmable GPUs to the
mass market. It quickly become clear that performing the parallelization manually is not very productive
- it takes a long time to get it right, particularly for programs with large code-bases. It is not an easy task
to search for optimisation hot spots manually and to look for dependencies through thousands of lines of
code. But this is precisely what the programmer has to do in order to make sure that the parallel version
is semantically equivalent. This gave birth to a new research question: how can we achieve automatic or
guided GPU parallelization of existing sequential code? The question, mainly studied in the context of
parallelizing compilers, forms our research question.

In order to preserve the semantics of the program, parallelizing compilers need to analyse programs to
identify safe transformations. One such analysis is data dependency analysis, which is needed to make
sure that the compiler does not reorder statements that depend on each other. Besides identifying,
compilers are also responsible to optimize the code. As we will see this step is a must when it comes to
GPU parallelization. This is also done through automatic analyses. We can thus argue that automatic
program analysis is a major component of the answer to the above question.

3

1.2. PROBLEM DEFINITION AND GOALS

With respect to program analysis, transformations from sequential to parallel programs can be approached
from two different perspectives. The first approach is to let the compiler do the transformation directly,
after it statically analysed the program. This has the advantage of being fully automatic and sound. The
disadvantage is that due to inherent limitations, only a limited number of well structured programs will
benefit. The other approach involves letting the compiler also use dynamic program analyses. This may
lead to unsound results which in turn creates the need for interactive compilation. Although not fully
automatic this approach is more precise and is able to deal with to a broader class of programs. Moreover
it can also help programmers to better understand the behaviour of their programs.

It is in the second context that we perform our research. The project goal is to explore possible solutions
to achieve automatic or guided GPU parallelization of sequential programs.

1.2 Problem definition and goals

The problem that we aim to solve can be formulated with the help of three questions. Given a sequential
program and a computational intensive part of the program answer the following:

• Is this program part suitable to be mapped to a GPU?

• If so, how should it be transformed in order to run on the GPU?

• Are there any GPU specific optimisation opportunities?

Each of these questions comes with a number of challenges. First of all, not every program is suitable to
be implemented on or mapped to a GPU. In particular, programs based on task oriented algorithms where
most of the work is done by a limited number of threads, or programs with a high percentage of conditional
branches are better suited for CPUs. GPUs favour programs based on data parallel algorithms where the
work can be split among multiple threads dominated by long sequences of computational instructions.
Deciding if a particular part of a program is GPU friendly is thus not an easy challenge. Sometimes this
requires information that cannot be easily retrieved using static analysis. Thus, combining static analysis
techniques with dynamic approaches becomes a must in this context. Even if our focus will be on static
analysis, we still have to consider the integration of dynamic analysis and balance its advantages and
complications.

Second, GPUs are separate devices in the hardware architecture and require special configuration to
execute programs. For example, because they have their own memory, different from the system memory,
data needs to be copied explicitly to and from it. Detecting these extra parameters needed to create the
actual mapping is thus another challenge.

Third, even if we detect that a certain part of a program can be transformed to run on a GPU, a
straightforward naive transformation will not always achieve the best results in terms of performance.
This fact has been suggested by NVIDIA manuals [38, 37], different independent experiments [27, 30], and
has also been confirmed by us through preliminary tests. Analysing the program in order to find suitable
optimisations is yet another challenge. Moreover, although existing programming models like CUDA [38]
or APP [2] simplify GPU programming and indirectly the job of a compiler, they reduce little if any
difficulty in optimising GPU applications. We can even argue that to some degree the added abstractions
even complicate the optimisation as they make performance prediction harder and very sensitive to the
specific hardware configuration.

In this context our goal is to find answers to the above questions and to solve the mentioned challenges.
In other words we aim to help users to get the most out of their data parallel programs.

4

1.3. ORGANIZATION OF THIS THESIS

Our main tool to achieve this goal is automatic program analysis. It is important to mention that we
focus on program analysis that enables program transformations; extensions like cost models to accurately
predict the performance of the generated kernels are outside the scope of this research.

We aim to integrate our work in an already existing production quality compiler and analysis tool [53].
We are targeting programs written in ANSI C99 language. We plan to perform the analyses on an
intermediate representation as output by the current compiler infrastructure. We do not strive to actually
accomplish automatic transformation yet, but we require that, based on the produced data, it should be
possible to do so.

1.3 Organization of this thesis

This thesis is organized as follows. We start by providing the necessary background information needed
to understand the rest of the thesis in Section 2. More specifically, Section 2.1 provides extensive details
about the GPU architecture and programming model, and Section 2.2 gives an overview of the automatic
program analysis techniques that we use to achieve our goals. The rest of the thesis can be divided in
two parts which presents our solution in a top down fashion.

In the first part we describe the general approach and the top level features of our solution. Section 3
gives an overview of the approach. Section 4 presents how we identify GPU friendly loops. Section 5
describes how we detect GPU specific optimisations. And finally, Section 6 discusses how we can improve
the results obtained so far.

In the second part we focus on the machinery that powers up the main results. Section 7 presents the
symbolic computation engine which lies at the heart of our approach. Section 8 presents details about
the static analyses that we perform.

We present a sample report of our results in Section 9. Related work is discussed in Section 10. Section
11 concludes.

5

2
Background

2.1 CUDA platform

GPUs have a history of ever-increasing programmability. Originally developed to enable real-time display
of 3D graphics that could be programmed only by using graphics commands, GPUs gradually grew to
be not only powerful rendering engines but also powerful ”computational coprocessors”. This enabled
developers to write general purpose programs that could run on GPUs and gave birth to GPGPU domain
(General Purpose computing on Graphics Processing Units). With a powerful parallel processor at hand,
available for general purpose computations, researchers are now further investigating how sequential
programs can be transformed so as to benefit from all available computational power.

Before going into depths and discuss program analyses for GPUs we must first understand the GPU ar-
chitecture and its programming model. Although different kinds of GPUs from different producers share
core architectural concepts, there are a lot of specific details that make GPU programming hardware
dependent. Efforts have been put into unifying the computing and programming model across hetero-
geneous platforms consisting of CPUs, different kinds of GPUs and other processors under the OpenCL
specification [21]. Unfortunately, this is immature and implementations of the specification vary both in
performance and completeness.

Thus, we choose to perform our research using the most mature GPU programming model, NVIDIA
CUDA (Compute Unified Device Architecture) [38]. It is important to mention that CUDA is used
to denote two different things: an architecture and a programming model; the context will make clear
to which one we refer. Among the hardware architectures that supports CUDA, we focus on Fermi
architectures [36], the latest and most powerful. Further generalisations should be possible since there
exists usually a straightforward mapping to other architectures.

We note that every reference to GPUs from now on will refer to NVIDIA GPUs based on the Fermi
architecture.

2.1.1 CUDA architecture

The computational power of GPUs is made possible by a scalable, massively parallel architecture that
can reach hundreds of billions of floating point operations per second. In what follows we will elaborate
this architecture using CUDA as example.

The CUDA architecture is built around a scalable array of multi-threaded Streaming Multiprocessors
(SMs). Each SM contains a set of processor cores called Symmetric processors (SPs) or CUDA cores.

6

2.1. CUDA PLATFORM

For example, NVIDIA GeForce 580 GTX has 16 SMs, each consisting of 32 SPs which amounts to a total
of 512 cores. Thus, the device is capable of sustaining 512 parallel hardware threads [36]. The SMs and
SPs can communicate and synchronise with each other through an explicitly managed memory hierarchy.
Different kinds of memories are organised in a hybrid cache and local-store hierarchy, and are available
either on-chip or off-chip.

The SPs within an SM communicate through a fast on-chip local memory, called shared memory, while the
different SMs communicate through a dedicated part (the global memory) of the slower off-chip DRAM
(the device memory).

Moreover, each SP has its own register space. This is allocated dynamically from a larger register file
available at SM level (for example, the 580 GTX model has 32768 registers of 32 bits per SM). The SP
also has access to a private local memory, which is used in case the allocated registers are not enough for
a particular task. The name local memory may be misleading, because even if it is local to an SP it is
allocated off-chip, in the device memory, and thus suffers from high latency accesses.

The SPs can also access two other kinds of memories, optimised for special tasks: constant memory and
texture memory. The constant memory space resides in device memory and is cached on-chip in the
special constant cache. It is available for all device SPs and is optimised for reading access. The texture
memory space resides also in device memory and is cached on-chip in the texture cache. The texture
cache is optimized for 2D spatial locality, which increases the speed of accessing addresses that are close
together in 2D.

Although there are multiple types of memories, the Fermi architecture implements a single unified memory
request path for loads and stores, with an L1 cache per SM and unified L2 cache that services all operations
(load, store and texture). The per-SM L1 cache is configurable to support both shared memory and
caching of local and global memory operations.

Figure 2.1 sketches the most important parts of CUDA architecture and presents the memory access
path.

Some important notes must be made regarding the access to various types of memories. The off-chip
device memory has a very high latency (about ten times higher than the on-chip shared memory). While
the constant and texture memories are optimised for particular situations through special caches, the
global memory is only subject to the normal cache hierarchy. Thus, the access to it has to be optimised
by other means. To this end the GPU employs a particular hardware optimisation - global memory
coalescing. That is, accesses from adjacent threads to adjacent locations in global memory are coalesced
into a single contiguous aligned memory access. This means that contiguous access to global memory by
threads is essential to exploit this architectural feature and is therefore an important optimisation.

In what concerns the on-chip memories, other hardware optimisations are used in order to provide max-
imum bandwidth. For example, the shared memory is organised into multiple banks such that access
to addresses that fall into different banks can be served simultaneously, thus greatly improving memory
bandwidth. However, if the accesses are to different addresses of the same bank then a bank conflict
occurs and the requests will be serialized. This will result in a performance penalty proportional to the
number of requests.

With respect to constant memory we note that while accessing the constant cache is fast, the cache has
only a single port and hence functions optimally when multiple SPs load the same value from the cache.
The texture cache has a higher latency than the constant cache, but it does not suffer when memory
read accesses are irregular. Because of this, it is recommended when accessing data with good 2D spatial
locality.

We conclude the discussion about the memory hierarchy with the observation that it is extremely impor-

7

2.1. CUDA PLATFORM

Shared memory

Global memory

Core
(SP)

Core
(SP)

Core
(SP)

Streaming multiprocessor (SM)

. . .

SM SM

GPU Device

CPU

Register file

. . .

L1 Cache

L2 Cache

Interconnection network

memory access path

Figure 2.1: CUDA architecture

tant to reduce the number of accesses to off-chip memory and maximise utilisation of on-chip memories.

With respect to thread scheduling, the Fermi architecture has a two level distributed scheduler. At the
chip level, a global work distribution engine schedules thread blocks to various SMs. At the SM level,
there is a warp scheduler which distributes groups of fixed number of threads (called warps) to their
execution units. Each SM features two warp schedulers and two instruction dispatch units. This allows
two warps to be issued and executed concurrently. It is important to note that because warps execute
independently, the scheduler does not need to check for dependencies from within the instruction stream,
allowing for high instruction throughput.

2.1.2 CUDA programming model

The complexity of the CUDA architecture is managed by a multi-level heterogeneous programming model
that focuses on algorithm design rather than the details of how to map the algorithm to hardware. The
model provides an abstraction of the GPU parallel architecture using a minimal set of programming
constructs such as hierarchy of threads, hierarchy of memories, and synchronization primitives.

In the CUDA software platform, as well as in the other similar models (OpenCL framework or APP
platform), the computational elements of algorithms are known as kernels (a term adapted from its use
in signal processing rather than from operating systems). A CUDA program consists of a host program
which is run on the CPU and a set of CUDA kernels that are launched from the host program on the GPU

8

2.1. CUDA PLATFORM

device. The kernels can be written in the C language (ANSI- standard C99) extended with additional
keywords to express parallelism directly rather than through the usual looping constructs. Once compiled,
kernels consist of many threads that execute the same code fragment in parallel. Typically each thread
instance corresponds to a single loop iteration. To make this clearer consider for example an image-
processing algorithm (see Figure 2.2) that changes the pixel colours of an image according to some
function. While one thread operates on a single pixel, the kernel, represented by all the threads together,
operates on the whole image.

int process(char* pixels, int N) {
 for(i = 0; i < N; i++) {
 img.pixels[i] = get_pixel_color(i);
 }
}

void main(){
 ...
 process(pixels,N)

}

__global__ void process_kernel(char* pixels, int N){
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i < N)
 pixels[i] = get_pixel_color(i);
}

void main() {
 ...
 dim3 dimBlock(blockSize);
 dim3 dimGrid(ceil(N / (float)blockSize)
 img_kernel<<<dimGrid, dimBlock>>>(pixels,N)
}

Cpu Program Cuda Program

kernel gpu explicit - thread bodygpu implicit host code

Figure 2.2: Simple CUDA example

Multiple threads are grouped into thread blocks which will be run on the same SM. This allows for
the threads within the same thread block to synchronise through synchronisations primitives and com-
municate through shared memory. Although thread blocks may execute in any order, concurrently or
sequentially, they can coordinate themselves by using atomic instructions on the global memory.

Thread blocks are also grouped together on what is called a grid. Each thread in a thread block is
uniquely identified by its thread id (threadIdx in the example above) within its block and each thread
block is uniquely identified by its block id (blockIdx in the example above). Figure 2.3 presents the
different layers of a kernel organisation.

Grid

Block (0,0)

Block (1,0) Block (1,1)

Block (0,1)

Thread block

Thread (0,0) Thread (0,1) Thread (0,2)

Thread (1,0) Thread (1,1) Thread (1,2)

Thread (2,0) Thread (2,1) Thread (2,2)

Figure 2.3: CUDA kernel threads organisation

Each thread has access to a memory hierarchy that maps closely to the before mentioned hardware view.
Thus, the threads have a private local memory space and a private register space. Moreover, threads in

9

2.1. CUDA PLATFORM

the same thread block have access to the same shared memory. The device memory is accessible by all
threads in a kernel through the global memory. Figure 2.4 presents how the memory hierarchy is exposed
to the kernel.

Thread

Thread block

Grid 0

Block 0 Block n

. . .

Grid 1

Block 0 Block n

. . .

per thread
local memory

per block
shared memory

per application
context
global memory

Figure 2.4: CUDA memory hierarchy

2.1.3 CUDA execution model

The CUDA execution model is guided by a SIMT (Single-Instruction, Multiple-Thread) architecture. This
is akin to SIMD (Single Instruction, Multiple Data) vector organisations with the key similarity being
that all cores in the same group execute the same instruction at the same time. The difference is that
while SIMD vector organisation exposes the SIMD width to the software, the SIMT instructions specify
the execution and branching behaviour of a single thread. SIMT can be viewed as an abstraction of SIMD
where individual vector elements are abstracted to threads. This, in contrast with SIMD vector machines,
enables programmers to write thread-level parallel code for independent, scalar threads, as well as data-
parallel code for coordinated threads. It is important to note that for the purposes of correctness, the
programmer can essentially ignore the SIMT behaviour. However, substantial performance improvements
can be obtained by considering its characteristics. For example, grouping threads that follow the same
execution path into the same block may lead to important performance gains.

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are enumerated
and distributed to multiprocessors with available execution capacity. Furthermore, the multiprocessors
partition the given thread blocks into groups of parallel threads (warps). The warps get scheduled for

10

2.1. CUDA PLATFORM

execution by a warp scheduler. Individual threads composing a warp start together at the same program
address, but they have their own instruction address counter and register state and are therefore free to
branch and execute independently.

A warp executes one common instruction at a time, so that full efficiency is realised when all threads of a
warp agree on their execution path. If threads of a warp diverge via a data-dependent conditional branch,
the warp serially executes each branch path taken, disabling threads that are not on that path. After
all paths complete, the threads converge back to the same execution path. Branch divergence occurs
only within a warp and different warps execute independently regardless of whether they are executing
common or disjoint code paths.

It is also important to note the following. If an instruction executed by a warp writes to the same location
in global or shared memory for more than one of the warp threads, the requests are serialised and the
order is undefined.

2.1.4 The problem with CUDA platform?

Although CUDA simplifies GPU programming it suffers from several deficiencies that are not easy to
overcome. These deficiencies relate to the architecture specific knowledge that developers must have in
order to efficiently program the device. Basically, in order to get the most out of the GPU, the developers
must know all details presented in this section (and more). This contrasts with CPU programming where
knowing architectural details helps but is not essential to get good performance.

The reason for this is twofold. First, the programming model is still tied to the underlying hardware
architecture. Second, details that are specific to a given generation of architectures may influence the
performance of the kernels by an order of magnitude.

In general, the developers must be aware of at least the following details:

• how threads are scheduled and executed

• how warps are created and what happens if there are insufficient threads to complete a warp

• what is branch divergence and how it influences the execution

• what arithmetic operations are expensive and should be avoided

• what are the peculiarities of different types of memory

– when coalescing applies and how it impacts the access time

– what are bank conflicts and how can they be avoided

– when can a particular type of memory broadcast data

• what type of memory is good for a particular access pattern

• how different mappings of the loop space to the grid space influence the kernel performance

Overall, these deficiencies make GPU programming fairly low level and difficult. In this context, our goal
is to lower as much as possible the platform knowledge needed to write efficient CUDA programs.

11

2.2. PROGRAM ANALYSIS

2.2 Program analysis

Program analysis is the process of analysing computer programs with the purpose of computing approxi-
mate information about their run-time behaviour. Applications include compilers (for code improvement),
software validation (for error detection), and transformations between data representations. There are
two main different approaches to program analysis: static analysis and dynamic analysis.

2.2.1 Static program analysis

Static program analysis is a semantically driven analysis that relies on compile-time techniques for com-
puting safe and reliable approximations of the set of values or behaviours that arise during program
execution [35]. It is performed without executing the program and in most cases is done on the source
code, although sometimes object code is preferred (binary or bytecode).

There are four major approaches to static program analysis: data flow analysis [35], constraint based
analysis [35, 50], abstract interpretation [35, 11, 32], and type and effect systems [39, 24, 35]. In this
thesis we use data flow analysis with abstract interpretation. In what follows we will introduce these.
For the others, we direct the reader to the literature. We note that we only provide an overview; for
complete details please consult the relevant literature.

Data flow analysis. This is the classical form of static program analysis. Data flow analysis views the
program as a graph where the nodes are elementary blocks (non-jumping instructions or a group of them)
and the edges describe how the control is passed between elementary blocks. The elementary blocks
are usually referred to as program points. The values for the observed properties are expressed either
as equations (leading to an equational system) or as constraints (leading to an inequational system).
Basically, the equations can be viewed as functions which specify how information is propagated from
one program point to another. For such a function the input is called the context and the output is
called the effect, or equivalent: entry/exit set of values [35]. The preferred way to specify data flow
analyses is by using a monotone framework which assembles generic algorithms for solving the data flow
(in)equations.

The monotone framework assumes two important facts about the analysis. The first one is that the
structure that holds program information forms a complete lattice [14] for witch the ascending chain
condition hods. The second one, is that the functions that propagate information between the program
points (called transfer functions) are monotone with respect to the chosen lattice. The lattice requirement
provides a way to combine information from various program points in a consistent way. This is done
using the lattice join operator. The monotonicity of transfer functions is needed in order to ease the
correctness proof and the specification of the algorithm.

The classic algorithm used to solve data flow problems, formulated as monotone frameworks, is the MFP
(maximal fixed point) algorithm. The algorithm computes the least fix point for a given instance of the
monotone framework. It does this by iterating over the program flow, and updating the data stored at
program points until the information stabilizes, i.e., it reaches a fix point. For a given program point the
information is computed by applying the transfer function to its context. The effects are then propagated
to subsequent program points and merged with local information using the lattice join operator. The
transfer functions are defined independently, for each program point. Section 8 will provide further details
about the peculiarities of the algorithm.

For a formal specification of monotone frameworks we direct the reader to [35].

12

2.2. PROGRAM ANALYSIS

Data flow analyses can be classified based on two main criteria: flow-sensitiveness and context-sensitiveness.
Flow-sensitive analyses take into account the statement order while flow-insensitive ones do not. The
former is more precise but the latter is more efficient. Context-insensitive analyses analyse functions in-
dependent of their calling context while context-sensitive ones take the context into account. The former
is more efficient but also less precise.

Abstract interpretation. This is a general methodology for calculating analyses. Abstract interpre-
tation views analyses as simplifications of running computer programs. Because of this it can be applied
(to some extent) independently of the specification style used for presenting the program analyses.

In the context of data flow analyses we use abstract interpretation to lift some restrictions and alleviate
some issues about the complexity of the analyses. For example asking for complete lattices with ascending
chain condition is sometimes too much in practice. Consider the case of computing the possible values
that a variables can take during the program execution. No matter what lattice we choose, none will
have ascending chain condition since the set of values is possible infinite. Abstract interpretation offers
techniques that make it possible to solve such cases within the monotone framework approach. One such
technique introduces a widening operator which replaces the lattice join operator. Using the widening
we make larger steps in the lattice when combining information. This allows us to achieve termination
and reach a fix point solution. The downside is that by making bigger jumps we loose precision. This is
corrected by the narrowing technique which tries to regain some of the lost information. We can also use
the same approach to reduce the complexity of the analysis when the lattice fulfils the ascending chain
condition but the chains are possible very long.

