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1
Introduction

1.1 Motivation

Compilation on modern architectures has become an increasingly difficult challenge with the evolution of
computers and computing needs. In particular, programmers expect the compiler to produce optimized
code for a variety of hardware, making the most of their theoretical performance.

For years this was not a problem because hardware vendors consistently delivered increases in clock rates
and instruction-level parallelism, so that single-threaded programs achieved speedup on newer processors
without any modification.

Nowadays to increase performance and overcome physical limitations, the hardware industry favours
multi-core CPUs and massively parallel hardware accelerators (GPUs, FPGAs), and software has to be
written explicitly in a multi-threaded or multi-process manner to gain performance.

Thus, the performance problem has shifted from hardware designers to compiler writers and software de-
velopers who now have to perform parallelization. Such a transformation involves identifying and mapping
independent data and computation to a complex hierarchy of memory, computing, and interconnection
resources.

When performing parallelization it is important to take into account the overhead introduced by com-
munication, thread spawning, and synchronization. If the overhead is high the introduced optimization
can lead to a performance loss.

Thus, an important question in this process is to evaluate whether the optimization brings any perfor-
mance improvements. The answer is usually computed using a performance model which is an abstraction
of the target hardware [29, 30].

Our research addresses this problem in the context of parallelizing sequential programs to GPU platforms.
The main result is a GPU performance model for data-parallel programs which predicts the execution
time and identifies bottlenecks of GPU programs. During the thesis we will present the factors which
influence GPU performance and show how our model takes them into account.

We validated our model in the context of a production ready analysis tool vfEmbedded [33] which combines
static and dynamic analyses to parallelize C code for heterogeneous platforms. Since the tool has an
interactive compilation work-flow, our model not only estimates execution time but also computes several
metrics which help users decide if their program is worth porting to the GPU.
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1.2. RESEARCH QUESTION AND GOALS

1.2 Research question and goals

The main research question that we aim to answer can be defined using the following questions

Given a way to port a sequential program to the GPU:

• how fast will it run on the GPU?

• are there any performance issues?

• how much of the peak performance does it achieve?

In order to answer these questions, we must investigate modern GPUs and develop a model which captures
their main performance factors. Because of the way GPU architectures have evolved, this poses many
challenges which we need to address.

First of all, GPUs are optimized to execute data-parallel programs in which the workload is evenly split
between threads. Detecting that a program is data-parallel is only half the story. The other important
part, involves how individual threads are distributed. This aspect is usually abstracted as much as
possible by the GPU programming model and users are instructed to perform experiments in order to
see what is the best configuration. Since mapping influences performance, we plan to help the users by
suggesting a suitable mapping computed using metrics which characterize the factors involved.

Second, in order to make predictions for a GPU we must identify and study the factors which influence
performance. That is, we must be able to estimate the time of each operation of a GPU program. In
order to do this we must measure the timings of operations under various scenarios and calibrate our
model based on the experiments. In this case the word scenario refers to a GPU performance factor
which is determined by the hardware architecture and influences the execution time of operations.

Finally, we need to take into account that the GPU programming model assumes a heterogeneous envi-
ronment. This implies communication between the host (part which runs on the CPU) and the device
(part executed on the GPU) in the form of data transfers. It is important to model the overhead of these
transfers when predicting performance. This is because the transfers are performed over a bus which
is slow when compared to the CPU and the GPU. Thus it is important to detect the cases where the
overhead introduced by parallelization is higher than the sequential execution.

Based on the aforementioned challenges our main goal is to create a GPU performance estimation frame-
work which not only estimates execution time, but also helps users identify potential GPU bottlenecks.
Our main sub-goals are as follows:

Accurate GPU analytical model. The main part of our research involves the development of an
accurate abstract cost model for the GPU. The GPU architecture poses many challenges so it is important
to balance the precision of the model with the amount of computation required to generate it. In order
to calibrate our model we need to develop a set of benchmarks which compute the required parameters
for a target GPU.

