
[Faculty of Science
Information and Computing Sciences]

Functional Instrumentation of ActionScript
Programs

Arie Middelkoop, Alexander Elyasov, Jurriaan Hage,
Wishnu Prastya

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

October 4, 2011

[Faculty of Science
Information and Computing Sciences]

2

FITTEST project

I EU financed FP7 project, 4
mln euros

I Future Internet
I highly dynamic
I extremely complex
I autonomic, and

self-modifying
I very configurable

I Needs continuous testing

I Testing is log-based

[Faculty of Science
Information and Computing Sciences]

3

Case study: Habbo Hotel

I Social Networking site for teenagers

I Developed by Sulake Oy, Finland

I 230 mln people registered, 10 mln unique users per month

I Habbo is very dynamic, also at a technical level

I Currently built in Flash/Flex

I Testing the system is very hard and costly
I The Habbo client is large:

I 3,000 classes, 25,000 methods and 800,000 instructions

[Faculty of Science
Information and Computing Sciences]

4

Cross-cutting concerns

I Logging is a cross-cutting concern
I scattered - functionality is spread out
I tangled - in between other functionality

I Aspect-orientation helps implement the logging
functionality unintrusively

[Faculty of Science
Information and Computing Sciences]

5

Aspect-oriented programming

I Support for weaving in advice at particular point cuts, a
selection of join points.

I Each AOP technology chooses
I What are the join points?

I Method call, entry, exit and return, block entry and exit,
coercion call, return and failure

I What is advice like?
I Typically (source) code that can be woven in directly

I How can point cuts be specified?
I Typically some pattern language

I Advice (code) is woven in by an aspect weaver

[Faculty of Science
Information and Computing Sciences]

6

Upon matching

I There is direct access to static information

I and symbolically to dynamic/run-time information
I For example, if you match on a method name

I static information: the name, number of arguments
I dynamic information: types and values of arguments, depth

of the call stack

I If you match on a method name pattern, then the name is
also dynamic

I All methods that contain “move” in their name

[Faculty of Science
Information and Computing Sciences]

7

Our contributions

Development of a

I Instrumentation language Asil for Flash

I Binary weaver Asic, which also computes reflection
information,

I expressed as a deeply embedded DSL in Haskell,
I treat aspects as first-class citizens

I Instrumentations can be easily composed, through monadic
and alternative combinators

I Side effect: debugged the ActionScript specification

[Faculty of Science
Information and Computing Sciences]

8

Alternatives

I Change the Flash run-time: not allowed or outside our
control

I Change the source code: not all code is available or
accessible

I Manual intervention is too costly and very dangerous
I Sulake already considers binary weaving to be dangerous

I Note: even with binary instrumentation certain privacy
issues remain

[Faculty of Science
Information and Computing Sciences]

9

An overview of the pipeline

SUT SUT’ Trace

Refl Core

Spec

Support

.swf .swf .log

.hs

.hs

.as

weave

generate

import

weave import

exec

compile

[Faculty of Science
Information and Computing Sciences]

10

Manually instrumented code

....

public function MyGame() : void {

addEventListener("click", clicked); }

function clicked(event:MouseEvent) : void {

var x : int = event.localX;

var y : int = event.localY;

Log.clicked(x,y);

....

if (!this.selSquare && taken) {

this.selSquare = target;

} else if (this.selSquare && !taken) {

Log.move(this.selSquare, target);

this.move(this.selSquare, target);

this.selSquare = null; } } } }

[Faculty of Science
Information and Computing Sciences]

11

Calling Log.clicked(x,y) with an aspect

instrLogClick = do
m ← matchEnter k code MyGame clicked
let evt = param1 m

eX = evt # k flash events MouseEvent localX
eY = evt # k flash events MouseEvent localY

call (static # k code Log clicked) (eX , eY)
return ()

I matchEnter matches one method name, almost statically:
I Match is usually resolved statically

I if the name does not match, we statically know not to
weave

I if the name matches, we may have to check dynamically for
it being in the right class

I m contains information about the match, e.g., argument
values

[Faculty of Science
Information and Computing Sciences]

12

Instrumenting this.move

instrLogMove = do
onPrevious $ matchEnter

k code MyGame clicked
m ← matchCall k code MyGame move
let from = param1 m

to = param2 m
call (class# k code Log move) (from, to)
return ()

I Only for this.move called within the method clicked!
I By virtue of onPrevious

[Faculty of Science
Information and Computing Sciences]

13

Combining instrumentations

myInstr :: I ()
myInstr = foldr (⊗) (fail "initial")

[instrLogClick , instrLogMove]

I ⊗ is sequential composition

I Various alternative combinators can be used to orchstrate
instrumentations

I Because general Haskell code would be hard to translate
we partially evaluate monadic code and functions away

I This gives us AsilCore code which can be mapped to
AVM2 byte code

[Faculty of Science
Information and Computing Sciences]

14

The weaver, Asic

I Takes AsilCore and applies it to all join points in the SUT
I Optimisation: weave time evaluation of primitive functions

I non-primitives may have side effects

I Asic is implemented with Attribute Grammar technology
I Courtesy of Doaitse Swierstra and many others

[Faculty of Science
Information and Computing Sciences]

15

Our experiences

I Haskell provides Asil’s abstraction facilities for free
I Syntactic sugar courtesy of GADTs and type classes

I Wasn’t always easy

I Flash/ActionScript specifications available, but incomplete
and wrong

I Employed Swierstra’s uuparsing-lib for error-correction and
discovering bugs

I Performance: GC takes a lot of time.
I AST is long-lived and large: preferably consign to older

memory generation

I GHC crashes on symbol file generated for Habbo

[Faculty of Science
Information and Computing Sciences]

16

Conclusions and Future Work

I Asil is an AOP for binary instrumentation of ActionScript

I Asil is heavily inspired by the functional programming
paradigm, particularly higher-order functions

I Asil/Asic await serious experimentation
I so very much under development and subject to change

I Currently: combining built-in support for event logging
with Asil providing the necessary hooks.