For complete information we invite the reader to consult [35] and [11], where Nielson et al. and Cousot
et al. present the formal theory behind abstract interpretation and prove its correctness.

2.2.2 Dynamic program analysis

Dynamic program analysis is the analysis of computer software that is performed by executing programs
built from the source code on a real or virtual machine. In contrast with static analyses, dynamic analyses
are not sound. This means that the information computed by a dynamic analysis might not hold for
all possible program executions. In order to diminish this risk and make dynamic program analysis be
effective, the target program must be executed with sufficient test inputs to cover all interesting behaviour.
Software testing techniques such as code coverage help to ensure that an adequate slice of the program
set of behaviours has been observed.

Because they take into account run-time information, dynamic analyses are usually more precise than
the corresponding static analyses. This makes them useful in contexts where the program behaviour
heavily depends on specific properties of the input. Well known tools that use dynamic analysis include
for example Daikon [17], a system for dynamic invariant detection, and Valgrind [34], a framework for
detecting memory management and threading bugs.

In our case, dynamic analysis is important because it provides a way to compute information about
the program that is not easily detected through static methods. An example of such information are
the memory dependencies of the program, which are particularly hard to compute statically if the code
uses indirect addressing, pointers, recursion, and indirect function calls. Using dynamic analysis this
information can be computed as precise as the test cases allow. Moreover, dynamic analysis is the only
way to gather information about particular program executions.

We also note that the system in which we integrate our work [53] makes extensive use of dynamic analyses.

13

3
General approach

As stated in the introduction our goal is to help users get the most out of their data parallel kernels.
The main questions we aim to answer are: is this program part suitable to be mapped to a GPU? If so,
how should item be transformed in order to run on the GPU? Are there any GPU specific optimisation
opportunities?

Our approach to achieve this goal is by researching automatic program analysis techniques that:

• provide the user with enough information to get an efficient data parallel GPU program

• enable automatic program transformations of sequential programs to data parallel GPU programs

To this end, we designed and developed an automatic program analysis system with the above mentioned
capabilities. The system was developed in the context of vfEmbedded, a production quality compiler
and analysis tool [53]. Our system extends the analysis capabilities of the tool with an advanced static
analysis framework, designed to achieve guided or automatic GPU transformations. It is important to
mention that although we target ANSI C programs the techniques are mostly language independent.

In the rest of this thesis we explain in detail the design of the system and how it works. Because we
have a high integration with the existing infrastructure we will be clear in what is reused and what is our
contribution. We will proceed with the description in a top-down fashion. Because of this, we will often
redirect the user to later sections to discover the detailed machinery behind some particular features.

The rest of this section, introduces the main concepts and ideas behind our approach. It will also give an
overview of the system flow and its main components. The next sections will present the top level features
of the system (Sections 4, 5 and 6). These features are the ones that the user or the transformation engine
will actually use during the interaction with the system. And last but not least, Sections 7 and 8 will
present the machinery (i.e., the program analysis framework) that makes these features possible.

Solution concept. The main idea behind our approach can be summarise through the following actions.
Run automatic analyses to collect information about the program. Use the results to identify feasible
program parts for parallelization. Once a suitable part has been found, detect possible optimisations.
Aggregate the information gotten so far into a kernel model. It should be possible for an user or for an
automatic transformation engine to use the model to map the detected program part to a GPU. Combine
the kernel model with actual data values to get an accurate model of the executed program. It should
be possible to use this model to predict the mapping performance in the context of the executed tests. If
the final results are too imprecise due to a particular analysis, re-evaluate the analysis using actual kernel

14

values found during the execution of the program. Figure 3.1 presents the detailed flow and provides
more information about each step.

With respect to the above described flow we can isolate four main phases in the approach:

analysis During this phase we collect various kinds of information about the input program. The
goal is to create detailed static and dynamic models of the program which enable automatic or
guided transformations. In order to achieve this, we employ advanced static and dynamic analysis
techniques.

identification This phase has two goals. The first one is to decide on the feasibility of a given part of
the input program to be ported to a GPU. The second one is to identify the mandatory information
needed for an initial transformation (e.g., inbound data).

optimisation The focus of this phase is to detect possible optimisations for the initial transformation.

instantiation This phase combines static and dynamic information to get an accurate model of the
program with respect to a given test suite. Recall that in order for dynamic analysis to perform
well one needs to run it for a representative set of test cases. It further detects imprecisions in the
created model and fixes them using dynamic information.

We further explain and motivate specific choices that we made during the design of our solution.

What program parts are we looking to parallelize? A typical sequential program consists of
elements that can run independently of each other, and of elements that must be run in order. The
elements that can run independently can further be grouped according to the type of parallelism that
they expose: bit-level parallelism, instruction level parallelism, data parallelism or task parallelism. Since
we target the GPU as the execution platform for the parallel sections of the program we are most interested
in the elements that expose data parallelism. It is well known that out of all program parts the loops are
the hotspots to look for data parallelization opportunities. This is because under certain conditions each
loop iteration can be assigned to a different thread. This perfectly fits with the GPU execution model
and thus makes loops our main focus for the identification analyses.

Combining different types of analyses. When aiming for automatic program transformation, suc-
cessful static analysis is to be preferred over dynamic analysis. This is because, even if not the most
accurate, the results of a well behaved static analysis are always sound. Thus the transformation based
on them is also sound. However, there are many cases when the static analysis cannot infer the program
behaviour we are interested in, or the results it produces are too imprecise to be of any use. This usually
happens when the program exhibits features that the static analysis cannot handle through approxima-
tions. In such situations a dynamic analysis of the program may produce the precise results that we are
interested in. For example, it is well known that static dependency analysis is hard for code using indirect
addressing, pointers, recursion, and indirect function calls [60, 55]. By contrast, dynamic analysis can
handle this very well. Overall this implies that we often will have to trade soundness for precision. In
such a case we can only discuss about guided program transformations.

Moreover, dynamic analysis is also essential when it comes to providing information about a particular
program execution. Such information is mandatory in order to estimate the mapping performance.

15

Suggesting optimisations. In most cases additional GPU specific optimisations must be made in
order to get a boost in performance [37], whether the GPU program was written manually or was the result
of an automatic transformation. Because of the multiple tradeoffs involved in the process, choosing what
optimisations should be performed is always a difficult task, especially if it has to be done automatically.
This becomes even more complicated if we consider the fact that GPU programs are sensitive to small
variations of the parameters (for example Ryoo et al. have shown in [48] that the effects of optimisations
are usually non-linear).

Our goal is to automate the optimisation process with respect to a small set of optimisations that is likely
to work for the majority of kernels. In this sense we focus on optimisations related to memory usage. More
specifically we examine optimisations related to global memory coalescing and shared memory usage.

Symbolic approach. Mapping a loop to GPU usually implies creating new functions, copying data to
and from devices and applying eventual optimisations. For a general program, these steps depend on the
loop inbound variables and grid configuration parameters. This means that if we want to be generic and
handle all classes of programs, not just the ones for which the values can be detected statically, we need to
manipulate information in terms of the symbolic values of these parameters. Our approach is to construct
an algebraic model of the program through static analysis. That is, we express the program behaviour
such as array access bounds or memory access expressions, as algebraic expressions parametrised by the
kernel parameters.

Flow overview. The overview of our approach and also the main flow of the designed system is depicted
in Figure 3.1:

Program

Run static analysis Run dynamic analysis

Detect optimizations Identify gpu friendly loops

Kernel model

Instantiate

Not precise enough?

Estimate

Generate recipe

Transform

Re-evaluate with
actual kernel parameters

Algebraic model Profile

Figure 3.1: Approach overview

16

The starting point of the work flow is the program that we want to analyse. This is compiled into an
intermediate representation that forms the basis for further program analysis. For more details about
the representation we refer to Section 8.2. Next, we run static and dynamic analyses and collect various
information about the program. Dynamic analysis is run on a representative set of test cases and creates
a profile of the program. Based on the profile we extract program dependencies and loop counts. Using
static analysis we create an algebraic model for the loop we want to parallelize. The algebraic model
includes array access bounds, memory access expressions and loop invariants.

The information produced by both analyses are combined in order to identify GPU friendly loops. The
identification process also takes care of discovering the inbound and outbound dependencies which will
need to be copied to and from the device. After we have identified that a certain loop is feasible to be
ported to a GPU we move forward and try to optimize the transformations. The process of detecting
optimisations is solely based on the results of static analyses. Our main focus is on memory optimisations.
Based on the result of the identification phase and optimisation phase we produce a symbolic kernel model.
We call the model symbolic because it is based on the algebraic model of the loop and contains information
in terms of inbound variables and grid parameters.

The kernel model is further combined with actual data values as they occur during program execution
(e.g., the size of an image) and instantiated to create a detailed kernel report. This is referred to as
the instantiation phase. The result of the instantiation can further be used to estimate the mapping
performance. The symbolic report can be used to produce sound transformations of the program. Our
approach right now is to generate recipes which will instruct the user how to transform and optimize the
program to run on a GPU.

The reader should bear in mind that, even if we partially use dynamic analysis, our main source of
information about the program is still static. There might be cases in which the results of static analyses
are too imprecise to be of any use in practice. We compensate this by using dynamic analysis. The last
step of the diagram refers to this case. Basically it involves re-evaluating part of the algebraic model
in the context of the actual kernel parameters. This allows the system to avoid limitations of the static
approach and produce precise results in the context of the execution that was analysed.

We note that for the dynamic analysis part we reused the existing infrastructure of vfEmbedded. The
rest of the phases are personal contributions. The grey boxes from the flow diagram which are connected
by dashed arrows are part of the future work.

17

4
Identifying GPU friendly loops

The identification phase consists of two steps. In the first step we investigate the GPU friendliness of
the loop. This is done by checking whether certain conditions are met. The second step is applied only
if the first one succeeded. Its objective is to gather essential information about the loop that will enable
a first transformation towards a GPU kernel.

4.1 GPU friendliness test

In what follows we detail upon the conditions that a loop (1D or 2D) must satisfy in order to be labelled
GPU friendly.

No loop carried dependencies. The loop must not have carried dependencies. That is, one iteration
should not depend on data computed in previous iterations. This is needed in order to guarantee that the
iterations can be executed independently of each other and that their execution order does not matter.
This test is performed by using results from existing dynamic analysis. We note that we could also test
for dependencies statically, by using the results of the range analysis (see Section 8.3) and employing a
test like the Blume’s range test [56]. Unfortunately the lack of a proper pointer alias analysis will severely
limit the class of program that we can handle with such a method. Because of this we choose to use the
available dynamic information.

Affine or normalizable loops. The loop must be affine. This means that the induction expression
must be affine, the loop bound must be constant with respect to the loop body, and the iteration vector
must not change inside the loop body. In other words, the loop must be normalizable: we should be able
to get an equivalent version of the loop whose induction variable starts at 0 and has a unitary stride.

The normalization conditions are needed because the loop space has to be mapped to a grid of threads
as described in Section 2.1.2. Without them, such a mapping is no longer possible in the general case.

For nested loops (2D patterns) additional restrictions are imposed on the inner loop:

• be an immediate child of the outer loop

• be the only inner loop at its level

• not have loop carried dependencies

18

4.2. DETECTING KERNEL PARAMETERS

for (i = 0; i < N; i++) {

 // ...

 // outer loop computations

 // ...

 for (j = 0; j < M; j++) {

 // ...

 // main kernel code

 // ...

 }

 // ...

 // outer loop computations

 // ...

}

Figure 4.1: 2D loops complications

In the context of 2D loops special attention must be paid to the outer loop computations. Figure 4.1
showcases this scenario. As suggested in the picture, the outer loop computations should be pushed
inside the inner loop. Because there are no loop carried dependencies this can always be done in a safe
way. However, pushing computations inside the inner loop will affect how often they are executed (in
the example, M times instead of just once). Thus one might be concerned about the efficiency of such
a transformation. In most cases this is not a problem because the loops will be mapped to hundreds
of cores. Here, one should make the connection with scatter-gather algorithms which form a proven
technique for parallelization [23]. From an implementation perspective the feasibility is tested with the
help of an estimation module but a discussion on this subject is outside the scope of this thesis.

No writes to static or global variables. Writes to global variables are prohibited since they usually
create loop carried dependencies. Moreover, static variables are not supported in current GPU kernels.
Thus we do not allow for functions that are called from within the loop body to contain declarations of
static variables. This test is performed statically by looking at variables types.

Limited number of library and system calls. We have to bear in mind that GPUs are not a
full substitute for CPUs, thus not all library and system calls are available when executing the code.
Nevertheless, some intrinsics are supported on GPUs. Such examples include mathematical functions
(eg. sin, cos) and memory allocation functions (eg. malloc). To accommodate this we use a white-list
which specifies which intrinsics can be used on the GPU.

4.2 Detecting kernel parameters

Besides applying the feasibility test, the identification phase concerns itself with recognizing kernel input
and output parameters (i.e., loop inbounds and outbounds). It is important to realize that just reporting
what program variable should be used as input/output is not enough. For array variables, the accessed
sections are also a mandatory requirement. The reason for this is that data must be manually copied
between the host (CPU) memory and the device (GPU) memory. In order to do so, the exact memory
bounds must be known, either as exact numeric values or as symbolic values (in terms of other variables).
Note that this issue does not occur in CPU multi-core parallelization. There, different threads have access
to the same memory space.

19

4.2. DETECTING KERNEL PARAMETERS

The accessed size is computed by means of static symbolic range analysis (Section 8.3). In order to
minimise the overhead of the data transfer between the host and the device we compute only how much
is used of a given array and not how much was allocated. For example, if one allocates N bytes for an
array, but during the loop only the first half is used we will report that only N/2 bytes need to be copied.

For a given array input variable, the actual report is made in terms of an accessed section - a closed
interval of which the lower bound is the starting offset and the higher bound is the last accessed offset.
The interval bounds are reported in bytes rather than in the actual size of the array data type. Although
this might seem a bit strange, the motivation behind it is that it accommodates pointer casting. Recall
that ANSI C includes cast operators which influence how pointer arithmetic is done. The following
example clarifies the advantage of having the offsets in bytes:

1 int in [10];

2 int out [15];

3 for (int i = 0; i < 15; i++) {

4 char *aux = (char*)in;

5 out[i] = aux[i];

6 }

Even if the inbound array in is of type int* (4 bytes per element) it is accessed like a char array (1 byte
per element). This means that only the first 15 bytes will be accessed instead of all 40. The corresponding
access section will be [0, 14]. In contrast to this, the outbound array out will access 60 bytes and its access
section will be [0, 56]. Having the offsets in bytes allow us to report on such cases in a very precise way.

A critical detail about array sections is that the expressions of the interval bounds are algebraic symbolic
expressions. In particular, they also represent complex expressions that depend on other input parameters.
The example below showcases this phenomenon. The left side presents a simple program to be analysed
(matrix addition), and the right side presents the generated report with the input and output parameters.

1 typedef struct {

2 int *data;

3 int size

4 } matrix_t;

5

6 int add(int* a, int* b,

7 matrix_t* c, int N) {

8 for (int i = 0; i < N; i++)

9 for (int j = 0; j < N; j++)

10 c->data[i * N + j] =

11 a[i * N + j] +

12 b[i * N + j];

13 }

Inbounds:

• a ⇒ [0, 4 ∗N ∗N − 4]

• b ⇒ [0, 4 ∗N ∗N − 4]

• c

• N

Nested outbounds:

• c->data ⇒ [0, 4 ∗N ∗N − 4]

The nested outbounds from the above report represent a special case of output parameters. We will
explain them with the help of the matrix addition example. It is easy to see that the only proper output
parameter is actually c. However, in practice it is of little use to only know this; especially if we want to
infer how much memory we should allocate on the device and how much we should copy from it. This
information is mostly given by the data field of the structure. Unfortunately the field is ”hidden” by its
parent structure c and is not directly visible as an output parameter. When this happens we say that
we encountered a nested pattern. The concept applies to both input and output parameters. Also, it is
not specific to the use of structures. It applies to the general case where other forms of nesting are used
(e.g., nested pointers).

20

4.2. DETECTING KERNEL PARAMETERS

Detection mechanism

All kernel parameters - inbound and outbound - as well as the nested patterns are detected statically. This
gives us the advantage of being sound but also creates some precision issues in what concerns the set of
outbounds. In what follows we present details about the detection procedure and discuss its limitations.

Input parameters. Input parameters are detected by looking at the scope of variables using definition-
use chains. That is, we classify as inbound every variable that is used inside the loop body but defined
outside it. This is always precise and will contain the exact set of input parameters. However, the set
of inbounds sometimes might be larger than one would expect. To understand how and when this can
happen recall that we perform the analyses on an intermediate representation of the program and not on
the source code. The representation (see Section 8.2) is obtained after various compiler transformation.
This means that from the source code to the representation we analyse, the compiler is free to reorder
computation and/or introduce additional variables. When this happens our procedure can output more
input variables than are actually visible in the source code. To better understand this, consider the
transformation that the compiler does when normalizing loops. For clarity reasons we present the example
in terms of source code.

1 for(i = -n; i <= n i++){

2 //...

3 }

Original loop - inbounds: n

1 aux = 2*n > 0 ? 2*n : 0

2 for(j = 0; j <= aux; j++){

3 i = j - n;

4 //...

5 }

Normalized loop - inbounds: n, aux

During normalization the compiler replaces the original induction variable (i) with a new one (j) that
iterates from 0 to the number of iterations of the original loop (2*n). The upper bound of the normalized
loop is extracted in another variable (aux) that is further constrained to be greater or equal to zero.
The original induction variable is reconstructed by adding its minimum value (-n) to the new induction
variable. Because the extra introduced variable (aux) is defined outside the loop it will be considered an
inbound variable.

Returning more inbound parameters is not a problem for an automatic transformation engine because
they can be handled automatically. However, they might pose problems to the user, since they do not
actually appear in his program. This is currently a limitation of our system.

Output parameters. In order to detect output parameters, we inspect the live variables at the loop
exit. Unfortunately, this alone is not enough to determine the complete outbound set. It is possible for
example that an array does not show up in the list of live variables because it is no longer referenced
after the loop. Still, the memory it refers to could be accessed from other functions. This means that if
a store operation is performed on the array inside the loop, the array becomes an outbound even if it is
not in the live variables list. The following example illustrate this scenario:

1 void init_array(int* a) {

2 for(i = 0; i < n; j++){

3 a[i] = i;

4 }

5 }

21

4.2. DETECTING KERNEL PARAMETERS

6 void main(){

7 //

8 init_array(a);

9 // use a...

10 }

To accommodate this case, we consider as outbound parameters every array that has a store operation
performed on it. The disadvantage of this is that it might catch a locally defined array which is not a real
outbound. One might think that the set can be reduced by discarding all local arrays from it. However,
this is not always possible because a local definition may be an alias for an inbound variable:

1 int **pp;

2 for (i = 0; i < n; i++) {

3 int *p = pp[i];

4 // use p

5 }

Nested patterns. Nested patterns are identified starting from a specific memory operation and rea-
soning about the origin of the corresponding pointer. If the pointer, say p, is obtained through a load
operation (eg: int* p = pp[i] or int *p = pp->pointer-field) we mark it as a potential nested pat-
tern. We then proceed with its parent, pp in our example, and apply the same procedure until we hit the
root of the hierarchy. If the root is an inbound (outbound) pointer or a structure we mark the original
pointer, p, as a nested inbound (outbound). Note that when we follow the definition chain we may
encounter arbitrary pointer expressions. It is important to mention that these expressions are produced
by the expression reconstruction analysis (Section 8.4).

Other information

Besides the above information we also report the functions which are called from within the loop body.
The importance of this particular piece of informations is given by the fact that a GPU kernel cannot
simply call a host function. First, the function must be ported to a GPU version. This is done by
annotating the function declaration with special keywords.

The functions are detected statically, by traversing the call graph of the loop body. A limitation of the
current infrastructure is that it cannot reason about functions pointers. We can at most report that
function pointers are used, but we cannot derive the set of possible functions for a particular pointer.

22

5
Detecting optimisations

Most of the time, straightforward transformations of loops into GPU kernels will note achieve the
”promised” speed-ups. The reason for this is that performance is greatly influenced by architectural
details, and some of them are not directly exposed through the programming model. This section moti-
vates our choice for looking into specific kinds of optimisations and presents how we achieve them in the
context of the designed system.

Various recommendations [37, 47, 30] and experiments [49] suggest that memory optimisations are the
most likely optimisations to improve program performance by a big factor. The goal is to maximise the
use of the hardware resources by maximising the memory bandwidth. Bandwidth is best served by using
as much fast memory and as little slow-access memory as possible. The former is satisfied by using for
example shared memory. The latter can be tackled by grouping multiple memory request into one large
request which will execute much faster; this is referred to as memory coalescing. We dedicate our efforts
to identify and report these kinds of memory optimisation. But before going into depth and explaining
how our system detects them, we need to clarify the architectural details behind them.

Global memory coalescing. NVIDIA states that the single most important performance consider-
ation in programming for the CUDA architecture is coalescing global memory accesses [37]. The main
reason for this is that access to global memory is very slow when compared to access to on-chip memory
(by an order of magnitude). Thus reducing the number of accesses is critical, which is what coalescing
is all about. Reports [47, 6, 37] and our own experiments showed that proper use of memory coalescing
can lead to speedups of more than 8×.