Integration with a production ready analysis tool. Our research is performed in the context of a
production ready analysis tool, vfEmbedded [33], which parallelizes sequential C code. Since the analysis
tool uses interactive compilation, we do not aim at cycle-accurate estimations, but focus on predicting
relative speedup and identifying potential performance bottlenecks. In order to compute the parameters
of the model we build on top of the existing infrastructure which provides both static and dynamic
analyses.
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1.3. THESIS STRUCTURE

Modular performance prediction platform. From a software engineering point of view, we aim
to develop a modular performance prediction platform composed of interchangeable components. That
is, it is possible to change modules which simulate GPU components (e.g., scheduling policies) in order
to experiment with different scenarios. Also the developed set of benchmarks should be applicable to a
range of GPUs.

1.3 Thesis structure

Our thesis is structured in three main parts in which we present our results using a top-down approach.

The first part deals with the choice of hardware architecture and the experiments which reveal perfor-
mance factors. More specifically, Section 2.2 introduces the CUDA platform, our target GPU architecture,
by explaining the programming model, the hardware architecture used in our experiments, and the exe-
cution model. Furthermore, Section 2.3 gives an overview of the performance prediction techniques which
we will employ and discusses the role that program analysis plays. In Section 3 we explain the factors
which influence GPU performance and present the experiments which measure their impact.

The second part presents the model and the implementation. Section 4 presents an overview of the
model and describes how it takes into account the identified performance factors. The implementation
and instantiation of the model is described in Section 5. The program analysis infrastructure from which
we compute values for the model parameters is described in Section 6.

The last part contains the validation methodology (Section 7) and a comparison between our approach
and related work (Section 8). Section 9 presents our conclusions and future work.
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2
Context

The context of our research is defined by the following fields: performance prediction, GPU architecture
and program analysis. In order to understand our research question and goals we give a short introduction
to each field. Furthermore, this section serves as a foundation for the notions needed in later chapters.
It contains a description of our target architecture which introduces concepts that will be used in the
model.

We start by describing how GPUs have evolved into programmable coprocessors and explain their ar-
chitecture and programming model. To better understand how performance is estimated, we give an
introduction to the current approaches in Section 2.3. Section 2.4 introduces concepts from program
analysis which are used to compute the parameters of our model.

2.1 Evolution of GPUs

In recent years, graphics processing units (GPUs) have evolved into general-purpose processors which
can perform a wide range of computations that were traditionally performed on the CPU.

This trend has led to the creation of a new research direction, general-purpose GPU (GPGPU) pro-
gramming, which focuses on performing efficient computations using GPUs. In order to understand the
concepts involved in this field, we present how the GPUs have evolved into parallel architectures and
what programming models they support.

Traditionally the purpose of the GPU was to render images. Typically, it would receive as input a list
of geometric primitives (composed of vertices) which were shaded and mapped onto the screen in the
form of a picture using a canonical pipeline. The pipeline was initially fixed and contained the following
stages:

• Vertex operations

• Primitive assembly

• Rasterization

• Fragment operations

• Composition

Since each vertex, respectively pixel, can be computed independently of each other, these operations are
performed in parallel by dedicated hardware. From a computational point of view, this is the main source
of parallelism in a GPU.
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2.2. CUDA PLATFORM

The first step towards general-purpose computation on the GPU was the evolution of the fixed-function
pipeline into a programmable one. The key idea was replacing the fixed-function vertex and fragment
operations with user-specified programs called shaders. Over the years, the shaders became increasingly
more complex by providing less restrictive limits on their size and resource consumption, by utilizing
fully featured instruction sets, and by allowing more flexible control-flow operations.

The next important milestone in GPU evolution was the development of the unified shader architecture.
Traditionally the vertex and fragment shaders had different instruction sets that where processed by
separate hardware units. As their functionality converged, the vertex and fragment processing hardware
were combined into a unified programming unit.

As a result GPU architectures have migrated from strict pipelined task-parallel architectures to ones that
are built around sets of unified data-parallel programmable units.