Global memory loads and stores by threads of a warp are coalesced by the device into as few as a single
transaction when certain access requirements are met. Figure 5.1 shows the impact of coalescing on the
number of memory transactions. Based on the memory area that is accessed we can have from one up to
the number of threads in a warp memory accesses. Grouping together the threads that manifest a good
locality of memory accesses is thus a critical optimisation.

On-chip shared memory. Because it is on-chip, shared memory is much faster than local and global
memory. This creates the opportunity to use it as an explicitly managed global memory cache. For
example, when multiple threads in a block use the same data from global memory multiple times, shared
memory can be used to manually cache the data and have only one access to global memory.

Aside from memory bank conflicts, there is no penalty for non-sequential or unaligned accesses by a warp
in shared memory. As mentioned during the presentation of the GPU architecture, in order to achieve a
high bandwidth for concurrent accesses the shared memory is split into different areas called banks. Each

23

...

...

128 bits segment request

32 x 4 bytes requests
coalesced into
1x128 bytes requests

...

5 x 128 bits segment request

32 x 4 bytes requests
coalesced into
5x128 bytes requests

1 warp = 32 threads

1 warp = 32 threads

Figure 5.1: Memory coalescing impact on the number of requests.

bank can execute load and store operations independently of the other. Thus n simultaneous requests
to memory that address n different banks will be served simultaneously. In contrast, if different requests
fall into the same bank at different addresses they will be serialized. This degrades the performance by
a factor equal to the number of request. However, if the requests fall into the same bank but at the
same address then a single broadcast operation will be performed. Figure 5.2 illustrates bank conflicts
by presenting two different kinds of accesses to the shared memory.

0

1

2

3

0

1

2

3

Threads: Banks:

no bank conflicts
(requests served in parallel)

0

1

2

3

0

1

2

3

Threads: Banks:

bank conflicts
(requests serverd in sequence)

Figure 5.2: Different access patterns to the shared memory.

Shared memory can be helpful in several situations, such as coalescing and eliminating redundant access
to global memory. Reports [47, 37] and personal experiments showed that bank-free use of shared memory
can lead to speedups of more than 30×. However, the shared memory can also act as a constraint on
occupancy (a measure of how many threads are handled by a SM at a given moment) and thus reducing
the level of parallelism. This stems from the fact that shared memory is stored per SM and is shared by
all blocks. In order to clarify this we will consider a concrete example. Suppose that you want to allocate
32KB of shared memory per block and that the total available amount of memory is 48KB. Since the
shared memory is allocated per block, only one block of threads will be able to run on a SM. If the shared
memory allocation is lowered to 16KB then 3 thread blocks will be able to run concurrently on the same
SM, maybe leading to better resource usage. Usually, shared memory optimisations have to balance the
need for fast memory and the need for high occupancy. Program transformations, such as statements
reordering, might enable the possibility to reuse the memory; thus reducing the need for shared memory.

24

5.1. COALESCING ANALYSIS

5.1 Coalescing analysis

Coalescing analysis statically computes how many memory requests (coalescing factor) will be issued
per warp at runtime for a particular memory operation. The analysis is performed for each store and
load operation from the loop body. The goal is to gather information about the coalescing behaviour of
the kernel and report it together with optimisation advice to the user or the transformation engine. In
order to compute the number of memory requests we make use of the access expressions of the memory
operations. These are computed by the expression reconstruction analysis. Section 8.4 provides all the
details about the reconstruction process; what is important to mention here is that the access expressions
are symbolic expressions, parametrised by induction variables, inbounds and loop invariants.

The analysis returns for each memory operation its coalescing factor (i.e., the number of requests that
are issued per warp). Each coalescing factor is an algebraic symbolic expression that will depend on:
kernel input parameters, grid variables (e.g., thread index) and loop invariants. We will first explain
the coalescing analysis informally, through an example, and then we will formalize the approach in an
algorithm.

For now, consider again the square matrix addition algorithm. We are interested in mapping the two
nested loops to a 2D GPU grid space.

1 void add(int* a, int* b, int* c) {

2 for (int i = 0; i < N; j++) {

3 for (int j = 0; j < N; j++) {

4 int idx = i * N + j;

5 c[idx] = a[idx] + b[idx];

6 }

7 }

For reasons of space, we will only reason about the access to a. The rest proceeds in a similar way. The
key idea is to compute the memory area accessed by a randomly chosen warp and then divide it by the
memory request line size.

The offset expressions for the load operation on a is i ∗ N + j. The expression depends on N , an
inbound variable, and on i and j, induction variables that define the grid coordinates. Thus we can
write it as a function of these parameters: fa(i, j,N) = i ∗ N + j. Since warps are computed based
on threads and blocks ids it is useful to rewrite the expression in terms of actual grid coordinates:
fa(Grid.x,Grid.y,N) = Grid.x ∗ N + Grid.y. Note that Grid.x is not a valid CUDA variable. It
is introduced by us for convenience and readability. We remind the reader that grid coordinates are
computed based on block and thread coordinates: Grid.x = ThreadIdx.x+ BlockIdx.x ∗ BlockDim.x.
It is important to note that this guarantees that adjacent threads will receive adjacent grid coordinates.

We can isolate a random warp by using the knowledge about how threads are assigned to warps. In
short, warps are created by enumerating the threads over their x grid coordinate. Figure 5.3 depicts
warp creation for a block of size 64× 2.

Thus, we isolate a random warp w by fixing all parameters of the expression except the x coordinate.
Doing this we get fwa(Grid.x) = Grid.x ∗N +Grid.y. Note that N and Grid.y are ”downgraded” from
variables to symbolic constants. It is straightforward to see that in the selected warp, w, the threads
will access the following memory cells: fwa(Grid.x), fwa(Grid.x+ 1), ... , fwa(Grid.x+ warpSize− 1).
Based on this observation we can compute the memory requirement for the entire warp. But instead of
evaluating the expressions for each warp thread and then test for collisions, we compute the requirement
based on monotonicity analysis. In our case, we analyse the monotonicity of fwa with respect to Grid.x.

25

5.1. COALESCING ANALYSIS

0 1 ... 30 31 32 33 ... 62 63

64 65 ... 95 95 96 97 ... 126 127

warp 3 warp 4

warp 1 warp 2

Figure 5.3: Warp distribution inside a thread block

We redirect the reader to Section 7.2 to discover how the monotonicity is determined. One can easily see
that fwa is increasing monotonically in Grid.x. Because of this the memory area accessed by the warp
can be computed as: warpAreawa = fwa(Grid.x + warpSize) − fwa(Grid.x) = N ∗ warpSize. What
remains to be done in order to compute the number of issued requests is to divide the warpArea by the
request line size. For our example we get:

reqNra =
warpAreawa
reqLineSize

=
N ∗ warpSize
reqLineSize

=
N ∗ 32

128
=
N

4

Note that the computed number of requests (reqNra) can exceed the warp size (warpSize) which is
actually the upper bound of requests per warp. In order to get the real number of requests we have
to take the minimum of the two values. However, since this is a trivial step, we will omit it in further
discussions and report only the number of requests as computed above.

The attentive reader probably spotted the following issues with the above approach:

1. the method is suitable only when the block size divides the warp size

2. monotonicity cannot be determined for every expression

3. even if monotonicity can be computed, expressions might still be non-monotonic

4. in the presence of conditionals multiple expressions are possible for the same memory operation

The first issue is not a major one. If the block size does not divide the warp size the result will be an
optimistic approximation and will loose its soundness property. However, this is not a problem even if we
consider automatic transformations that are based on it. The reason is that we use coalescing information
to reason about performance and not about correctness.

The second issue is real and can be linked to limitations of our system. Indeed, because we work with
symbolic expressions we cannot always compute their monotonicity. A simple example in this sense is
f(x) = x ∗ a. The monotonicity of f will depend on the sign of a which might not always be known.
In particular, the result of monotonicity analysis greatly depends on the precision of the sign analysis
(Section 8.5) which is responsible for inferring the signs of variables. Our approach in this scenario is
to increase precision by assumptions. The approach is based on the fact that missing variables signs are
the only reason for which we are not able to decide the monotonicity of a symbolic expression. Basically,
when we cannot compute monotonicity we start making various assumptions about the missing signs
(e.g., variable a is positive). We then use the assumptions to decide on the monotonicity and proceed
with the next coalescing computations. We always report back the assumptions that were made during
the analysis.

26

5.1. COALESCING ANALYSIS

The third issue is handled through a brute force method. When the expression we analyse is non-
monotonic (e.g., f(x) = x2) we compute the memory offsets for each thread in the warp. If we detect
that two threads access the same memory cell then we decrease the number of requests by one. At the
end, we report the total number of different accesses.

The fourth and last issue refers to the following scenario:

1 int *p;

2 int idx;

3 if (...) {p = a; idx = x;}

4 else {p = b; idx = y;}

5 ... = p[idx];

At line 5 the expression for the load operation p[idx] can be either *(a + x) or *(b + y). In general,
at a given program point each variable can have multiple possible expressions. For a memory operation,
the expressions may differ in two orthogonal directions. One is the pointer on which the operation
is performed; the other is the offset. For each direction we take different actions. If the expression
differs only in the offset, we apply the analysis for each expression and take the maximum result. If the
expressions contains multiple pointers, we are conservative and return the maximum number of memory
requests. It is important to mention that we are able to reason about the pointer values because the
expression reconstruction analysis also serves as a basic pointer alias analysis. For more details about
about what types of aliasing we are able to discover see Section 8.4.

The algorithm for computing the coalescing factor for a single offset expression is summarised below.

Algorithm 1 Coalescing algorithm

procedure getCoalescingFactor(f, warpSize, reqLineSize)
x← the variable that corresponds to the x grid coordinate
fw ← f where all variables are fixed except x grid coordinate
mono← monotonicity(fw, x)
if mono is unknown then

culprits← variables in fw which do not have a sign . sign assumptions
fw ← fw where each variable in culprits is assumed positive
mono← monotonicity(fw, x)

end if
if mono is monotonic then . f is monotonic

if mono is increasing then
size← f(x+ warpSize)− f(x)

else
size← f(x)− f(x+ warpSize)

end if
return size

reqLineSize
else . f is not monotonic

offsets← [fw(x), fw(x+ 1), . . . , fw(x+ warpSize)]
uniqOffsets← removeDuplicates(offsets)
return size(uniqOffsets)

end if
end procedure

27

5.1. COALESCING ANALYSIS

Improving coalescing

Because the warps are computed based on the x grid coordinate the coalescing factor will be influenced
by how the loop space is mapped to the grid space. To understand the relation between coalescing and
mapping let us study again the matrix addition example. The coalescing factor for the straightforward
mapping is N

4 . In practice this is very bad since it will produce the maximum number of requests every
time (usually N > 128). Consider now a reverse mapping of the loop space to the grid space. This
implies that j becomes Grid.x and i becomes Grid.y (refer to Figure 5.4 for a graphical representation).
Using the above algorithm we will have:

f ′wa(Grid.x) = Grid.y ∗N +Grid.x

warpAreawa = f ′wa(Grid.x+ warpSize)− f ′wa(Grid.x) = warpSize

nrReqa =
warpAreawa
reqLineSize

=
warpSize

reqLineSize
≈ 1

Thus, by reversing the mapping we get perfect coalescing (1 memory request) instead of perfect unco-
alescing (32 memory requests). To stress the importance of good coalescing we mention that in this
particular case, even if we have only 3 memory operations, the coalesced mapping obtains a 2× speedup
over the uncoalesced one.

During the coalescing analysis we always perform extra what if analyses that tries to infer a better
coalescing behaviour based on different mappings. If a better mapping is found then we report it, so that
the user or the transformation engine can take actions based on it.

void add(int* a, int* b, int* c) {

 for (int i = 0; i < N; j++) {

 for (int j = 0; j < N; j++) {

 int idx = i * N + j;

 c[idx] = a[idx] + b[idx];

 }

} __global__ void add_kernel_good_coalescing

 (int* a,int * b, int * c, int N) {

 int j = threadIdx.x + blockDim.x * blockIdx.x;

 int i = threadIdx.y + blockDim.y * blockIdx.y;

 int idx = i * N + j;

 c[idx] = a[idx] + b[idx];

}

__global__ void add_kernel_bad_coalescing

 (int* a,int * b, int * c, int N) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 int j = threadIdx.y + blockDim.y * blockIdx.y;

 int idx = i * N + j;

 c[idx] = a[idx] + b[idx];

}

32 requests memory requests
vs

1 memory requests

Figure 5.4: Impact of mapping on coalescing factor

Possible extensions

We note that the same techniques can be used to reason about other ”hidden” architectural details that
affect the runtime performance of the kernel. In particular, they can be applied to compute:

• bank conflicts for shared memory (NVIDIA and AMD specific)

• channel conflicts (AMD specific)

28

5.2. SHARED MEMORY ANALYSIS

Due to space constraints we will not elaborate on these topics. The reader is invited to reason by himself
in order to see how the techniques can be applied in the mentioned context. Also, the AMD manual [2]
provides the necessary details to understand the above AMD specific concepts.

5.2 Shared memory analysis

Shared memory analysis detects memory areas that will benefit from being copied to the on-chip shared
memory. There are two cases when this might happen. The first one is when the memory is accessed in
an uncoalesced way. Because shared memory has very low latency, coalescing does not apply. Thus, one
can first copy the accessed memory in a coalesced manner to the shared memory and then access it with
the original pattern form there without penalties. The second case arises when different threads access
overlapping memory areas. Because shared memory can act like a programmable cache, the overlapping
areas can be copied to it and benefit from its low latency. We will further refer to these cases as sharing
opportunities.

The analysis is initially done for each memory operation and is then refined in subsequent steps. Its
input consists of the complete memory sections that can be accessed at each memory operation. Memory
sections are expressed as closed intervals [starting offset, ending offset] and are produced by the symbolic
range analysis (Section 8.3). The interval bounds are defined as algebraic expressions.

The analysis associates to each memory operation the following pieces of information:

1. whether or not it exposes a sharing opportunity in the sense defined above

2. if the sharing opportunity is due to overlapping accesses then two additional things are reported:

(a) how much memory is shared between two adjacent threads (the overlapping area)

(b) how much memory should be allocated for a thread block and from where should that memory
be copied (recall that shared memory is private per thread block)

The results are reported as symbolic intervals parametrised by inbound variables and grid variables (block
index, block size).

Reporting how much memory is shared between two adjacent threads is critical in assessing the quality
of the optimisation. Because shared memory is limited, one may have to choose between different sharing
opportunities. In this case, among the most beneficial mappings will be the one that allows threads to
share the most memory. The report gives exactly this piece of information. In other words, reporting
overlapping areas helps estimating the performance of the different sharing opportunities.

As with coalescing analysis we will explain shared memory analysis with the help of a concrete example.
But in order to do this we need to study a more complex example than matrix addition. For this
purpose, we pick a classic image processing algorithm: 2D image convolution. We will focus only on
sharing opportunities due to overlapping accesses. The coalescing case is just a restricted version of this
and can be easily derived from it.

2D image convolution

The 2D convolution algorithm takes as input an image and a filter and produces a new image. Each
output pixel is computed as a function of the input pixel, the filter and the neighbouring pixels. Figure
5.5 presents the idea of the algorithm.

29

5.2. SHARED MEMORY ANALYSIS

Filter

Input image

Output image

• •

• •

Figure 5.5: Convolution algorithm

Before continuing to the source code and the actual analysis it is important to mention what we are
trying to discover. In a CUDA mapping of the algorithm the image will be divided into subimages and
each subimage will be assigned to a different thread block. Basically, each pixel will be processed by an
individual thread belonging to some thread block. Processing a pixel translates to iterating over the filter
and the neighbouring pixels and accumulating the value for a new pixel. From a memory perspective this
means that two adjacent threads will access the same filter memory area and also some part of the input
image area. Our goal is to discover these memory areas. Figure 5.6 presents a graphical representation
of the sharing. The green lines suggest how the image is divided into sub-images. For this example we
considered a block size of 4× 4.

•

overlapping area

• •

Figure 5.6: Sharing in a convolution grid

The C code for a 2D colour convolution is presented below. For brevity we skipped the bounds tests for
border pixels as well as clamping the colours if they exceed the allowed values. In order to easily under-
stand the code, it is important to mention that each pixel is represented with 3 bytes which correspond
to the RGB spectrum.

30

5.2. SHARED MEMORY ANALYSIS

1 for (y = 0; y < image_height; y += 1)

2 {

3 for (x = 0; x < image_width * 3; x += 3)

4 {

5 unsigned char *out_row = out_image[y * image_width * 3];

6 int fx , fy;

7 int red ,grn ,blu;

8 for (fy = 0; fy < filter_height; fy += 1)

9 {

10 int py = y + fy - (filter_height / 2);

11 unsigned char *in_row = in_image[py * image_width * 3];

12 for (fx = 0; fx < filter_width; fx += 1)

13 {

14 int px = x + 3*(fx - filter_width / 2);

15 int coeff = filter[fx + fy * filter_width];

16 // out of bounds tests skipped for brevity

17 red += in_row[px + 0] * coeff;

18 grn += in_row[px + 1] * coeff;

19 blu += in_row[px + 2] * coeff;

20 }

21 }

22 // clampping skipped for brevity

23 out_row[x + 0] = red * filter_gain;

24 out_row[x + 1] = grn * filter_gain;

25 out_row[x + 2] = blu * filter_gain;

26 }

27 }

Shared memory analysis on 2D convolution

We will analyse only the memory operations on filter (line 15). For the rest, similar computations are
done. From the range analysis we get that the value interval for the access offset is [0, filter height ∗
filter width−1]. As in coalescing analysis, because we are interested in the behaviour with respect to the
grid distribution, we abstract away the interval as a function of its symbolic variables and grid coordinates.
Abusing mathematical notation we can re-write the interval to: rf (Grid.x,Grid.y, fh, fw) = [0, fh∗fw−1].
We use r for the range function and the subscript f to suggest that it is associated to the filter variable.
Also, for brevity we use fh for filter height and fw for filter width. We further fix every variable except
the grid parameters and get the interval function for a grid cell: rgf (Grid.x,Grid.y) = [0, fh ∗ fw − 1]
(subscript g suggest the restriction of rf to grid coordinates). At this point it is trivial to see that the
rgf is actually a constant function. Thus, each thread will access the same memory area. However, we
will continue with the reasoning to illustrate the entire procedure.

In order to compute the overlapping area between adjacent threads we instantiate rgf with the neigh-
bouring grid coordinates and intersect the resulted intervals. Because in general, the overlapping area
depends on the axis, we compute independent values for each axis. Doing so, allow us to detect cases
when threads share memory only across a single axis. We consider as adjacent threads for a given thread
the natural neighbours on each axis. That is, for a thread identified by the coordinates (x, y) the adjacent
threads will be (x+ 1, y) and (x, y + 1). Thus, for x axis we get the following sharing:

sharexf = rgf (Grid.x,Grid.y) ∩ rgf (Grid.x+ 1, Grid.y) = [0, fh ∗ fw − 1]

For the y axis a similar expression is obtained. Because the intersection is not empty it means that we

31

5.2. SHARED MEMORY ANALYSIS

have a sharing opportunity. The next step is to compute the memory requirement for an entire block.
For this, we apply the same monotonicity technique that we used in the coalescing analysis. But first,
we need to choose a random block. We do this by looking at the coordinates of the block first and last
threads. In general, a random block can be identified by the coordinates of its first thread: (BlockIdx.x∗
BlockDim.x,BlockIdx.y ∗ BlockDim.y). For brevity we will use the notation (Block.x,Block.y) to
identify a random block. The block spans until the coordinate (Block.x + BlockDim.x − 1, Block.y +
BlockDim.y− 1). We can compute the memory bounds by evaluating rgf for the block extremities. The
final value is calculated from the extremities intervals based on the monotonicity of rgf with respect to
each of its parameters. In our example we have:

first interval = rgf (Block.x,Block.y)

last interval = rgf (Block.x+BlockDim.x− 1, Block.y +BlockDim.y − 1)

block memf (Block.x,Block.y) = [LB(first interval), UB(last interval]

where LB selects the lower bound of an interval and UB selects the upper bound. After performing the
calculations we can summarise the results for the filter in the following formulas:

block memf = sharexf = shareyf = [0, fh ∗ fw − 1]

The interpretation of this result is as follows: It is recommended that the access to the memory area
pointed to by filter from line 15 is to be done from shared memory. The motivation is that each
thread within a block will reuse the designated memory. For each thread block the section determined by
block memf needs to be copied to shared memory.

Increasing precision

The analysis gets more interesting, but also more complicated when the interval expressions depend on
the grid variables. Consider for example the load operation from line 17. The corresponding interval
function is:

rimg(Grid.x,Grid.y) = [3 ∗ (Grid.y − fh
2) ∗ iw +Grid.x− 3 ∗ fw2 ,

3 ∗ (Grid.y + fh
2) ∗ iw +Grid.x+ 3 ∗ fw2]

where iw = image width, fh = filter height and fw = filter width. Applying the above procedure we
get the following block requirement:

bloc memimg(Block.x,Block.y) = [3 ∗ (Block.y − fh
2) ∗ iw +Block.x− 3 ∗ fw2 ,

3 ∗ (Block.y +BlockDim.y − 1 + fh
2) ∗ iw+

Block.x+BlockDim.x− 1 + 3 ∗ fw2]

A closer look on the above expression will reveal a major precision issue. The real memory requirement
for a given block is actually the subimage it has to process padded with filter size pixels. But instead of
returning this, the approach so far returns a bit more than BlockDim.y rows. Figure 5.7 highlights this
problem.