2.2 CUDA platform

In order to make performance predictions we must first understand how we write GPU programs and
how they are executed.

Motivated by benchmarks and literature study we choose to target the Compute Unified Device Archi-
tecture (CUDA) platform developed by NVIDIA. As a representative of this architecture we use version
2.1 codenamed Fermi. The main sources of architectural information are [24, 25, 26].

In what follows, we first introduce the CUDA programming model which explains how we can develop
GPU programs. The role of the programming model conflicts with our goal of performance prediction,
because it abstracts factors and parameters which play a vital role for performance prediction. Thus we
go one step further and explain the hardware architecture and the execution model.

2.2.1 Programming model

The complexity of the GPU architecture is hidden from the application developer by means of a hetero-
geneous programming model. The model allows the user to focus on the algorithm and abstracts as much
as possible the GPU architecture. This is achieved through a small set of abstractions regarding thread
grouping, memory hierarchy, and synchronization primitives.

The philosophy of the CUDA programming model is to partition the problem into coarse sub-problems
that can be solved independently in parallel by blocks of threads, and each sub-problem into smaller pieces
that can be solved cooperatively in parallel by the threads of a block. Because blocks are independent of
each other, the model achieves good scalability.

In what follows we describe the CUDA programming model using a small example. For a more in depth
treatment of CUDA we recommend [26]. Since CUDA is based on ANSI C99 we also give the equivalent
C program. The example represents a one-dimensional vector scaling operation. Figure 2.1 illustrates
both the C and the CUDA version and emphasizes important concepts.

As in other programming models for the GPU (OpenCL, DirectCompute, ATI Stream), a CUDA program
is composed from a host part which is executed on the CPU and a device part which is executed on the
GPU. The device part is composed of several computational parts called kernels which can be invoked
by the host. The programming model assumes that both the host and the device have their own separate
memory spaces, and the host part manages the device memory through calls to the CUDA runtime.

At runtime the host program specifies the parameters for each kernel invocation. The required parameters

5



2.2. CUDA PLATFORM

void scale(int n, float f, float* a){
  int i;
  for(i=0; i < n; i++)
   a[i] *= f;
}

CPU

__global__ void cuda_scale(int n, float f, float* a){
  int i = threadIdx.x + blockIdx.x * blockDim.x;
  if (i < n)
    a[i] *= f;
}
void foo(int n, float f, float* a){
 float* da = NULL; 
 dim3 blockSize(8);
 dim3 gridSize(ceil(n / (float) 8);
 cudaMalloc(da, n * sizeof(float));
 cudaMemcpy(da, a, ...);
 cuda_scale<<<gridSize, blockSize>>>(n, f, da);
 cudaMemcpy(a, da, ...);
}

CUDA

CUDA call Kernel callDevice codeHost code

Figure 2.1: CUDA example program.

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Block

Thread (0, 0) Thread (0, 1) Thread (0, 2)

Thread (1, 0) Thread (1, 1) Thread (1, 2)

Thread (2, 0) Thread (2, 1) Thread (2, 2)

Figure 2.2: CUDA hierarchical thread grouping.

represent the grid and block dimensions. Optionally the user can also specify how much shared memory
is available per-block.

The concept of a CUDA grid is illustrated in Figure 2.2. From a programmer point of view, a grid consists
of a number of equally-shaped blocks where each block consists of a group of threads which execute the
instructions specified in the kernel body. Depending on how threads are grouped, blocks and grids can
be one-, two- or three-dimensional. This scheme provides a natural way to partition computation that
involves 1D, 2D or 3D arrays.

Threads within the same block are assigned unique identifiers based on their coordinates. In a similar
manner, the blocks which form the grid are assigned identifiers based on their coordinates. A thread is
uniquely identified in a grid by combining its thread ID with the ID of the block to which it belongs.

Threads within a block can share data through shared memory and can perform barrier synchronization
using special CUDA API calls.

CUDA threads can access data from different memory spaces as illustrated in Figure 2.3: each thread has
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2.2. CUDA PLATFORM

Thread
Per-thread local 

memory

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Global memory

Thread block

Per-block shared 
memory

Figure 2.3: CUDA memory hierarchy.

private local memory, each block has shared memory which is accessible by all threads of the block, and
all threads have access to global, constant, and texture memory which are optimized for different usage
scenarios. Global memory is used for generic read-write operations, while constant and texture memory
is read-only and benefits from special on-chip caches. Texture memory also offers different addressing
modes and filtering for specific data formats.

During the same program, the global, constant, and texture memory spaces are persistent across different
kernel calls, while the shared memory and the private memory change at each invocation.

2.2.2 Architecture

The main role of the programming model conflicts with our goal of performance prediction. This is
because GPU performance is heavily influenced by the details abstracted away by the programming
model. In what follows we present the architecture of the GF104 chip from NVIDIA, the GPU which we
use to perform our research. We focus on presenting concepts which directly influence performance.

Figure 2.4 presents an overview of the GF104 GPU. We use colours to differentiate between GPU com-
ponents: memory units are coloured blue, scheduling units are coloured orange, and compute units are
coloured green.

The main part of the GPU is composed of 8 computational components which are called streaming
multiprocessors (SMs). The GPU has three 64-bit DRAM modules connected using a 192-bit memory
interface. A host interface connects the GPU to the CPU via the PCI-Express bus. The workload is
expressed in terms of thread blocks which are distributed to the SMs by the GigaThread scheduler.
Thread blocks are scheduled independently on each SM by using an on-chip scheduler.

7



2.2. CUDA PLATFORM

Figure 2.4: NVIDIA GF104 GPU.

The main components of SM are detailed in Figure 2.5. In each SM, computation is performed by 48
execution units called streaming processors (SP) or CUDA cores. Each CUDA core has a fully pipelined
32-bit integer arithmetic-logic unit (ALU) and 64-bit floating point unit (FPU).

The CUDA cores have access to a private set of registers allocated from a register file. The register
file has a capacity of 128 kB divided into 32768 32-bit entries which can be accessed directly without
performing any load or store operations.

The SMs access memory using 16 load-store units which can fetch data from cache or DRAM. In order
to compute transcendental functions (sin, cos, etc.) each SM has 8 Special Function Units (SFU).

In order to hide memory latency, the GPU provides a complex memory hierarchy. The hierarchy is
composed of per-SM L1 caches, a common L2 cache and the device memory.

Each SM features four types of caches: instruction, data, constant, and texture. Of these four caches,
the most important one is the data cache. It has a total capacity of 64 kB which can be split into two
partitions, one managed implicitly by the GPU (called the L1 cache) and the other managed explicitly
by the application (called the shared memory). The data cache supports the following configurations: 16
kB L1 cache and 48 kB shared memory or 48 kB L1 cache and 16 kB shared memory. Since memory is
shared between all the CUDA cores of a SM it can be used to perform intra-SM synchronization.

Besides its size, cache performance is also influenced by the following architectural details: line size,
associativity and replacement policy. To understand this we give a brief introduction to how caches
work. The data stored in the cache is organized in equal size blocks called cache lines which correspond
to different memory locations. In addition to this, each line has a tag which contains the address of
the memory location that is cached. When a request is issued, the cache is probed by comparing line
tags with the requested address. If a match occurs, then the data is served from the cache (cache hit)
otherwise it is loaded from memory (cache miss).

In order to make tag searching faster, caches restrict the number of lines to which an address can be
stored. This is called the cache associativity. Associativity is a trade-off related to the replacement

8



2.2. CUDA PLATFORM

32.768 x 32-bit registers

Instruction Cache

Warp Scheduler

Dispatch Unit

Warp Scheduler

Dispatch Unit

16 x core 16 x core 16 x core 16 x ld/st 8 x SFU

64KB Shared Memory / L1 Cache

Interconnect Network

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

Figure 2.5: GF104 core (left) and symmetric multiprocessor (right).

policy. It represents the number of locations which must be searched in order to see if an address is in
the cache. For example, if there are ten places to which the replacement policy could have mapped a
memory location, then ten cache entries must be searched. Checking more places takes more time. On
the other hand, caches with higher associativity suffer fewer misses, because an entry is less likely to be
evicted.