The reason is that the accesses to the image are linearised and the 2D information cannot be obtained
directly. We solve this issue by reconstructing the 2D access based on the access expression as returned
by the expression reconstruction analysis. In this case the result will be a 2D pattern and will give the
sub-matrix that should be copied to the shared memory. Section 5.2.1 presents details about the 2D
reconstruction process.

32

5.2. SHARED MEMORY ANALYSIS

Reported block requirement
(without 2D reconstruction)

Real block requirement
(with 2D reconstruction)

Figure 5.7: Impact of linearised accesses on shared memory analysis preciseness

Detection algorithm

The following algorithm summarises the procedure for detecting shared memory opportunities for a given
memory operation. The arguments are the access interval section (r) and the access expression (f).

Algorithm 2 Shared memory algorithm

procedure get shared memory info(r, f) . r = the access section interval
if the offset expression f is a 2D pattern then . f = the access expression

compute sharing information from 2D pattern
else

rg ← r restricted to grid coordinates
sharex ← rgf (Grid.x,Grid.y) ∩ rgf (Grid.x+ 1, Grid.y)
sharey ← rgf (Grid.x,Grid.y) ∩ rgf (Grid.x,Grid.y + 1)
if is empty(sharex) and is empty(sharey) then return no sharing opportunity
else

mono← monotonicity by set(rg, Grid.x,Grid.y)
if mono is monotonic then . f is monotonic

first interval← rgf (Block.x,Block.y)
last interval← rgf (Block.x+BlockDim.x− 1, Block.y +BlockDim.y − 1)
if mono is increasing then

block memf (Block.x,Block.y) = [LB(first interval), UB(last interval]
else

block memf (Block.x,Block.y) = [LB(last interval), UB(first interval]
end if
return (sharex, sharey, blockmem)

else . f is not monotonic
return (sharex, sharey, unknown block requirements)

end if
end if

end if
end procedure

33

5.2. SHARED MEMORY ANALYSIS

Special cases

As in coalescing analysis several cases require special attention:

1. monotonicity cannot be determined for every expression or the expression might be non-monotonic

2. in the presence of conditionals, multiple expressions are possible for the same memory operation

If the monotonicity of the interval bounds cannot be determined or they are non-monotonic, then the
analysis cannot determine the memory requirements for the entire block. This is a known limitation of
the current approach.

In contrast with coalescing analysis, multiple expressions do not pose any problems. Each possible
expression is analysed individually and a separate sharing report is done for it.

5.2.1 Reconstruction of 2D access

Reconstructing the 2D accesses from linearised accesses is vital step in the shared memory analysis for
two reasons:

conceptual reason There are a lot of cases where developers linearise a natural 2D access. As we have
seen in the convolution example this can influence analysis precision.

practical reason If not linearised by developer, accesses will be linearised by compiler. Thus any
intermediate representation will contain flat accesses. In particular, the representation we are
working on expose this property (see Section 8.2).

The current system recognizes 2D patterns and sub-matrix patterns with arbitrary x-stride. We will
present only the sub-matrix reconstruction process. Simple 2D patterns are recognized in a similar way.

The reconstruction algorithm takes as input the access expression, f , and tries to recognize the following
pattern:

f = offset+ stride ∗ ix + stride ∗ iy ∗ width+ stride ∗mx + stride ∗my ∗ width

where:

offset an arbitrary offset, from which the given access starts to expose a 2D access pattern
ix, iy the inner loops induction variables
mx,my the outer (main) loops induction variables
width the width of the matrix
stride the stride for the mx induction variable

Basically mx and my selects the element of the matrix from which the sub-matrix determined by the
iteration space of ix and iy is computed. The following piece of code clarifies the detected pattern:

34

5.2. SHARED MEMORY ANALYSIS

1 for (mx = 0; mx < width; mx += stride)

2 for (my = 0; my < height; my += 1)

3 {

4 for (ix = 0; ix < inner_width; ix += 1)

5 for (iy = 0; iy < inner_height; iy += 1)

6 {

7 ... = a[offset + stride * ix + stride * iy * width +

8 stride * mx + stride * my * width]

9 }

10 }

The algorithm proceeds in two steps. The first step collects the induction variables from the given
expression. The second step identifies which of the induction variables can play the roles of the above
quadruple (ix, iy,my,my). It does this by considering each possible combination and applying a matching
procedure against the 2D pattern. If no matching is found then the detection fails.

It is important to mention that given an arbitrary symbolic expression we can always identify which
variables are induction variables. For more details on this capability please consult Section 8.4.

5.2.2 Reducing the need for shared memory

Because shared memory is limited and also affects occupancy it is important to allocate only as much as
needed and re-use as much as possible. In order to satisfy this necessity and improve the overall shared
memory usage our system does the following:

1. it reconstructs 2D access from linearised accesses

2. it groups shared memory by pointer variable according to some specified rules

We already discussed the necessity and benefits of 2D reconstructing in the previous section. During this
section we focus on explaining what grouping means and how it is done.

The approach described so far focuses on detecting shared memory opportunities across threads. Basically
it detects memory ranges that are accessed by adjacent threads and marks these regions as candidates for
shared memory allocation. We can improve on this if we also look inside threads and take into account
memory ranges that are accessed by different operations. Consider for example the memory loads from
lines 17, 18 and 19 from the convolution example. The shared memory requirements for each of them is
presented in Figure 5.8. For brevity the figure depicts only the requirement on the x-axis.

17: red += in_row[px + 0] ∗ coeff;
18: grn += in_row[px + 1] ∗ coeff;
19: blu += in_row[px + 2] ∗ coeff;

memory (each cell is 1 byte)

...

memory requirement on x-axis for the given load operation

Figure 5.8: Overlapping memory areas for operations inside a thread

35

5.2. SHARED MEMORY ANALYSIS

It is easy to see that they mostly access the same area. They only differ in the first and last bytes which
correspond to different colours. We can allocate much less shared memory if, instead of allocating three
arrays with the same size but slightly different offsets, we allocate just one bigger array that will span
across all three arrays. In this particular case we will reduce the need of shared memory by a factor of 3.

Our system implements two grouping schemes:

1. group two shared memory areas only if the difference between the starting offsets (ending offsets)
is less then a given constant.

2. group all shared memory areas that belong to the same pointer. Although this method can add
holes (unused areas) in the shared memory it is very useful when the starting offsets or ending
offsets cannot be compared due to lack of symbolic information.

The grouping algorithm is based on the following idea. First, group the shared memory areas that belongs
to the same pointer. Then, iterate through each group and accumulate a new memory interval based on
the current value and on the selected scheme. If the current value breaks the scheme rule skip it but add
it to a temporary queue, private per group. After the iteration finishes repeat the process starting form
the temporary queues. Stop when there are no more elements in the temporary queues.

36

6
Instantiating the results

Where the previous two phases (identification and optimisation) strive for generality, the goal of the
instantiation phase is to give precise numeric information about a particular program execution. It does
this by instantiating the algebraic models created in the previous steps with information collected at
run-time through dynamic analysis. The phase is important for two main reasons:

1. it helps estimating the efficiency of the transformation

2. it helps the developer to better understand his program

As we have already seen having algebraic information about the program is mandatory in order to
reason about GPU transformations. But only with them, one could hardly make predictions about the
performance of a given transformation. For example, in order to estimate the communication overhead one
needs to know exactly how much data needs to be copied to the device. Another example is estimating how
much time a memory operation will take. This depends on the coalescing factor and on the type of memory
that is accessed. With only algebraic expressions one cannot estimate this precisely. Instantiating the
results and getting numeric values out of symbolic expressions is thus the first step towards a performance
estimation module. It is important to mention that the design and development of such a module is out
of the scope of this research. Though, providing a way to instantiate the results sets up the starting point
for such a module.

In what concerns the second reason, we note that sometimes the results can be too abstract for the user.
Because the analysis may produce long and complicated symbolic expressions, their interpretation and
consequences might be hard to understand. Consider for example deciding what data should go to shared
memory. Shared memory analysis usually reports multiple opportunities and they cannot be compared
with each other in every case. One solution is to insert checks and decide on what should go where at
runtime. Another solution is to observe the behaviour of the program on a representative set of tests and
collect the values of the parameters that influence shared memory requirements. Using this information
one might decide based on a statistical analysis what opportunity is most likely to be the most beneficial.
Being able to instantiate the algebraic results is a requirement for a such approach.

6.1 Instantiation procedure

Although evaluating a symbolic expression in a given context is a straightforward thing to do, finding the
values for the context parameters is not. There are two main difficulties that we must overcome. First,

37

6.1. INSTANTIATION PROCEDURE

in most cases it is impossible for a dynamic analysis to keep track of values for all program variables.
Usually only a subset of values will be tracked and stored. The current infrastructure for example, can
provide us only with the average loop counts. This means that we have to find a way to relate the loop
counts with the actual parameters of the symbolic expressions. The second difficulty relates to the extra
inbound variables that can be introduced by the compiler (see Section 4.2 for more details). The values
of these parameters are not tracked by the current dynamic analysis. In order to infer their values, we
also have to relate them with real inbound parameters.

We solve these problems by creating a system of equations that correlates the available information (the
loop counts) with the missing information (inbound parameters and artificial variables). The instantiation
procedure consists of the following steps:

1. Use dynamic analysis to get available loop counts. This step reuses the existing infrastructure of
vfEmbedded.

2. Create a system of equations that relates the loop counts with the kernel parameters (the inbounds).
The equations are created based on the information produced by the expression reconstruction
analysis. For a better understanding of this step consider the example below.

3. Solve the system and get the parameters values. This is handled by the symbolic computation
engine presented in Section 7. The exact solving procedure and its limitations are described in
Section 7.2.

4. Based on the above values create an evaluation context to which add grid configuration parameters
(i.e., block size).

5. Evaluate the results in the above context. This means evaluating the symbolic expressions associated
with the following: inbound and outbound copy expressions, coalescing factors and shared memory
requirements. Evaluating a symbolic expression is done through constant folding after all variables
are replaced by the corresponding parameters values.

The rest of this section illustrate the procedure through a simple example. For clarity and conciseness
we will present the example at the source code level. We will study a program that adds every fourth
position of two vectors and stores the result in another array. Suppose that our goal in this context is to
estimate the communication overhead to transfer data to and from the device. The orginal program is
listed below:

1 int* a, b, c;

2 int n;

3 // initialize values ...

4 for(int i = -n; i < n; i += 4) {

5 a[i + 2*n] = b[i + n] + c[i + n];

6 }

After normalization the program is transformed to:

1 int tmp = n > 0 ? 0 : 2 * n / 4;

2 for(int k = 0; k < tmp; k += 1) {

3 int i = k * 4 - n;

4 a[i + 2*n] = b[i + n] + c[i + n];

5 }

38

6.2. TRADING SOUNDNESS FOR PRECISION

After performing the analyses on this program variant we get the following information. The kernel
parameters are: a, b, c, n and the compiler introduced tmp. The copy expression for the pointer parameters
are: copya = [4∗n, 4∗ tmp+4∗n−4] and copyb = copyc = [0, 4∗ tmp−4]. Recall that the copy expression
are expressed in bytes, hence the factor of 4.

Let us suppose that we want to instantiate these results for an execution where the loop count is 100.
The first step is to create an equation that relates the loop bound with the actual loop count: tmp = 100.
The next step is to infer the relation between tmp and n. For this we look above the loop code that we

analysed and reconstruct the following possible expressions: tmp = 0 or tmp =
2 ∗ n

4
. Since we already

know that tmp = 100 it is clear that the option tmp = 0 is not a valid one. We discard it and form the
following system:

tmp = 100

tmp =
2 ∗ n

4

Solving this will yield n = 200. We can now evaluate the input and output copy expressions to copya =
[200, 596], copyb = copyc = [0, 396]. Having the precise memory bounds, estimating the communication
overhead is just a matter of knowing the bandwidth from the host memory to the global memory.

There are two things that are worth mentioning with respect to the instantiation procedure. First, by
having only the loop counts it is not always possible to fully instantiate the results. There might be
input parameters that are not related in any way with the loop counts. For these, it is impossible to find
values with the above procedure. Nevertheless, if they are provided, further re-instantiation is possible.
Second, in practice we usually deal with more complicated expressions which are not always linear. To
this end, our system is capable of solving pseudo non-linear systems. For the exact solving capabilities
and limitations we redirect the reader to Section 7.2.

6.2 Trading soundness for precision

One should keep in mind that most of the information about the kernel is gathered through static analysis
techniques. These provide only a safe and computable approximation of run-time values. Sometimes the
approximation can be too imprecise and become useless in a practical situation. In our case, this can
happen for example when expressions become too complex to efficiently represent. In such cases the
static analyser uses conservative bounds that are usually too imprecise.

Take for example the program below. It applies a 1D signal convolution to an input signal. The specific
feature is that in the case of outbounds access (for extremities) it adds the values from a special area
stored at the end of the input array (line 6: idx = size+k).

1 for(i = 0; i < size; i ++) {

2 x = 0;

3 for(k = i - slice; k < i + slice; k++) {

4 int idx = 0;

5 if (k >= 0 && k < size)

6 idx = slice + k;

7 else

8 idx = size + k;

9 x += in[idx];

10 }

11 out[i] = x;

12 }

39

6.2. TRADING SOUNDNESS FOR PRECISION

The main problem of the above program is that size and slice are incomparable as symbolic expressions.
This, combined with some limitations in our symbolic computation engine (see Section 7.1), makes the
symbolic range analysis to fail to compute the interval in which idx can take values at line 9. Thus, the
analysis will not be able to provide the copy expression for the in variable and will also fail to provide the
exact shared memory requirements. It will only report that in is a pointer variable and that there is a
sharing opportunity for the load at line 9 but will not provide more details. Although this is a particular
limitation in our system, cases like this make an inherent limitation of the static approach in program
analysis.

When this kind of situations arise, we still want to be able to offer as much information as possible.
Even if this means to lose soundness properties. To achieve this goal we designed the following procedure
which will trade soundness for precision. The procedure makes possible to still get precise results when
the static analyses fail. The trade-off is that the results are tied to a particular program execution.

The main idea is to reverse the order in which static analysis and instantiation is done. We can do this
because computing values for inbound parameters given a concrete execution is independent of the static
analyses that may fail. In particular, it depends only on expression reconstruction analysis which always
provides exact expressions for variables. We redirect the reader to Section 8.4 to discover how this is
done.

After inferring values for the inbound parameters we can re-run the static analyses to re-evaluate part
of the algebraic model. Doing so will basically avoid the symbolic computation limitations. This will
produce the precise results that we are interested in. To this end all of our static analyses support injection
of values. During the analysis, injected values take precedence over the values that will otherwise be
computed by the natural flow.

40

7
Symbolic computation

Symbolic computation is about expressing and solving mathematical problems the way one would think
about mathematical problems - using variables, mathematical formulas, and mathematical functions. In
more precise terms, it allows for manipulation of mathematical equations and expressions in symbolic
form, as opposed to manipulating the approximations of specific numerical quantities represented by
those symbols. The main advantage of symbolic computation is that variables can be kept as unknowns
throughout the calculations. There is no need assign values to them unless one wants to get a numeric
result out of the calculation.

In the context of GPU mapping, the need for symbolic computation arises from the necessity to work
with expressions parametrised by the input and grid parameters. The following three cases illustrate this
necessity. First, consider reporting how much data needs to be copied from host to device and the other
way around. Only in very few cases this will be a precise number and most of the times it will depend
on various input parameters. Second, think about determining how much shared memory needs to be
allocated in a particular context. This will depend at least on the block size (which is a grid parameter)
but most likely also on the input parameters. Third, in order to find if a memory access will be coalesced
or not we have to investigate offset expressions which in most of the cases will depend on various induction
variables.

It is clear from these examples that symbolic computation is a must in our context. To this end we
developed a symbolic computation engine able to manipulate arbitrary arithmetic expressions. In what
follows we will present the engine capabilities and detail on its algorithmic complexity.

7.1 Expressiveness

The domain of the symbolic expressions is the set of rational numbers. Besides the classical arithmetic
operations the expressions also support getMin and getMax operations. These accept arbitrary expres-
sions as input; but because not every two expressions are comparable the result may be an explicit min/
max expression. In particular we can represent expressions like x ∗ y + a

2 , min(0, a) or max(a ∗ a, b ∗ c).
The complete set of basic operations is presented below.

41

7.1. EXPRESSIVENESS

Basic operation Expression example
addition 10 + a+ b
subtraction a− b
multiplication 5 ∗ a+ k ∗ a+ k ∗ b
division 3 ∗ a2
left shift a << 3 = a ∗ 23

right shit a >> 3 = a
23

get minimum min(a, b+ c)
get maximum max(0, 3 ∗ d)

An important aspect to be remarked from the examples above is that expressions are not restricted
to affine or polynomial functions. This is a key element which makes our approach stronger than the
polyhedral approach which can only handle affine expressions [5, 8, 9].

Restrictions. In order to allow efficient implementation for the supported operations we impose some
restrictions on the operations. The restrictions are chosen in such a way as to balance the expressive
power with the algorithmic and implementation complexity:

• In a division operation the divisor must be a numeric constant.

• In shifting operations the right hand side must be a numeric constant.

• min/max expression are allowed only at the top level. This means that if min/max expressions
are used in any operation and the result cannot be expressed again as min/max top level only
expression an exception will be thrown.

Normal form. In what concerns the representation we enforce a normal form which acts like an ex-
pression invariant during the computations. The normal form divides the expressions into two categories:
simple expressions and min/max expressions. As mentioned above, min/max expressions cannot be
nested. Simple expression are represented using a sum of products normal form. The sum is a list of
products where each product is a list of variables and constants. Both, the sum and the products have
their elements sorted lexicographically with constants coming first. The advantage of keeping the product
and sum elements sorted is that it allows for efficient implementation of the equiv products and group by
procedures described in the addition algorithm [4] (O(n) instead of O(n2)). At any time, an expression in
normal form is maximally reduced. In other words, each product contains at most one numeric constant,
and all min/max are pushed to the top.

It is important to mention that each expression carries a sign environment which associate to each variable
present in the expression a list of possible signs. The sign environment for the result of an operation is
obtained by merging the sign environments of the operands. At any time the sign environment of an
expression can be overwritten allowing to make the expressions context sensitive with respect to the signs
of their variables. This can make the difference between success and failure when it comes to applying
certain operations in different contexts. To illustrate this, consider the example below. By setting n
to be positive at line 2 we can further compute expression like getMax(a, getMax(x, 1)). By contrast,
if we would not have this capability we would end up in a case similar to the one from line 8 where
getMax(a, getMax(z, 1)) cannot be computed without breaking the normal form.

42

7.2. OPERATIONS AND ALGORITHMS

1 if (n > 0)

2 y = n; // n can be set to be strictly positive here

3

4 x = y + 1; // getMax(x,1) = x

5 // because we know that in this context n is strictly positive

6 // getMax(a,getMax(x,1)) = max(a,x) -> OK

7

8 z = n + 1; // getMax(z,1) = max(z,1)

9 // because we don’t know anything about n

10 // getMax(a,getMax(z,1)) = max(a,max(z,1)) ->

11 // not OK, violation of the normal form

7.2 Operations and algorithms

Basic operations. The basic operation on expressions +,−, ∗, /,<<,>>, getMin, getMax have the
straightforward mathematical algorithms. What is worth mentioning is that only +, ∗, getMin and
getMax are true operations. The others, can be implemented in terms of these. Subtraction is imple-
mented based on addition and division, left shift and right shift in terms of multiplication. In what
follows we highlight only the addition and getMax algorithm.

Addition is important because it also serves as the normalization procedure. Adding 0 to any expression
will normalize it without incurring any performance penalty. The algorithm proceeds in two steps. The
first step is to group the equivalent products from the two operands. In the second step, each group
of products is maximally reduced through constant folding. Two products are considered equivalent
(equiv products in the algorithm) if they differ only in their numeric constant (i.e., have exactly the same
variables with the same cardinality). To clarify the grouping consider the next example. If e = 1 + a
and f = 3 ∗ a + b then the algorithm simulated the following steps: e + f = (1 + a) + (3 ∗ a + b) =
(1) + (a+ 3 ∗ a) + (b) = 1 + 4 ∗ a+ b.

Algorithm 3 Symbolic expression addition

procedure add(f , g)
expanded sum← concatenate(f, g)
groups← group by(equiv products, expanded sum)
for all group in groups do

sum elem← reduce group by constant folding
put sum elem in sum

end for
sign env(sum)← sign env(f) ∪ sign env(g)
return sum

end procedure

The getMax algorithm is based on the expression comparison algorithm which is explained later in this
section. Though it is simple, special attention must be given to maintain the normal form. To this end,
special patterns that otherwise will cause the operation to fail are recognized and handled.