In order to make room for the new entry on a cache miss, the cache has to evict one of the existing entries.
The heuristic that it uses to choose the entry to evict is called the replacement policy. The fundamental
problem with any replacement policy is that it must predict which existing cache entry is least likely to
be used in the future. A commonly used policy is least recently used (LRU) which replaces the entry
which has not been used recently.

Regarding the GF104 cache, the only other official information regarding the L1 cache is the line size,
which is 128 bytes. There is no official information regarding the replacement policy or the associativity,
but our experiments from Section 3 indicate a LRU replacement policy and high associativity.

The load, store, and texture requests of all the SM are serviced through a unified 384 kB L2 cache.
This cache provides efficient, high speed data sharing across the GPU. As in the L1 case, NVIDIA only
specifies the line size, which is 32 bytes.

The last layer of the GPU memory hierarchy is the device memory. This holds all the device data including
texture and constant data. Although the constant data and textures are stored in device memory they
have dedicated on-chip caches which minimize their latency.

2.2.3 Execution model

The previous section presented a static view on the GF104 hardware. In this section we focus on the
dynamics of the platform in order to see how it executes GPU programs.

The CUDA execution model achieves performance by efficiently distributing the thread blocks of a kernel
among SMs. As illustrated in Figure 2.6, at each kernel invocation the blocks of the grid are distributed
to the SMs that have the necessary resources. The SMs execute in parallel the threads of multiple blocks.
As soon as all the threads of a block terminate, a new block is launched.

Hardware resources play an important role because they limit the number of blocks which can be executed

9



2.2. CUDA PLATFORM

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

...
Warp 1 Warp n

SM 1

...
Warp 1 Warp n

SM m

...

Figure 2.6: Block dispatching.

by the SM, thus limiting parallelism. Resources are used to keep track of the context of all executing
warps. The context of a warp includes the program counters, the used registers, and the used shared
memory. The registers are allocated from the register file which is partitioned among the warps, and
shared memory is allocated for each of the thread blocks. Since these resources are limited, the number
of blocks and warps that can be executed together on a SM is limited.

The main focus of the SMs is to maximize parallelism, either by executing instructions from different
threads (thread-level parallelism – TLP), or by executing independent instructions within the same thread
(instruction-level parallelism – ILP). We note that the GPU focuses more on TLP than ILP because even
though instructions are pipelined, they are executed in order and without branch prediction or speculative
execution.

In contrast to the CPU, the GPU can better exploit thread-level parallelism. This is because on the
CPU, the operating system needs to swap the thread context in order to schedule another thread. As we
previously mentioned, on the GPU the thread context is always available, so a context switch does not
imply any data swapping.

SMs execute thread blocks in groups of 32 threads called warps. Each warp is scheduled for execution by
a warp scheduler (also known as dispatcher), which issues the same instruction for all the warp’s threads.
When threads have diverged because of control-flow, all the divergent paths are executed serially with
threads which are inactive in a path disabled.

In CUDA nomenclature, this type of execution is known as SIMT (Single Instruction, Multiple Threads).
It is similar to SIMD (Single Instruction, Multiple Data) in that a single instruction is issued for multiple
processing elements. The only difference is that SIMT makes the vectorization implicit for the program-
mer. That is, for the purposes of correctness, the programmer can essentially ignore the SIMT behaviour;
however, performance improvements can be realized by taking care that the code seldom requires threads
in a warp to diverge.

Superscalar execution. A SM dispatcher can issue instructions to a group of 16 CUDA cores, 16
load-store units or 8 SFUs (see Figure 2.5). This means that two dispatchers can issue instructions to 32
CUDA cores. Since the GF104 has 48 cores, it appears that 16 of them are idle. In order to avoid this
scenario, the GPU employs a form of superscalar execution.

In a nutshell, superscalar execution is a method of extracting instruction-level parallelism (ILP) from a
thread. If the next instruction in a thread is not dependent on the previous instruction, it can be issued
to an execution unit for completion at the same time as the instruction preceding it.

In the GF104, this is done by the dispatchers which are responsible for analysing the next instruction of
a warp to determine if that instruction is ILP-safe, i.e., is independent from executing instructions, and
whether there is an execution unit available to handle it. NVIDIA calls this form of superscalar execution
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2.2. CUDA PLATFORM

Warp 1,1: mul R3,R4,R3
Warp 1,0: ld R2,[R1]

Warp 3: add R1,R1,R3

Warp 9,1: div R6,R6,7
Warp 9,0: add R5,R5,R9

Warp 7: st [R5],R7

16 x core 16 x core 16 x core 16 x ld/st 8 x SFU

Dispatch 1 Dispatch 2
Ready warp queue

Figure 2.7: Example of superscalar execution on the GF104.

dual dispatch.

An example scenario is illustrated in Figure 2.7. The 48 CUDA cores are kept busy by three independent
instructions from two warps: warp 1 executes the mul on 16 cores, and warp 9 executes add and div on
the other 32 cores.

Memory instructions. In order to keep the execution units busy the GPU must be able to sustain a
high transfer rate to and from memory. In order to achieve the necessary bandwidth, the GPU employs
special techniques which reduce the amount of data that needs to be transferred between the global
memory and the SMs. To understand how this is performed, we present how a memory operation is
executed on the GPU. As is the case for compute operations, a memory operation is executed at the
warp level. Depending on the type of memory which is accessed the operation is treated differently.

Global memory access. In the case of global memory, the process starts by computing the number
of memory transactions which have to be issued in order to satisfy the requests of all threads which form
the warp. Since access to global memory is expensive, the GPU tries to group requests from multiple
threads in as few transactions as possible. The grouping depends on the size of the memory accessed by
each thread and the distribution of addresses across the threads. This process is known as global memory
coalescing.

Figure 2.8 illustrates the concept for the GF104. In this architecture transactions are 128 bytes long,
which favours a 4 byte access pattern (i.e., 4 × 32 = 128). The first case depicts the ideal scenario,
where each thread accesses 4 bytes and the accesses fit within a single line. This means that all the 128
transferred bytes are used. In the second case, the accesses are scattered across four lines, which means
that from the 512 bytes transferred only 128 are used.

Transactions are not issued directly to global memory, but instead they first pass through a two-level
cache hierarchy. If the requested data is in the cache it is serviced at the cache throughput, otherwise it
is served at the global memory throughput.
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Shared memory access. When accessing shared memory, the accesses are issued individually for
each thread and no coalescing is performed. Under certain conditions, requests can be served in parallel,
increasing performance. In order to understand when this happens the hardware implementation must
be taken into account.

On the GF104, shared memory is divided into 32 equally-sized banks which are organized such that
successive 32-bit words are assigned to successive banks. The speed of shared memory comes from the
fact that each bank can be accessed independently of the others. When two different threads access
different 32-bit words belonging to the same bank a bank conflict occurs, and the hardware serializes the
request, decreasing performance. Figure 2.9 illustrates how bank conflicts can occur using 4 banks and 4
threads. We see that in the first case each of the threads access a different bank. In this case the requests
will be served in parallel, achieving peak performance. In the second case, a group of two threads access
different words within the same bank. Requests belonging to the same bank will be serialized, yielding
only half of the peak performance.
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2.3 Performance prediction

Performance prediction of computer systems plays an important role in many computer science fields:
hardware developers need to study future architectures [5], compiler writers need to evaluate the perfor-
mance of generated code for different machines [30], and software developers need insight in order to tune
their code for a particular architecture [18]. In all these fields the main goal is to provide an estimate of
the run time of a program on a given architecture.