Expression signs. As mentioned, each expression carries a sign environment for its variables. In the
environment each variable has associated a set of possible signs. The sign for the entire expression is

43

7.2. OPERATIONS AND ALGORITHMS

Algorithm 4 Maximum of two symbolic expression

procedure getMax(f , g)
max← case f, g of

(a,min(a, b)) → b
(a,max(a, b)) → max(a, b)
(min(a, b),max(a, b)) → max(a, b)

(a, b) →

 a if a ≥ b
b if a ≤ b
max(a, b) if a and b are incomparable

return max
end procedure

computed by substituting variables with their possible signs and then resolving the expressions according
to the rules below. We present only the simple rules involving the {+} sign. The rest of the rules followed
the same pattern and can be easily derived. All the rules are lifted to operate on sets by considering all
possible combinations and then joining the results.

{+} + {0} = {+}
{+} + {+} = {+}
{+} + {−} = {−, 0,+}
{+} ∗ {0} = {0}
{+} ∗ {+} = {+}
{+} ∗ {−} = {−}

Note that the above procedure may fail to determine the sign of an expression even if this is obvious
from the context. Take for example f = a − 1 with sign(a) = {+}. By applying the rules we will get
sign(f) = {+}+ {−} = {−, 0,+}. Though, it is clear that since a is a positive integer its value is greater
or equal to 1 and thus we should have sign(f) = {0,+}. This can make the difference between a precise
value and a totally imprecise value (TOP) when static analysis is concerned. We handle these kinds
of scenarios by computing the sign based on a substitution method. The general idea is to inspect the
monotonicity of the expression with respect to one of its variables. Based on the monotonicity and on
the variable sign we compute the interval in which the expression can take values by substituting the
variable with its minimum or maximum integer value. The sign of the expression if derived from its value
interval in a natural way. Since an expression may have multiple variables, the process is repeated for
all of them and the results are merged. In general, if f is an expression and a is one of its variables, the
rules that guide the substitution are detailed in the table below:

monotonicity of f
with respect to a

sign(a) f(a) value interval

increasing {+} [f(min(a)),+∞]
increasing {−} [−∞, f(max(a))]
decreasing {−} [f(max(a)),+∞]
decreasing {+} [−∞, f(min(a))]

Expression comparison. Two expressions f and g are compared by subtracting one from the other
and computing the possible signs of the result. If the result can have any sign then the expressions are
incomparable.

44

7.2. OPERATIONS AND ALGORITHMS

Monotonicity. Expressions can be queried for monotonicity properties with respect to a specified
variable. If f(a) is an expression parametrised by a, the monotonicity of f with respect to a is computed
based on the following decision algorithm:

Algorithm 5 Computes the monotonicity of f with respect to a

procedure monotonicity(f , a)
δ ← a strictly positive fresh variable
if f(a+ δ) cannot compare with f(a) then return unknown monotonicity
else if f(a+ δ) = f(a) then return constant monotonic
else if f(a+ δ) ≥ f(a) then return increasing monotonic
else if f(a+ δ) ≤ f(a) then return decreasing monotonic
else return non monotonic
end if

end procedure

The monotonicity decision algorithm is lifted to compute the monotonicity of an expression f with respect
to to a set of variables V in the following way:

Algorithm 6 Computes the monotonicity of f with respect to the set V
procedure monotonicity by set(f , V)

if ∀u, v ∈ V,monotonicity(f, v) = monotonicity(f, u) then
a← choose(V)
return monotonicity(f, a)

else if ∃v ∈ V,monotonicity(f, v) = unknown monotonicity then
return unknown monotonicity

else return not monotonic
end if

end procedure

Note that the monotonicity algorithm requires expression comparison which in turn requires expression
sign computation. If for the sign computation we use the substitution method (which needs again to
compute monotonicity) we create a cyclic dependency. We break this cycle by computing the signs
required by the monotonicity algorithm only through the straightforward method.

Equation solving. Although we can represent non-linear equations, the current system can only solve
linear systems. The solving is done through the substitution method for which we present an example
below.

1. Start with the system x+ y = 3
x− y = 1

2. Isolate x in the first equation x = 3− y
3. Replace x in the second equation 3− 2 ∗ y = 1
4. Solve and find that y = 1

x = 2

Table 7.1: Example of solving a linear system by substitution method

45

7.3. ALGORITHMIC COMPLEXITY

We extend the basic substitution method to handle some non-linear equation systems through the follow-
ing procedure. First, we partition the set of equations into linear and non-linear equations. We solve the
linear equations and then substitute the variables in the non-linear equations based on the intermediate
results. We repeat the procedure until no linear equations can be extracted. The following algorithm
showcase this procedure.

Algorithm 7 Solve a system of equations

procedure solve(eqs)
linear system, nonlinear system← partition the equation from eqs based on linearity
inter result← solve linear system by the substitution method
new eqs← substitute variables in nonlinear system based on inter result environment
result← solve(new eqs)
return inter result ∪ result

end procedure

Sign equation solving. It proceeds in the same way as normal equation solving but all operations are
done at the sign level instead of at the numerical level.

7.3 Algorithmic complexity

In this section we will analyse the algorithmic complexity for the main basic operations: addition, mul-
tiplication and maximum. For the others similar reasoning applies. During the complexity analysis we
adopt the following notations:

e1 + e2 = the operation to be analysed
ei = the ith operand
ni = the number of variables from ei
n =

∑
i ni

n′ = maxi(ni)
mi = the number of sum terms (products) from ei
m =

∑
imi

Given this, the maximum length of a product can be ni + 1 and there can be at most 2ni sum terms.
In practice the actual number of sum terms is much less than 2ni . Because of this it is more useful to
reason about complexity in terms of the number of products, i.e., mi.

For addition, we first need to group the products of the two expressions based on the equiv products
predicate (products that have exactly the same variables but differ in their numeric constant). Be-
cause products are sorted, the equivalence of two products in terms of equiv products can be tested in
O(max(n1, n2)). Given that both expressions have their products sorted, the grouping can further be
done in O((m1 + m2) ∗ max(n1, n2)). What follows is the constant folding for all groups of products.
For a given product this can be done in constant time because each product has at most one numeric
constant in its composition. Since we know that there can be at most m1 +m2 products in a group this
step amounts to O(m1 + m2). Summing up the results we get the worst-case complexity for addition:
O(m1 +m2) +O((m1 +m2) ∗max(n1, n2)) = O((m1 +m2) ∗max(n1, n2)) = O(m ∗n′). Our experiments
revealed that in practice m is usual a very small constant (< 10 on our examples). Thus we can argue
that the complexity of addition is actually linear in the number of variables of the expressions.

46

7.4. SOUNDNESS DISCUSSION

For multiplication we basically need to distribute the product over the sum. We have m1 product terms
in the first operand and m2 in the second. Thus, this will take O(m1 ∗m2). Unfortunately doing this
will break the order and thus the resulted sum needs to be sorted again. Because now we have m1 ∗m2

terms and a single comparison is done in O(n′) this will take O(m1 ∗m2 ∗ log(m1 ∗m2) ∗ n′). Grouping
the equivalent products and applying constant folding can be done in O(m1 ∗m2 ∗n′), based on the same
reasoning as above. This leads us to a total worst-case complexity of O(m1 ∗m2 ∗ (log(m1 ∗m2)) ∗ n′).

Getting the maximum out of two expression amounts to find the sign of their difference. The complexity
for subtraction is the same as for addition, thus O(m∗n′). Computing the sign for the resulted expression
requires a traversal of the entire expression and thus requires O(m ∗ n) steps. Combining this we get
O(m ∗ n′) +O(m ∗ n) = O(m ∗ n).

The table below summarises the complexity for all available operations:

Operation Worst-case complexity
addition

O(m ∗ n′)
subtraction
multiplication

O(m1 ∗m2 ∗ (log(m1 ∗m2) + n′))
division
left shift
right shit
get minimum

O(m ∗ n)
get maximum
expression sign

O(m1 ∗ n1)
expression comparison
monotonicity O(m ∗ n)

7.4 Soundness discussion

Because the domain of symbolic expressions is actually Q and not Z some soundness issues arise when
division is used. Consider the following expression:

a

2
+
a

2

The actual result of this expression depends on the domain set, Q or Z, and on the parity of a:

a

2
+
a

2
=

 a if a ∈ Q
a if a is even, a ∈ Z
a− 1 if a is odd, a ∈ Z

In general, the results produced by symbolic computations are not sound when division is used and the
divisor does not divide the dividend. Although this is a limitation of our approach it is important to
note that it is not a major one. This is because we mainly use symbolic computations to reason about
memory access operations. In practice it rarely happens that one uses division to compute the offsets for
the memory accesses.

47

8
Analyses

8.1 Overview

This section presents the static analysis framework that powers up the top-level features. In what concerns
the dynamic analysis framework, we reuse the existing infrastructure of vfEmbedded. For this reason we
will not go into technical details. It suffices to mention that the data we collect dynamically are data
dependencies and loop counts. Data dependencies are used in the identification process in order to reject
the loops which have carried dependencies. Loop counts are used in the instantiation process in order to
infer the values of the inbound variables. The integration of the two frameworks, dynamic and static, is
done during the identification phase (Section 4) and the instantiation phase (Section 6).

The static analysis framework consists of four analyses. Table 8.1 presents their goals and usages while
Figure 8.1 illustrate their dependencies with respect to each other.

Sign analysis
Loop invariants

analysis
Expression

reconstruction analyis

Symbolic range
analysis

Coalescing analysis
Shared memory

analysis
Identification phase

static analysis framework

top-level phase
dependency direction

Figure 8.1: Static analyses framework

We can classify the analyses into two groups: main analyses and support analyses. The main analyses
are mandatory for our approach and their results are used to compute mapping information. These are
expression reconstruction analysis and symbolic range analysis. Support analyses are actually optional

48

8.2. INTERMEDIATE PROGRAM REPRESENTATION

and do not affect the functionality of the system or of other analyses. Their main goal is to increase
precision of other analyses. The support analyses are sign analysis and loop invariant analysis. We
emphasis that although optional from a conceptual point of view, support analyses are a must in practice
in order to achieve a decent level of precision.

Analysis Goal Used to
Symbolic range
analysis

determines the minimum and max-
imum value for every variable

• compute inbound/outbound copy ex-
pressions

• detect shared memory optimisations

Expression
reconstruction
analysis

reconstructs the symbolic expres-
sion of a given variable in terms of
the other program variables (e.g.,
inbounds, loop invariants)

• detect coalescing issues

• reconstruct matrix and submatrix ac-
cess

• support other analyses

• basic aliasing analysis

Sign analysis computes the possible signs that
variables can have

• detect expressions sign and mono-
tonicity

• increase precision of other analyses

Loop invariant
analysis

detects variables whose value does
not change during the loop itera-
tions

• substitute load operation with vari-
ables

• increase precision of other analyses

Table 8.1: Static analyses goals and usages

Several features are common to all analyses. First of all they were designed using abstraction inter-
pretation. Second, their specification is based on monotone frameworks. Next, they are flow-sensitive
and intra-procedural. Ongoing work intends to lift the analyses to context-sensitive inter-procedural;
Section 8.7 provides more details on this. And finally, the analyses are performed on an intermediate
representation of the program (Section 8.2). Nevertheless it is important to mention that the techniques
are representation agnostic. One can use the same ideas and have the analyses implemented at the source
code level for example. Our choice for the intermediate representation was influenced by integration goals
with respect to vfEmbedded infrastructure.

8.2 Intermediate program representation

The intermediate representation is a modified version of the control data flow graph (CDFG) of the
program that is output by the compiler. The original CDFG does not have explicit control structure,
thus making things more complicated for flow-sensitive static analyses. We fixed this by making if then
else structures explicit in the graph.

The CDFG is also in static single assignment form (SSA) [13]. The main feature of SSA representation
is that the definition-use chains of the program are explicit in the representation: each variable has at
most one definition (this means that it is assigned only once). The transformation to SSA form amounts
to renaming the variables and introducing special assignments at the points where control flow merges.

49

8.2. INTERMEDIATE PROGRAM REPRESENTATION

The special assignments are called φ-functions. Each argument of a φ-function identifies one of the
program points from where the control flow might have come. The assigning statements take the form
x = φ(x1, . . . , xn) and the idea is the value of x will equal the value of xi whenever the control flow comes
from the ith predecessor. Figure 8.2 presents a SSA transformation example.

if (k > 0)

x = y

else

x = z

a = x

=⇒

if (k > 0)

x1 = y

else

x2 = z

x = φ(x1,x2)

a = x

a) Normal form b) SSA equivalent form

Figure 8.2: Transformation to SSA form

Language

We can formalize the intermediate representation into a small language. This serves as a succinct de-
scription of the representation and helps us to explain the static analyses. The language abstract syntax
is presented in Table 8.2. In order to increase readability we use specific operator symbols and sometimes
redundant renaming.

We emphasise that the language is not intended to represent all features of ANSI C99. It is meant to be
a simplification that helps us present the static analyses. In particular we do not represent features like
structure type definitions or functions with variable numbers of arguments. They do not add value to our
future explanations; thus we omit them. Also, one may notice that we do not represent control structure
like switch-case structures or while loops. We only employ conditional and unconditional jumps. It is
easy to prove that the other control structures can be defined in terms of them. We also do not concern
ourselves to explicitly represent global and static variables. Operations on them are translated to loads
(stores) from (to) specific memory areas. Because of this they are implicitly encoded within the language.

From a structure perspective a program is a list of functions. A function is represented in terms of basic
blocks. A basic block is a group of statements that does not contain jump instructions. Jumping is
allowed only the end of basic blocks. This contrast with how programs are usually represented in source
code: in terms of blocks of statements that can have jumps at arbitrary points. Each basic block has an
associated label that can be used to execute jumps.

There are tree types of statements: assignments, store operations and function calls. Expressions can be
classified into trivial expressions (literals and variables) arithmetic/comparison expressions and complex
expressions. In what concerns arithmetic expressions one may note that we did not include logical
operators (i.e and, or, not) but only their bitwise relatives. The reason is that they can easily be
expressed in terms of the bitwise operators. The complex expressions are the following. The ternary
conditional expression (eg. cond ? a : b) selects the first expression if the condition is evaluated to true
or the second one otherwise. Cast expressions (eg. cast (int*) p) are used in order to convert between
different types. Load expressions (eg. load(p+1)) fetch values from the specified address in memory (the
address is an arbitrary pointer expression). A special instruction is used to perform pointer arithmetic:
ptr add. Valid arguments are a pointer expression and an arbitrary offset values. We use a special
operation and not a simple add because the actual address computation depends on the pointer type.
For example, p + 1 will increase the address of p by 4 bytes if p is of type int[10] and by 40 bytes if p
is of type int[10][10].

50

8.2. INTERMEDIATE PROGRAM REPRESENTATION

variable ::= string
fun name ::= string
literal ::= valid C literals
label ::= string
type ::= valid C type

op ::= arith op | bit op | cmp op
arith op ::= + | - | * | / | %

bit op ::= & | | | ˆ | << | >>

cmp op ::= == | != | > | >= | < | <=

expression ::= literal
| variable
| expression op expression
| condition ? expression : expression
| cast type expression
| load address
| ptr add address expression
| field sel expression expression
| phi argsφ
| call statement

call statement ::= call funid argsfun
funid ::= funptr | fun name
funptr ::= expression

argsfun ::= expression∗

argsφ ::= variable+
address ::= expression
condition ::= expression

statement ::= variable := expression
| store address expression
| call statement

control flow ::= return expression?
| cond jump
| uncond jump

cond jump ::= if condition then uncondjump else uncondjump
uncond jump ::= goto label

basic block ::= label : statement∗ control flow
function ::= type fun name(fun arg∗) {basic block∗}
fun arg ::= type : variable

program ::= function∗

Table 8.2: Intermediate representation language syntax

51

8.3. SYMBOLIC RANGE ANALYSIS

Structure field selection is done with the field sel instruction. Its first argument is an expression
representing the structure, and the second argument when evaluated to an integer i, denotes the ith field.
Phi expressions (phi) represent the special SSA assignments that are introduced at control flow merges.
We note that we will write φ instead of phi. Function calls can be made either with the function name
or with a pointer to that function.

The control flow is achieved through three special statements. The return statement (return) exits the
current function and returns the specified value, if any. The conditional jump (if cond then goto L1 else

goto L2) changes the control to another basic block according to the specified condition. The uncondi-
tional jump is represented with the goto statement.

We note that using the proposed syntax one may build non-valid programs of programs that are not
in SSA form. It is the job of the compiler that will create valid intermediate representations. For the
rest of the thesis we consider that we only work with valid programs in SSA form. Figure 8.3 illustrates
the transformation from source code to intermediate representation of a simple program. The figure
highlights the basic blocks and makes the control flow explicit.

for(i = 0; i < n; i++){

if(i < n/2)

k = a[i];

else

k = b[i];

c[i] = k;

}

L1:

i = ϕ(0,i1)

if i < n

 then goto L2

 else goto L3

L2:

if i < n / 2

 then goto L4

 else goto L5

L4:

addra := ptr_add a i

k1 := load addra

goto L6

L5:

addrb := ptr_add b i

k2 := load addrb

goto L6

L4:

k := ϕ(k1, k2)

addrc := ptr_add c i

store addrc k

i1 := i + 1
goto L1

L3:

...

control flow

Figure 8.3: Transformation form source code to intermediate representation

8.3 Symbolic range analysis

Symbolic range analysis computes the minimum and maximum values for variables at each program point.
The values are expressed in terms of a given set of input parameters, hence the symbolic qualifier.

The information is computed through an abstract interpretation procedure. That is, the algorithm
executes the program by following its control flow paths, updating the current ranges to reflect the side
effects of the statements encountered along these paths, until a fixed point is reached. As we have seen
in Section 2.2.1 the key components of data flow algorithms are the lattice structure and the transfer

52

8.3. SYMBOLIC RANGE ANALYSIS

functions. Section 8.3.1 motivates our choice for a particular lattice while Section 8.3.2 discuss discuss
the overall algorithm and presents a selection of transfer functions.

We note that our approach was inspired by Blume et al.’s symbolic range propagation [57]. The similarities
and differences between us and them are highlighted during the related work discussion (Section 10).
Other inspiring resources were Bae’s inter-procedural range propagation [3], Yong’s pointer analysis [61],
Verbrugge’s generalized constant propagation [54] and Stephenson’s bitwise analysis [51].

8.3.1 Lattice

There are many choices one can make for the structure which holds information about the values that a
variable can have at run time. The difficulty of choosing the right one comes from the fact that we have
to balance precision and computational costs. Moreover the choice has to be made at two different levels.
The first level is choosing the right structure to hold the necessary data for a single program variable.
Examples of such structures suitable for our needs are: a set of values, a single interval or an interval
expression. The second level is about redefining the semantic to specify all executions ”in parallel” and
account for the entire program state. In other words, after we choose a structure to hold data for a given
variable we have to lift it to a structure that can relate all variables data across all executions. This is
usually refereed to as the collecting semantics [35]. An example for this is recording sets of execution
histories in a relational or independent fashion.

Note that no matter what option is selected, for data flow analysis purposes the structure should form a
lattice with ascending chain condition [35].

Choosing the right lattice

The most precise way to store the values that a variable can have is to keep all its possible values in a set.
In this case, if the variables domain is D the corresponding lattice is (2D,⊆). Unfortunately this is not
an option in practice - the time and space complexity would simply be too high. Usually D is infinite or
has a very large cardinality and thus it poses convergence problems. Using a widening operator [32, 35]
does not help either since precision will be too low given the set representation.

An alternative is to represents the values as interval expressions. That is, instead of storing the data at the
granularity of values, e.g., v 7→ {1, 3, 20, 21, 23}, to allow some imprecision in the form of intervals: v 7→
[1, 3]∪ [20, 23]. For this case, a reasonable complexity can be achieved if we use a widening operator that
limits the number of intervals from expressions. This can be achieved by merging subintervals when the
total number exceeds some constant. We can thus argue that the approach is a viable option in practice.
However, it is appropriate only for concrete numeric intervals. Extending the approach to support
arbitrary algebraic expressions as interval bounds is not easy. The reason is that for symbolic intervals
we cannot easily distribute ∩ over ∪ and get an expression only in ∪. Expanding the representation to
expressions with ∪ and ∩ is also not an option. The complexity associated with the symbolic computations
needed to perform operations on such a form renders this approach impracticable. Though, being able
to manipulate symbolic intervals is exactly what we need.

We can manage the extra complexity by applying one more restriction to the above representation. That
is, the expression should contain only one interval at any time. In other words, we trade again precision
for computation complexity. The main downside of this approach is that we cannot account for ”holes”
- a value set of {1, 2, 1000} would be represented as [1, 1000] instead of [1, 2] ∪ [1000, 1000]. Figure 8.4
showcases the lattice for the case of plain numeric intervals.

53

8.3. SYMBOLIC RANGE ANALYSIS

Τ

 Τ = [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥
 − 1]

 [𝐼𝑁𝑇𝑚𝑖𝑛
+ 1, 𝐼𝑁𝑇𝑚𝑎𝑥

]

 [𝐼𝑁𝑇𝑚𝑖𝑛 + 1, 𝐼𝑁𝑇𝑚𝑎𝑥
 − 1]

 [𝐼𝑁𝑇𝑚𝑖𝑛 + 2, 𝐼𝑁𝑇𝑚𝑎𝑥
]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥
 − 2]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑖𝑛
]

 [𝐼𝑁𝑇𝑚𝑎𝑥, 𝐼𝑁𝑇𝑚𝑎𝑥]

 [0,0]

 [1,1]

 [−1, −1]

... ...