2.3.1 Approaches

Performance prediction techniques can be classified into three major categories: profile-based, simulation-
based, and analytical models. Common to all techniques is the notion of a model which abstracts the
target architecture. The level of abstraction defines the precision of the model and the efficiency with
which predictions can be made with it.

Since we make use of techniques from all the categories, we give a short introduction to each one.

Analytical models Analytical models represent a mathematical abstraction of the program’s execu-
tion. The result is usually represented in the form of a function which takes into account the target
architecture, the input program and the input data.

Predictions are made by evaluating the model for various inputs. The accuracy is very sensitive with
respect to the level of abstraction encoded in the model.

There are different techniques for developing a prediction model, ranging from manual construction [5],
to program analysis [20] to machine learning [13].

Profile-based Profile-based techniques are most common and involve two phases. In the first phase
the program is executed under an instrumentation tool which generates statistics for a given program
run. In the second phase, the statistics are fed into an analysis tool which uses the data to compute an
estimation of the program’s run time on a specific platform.

The instrumentation phase annotates each basic block of the program with instructions that count the
number of times that block was executed. The introduced overhead is acceptable, being proportional to
the number of basic blocks.

The analysis phase computes the program’s run time by combining the gathered statistics with an es-
timation of the run time instruction scheduling. The scheduling is usually estimated per basic block
using a simple pipeline simulator. The total run time for a basic block is obtained by multiplying this
estimation with the number of times the block was executed. The program’s run time is the sum of the
run time of all the basic blocks. The efficiency of this phase depends on how efficient the scheduling can
be computed.

The profile-based approaches work well for sequential architectures, but give poor results in the parallel
case. This is because the simulator which is used to compute the schedule does not take into account
dependencies between basic blocks and features of modern processors (out-of-order execution, super-scalar
execution, caches, etc.).

An example of a modern profiler is Valgrind [22] which is used not only for predicting performance, but
also for exposing program errors [14].
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Simulation-based Simulation-based performance prediction techniques run every dynamic instruction
of the program through a program that models the architecture being studied. Since every instruction
is simulated, this approach can generate very accurate predictions. Because each instruction requires
substantial computation, this is also the main drawback of simulators.

There are two main classes of simulators: emulators and trace-based simulators. An emulator is a software
program that behaves exactly as the studied architecture. It provides an environment in which programs
for that architecture can be executed and performance is predicted by collecting performance metrics.
This approach gives the most precise results but it also the most expensive in terms of run time.

A trace-based simulator performs the simulation based on a stored trace. Using a similar instrumentation
tool as those used in profile-based approaches, a trace of the important program events is generated and
saved. Using the trace the program is executed in the simulator and performance metrics are collected.
This approach is faster than emulation and it also gives repeatability. The main drawback is that it is
difficult to handle data dependent effects and it is impossible to have feedback from the timing model
affect the trace.

Example of simulation platforms are the PACE [15], PROTEUS [4], and WARPP [11].

2.3.2 Performance metrics

The benefits of parallelization can be measured by computing several parallel metrics. We only present
a few metrics which we will use for estimating the GPU performance. For an in-depth treatment of the
subject we refer the reader to [32].

Speedup. The most common is speedup which represents the ratio of sequential execution time to
parallel execution time. Since there are multiple definitions of sequential and parallel execution times,
there are different definitions of speedup. The most common used is relative speedup. It refers to how much
a parallel algorithm is faster than a corresponding sequential algorithm. It is defined by the following
formula:

Sp =
T1

Tp

where T1 is the execution time of the sequential algorithm, Tp is the execution time on p parallel processors,
and Sp is the speedup. Note that Tp usually contains two components: the actual execution time and
the overhead of parallelization.

Bandwidth. Another commonly used metric is bandwidth. Bandwidth represents the rate at which
data can be transferred. A high bandwidth usually implies that the program processes more elements in
a time unit. Performance is predicted by comparing theoretical bandwidth to effective bandwidth. When
the latter is much lower than the former, performance is drastically reduced.