Figure 8.4: Classic lattice for integers intervals

The above lattice creates the starting point for the lattice that we actually use. As already mentioned we
need to support intervals with symbolic bounds. Given a set of variables V = {a, b, . . . } we can extend the
lattice to accommodate our symbolic needs as presented in Figure 8.5. The lattice elements are symbolic
ranges whose bounds can be arbitrary symbolic expression that range over the variables in V (as defined
in Section 7).

Τ

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥
− 1]

 [𝐼𝑁𝑇𝑚𝑖𝑛
+ 1, 𝐼𝑁𝑇𝑚𝑎𝑥]

 [𝐼𝑁𝑇𝑚𝑖𝑛 + 1, 𝐼𝑁𝑇𝑚𝑎𝑥
− 1]

 [𝐼𝑁𝑇𝑚𝑖𝑛
+ 2, 𝐼𝑁𝑇𝑚𝑎𝑥

]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑎𝑥
− 2]

 [𝐼𝑁𝑇𝑚𝑖𝑛, 𝐼𝑁𝑇𝑚𝑖𝑛
]

 [𝐼𝑁𝑇𝑚𝑎𝑥, 𝐼𝑁𝑇𝑚𝑎𝑥]

 [0,0]

 [1,1]

 [−1, −1]

... ...

[min 𝑎, 𝑐 , max (𝑐, 𝑑)]

[
1

2
, 1] [𝑎, 𝑏] [𝑐, 𝑑]

[
1

2
,
3

2
]

[1,
3

2
]

Τ= [−∞, +∞]

...

Figure 8.5: Lattice for symbolic intervals in Q domain

More formally, the lattice can be defined as (SymRange,v) where SymRange = {⊥} ∪ {[a, b] | a ≤
b, a and b symbolic expression over V} and v=⊆, the natural interval inclusion. We use ⊥ to denote the
uninitialized range. The join operator t is the natural interval union.

54

8.3. SYMBOLIC RANGE ANALYSIS

It is important to mention that the ”symbolic” part of the lattice does not have a proper statically defined
semantic. In particular, there might be execution paths where [a, b] t [c, d] = [a, d] (if a ≤ c and d ≥ b)
and paths where for the same variables we have [a, b]t [c, d] = [c, b] (if c ≤ a and b ≥ d). It also important
to mention that the domain of the extended lattice is Q instead of N.

In what concerns the collecting semantics we consider the following lattice for the program state:

RangeLattice = Lab→ Var→ SymInterval

where Lab is the set of program points, Var is the set of program variable that we track and SymInterval
is the above defined interval lattice. This is the lattice that we ultimately use for the data flow algorithm.
We can read it as: for each program point maintain a mapping from variable to their values interval.

8.3.2 Algorithm

In order to compute the ranges we employ a standard work-list algorithm. In what follows we highlight
the general idea of the algorithm; the reader is invited to consult [35] for a precise specification. The
algorithm iterates through the program flow edges in a predefined order, updating the information of
each program point until a fixed point is reached. A flow edge is essential a tuple of two program points:
(source, destination). At each step the algorithm processes an edge and applies a transfer function
that will propagate information from the source program point to the corresponding destination. The
transfer functions are defined based on the statement or expression that defines their corresponding
program points. During the execution, the algorithm maintains a work list of edges that still need to
be processed. Whenever the algorithm changes the value of the destination program point of an edge it
adds its successors to the work list. The algorithm finishes when the work list becomes empty, i.e., the
information of all program points stabilize.

The general algorithm is instantiated to compute ranges by using the lattice RangeLattice as the
container for information about the program. Basically, for each program point we store a dictionary
from variables to their values interval. We use the following initial ranges as the algorithm starting point.
Program variable that correspond to inbound parameters (Section 4.2) and loop invariants (Section 8.6)
have as initial range the symbolic expressions denoted by the variable itself. For all the other variables the
initial range is ⊥, the undefined range. This acts like a neutral element for interval union and intersection:
r ∪ ⊥ = r ∩ ⊥ = r.

The transfer functions are as follows. At each control flow merge point we combine the ranges we got
so far using the interval union operator as the join operator. The operator is applied point-wise to each
variable in the dictionary. At control flow divergence points we add new constraints for the intervals
using the interval intersection operator. For data flow program points we compute a new interval by
performing interval arithmetic on the incoming operands. Table 8.3 presents the basic operators that are
used to compute the ranges for control flow points. Table 8.4 presents the arithmetic operators used for
data flow program points. Table 8.7 presents informally the most important transfer functions.

union [a, b] ∪ [c, d] = [min(a, c),max(b, d)]
intersection [a, b] ∩ [c, d] = [max(a, c),min(b, d)]
widening [a, b]∇ [c, d] = [if a = c then a else−∞,

if b = d then b else +∞]
narrowing [a, b]4 [c, d] = [if a 6= −∞ then a else c,

if b 6= +∞ then b else d]

Table 8.3: Basic operations on ranges

55

8.3. SYMBOLIC RANGE ANALYSIS

[a, b]⊕ [c, d] = [a+ c, c+ d]

[a, b]	 [c, d] = [a− d, b− c]

[a, b]⊗ [c, d] =



[a ∗ c, c ∗ d] if a ≥ 0 and c ≥ 0
[c ∗ c, a ∗ d] if a ≥ 0 and d < 0
[a ∗ d, c ∗ c] if c < 0 and c ≥ 0
[b ∗ d, a ∗ c] if c < 0 and c < 0
[a ∗ c, b ∗ c] if c ≥ 0 and c = d
[a ∗ c, b ∗ c] if c < 0 and c = d
[−∞,+∞] otherwise

[a, b]� [c, d] =


[a, b]⊗ [

1

d
,

1

c
] if c ≥ 0 or d ≤ 0

[a, b]⊗ [
1

c
,

1

d
] if c ≤ 0 and d ≥ 0

[−∞,+∞] otherwise

[a, b] modr [c, d] = [c, d]

Note: At lower (upper) bounds computation, +,−, ∗, / denotes symbolic ex-
pression operators (Section 7). If the operators fail for a given bound then the
value is replace by the −∞ (+∞). Moreover, although some comparison may
seem redundant they are not - because we work with symbolic expressions we
might have a > b, a < b or a ? b.

Table 8.4: Arithmetic operators on intervals

The attentive reader might have notice that the simple fix point algorithm described above might never
converge given the lattice presented in the previous section. The reason is that the lattice SymInterval
has infinite chains which is ultimately propagated to the actual lattice RangeLattice. A simple example
for this is the chain [0, 0] v [0, 1] v · · · v [0,MAXint] when MAXint = +∞ (i.e., for integers with infinite
precision). Note that even if we consider integers with finite precision, in practice MAXint is too large
to ever consider computing the above chain.

We solve this problem by using a widening operator and a narrowing operator at selective program points.
Their definition is given in Table 8.3.

The widening operator is actually an overly conservative join operator. It replaces the join operator at
loop headers when the incoming dictionaries define the same variables. This causes the algorithm to
visit the loop twice before it applies the widening operator. We note that although the intermediate
representation does not have explicit loops, the existing infrastructure of vfEmbedded provide analyses
to reconstruct this information. The narrowing operator is used to recover some of the information that
was lost when the widening operator was applied. Our definition for widening and narrowing operators
was inspired by the operators defined by Blume et al. [57].

The actual algorithm proceeds in two phases: a widening phase, followed by a narrowing phase. During
widening we compute an upper approximation of the least fix point. As discussed earlier the widening
operator replaces the join operator at loop headers. During narrowing we try to regain some precision
that we lost in the widening phase. The phase starts with the results of the previous phase. The join
operator is replaced by the narrowing operator. Figure 8.6 illustrate the effects of each phase.

56

8.3. SYMBOLIC RANGE ANALYSIS

for (i = 0; i < n; i++)

 a[i] = b[i];

𝑖 ∈ [0, +∞]

for (i = 0; i < n; i++)

 a[i] = b[i];

𝑖 ∈ [0, 𝑛 − 1]

a) After widening phase b) After narrowing phase

Figure 8.6: Algorithm phases

a)

l2 : b l3 : c
↘ ↙

l1 : a = b op c
↓

al1 = bl2 opr c
l3 , where

op ∈ {+,-,*,/,%}
opr ∈ {⊕,	,⊗,�, modr}

b)

l2 : b l3 : c
↘ ↙

l1 : a = b ˆ c
↓

al1 =

 [0, 0]	 bl2 	 [1, 1] if c == −1
[0, 0]	 cl2 	 [1, 1] if b == −1
> otherwise

(b ˆ c denotes bitwise xor)

c)

l2 : b l3 : c
↘ ↙

l1 : a = cond ? b : c
↓

al1 = bl2 ∪ cl3

d)
↓

l1 : a = load addr
↓

al1 =

{
sym varrange(addr) if addr is a loop invariant
> otherwise

e)

l2 : p l3 : i
↘ ↙

l1 : q = ptr add p i
↓

ql1 = pl2 + size of(p) ∗ il3

f)
↓

l1 : a = field sel struct addr
↓

al1 =

{
sym varrange(struct, addr) if addr is a loop invariant
> otherwise

g)

l2 : b l3 : c
↘ ↙

l1 : a = φ(b, c)
↓

al1 = bl2 ∪ cl3

h)

l1 : if a < b
l2 : then goto L2

l3 : else goto L3

↙ ↘
L2 : ... L3 : ...

al2 = al1 ∩ [−∞, blo − 1] where [blo, bhi] = bl1

al3 = al1 ∩ [bhi,+∞]

Figure 8.7: Selected transfer functions for range analysis

Transfer function explanations. The left part of Table 8.7 illustrates the program flow and the
right part presents the corresponding transfer function. Each statement and operation is prefixed by its
program point label, e.g., l1 : a = b + c. The arrows suggests the flow direction. The transfer functions
are expressed as equations in terms of exit values. That is, al1 = bl2 opr c

l3 is read as: the interval for a
at l1 exit point is equal to the interval of b at l2 exit point opr the interval for c at l3 exit point.

57

8.3. SYMBOLIC RANGE ANALYSIS

a) performs classic interval arithmetic.

b) illustrates one of the special patterns that we recognize for bitwise operations. The compiler will replace
normal operations with bitwise operations whenever possible; thus we often encounter such patterns.

c) handles the ternary conditional operator. Because we do not have an explicit control flow we are not
able to impose constraints based on cond.

d) addresses the problem of loading a value from memory. If the address is proven to be loop invariant we
replace the result by a singleton interval. sym varrange generates a fresh symbolic variable that is used
as lower and upper bound for the interval. It does this based on the addr such that subsequent loads
from the same invariant address will receive the same symbolic variable. This emphasises the importance
of having loop invariant analysis. Without it, we would be forced to always return top.

e) performs pointer addition. For each pointer p, size of returns the size in bytes of the elements
pointed to. Thus, the resulted interval will be the interval of accessed bytes. By using number of
bytes and not number of elements we are able to have a fine control over pointer casting. For example,
declaring a pointer of type int* p and then casting it to char* q = (char*)p will make each individual
byte addressable. That is, if p++ advances with four bytes, q++ advances with only one byte. If we loop
over such operations 100 times, the accessed size will be 400 bytes for p versus 100 bytes for q, even if q
is just an alias for p. Thus, by counting bytes we are more precise about the actual accessed memory.

f) selects a field structure. The transfer is similar to the one for loading operations. If we can prove that
the selection is loop invariant then we introduce a new singleton interval with a fresh variable. Otherwise
we return top.

g) represents the transfer function for control flow merge points. The result will be the union of all
incoming values.

h) handles control divergence points. Note that an if statement receives three different program points:
for the condition, for the then branch and for the else branch. Based on which branch is taken a different
constraint is imposed.

Table 8.7 presents just a subset of all transfer functions. For the rest of the statements ans expressions
the functions are defined in a similar way.

Increasing precision. We can increase the analysis precision if we take better advantage of the con-
straints we generate at divergence points. We can do this by using the following observation. A variable
is uniquely defined by its definition list. Thus, we can detect equivalent program variables by looking at
equivalent φ nodes. For example if we have l1 : a1 = φ(b, c) and l2 : a2 = φ(b, c) we can infer that a1 and
a2 represent the same variable even if they are defined at different program points, l1 and respectively
l2. In this context if we add a constraint on a1 we know that the constraint will also hold for a2 (given
that they are under the same constraint scope). Thus it would be beneficial from a precision point of
view to propagate any constraint for a1 to a2. We do this by storing the definition of the variable on
which constraints were added. If we later encounter another variable with the same definition we apply
the corresponding constraints.

Besides this, it is important to note that the analysis precision can greatly benefit if certain transforma-
tions are applied before it. Two such transformations are induction variables substitution and ternary
condition expansion. Induction variables substitution replaces computations from a loop body that are
independent of the induction variable with computations that depend on it. Figure 8.8 illustrate such a
transformation.

58

8.3. SYMBOLIC RANGE ANALYSIS

int k = 10;

for(int i = 0; i < n ; i++){

... = a[k] + b[i];

k++;

}

=⇒

int k = 10;

int k1 = k;

for(int i = 0; i < n ; i++){

... = a[k1] + b[i];

k1 = k + i;

}

Figure 8.8: Induction variable substitution transformation

The transformation is important because it enables us to add constraints on variables and thus we can be
more precise. In the example above we are able to infer that k1∈ [10, n]. In contrast, without transforming
the code, we cannot impose restriction on k, and we will be force to return k∈ [10,+∞].

Ternary condition expansion replaces the ternary condition operators with if then else control flow
statements. This serves the same goal as the induction variable substitution. It allow us to impose more
constraints on the intervals and be more precise.

8.3.3 Example

Figure 8.9 presents the result of the symbolic range analysis for a sample program. For readability
reasons we use source code instead of intermediate representation. The example is artificially constructed
to showcase most of the analysis features.

1 int* in = // ...

2 int* out = // ...

3 int m = // ...

4 int sum = // ...

5 for(int i = 0; i < n; i++){

6 char * aux = (char *)in ;

7 int k = i * i; −→ k ∈ [0, n2]
8 out[i] = aux[k]; −→ aux ∈ [in, in+ n2], out ∈ [out, out+ 4 ∗ n2]
9 if (i < m) {

10 // use i −→ i ∈ [0,m− 1]
11 } else {

12 int j = i*out [0]; −→ j ∈ [m ∗ α, n2 ∗ α], α =out[0]= loop invariant
13 int l = j * aux[i]; −→ l ∈ >, aux[i] = loop variant
14 // ...

15 }

16 int mux = m > 10 ? n : m; −→ mux ∈ [min(m,n),max(m,n)]
17 int w = mux + i; −→ w ∈ [min(m,n),max(m+ n, 2 ∗ n)]
18 // ...

19 }

Figure 8.9: Symbolic range analysis example

59

8.4. EXPRESSION RECONSTRUCTION ANALYSIS

8.4 Expression reconstruction analysis

Expression reconstruction analysis computes for each program point the set of possible expressions that
variables can have. The expressions are maximally expanded up to recursive definitions, predefined input
variables, induction variables and unknown values loaded from memory. Figure 8.10 clarifies the goals of
expression reconstruction through a simple example. For readability reasons we present the source code
instead of the intermediate representation.

1 sum = 0; −→ sum = {0}
2 for(int i = 0; i < n; i++){ −→ i = {i}
3 int row_idx = i*n −→ row idx = {i ∗ n}
4 int* row = img + row_idx; −→ row = {img + i ∗ n}
5 for(int j = 0; j < m; j++){ −→ j = {j}
6 int val = row[j]; −→ row = {α}, &α = {img + i ∗ n+ j}
7 sum = sum + val; −→ sum = {0, sum+ α}
8 }

9 }

Figure 8.10: Expression reconstruction example

For the first line it is easy to see that sum can only be 0. For line 2 we know that i is an induction variable
and as mentioned its possible expressions are not expanded (similar for line 5 and j). The information
that i and j represent induction variables is provided by existing vfEmbeded analyses (recall that in the
intermediate representation we do not have explicit loops). Nevertheless, as we will explain later, we
can also detect induction variables only using the reconstruction analysis. On line 3 it is again easy to
see that row idx can only be equal to i ∗ n. The value for row at line 4 is obtained by expanding the
value of row idx. Line 6 features a memory load. Since its impossible to derive what value is located at
the memory address, a new variable (α) is introduced. val becomes equal to α and a new expression is
computed for the memory offset from where α originates (&α). At line 7 we have a recursive definition:
sum is defined in terms of itself. When this happens, only the first recursive step is expanded. Taking
into account that sum can also be 0 (from line 1) we get sum = {0, sum+ α}.

The attentive reader will have noticed that the goal of expression reconstruction analysis is similar to the
one of available expression analysis [35, 1]. Available expression analysis determines for each program
point, the set of expressions that must already have been computed, and not later modified, on all paths
to the program point. The difference is that the reconstruction analysis computes the set of all possible
expressions for all program variables (not only the ones that do not need to be recomputed). This leads to
a may analysis, whereas the available expression analysis is a must analysis [35]. Moreover, as described
in the rest of this section, the reconstruction of possible expressions is done in terms of other program
variables and according to predefined rules.

As in the case of symbolic range analysis we specify the reconstruction analysis as a monotone framework.
Also, a similar work list algorithm is used to compute the sets of possible expressions. The lattice in this
case is SymExp = (2Exp,⊆). Exp is the set of all possible symbolic expressions that can be constructed
using the normal form described in Section 7. The join operator is the set union. A key difference from
the range analysis is that for reconstruction analysis the flow-sensitiveness is encoded directly in the
intermediate representation. The SSA form restricts variables to just one definition. This means that we
cannot redefine a variable and assign a new expression to it. Multiple expressions can only be assigned to
a variable through φ functions and ternary condition operators. This enables us to optimize the working

60

8.4. EXPRESSION RECONSTRUCTION ANALYSIS

lattice. That is, instead of maintaining for each program point a mapping from variables to their set of
possible expressions we can store just one global mapping for the entire program. Thus our final lattice
is:

ExpLattice = Var→ SymExp

Another difference with the range lattice is that although the lattice does not have ascending chain
condition, in practice the chains are always finite and actually not very long. Thus, we do not need
a widening operator, and a simple fix point iteration will rapidly converge. To understand why this
happens consider the possible sources of infinite or very long chains. These are recursive definitions
and loop iterations. But expressions are always expanded up to the first recursive definition and up to
induction variables. Thus we will have a recursive definition chain of at most length two. Because of this
a set of possible expression will not grow more than the longest argument list for a φ function.

The initial set of possible expressions of variables are as follows. For predefined variables (e.g., kernel
parameters) and for loop invariants the only possible expressions is given by the symbolic expression
defined by the variable itself. For all the other variables the initial set is empty.

The most important transfer functions are presented in Table 8.5. They closely follow the transfer
functions defined for range analysis with the difference that the operations are performed on expressions
rather than on intervals. Also, because of the SSA form, no constraints need to be applied at control flow
points.

a)

l2 : b l3 : c
↘ ↙

l1 : a = b op c
↓

al1 = {eb op ec | eb ∈ bl2 , ec ∈ cl3}, where op ∈ {+,-,*,/}

b)

l2 : b l3 : c
↘ ↙

l1 : a = b ˆ c
↓

al1 =


{0− eb − 1 | eb ∈ bl2} if c == −1
{0− ec − 1 | ec ∈ cl3} if b == −1
{sym varexp(b, c)} otherwise

(b ˆ c denotes bitwise xor)

c)

l2 : b l3 : c
↘ ↙

l1 : a = cond ? b : c
↓

al1 = bl2 ∪ cl3

d)
↓

l1 : a = load addr
↓

al1 = {sym varexp(addr)}

e)

l2 : p l3 : i
↘ ↙

l1 : q = ptr add p i
↓

ql1 = {ep + size of(p) ∗ ei | ep ∈ pl2 , ei ∈ il3}

f)
↓

l1 : a = field sel struct addr
↓

al1 = {sym varexp(struct, addr)}

g)

l2 : b l3 : c
↘ ↙

l1 : a = φ(b, c)
↓

al1 = bl2 ∪ cl3

Table 8.5: Selected transfer functions for reconstruction analysis

61

8.5. SIGN ANALYSIS

It is important to mention that whenever we encounter an operation that is not supported by the symbolic
computation engine and that cannot be translated to a supported one, we introduce a fresh variable that
acts as a symbolic constant. This contrasts with range analysis where we would go to top. This is also
the reason why the reconstruction analysis can never fail with top. The fresh symbolic constant is created
using sym varexp function. This is in sync with sym varrange - for the same expression they will generate
the same symbolic constant.

a) performs arithmetic operations. The result is obtained by combining all possible expressions of the
operands with the specified operator.

b) illustrates the translation from bitwise operations to arithmetic operations.

c) and g) illustrate the only cases that introduce multiple expressions. These are ternary operators and
φ functions.

d) and f) always introduce new variables. The reason is that we cannot determine what will be loaded
from memory and we cannot look inside structure fields.

e) presents pointer arithmetic. Similar to the range case, the expression is computed in bytes rather than
in the number of elements. The motivation remains the same.

Note that the transfer functions presented in Table 8.5 do not account for recursive definitions. Because
this is a recurring pattern that arise in multiple cases (e.g., a),b) and e)) we choose to explain it separately.
In order to detect recursion we associate to each expression a list of program points that contributed
to its creation. For example, in the case illustrated at point a), the program points that contribute to
the possible expressions of a are l1, l2 and all the other points that contributed to b and c. Whenever
we combine options from different sets of possible expression we first check if one of the expression was
defined based on the current program point. If this is the case, then it means we detected a recursive
pattern and we replace the expression with the recursive variable.

Using the analysis to detect induction variables

Currently, induction variables are detected using the existing infrastructure of vfEmbedded. We can
also detect them using reconstruction analysis. Basically, every variable with a recursive definition is a
potential induction variable. We can detect the real ones by checking if the given variable is involved in
the testing condition for the loop exit. The downside of this approach is that in order to get the results
that we need (expressions expanded up to induction variable) we will need to run the analysis twice. The
first run will detect induction variables. The second run will compute the expressions we need using the
detected induction variables as symbolic constants.

8.5 Sign analysis

Sign analysis computes at each program point the set of signs that variables can have. The analysis is
vital for the precision of symbolic range analysis because it provides the necessary information to compare
two symbolic expressions in the general case. The analysis is expressed as a monotone framework. It
computes the variable signs with the help of same work list algorithm used in previous analyses.

The sign lattice is Signs = (2SignSet,⊆), where SignSet = {-, 0, +}. Figure 8.11 illustrates the lattice
in graphical terms. The semantics is the natural one: + denotes a positive variable, - a negative one and
0 means that the variable is equal to 0. The working lattice follows the same pattern as the one from

62

8.5. SIGN ANALYSIS

range analysis. It associates to each program point a mapping from variables to their possible signs:

SignLattice = Lab→ Var→ Signs

It is easy to see that the lattice has only finite chains and thus it satisfies the ascending chain condition.
As a consequence we do not need to employ the extra widening operator.

{}=Τ

{−} {0} {+}

{−, 0} {−,+} {0, +}

Τ = {−, 0, +}

Figure 8.11: Sign lattice

Variables start with the undefined sign, represented by the empty set. The transfer functions are defined in
Table 8.6. They proceed in a similar way with the transfer functions for expression reconstruction analysis.
The difference is that all arithmetic computations are performed at sign level. The sign computation are
subscripted with s (e.g., +s) and are define in the natural way: i.e., + ∗s - = {-}, + +s - = {-, 0, +}
etc.

a)

l2 : b l3 : c
↘ ↙

l1 : a = b op c
↓

al1 =
⋃
{sb ops sc | sb ∈ bl2 , sc ∈ cl3}

where
op ∈ {+,-,*,/}
ops ∈ {+s,-s,*s,/s}

b)

l2 : b l3 : c
↘ ↙

l1 : a = cond ? b : c
↓

al1 = bl2 ∪ cl3

c)
↓

l1 : a = load addr
↓

al1 = {-, 0, +}

d)
↓

l1 : q = ptr add p i
↓

ql1 = {+}

e)
↓

l1 : a = field sel struct addr
↓

al1 = {+}

f)

l2 : b l3 : c
↘ ↙

l1 : a = φ(b, c)
↓

al1 = bl2 ∪ cl3

63

8.5. SIGN ANALYSIS

g)

l1 : if a < b
l2 : then goto L2

l3 : else goto L3

↙ ↘
L2 : ... L3 : ...

al2 = al1 ∩ ({-} ∪ bl1)
al3 = al1 ∩ ({+} ∪ bl1)

Table 8.6: Selected transfer functions for sign analysis

Increasing precision In order to increase the precision of variables signs we extend the basic analysis
to detect three complex sign patterns. The necessity of discovering the patterns is increased by the fact
that the compiler tends to transform the code in a way that artificially creates these patterns.

The first pattern tries to restrict more variables at control divergence points by looking at the definition
of the comparison variable. The following code illustrates this:

1 a = 3*b;

2 if (a > 0) {

3 //use b −→ a is positive and so should b be
4 } else {

5 //use b −→ a is negative or zero and so should b be
6 }

We achieve this by inspecting the possible expressions for the comparison variable (as returned by the
expression reconstruction analysis). If all the expressions depend on only one variable (called the definition
variable) we move forward. Based on them we create sign equations which are solved one by one (see
Section 7). The results are merged using the union operator. If by doing this we discover a more precise
sign for the definition variable we update its sign.

The second pattern tries to detect relations between variables from the comparison expression. The
example below illustrates the relations we aim to discover.

1 if (a + b > c){

2 //use a −→ if c - b > 0 then a should be positive
3 } else {

4 //use a −→ if c - b > 0 then a should be negative or zero
5 }

We recognize this pattern by using again the possible expressions of the comparison variables. Based
on the expressions structure we create sign equations. If by solving them we get a more precise sign we
update the variables accordingly.

The third and last pattern tries to increase precision for the sign of the expressions that result after the
application of the ternary operator. Take for example the following statement l1 : a = b > 0 ? b : 2∗b. The
possible expressions for a are {b, 2∗b}. It is obvious from the statement that in this context the expression
b is positive and the expression 2∗b is negative or 0. Treating the operator as a compact expression makes
detecting this case impossible. To this end, we simulate a conditional divergence control flow point by
introducing new program points for the value expressions, i.e., l1 : a = b > 0 ? (l11 : b) : (l21 : 2 ∗ b). The
newly created program points are integrated in the program flow in the natural way. In this way we are
able to obtain the precision we need. Detecting this pattern is important, because it allows us to further
compare the symbolic expressions associated with the definition of a.

64

8.6. LOOP INVARIANT ANALYSIS

8.6 Loop invariant analysis

Loop invariant analysis computes the set of variables and expressions that have the same value for all
loop iterations. In other words, it detects the computations that are loop invariant and could be moved
outside the loop body. The analysis is particularly helpful when it comes to memory operations. Under
normal circumstances previous analyses will have to provide a conservative result for values that are
loaded from memory. But if we can prove that such a value will be the same for all loop iterations then
we can replace it by a symbolic constant during the computations (recall the range analysis example from
Section 8.3.3). This becomes even more important when we consider how the compiler handles accesses
to structure fields. In the intermediate representation the access to a structure field is translated to the
special memory operation field sel that accepts arbitrary operands. Proving that the operands are
constant with respect to the loop body enables us to use the structure fields as symbolic constants in
further computations. The following is valid code for the intermediate representation that the compiler
might generate after optimisations:

field1 := 0

a := field sel str field1 −→ field1 is loop invariant, thus a is loop invariant
//...

field2 := φ(0,1)
b := field sel str field2 −→ because field2 is not loop invariant, neither is b

The analysis is performed for each loop of interest and follows the same pattern as the previous analyses.
The lattice has only three elements Inv = ({Uninitialized, Invariant, V ariant},v); the order relation
is depicted in Figure 8.12.

> = V ariant
↑

Invariant
↑

⊥ = Uninitialized

Figure 8.12: Lattice for loop invariant analyses

As the expression reconstruction analysis, the loop invariant analysis benefit from the SSA form of the
intermediate representation. That is, because we are interested in the assignment statements, and a
variable can only be assigned once, the flow sensitiveness is encoded directly in the representation. Thus,
our working lattice maintains a global mapping from variables to invariant information.

LoopInvLattice = Var→ Inv

The initial values for variables are set as follows. All loop inbound variables are considered Invariants
(refer to Section 4.2 for explanations about how these are detected). The rest of the variable are set to
Uninitialized. The literals are implicitly considered Invariants. All transfer functions are defined based
on the same idea. An expression is loop invariant if all its operands are loop invariants. When an expres-
sion is evaluated the invariant information of its operands is combined with the following commutative

65

8.7. ADDING CONTEXT SENSITIVENESS - ONGOING WORK

and associative operator:

Uninitialized &inv Invariant = Uninitialized
Uninitialized &inv V ariant = Uninitialized
V ariant &inv Invariant = V ariant
V ariant &inv V ariant = V ariant
Invariant &inv Invariant = Invariant

Because of the simplicity we present only the transfer function for arithmetic operations.

l2 : b l3 : c
↘ ↙

l1 : a = b op c
↓

al1 = bl2 &inv c
l3 , where op ∈ {+,-,*,/,%}

8.7 Adding context sensitiveness - ongoing work

The analysis framework described so far is context-insensitive. This means that when functions are
analysed we do not take into account their call context. Considering the function context will give us
more precise results but at the same time will incur heavy penalties on the analysis complexity [41, 35].
In general, before extending the analysis to a full inter-procedural context sensitive analysis, one has to
carefully analyse the trade off between the need for extra precision and the added complexity. In this
section we motivate why making the analysis context sensitive makes sense for us and how we actually
do it. We note that the at the time of writing the report this is ongoing work. That is, the underlying
framework and algorithms have been fully extended to support context sensitiveness, the sign analysis
was already been updated with contexts, but the work on the other analyses is in progress.

8.7.1 Motivation

With context sensitive analyses we will be able to be more precise in the optimisation phase. The identi-
fication phase still needs global information about the kernel and thus does not benefit from contextual
information. In contrast, coalescing and shared memory analysis benefit from such information and can
generate more precise reports. We will explain this with the help of the following example:

1 int getIndex(int x) {

2 return 2*x + 4;

3 }

4

5 void f() {

6 int* a = //...

7 int* b = //...

8 for (int i = 0; i < n; i++) { // to be mapped to GPU

9 //...

10 ... = a[getIndex(i)];

11 //...

12 ... = b[getIndex(i*n)];

13 //...

14 for (int k = 0; k < 10; k++) {

15 ... = c[getIndex(k)];

66

8.7. ADDING CONTEXT SENSITIVENESS - ONGOING WORK

16 }

17 }

18 }

It easy to see that the access to a will have good coalescing while the access to b will suffer from bad
coalescing. However, this information can be computed only if we take into account the different contexts
from which getIndex is called. Without doing this, the information about x will be merged across all
calls and the coalescing of operations that use getIndex will be reported as being poor. This influences
the quality of the mapping advice and the precision of future performance estimation.

In what concerns shared memory we have to focus on the memory operation from line 14. The access to
c does not depend on the grid coordinates and thus the entire accessed section will be shared across all
threads. However, we cannot detect this precise result because of the previous calls to getIndex which
poisoned its possible return values. Thus, being context sensitive can make a big difference in terms of
how much need for shared memory is reported.

It is also important to mention that in our context adding context sensitiveness does not incur big
performance penalty. The reason is that we do not run the analysis on the entire program. We do it only
for the program cone determined by the body of the loop that needs to be parallelized. This enable us
to discard the issues associated with the complexity of context sensitive analyses.

8.7.2 Technique

We extend the analyses with context sensitive features based on the techniques for inter-procedural
analysis presented by Nielson et al. in [35]. In this section we present only a short summary of the
technique. For extensive details we direct the reader to [35].

Lifting an intra-procedural analysis to an inter-procedural one implies extending its monotone framework
to an embellished monotone framework. Basically, this is done by:

• defining new transfer functions for calls, functions entry and exists and return statements

• lifting the existing transfer functions to include context by lifting the working lattices

• assuring that each function call and returns implies a context change

We add context by extending the working lattice such that the information stored for each program point
depends on the context. For example the sign lattice is transformed from

SignLattice = Lab→ Var→ Sings

to
SignLatticesensitive = Lab→ Context→ Var→ Sings

We represent the context as call strings. Since a call is uniquely identified by its program point a call
string is defined by a sequence of program points. Thus, we can write Context = Lab?. The context is
bounded to an arbitrary length that can be set before the analysis is run.

Function entries and exists are artificial program points introduced for convenience. They allow us to
have a single entry and a single exit point for each function and thus simplify the transfer functions. The
transfer function for a call passes the information from actual parameters to formal parameters. At the
same time it makes sure that the context is changed such that the computed information is associated

67

8.7. ADDING CONTEXT SENSITIVENESS - ONGOING WORK

with the right context. The transfer function for a return propagates information from inside the functions
and from before the call back to the caller context. It also changes the context in order to avoid poisoning
of the caller scope.

An alternative solution that can solve the problems related to context sensitiveness is function inlining.
That is, replace each call to a non-recursive function with the actual function body. This eliminates
the need for maintaining context information. Thus, it would enable us to reuse the same infrastructure
we developed so far. Although it seems like an easy solution, inlining comes with several drawbacks.
First of all, it cannot handle recursive functions. Since new GPU generations support recursive functions
[36], this will limit the applicability of our system. Second, inlining increases the code size of the caller
function. This will impact cache performance and may cause memory trashing. Because of this, inlining is
recommended only for small functions. Third, it increases the number of registers that are required by the
caller function. This overhead translates to a higher register pressure which affects the GPU occupancy
[38]. Overall, even if beneficial for analyses function inlining may degrade performance if it is used
careless. Thus, for best results, function inlining must be complemented by an explicit context-sensitive
analysis.

68

9
Sample report

In this section we present a sample report as output by the system we designed. The goal is to provide
a complete view of the data that is available after a given piece of code was analysed. We note that
presenting the example in terms of the actual intermediate representation is not feasible. The repre-
sentation is too verbose to fit in a reasonable space and not readable enough. Because of this we will
stay at the source code level. Unfortunately, this implies that the report will be a bit off from the real
one. The reason for this are the additional inbound variables that the compiler introduces during its own
optimisation phase (refer to Section 4.2 for more details). They cannot be presented without going to
the lower level of intermediate representation. Even so, the delta between the below presentation and
the real report is minimal.

To maintain familiarity with the examples presented during the thesis we will present the full report for
the 2D convolution explained in Section 5.2. The analysed code is presented below.

1 // structure delcarations omitted for brevity

2 for (y = 0; y < image ->height; y += 1) {

3 for (x = 0; x < image ->width * 3; x += 3) {

4 unsigned char *out_row = out_image ->pixmap[y * image ->width * 3];

5 int fx , fy;

6 int red ,grn ,blu;

7 for (fy = 0; fy < filter ->height; fy += 1) {

8 int py = y + fy - (filter ->height / 2);

9 unsigned char *in_row = in_image ->pixmap[py * image ->width * 3];

10 for (fx = 0; fx < filter ->width; fx += 1) {

11 int px = x + 3*(fx - filter ->width / 2);

12 int coeff = filter ->pixmap[fx + fy * filter ->width];

13 int offlimits = px < 0 || px >= image ->width * 3 || py < 0 || py

>= image ->height;

14 red += offlimits ? 0 : in_row[px + 0] * coeff;

15 grn += offlimits ? 0 : in_row[px + 1] * coeff;

16 blu += offlimits ? 0 : in_row[px + 2] * coeff;

17 }

18 }

19 // clampping skipped for brevity

20 out_row[x + 0] = red * filter_gain;

21 out_row[x + 1] = grn * filter_gain;

22 out_row[x + 2] = blu * filter_gain;

23 }

24 }

69

Note that for brevity we skipped the structures definition and some of the irrelevant code. The analysis
report is presented in the table below.

Kernel parameters

Inbound Nested inbound
image image->pixmap , accessed section = [− 3

2 ∗ fh ∗ iw −
3
2 ∗ fw,−4 + 3

2 ∗ fh ∗ iw + 3
2 ∗ fw + 3 ∗ iw ∗ ih]

filter filter->pixmap , accessed section = [0, fw ∗ fh − 1]

Outbound Nested outbound
out_image out_image->pixmap , accessed section = [0, 3 ∗ iw ∗ ih − 1]

Coalescing report

Line Memory operation Alias for Coalescing factor Optimisation opportunity
14: in_row[px + 0]

image->pixel + ... 1 3

4
∗ iw

Reverse loops order to get
a coalescing factor of 1.

15: in_row[px + 1]

16: in_row[px + 2]

12: filter->pixmap[...] 2 none 1 none

20: out_row[px + 0]

out_image->pixel + ... 3 3

4
∗ iw

Reverse loops order to get
a coalescing factor of 1.

21: out_row[px + 1]

22: out_row[px + 2]

Shared memory opportunities

Memory operations filter->pixmap[...] 2

Shared memory requirement [0, fw ∗ fh − 1]
Overlapping area size fw ∗ fh − 1, between both: x- and y-axis adjacent threads
Remarks All threads will share the same memory area.

Memory operations in_row[px + 0] , in_row[px + 1] , in_row[px + 2]

Shared memory requirement 2D requirement:
x-axis : [− 3

2 ∗ fw, 3 ∗BlockDim.x+ 3
2 ∗ fw − 1]

y-axis : [− 1
2 ∗ fh, BlockDim.y + 1

2 ∗ fh]
Overlapping area size adjacent threads on x-axis : fw ∗ fh − fw

adjacent threads on y-axis : fw ∗ fh − fh
Remarks Shared memory requirements were reduced by 2D reconstruction

of linearised access and grouping of similar accesses by variable.

Table 9.1: Analysis report for 2D convolution example

1in_row[px + 0] = − 3
2
∗ fh ∗ iw − 3

2
∗ fw + 3 ∗ fx+ 3 ∗ fy ∗ fw + 3 ∗Grid.y + 3 ∗Grid.x ∗ fw. Similar for the others.

In the current coordinate mapping Grid.x corresponds to y induction variable and Grid.y to x induction variable.
2filter->pixmap[fx + fy*filter->width]
3out_row[px + 0] = 3 ∗Grid.y + 3 ∗Grid.x ∗ iw]. Similar for the others.

70

Some remarks must be made about the above report. First of all, in order to be concise we used aliases
for variable names. That is, we use fw, fh to denote filter->width and filter->height, and iw, ih to
denote image->width and image->height. Second, the reader might have noticed that when reporting the
accessed section for the input image, image->pixmap we report negative offsets. The reason for this is that
the out of bounds computations from line 13 uses complex logical expressions that cannot be analysed
with the current infrastructure. The consequence is that we report more than needed. The extra reported
space amounts to the padding of image with filter area and is added before and after the actual array.
The third remark is about the factor 3 which appears in most of the expressions. One might think that
this is an error, since for example it is natural for the size of the output to be equal to the original image
size. This is caused by the mismatch between the actual pixmap size and the image size. The image size
is expressed in pixels while the pixmap size is express in pixel colours (3 per pixel).

71

10
Related work

Automatic program analysis and transformation for program parallelization have been studied before and
implemented in various compilers and tools. But until recently most of this work has been done in the
context of multi-core CPUs. Only lately did the research community start to enter the GPU arena and
propose specific solutions for this environment. In what follows we review the most important work that
has been done in the GPU area and compare it with ours.

Leung et al. [27] propose an extension of the Java JIT compiler that executes suitable code on the
GPU instead of the CPU. It employs both static and dynamic features to decide whether it is feasible
and beneficial to off-load a piece of code to the GPU. Their GPU parallelization algorithm considers
only simple affine loops and focuses on identifying loops without dependencies; optimisations or complex
transformation schemes are not considered. The implemented extension makes use of the RapidMind
framework [40] as a back-end for the generated code. Compared with them, we also look into GPU
specific optimisations. Moreover, they require that every array index expression must be either loop-
invariant or an affine expression in terms of a single induction variable. We do not have such constraints.
They can also handle only numeric bounds whereas our approach is fully symbolic.

Kwiatkowski et al. [25] briefly describe a hardware independent tool that the authors claim can auto-
matically parallelize sequential programs depending on the number of available processing units. The
general methodology identifies three main stages for program parallelization: dependency analysis, pro-
gram transformation and code generation. Still, there are no details about their actual strategies used
in implementation and no benchmarking results. We also consider that they omitted the optimisation
stage, which as we have seen is a critical step for GPU devices.

Baskaran et al. present in [5] what is probably the most complete approach to automatic GPU par-
allelization. They describe an automatic source-to-source transformation framework that can take an
arbitrarily nested affine C program and generate an efficient CUDA program. In contrast with other
mentioned approaches, they also apply various optimisations during the program transformation. Their
focus is on memory optimisations as they exploit global memory coalescing, shared and constant memory
usage and registers allocation. From a program analysis and transformation point of view they make use
of the polyhedral model [8] and rely on two existing framework CLooG [10] and Pluto [9]. CLooG is
a powerful open-source state-of-the-art code generator that transforms a polyhedral representation of a
program with affine scheduling constraints into concrete loop code. Pluto is a source-to-source optimiser
for end-to-end automatic parallelization and locality optimisation of affine programs. The framework is
based on the authors prior work [7, 6] that developed some of the compiler optimisations. Among the
limitations of the presented framework we mention: support only for affine loops, no control flow optimi-
sations and no strategy to handle loops that have carry dependencies or which include calls to functions
that cannot run on GPU. Compared with them, we approach GPU parallelization from a different angle.

72

They model the problem as a polyhedral framework whereas we model it as a data flow analysis problem
with symbolic computations. We consider that although the polyhedral approach is powerful and effi-
cient, it is too limited in the class of programs that it can handle. In particular the programs must have
statically know control flow and employ only affine accesses to memory. We are not restricted by such
conditions. Our symbolic framework can handle arbitrary symbolic expressions, not necessary affine or
polynomial. Nevertheless, their approach has a better algorithmic complexity since they do not use fix
point algorithms. Another key difference is that they perform the analysis on the source code whereas
we use an intermediate representation.

Notable work in this area is also done by Ryoo et al. [48, 47, 49], Lee et al. [26], and Liu et al. [30].

Ryoo et al. [47, 49] present several experimental studies of how various programs perform on CUDA
based GPUs. In [48] the authors propose performance metrics such as efficiency and utilisation to prune
the optimisation search space on a pareto-optimality basis. All their work is performed by hand and does
not involve a compiler or an analysis framework; they manually perform the optimisations and manually
generate performance models for each test program. Even so, the reported results are insightful and
very useful to us. They provide a starting point to reason about which optimisations are best suited to
automation and after what program feature we should look in order to be able to generate them. Our
choice for which optimisation to investigate in Section 5 is also based on their work.

Lee et al. [26] develop a compiler framework for automatic translation of standard OpenMP shared-
memory programs to CUDA programs. The proposed translator converts the loop-level parallelism from
the OpenMP programming model into data parallelism for the CUDA programming model. Their con-
tribution consists of several translation strategies (e.g., kernel region identifying) and transformation
techniques like matrix transpose and loop collapsing. However the system does not optimise access to
global memory and also does not make use of on-chip shared memory. Also, as mention above, they
target only existing OpenMP programs and do not consider general sequential programs. In contrast
with them, our system does not need user annotation and is able to handle arbitrary programs. Also,
as already mentioned, we do not stop after the initial kernel identification. We continue and search for
more specific GPU optimisations.

Liu et al. [30] study the influence of program input on the optimisation of CUDA programs. They
develop a compiler-based adaptive framework, G-ADAPT, which is able to extract optimisation space
from program code and automatically search for the near-optimal configuration of parameters that affect
its performance. The framework takes unoptimised CUDA code as input and traverse an optimisation
space, searching for optimal parameters to transform the input into an optimised CUDA code. As
mention, they only work with existing CUDA programs which they also require to be annotated with
G-ADAPT-pragmas. Their work has a scope different from ours, but nevertheless it serves as a source
of inspiration for the optimisation phase.

As a general observation, all the above approaches consider only the automatic transformation part of
GPU parallelization. We make one more step, and allow the generated kernel models to be instantiated
with run time values. This enables future accurate performance estimations. Moreover, we designed a
”failover” mechanism which allow us to extract information about the program even when the analysis
framework fails to provide relevant data. For this, we combine static and dynamic information about the
program.

In what concerns the static analysis framework, the most notable analysis of our system is symbolic range
analysis. Thus, we will only detail related work with respect to it. Range analysis has been addressed in
several contexts over the last decades where it was used to eliminate arrays bound checks, detect arrays
bound violation, compute bitwise information and detect memory dependencies. Our main use of range
analysis is to determine array access sections.

73

Blume et al. [57, 58] propose a symbolic range analysis that can handle ranges with non affine bounds.
They implement the analysis in the Polaris compiler [59]. But although they report good results, they
mention that the algorithm convergence is slow. Our analysis was influenced by their approach but uses
a different representation for the symbolic intervals. The algorithm we employ for propagating ranges is
also slightly different. In particular, we start only with a predefined set of symbolic variables that will
be used to express all the other ranges. Their approach considers every program variable as a possible
symbolic variable. This creates the need for complex replacement policies when ranges are computed,
from where the slow convergence of their algorithm. For our goals, using all program variables as the set
of variables for symbolic expressions will only add overhead and no essential information. We also use
more powerful symbolic computations backed by a complex sign analysis. For example, they compare
expressions by computing the difference of their intervals and inspecting the resulting interval. Because
this uses full interval computations, it is much more expensive than our approach.

Stephenson et al. [51] use range analysis to minimise the number of bits used to represent each operand
for both integers and pointers in a program. They do not handle symbolic ranges, and are restricted
to statically known numeric values. Despite this, they use a novel approach with respect to data flow
propagation which increases the analysis precision. In particular they use a forward analysis followed by
a backward analysis. The analyses resembles the application of widening and narrowing operators but
differ in a key aspect. The backward analysis basically uses information about the statically allocated
arrays in order to detect when an index is out of bounds. This information is then propagated backwards
to reduce the original data range.

Rugina et al. [43] approach the problem with a novel perspective. They do not rely on classic abstract
interpretation techniques. Instead, they formulate the analysis problem as a system of inequality con-
straints between symbolic bound polynomials. They reduce the constraint system to a linear program
which is solved under the assumption that the sign of each coefficient is known. This basically elimi-
nates the need for fix point iteration algorithms which is an excellent feature when compared with other
approaches. They also show how the approach can be extended to inter-procedural analysis.

Other notable approaches to range analysis, symbolic or just numeric, are those of Yong et al. [61],
Eigenmann et al. [3], Verbrugge et al. [54] and Padua et al. [52].

74

11
Conclusions

This thesis tackled the problem of GPU parallelization for existing sequential programs. We have shown
three main things. First, why mapping programs to GPUs is important - because GPUs have tremendous
power when it comes to data parallel processing. Second, why it is difficult to achieve a good GPU
mapping - because GPGPU platforms are not yet very mature and require a lot of inside knowledge
about the GPU architecture. Third and most important, how we can (semi)automate the mapping
process - by automatically extracting information about the program that enables guided and automatic
transformations.

We have designed and developed an automatic system which helps users get the most out of their data
parallel kernels. The system takes as input an existing sequential program (written in ANSI C99) and
is able to answer the following three main questions related to GPU mapping. Is this program part
suitable to be mapped to a GPU? If yes, how it should be transformed in order to run on the GPU? Are
there any GPU specific optimisation opportunities? The system is built on a complex automatic analysis
framework that is able to provide enough information about the program to achieve guided or automatic
GPU mapping. Guided means that developers can use the system to get information and advice about
how they should port their program to run on a GPU. Automatic means that the information provided
by the system can be used as input to an automatic parallelization engine that automatically transforms
the code. We integrated the system with an existing production quality compiler and analysis tool,
vfEmbedded [53]. It also worth mentioning that the system was developed using the Caml language [16].

From a top level perspective the system does the following. It identifies GPU friendly loops by applying
a feasibility test. It extracts the information needed to realize a straightforward GPU mapping of the
loop (i.e., inbound and outbound parameters and their accessed size). It further detects GPU specific
optimisations opportunities; more specifically it looks for coalescing opportunities and shared memory
optimisations. It assembles all the information obtained so far into an algebraic kernel model. The
model can further be used for automatic parallelization. It further combines the model with actual data
values as they occur during program execution to produce a detailed kernel report. This can be used to
estimate the mapping performance. And last, it tries to recover information that was lost due to analysis
imprecision by using data extracted during the program execution. In the context of vfEmbedded, we
use the kernel model to produce recipes that guide the user in the transformation process.

Under the hood, the system relies on automatic program analyses. To this end we have designed a static
analysis framework that complements the dynamic analyses of the existing system. The static analysis
framework is based on symbolic computations and aims to compute algebraic information about the
program. It consists of four intra-procedural, flow-sensitive analyses: symbolic range analysis, expression
reconstruction analysis, sign analysis and loop invariant analysis. Work in progress aims at lifting the
analyses to context-sensitive inter-procedural.

75

The techniques we proposed and developed, although targeting the CUDA platform and ANSI C99
programs, are largely independent of the actual GPU platform and the language that is analysed. Up
to present day, most of the GPUs that are suitable for general purpose computing are separate devices
with their own memory. Because of this, the identification part which deal with recognizing the kernel is
architecture agnostic. Also, every GPU has special on chip memories (the equivalent of shared memory)
and employ similar techniques such as coalescing to speed up the access to the slower global memory.
Because of this, the memory optimisations we investigated apply outside the CUDA scope.

Future work

This thesis is the first step towards an automatic parallelization framework for GPUs. In this context,
there are multiple directions for future work that can improve or extend the current work.

The next obvious step is to perform the actual transformation. For this, the necessary information is
already present in the system. Because our analyses are performed on an intermediate representation of
the program, reconstructing the original source code is hard and imprecise. Thus, the transformations
will ultimately aim to modify the intermediate representation or to directly generate CUDA binary.

Another research direction is to investigate more about coordination transformations. That is, how the
loop space is mapped to the grid space. With respect to this, the current system is limited to permutations
of the original loop space. More complex mappings can help at improving data locality for both coalescing
and shared memory.

A critical research direction is to extend the class of programs that can be handled. For example, the
current system discards any loop with carried dependencies. Nevertheless, there are plenty of loops whose
dependencies are caused just by a small fraction of instructions. If we detect this fraction, then we could
extract it into a different loop. Basically we would get two loops: one without carried dependencies
and one with. We could then map the first one to the GPU and keep the second one on the CPU. The
communication between loops can be done by vectorizing the data that was present in the original loop.
If the first loop performs heavy computations then we would definitely achieve better performance. This
amounts to detecting map-reduce patterns [15] where the heavy computation is mapped to the GPU, and
the reduction is performed on the CPU.

Another research direction relates to discovering more optimisation opportunities. For example detect-
ing branch divergence is particularly important because when it happens, both branches are executed
sequentially. One approach to this is to extend the symbolic capabilities of the system to handle logical
symbolic expressions. Based on these, we could detect what input variables cause the divergence. The
next step would be to search for alternative coordinate mappings for which divergence does not occur.
Another possible optimisation relates to multiple kernel launches. Consider for example two different
kernels that are executed one after the other and that use the same input data. In this case we can keep
the data on the GPU and not copy it again for the second kernel. The current system can be easily
extended to support such optimisations.

Future work can also improve the quality of the reported optimisations. For example, in order to reduce
the need for shared memory the system currently reconstructs linearised 2D accesses. A next step is to
improve on this and recognize arbitrary nD accesses.

One other important research area is to extend the system to consider specific features of other GPU
architectures (e.g., AMD). Although the presented techniques are general and can easily by applied to
other architectures there are also fundamental differences that require a different approach (e.g., AMD
uses a VLIW architecture while NVIDIA uses a SIMT one).

76

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, us ed edition, January 1986.

[2] Amd. Accelerated Parallel Processing Programing Guide, 2011.

[3] Hansang Bae and Rudolf Eigenmann. Interprocedural Symbolic Range Propagation for Optimizing
Compilers. In Eduard Ayguadé, Gerald Baumgartner, J. Ramanujam, and P. Sadayappan, edi-
tors, Languages and Compilers for Parallel Computing, volume 4339 of Lecture Notes in Computer
Science, chapter 28, pages 413–424. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

[4] Gogul Balakrishnan and Thomas Reps. Analyzing Memory Accesses in x86 Executables. In Evelyn
Duesterwald, editor, Compiler Construction, volume 2985 of Lecture Notes in Computer Science,
chapter 2, pages 2732–2733. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2004.

[5] Muthu Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA Code Generation for
Affine Programs. In Rajiv Gupta, editor, Compiler Construction, volume 6011 of Lecture Notes
in Computer Science, chapter 14, pages 244–263. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2010.

[6] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, Jagannathan Ramanujam, Atanas
Rountev, and Ponnuswamy Sadayappan. A Compiler Framework for Optimization of Affine Loop
Nests for GPGPUs. In Proceedings of the 22nd annual international conference on Supercomputing,
ICS ’08, pages 225–234, New York, NY, USA, 2008. ACM.

[7] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, Jagannathan Ramanujam, Atanas
Rountev, and Ponnuswamy Sadayappan. Automatic Data Movement and Computation Mapping for
Multi-Level Parallel Architectures with Explicitly Managed Memories. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP ’08, pages
1–10, New York, NY, USA, 2008. ACM.

[8] Cedric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings
of the 13th International Conference on Parallel Architectures and Compilation Techniques, PACT
’04, pages 7–16, Washington, DC, USA, 2004. IEEE Computer Society.

[9] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and implementation, PLDI ’08, pages
101–113, New York, NY, USA, 2008. ACM.

[10] CLoog. Code Generator in the Polyhedral Model. http://www.cloog.org/.

[11] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

[12] Béatrice Creusillet and François Irigoin. Interprocedural Array Region Analyses. In Proceedings of
the 8th International Workshop on Languages and Compilers for Parallel Computing, LCPC ’95,
pages 46–60, London, UK, 1996. Springer-Verlag.

77

BIBLIOGRAPHY

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13(4):451–490, October 1991.

[14] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2 edition, May 2002.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, page 10, Berkeley, CA, USA, 2004. USENIX Association.

[16] Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. The Objective-
Caml system, release 3.12. Institut National de Recherche en Informatique et en Automatique, June
2010.

[17] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The Daikon System for Dynamic Detection of Likely Invariants. Sci.
Comput. Program., 69:35–45, December 2007.

[18] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott Morton,
Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel Computing Experiences with CUDA. IEEE
Micro, 28(4):13–27, July 2008.

[19] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond Induction Variables: Detecting and
Classifying Sequences Using a Demand-driven SSA Form. ACM Transactions on Programming
Languages and Systems, 17:85–122, 1995.

[20] Dominik Grewe and Michael O’Boyle. A Static Task Partitioning Approach for Heterogeneous
Systems Using OpenCL. In Jens Knoop, editor, Compiler Construction, volume 6601 of Lecture Notes
in Computer Science, chapter 16, pages 286–305. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2011.

[21] Khronos OpenCL Working Group. The OpenCL Specification, September 2010.

[22] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and Malik Khan. Loop
Transformation Recipes for Code Generation and Auto-Tuning. In Guang Gao, Lori Pollock, John
Cavazos, and Xiaoming Li, editors, Languages and Compilers for Parallel Computing, volume 5898
of Lecture Notes in Computer Science, chapter 4, pages 50–64. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2010.

[23] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient Gather and Scatter
operations on Graphics Processors. In Proceedings of the 2007 ACM/IEEE conference on Supercom-
puting, SC ’07, pages 1–12, New York, NY, USA, 2007. ACM.

[24] Stefan Holdermans and Jurriaan Hage. On the Role of Minimal Typing Derivations in Type-Driven
Program Transformation. In Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications, LDTA ’10, New York, NY, USA, 2010. ACM.

[25] Jan Kwiatkowski and Radoslaw Iwaszyn. Automatic Program Parallelization for Multicore Proces-
sors. In Proceedings of the 8th international conference on Parallel processing and applied mathe-
matics: Part I, PPAM’09, pages 236–245, Berlin, Heidelberg, 2010. Springer-Verlag.

[26] Seyong Lee, Seung J. Min, and Rudolf Eigenmann. OpenMP to GPGPU: A Compiler Framework
for Automatic Translation and Optimization. SIGPLAN Not., 44:101–110, February 2009.

78

BIBLIOGRAPHY

[27] Alan Leung, Ondřej Lhoták, and Ghulam Lashari. Automatic Parallelization for Graphics Processing
Units. In Proceedings of the 7th International Conference on Principles and Practice of Programming
in Java, PPPJ ’09, pages 91–100, New York, NY, USA, 2009. ACM.

[28] Amy W. Lim. Improving Parallelism and Data Locality with Affine Partitioning. PhD thesis, 2001.

[29] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro, 28(2):39–55, March 2008.

[30] Yixun Liu, Eddy Z. Zhang, and Xipeng Shen. A Cross-Input Adaptive Framework for GPU Pro-
gram Optimizations. In IPDPS ’09 Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, pages 1–10. IEEE, May 2009.

[31] Francesco Logozzo and Manuel Fahndrich. On the Relative Completeness of Bytecode Analysis
Versus Source Code Analysis. In Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th international conference on Compiler construction, CC’08/ETAPS’08,
pages 197–212, Berlin, Heidelberg, 2008. Springer-Verlag.

[32] Kim Marriott. Abstract Interpretation: A Theory of Approximate Computation. In Pascal Van Hen-
tenryck, editor, Static Analysis, volume 1302 of Lecture Notes in Computer Science, chapter 28, pages
367–378. Springer Berlin / Heidelberg, Berlin/Heidelberg, 1997.

[33] Mario Méndez, Jorge Navas, and Manuel V. Hermenegildo. An Efficient, Parametric Fixpoint Algo-
rithm for Analysis of Java Bytecode. In In ETAPS Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE’07), Electronic, 2007.

[34] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[35] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis. Springer,
corrected edition, December 2004.

[36] Nvidia. Fermi Compute Architecture Whitepaper.

[37] Nvidia. CUDA C Best Practices Guide, August 2010.

[38] Nvidia. CUDA C Programming Guide, September 2010.

[39] Jens Palsberg. Type-Based Analysis and Applications. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, PASTE ’01, pages
20–27, New York, NY, USA, 2001. ACM.

[40] RapidMind. http://www.rapidmind.net/.

[41] Thomas Reps. On the Sequential Nature of Interprocedural Program-Analysis Problems. Acta
Informatica, 33(5):739–757, August 1996.

[42] Xavier Rival. Abstract Interpretation-Based Certification of Assembly Code. In Proceedings of the
4th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI
2003, pages 41–55, London, UK, UK, 2003. Springer-Verlag.

[43] Radu Rugina and Martin Rinard. Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed
Memory Regions. SIGPLAN Not., 35:182–195, May 2000.

79

BIBLIOGRAPHY

[44] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. Sensitivity Analysis for Automatic Par-
allelization on Multi-Cores. In Proceedings of the 21st annual international conference on Supercom-
puting, ICS ’07, pages 263–273, New York, NY, USA, 2007. ACM.

[45] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. Implementation of Sensitivity Analysis for
Automatic Parallelization. In José Amaral, editor, Languages and Compilers for Parallel Computing,
volume 5335 of Lecture Notes in Computer Science, chapter 22, pages 316–330. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2008.

[46] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid Analysis: Static & Dynamic Memory
Reference Analysis. Int. J. Parallel Program., 31:251–283, August 2003.

[47] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen
mei. Optimization Principles and Application Performance Evaluation of a Multithreaded GPU
Using CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP ’08, pages 73–82, New York, NY, USA, 2008. ACM.

[48] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain Z. Ueng, John A.
Stratton, and Wen mei. Program Optimization Space Pruning for a Multithreaded GPU. In Proceed-
ings of the 6th annual IEEE/ACM international symposium on Code generation and optimization,
CGO ’08, pages 195–204, New York, NY, USA, 2008. ACM.

[49] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain-zee Ueng, and Wen-
mei W. Hwu. Program Optimization Study on a 128-Core GPU. In In The First Workshop on
General Purpose Processing on Graphics Processing Units, 2007.

[50] Olin G. Shivers. Control-flow Analysis of Higher-order Languages or Taming Lambda. PhD thesis,
Pittsburgh, PA, USA, 1991.

[51] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth Analysis with Application
to Silicon Compilation. SIGPLAN Not., 35(5):108–120, May 2000.

[52] Peng Tu and David Padua. Array Privatization for Shared and Distributed Memory Machines
(extended abstract). SIGPLAN Not., 28:64–67, January 1993.

[53] VectorFabrics. vfEmbedded. http://www.vectorfabrics.com/products/vfembedded.

[54] Clark Verbrugge, Phong Co, and Laurie J. Hendren. Generalized Constant Propagation: A Study
in C. In Proceedings of the 6th International Conference on Compiler Construction, pages 74–90,
London, UK, 1996. Springer-Verlag.

[55] Norman Wilde. Understanding Program Dependencies. Technical report, Software Engineering
Institute, Carnegie Mellon, 1990.

[56] Blume William and Rudolf Eigenmann. The range test: a dependence test for symbolic, non-linear
expressions. In Proceedings of the 1994 ACM/IEEE conference on Supercomputing, Supercomputing
’94, pages 528–537, New York, NY, USA, 1994. ACM.

[57] Blume William and Rudolf Eigenmann. Symbolic Range Propagation. In Proceedings of the 9th
International Symposium on Parallel Processing, IPPS ’95, pages 357–363, Washington, DC, USA,
1995. IEEE Computer Society.

[58] Blume William and Rudolf Eigenmann. Demand-Driven, Symbolic Range Propagation. In Proceed-
ings of the 8th International Workshop on Languages and Compilers for Parallel Computing, LCPC
’95, pages 141–160, London, UK, 1996. Springer-Verlag.

80

BIBLIOGRAPHY

[59] Blume William, Rudolf Eigenmann, Jay Hoeflinger, David Padua, Paul Petersen, Lawrence Rauchw-
erger, and Peng Tu. Automatic Detection of Parallelism: A Grand Challenge for High-Performance
Computing. IEEE Parallel Distrib. Technol., 2:37–47, September 1994.

[60] Michael Wolfe. High-Performance Compilers for Parallel Computing. Addison Wesley, facsimile
edition, June 1995.

[61] Suan H. Yong and Susan Horwitz. Pointer-Range Analysis. In Roberto Giacobazzi, editor, Static
Analysis, volume 3148 of Lecture Notes in Computer Science, chapter 12, pages 19–21. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2004.

81

	Introduction
	Context and motivation
	Problem definition and goals
	Organization of this thesis

	Background
	CUDA platform
	CUDA architecture
	CUDA programming model
	CUDA execution model
	The problem with CUDA platform?

	Program analysis
	Static program analysis
	Dynamic program analysis

	General approach
	Identifying GPU friendly loops
	GPU friendliness test
	Detecting kernel parameters

	Detecting optimisations
	Coalescing analysis
	Shared memory analysis
	Reconstruction of 2D access
	Reducing the need for shared memory

	Instantiating the results
	Instantiation procedure
	Trading soundness for precision

	Symbolic computation
	Expressiveness
	Operations and algorithms
	Algorithmic complexity
	Soundness discussion

	Analyses
	Overview
	Intermediate program representation
	Symbolic range analysis
	Lattice
	Algorithm
	Example

	Expression reconstruction analysis
	Sign analysis
	Loop invariant analysis
	Adding context sensitiveness - ongoing work
	Motivation
	Technique

	Sample report
	Related work
	Conclusions
	Bibliography