Theoretical bandwidth represents the maximum bandwidth that the hardware can achieve and is usually
available in the product documentation. Effective bandwidth is computed by timing the execution of the
program and measuring the amount of data which it processes:

Effective bandwidth =
Br +Bw

Tp

where Tp is the execution time on p processors, Br is the number of bytes read, and Bw is the number of
bytes written.
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2.4 Role of program analysis

Program analysis is the process of inferring properties by analysing the behaviour of computer programs.
It is mainly used in compilers for performing program optimizations and validations. Automatic program
analysis can be performed statically (at compile time) or dynamically (at run time).

Most performance prediction tools use program analysis approaches in order to compute parameters for
their model. In general, dynamic analysis is preferred because it provides more accurate results for the
specific execution which the model wants to estimate [20]. In some cases, static analysis is preferred when
the main goal is to generate a model for the program which can be instantiated for different executions
[1].

In our case we use program analysis to compute values for the parameters of our model. We mostly rely
on the existing infrastructure which contains both static and dynamic analyses. In what follows we only
give a short summary of program analysis techniques.

Static program analysis

Static program analysis represents a group of techniques which statically compute safe approximations
of the run time behaviour of a computer program. This is done by inspecting the source of the program
and inferring properties using formal methods. The program can be in source code form or object code.
We refer the interested reader to [23] which provides an in depth introduction to the field.

Dynamic program analysis

For real-world programs, static analysis may give poor results do to the fact that it computes approx-
imations. This limitation is a direct consequence of Rice’s theorem [31] which states that only trivial
properties of programs are algorithmically computable.

The precision can be improved by using dynamic program analysis which computes properties by studying
the execution of computer programs. Dynamic analyses sacrifice soundness for accuracy by observing
only a portion of the program’s execution behaviour. In order for the results to be relevant, the code
coverage of the target program must represent a significant part.

Dynamic analysis is also used to determine program invariants [9], software bugs [22] or provide insight
for parallelization [33, 18].
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3
GPU performance factors

In this chapter we explore the factors which influence the performance of GPUs. Our experiments rely
on the concepts introduced in the previous chapter about the CUDA platform and the GF104 GPU.

The performance factors which we need to take into account are discussed in the CUDA best practices
guide [25]. The guide suggests that a GPU application should be optimized using the following strategies:

1. maximising parallel execution

2. optimizing memory usage to achieve maximum memory bandwidth

3. optimizing instruction usage to achieve maximum instruction throughput

Maximising parallel execution. This means structuring the algorithm such that it exposes the
maximum amount of data parallelism. Also, the parallelism needs to be mapped to the hardware as
efficiently as possible, by choosing the correct kernel execution parameters.

Optimizing memory usage. This means minimizing data transfers between the host and the device
because those transfers have much lower bandwidth than internal device data transfers. Kernel access
to global memory also should be minimized by maximizing the use of shared memory on the device.
Sometimes, the best optimization might even be to avoid any data transfer in the first place by simply
recomputing the data whenever it is needed. The effective bandwidth can vary by an order of magnitude
depending on the access pattern for each type of memory.

The next step in optimizing memory usage is therefore to organize memory accesses according to the
optimal memory access patterns. This optimization is especially important for global memory accesses,
because latency of access costs hundreds of clock cycles. Shared memory accesses, in contrast, are usually
worth optimizing only when there exists a high degree of bank conflicts.

Optimizing instruction usage. This optimization focuses on the usage of arithmetic instructions
which have high throughput. This implies trading precision for speed when it does not affect the end
result, such as using intrinsics instead of regular functions (e.g., replacing sin() function calls with
__sin() intrinsic calls) or single precision instead of double precision. Finally, particular attention must
be paid to control flow instructions due to the SIMT (single instruction multiple thread) nature of the
device.
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3.1. GPU PARALLELIZATION OVERHEAD

Methodology. Since our goal is to predict performance we must measure the impact of these factors
on performance. In order to achieve this we designed a set of benchmarks which aim to measure how
these factors influence performance. The main purpose of these benchmarks is to reveal the impact of
performance factors without going too much into hardware details. We draw conclusions by analysing
the execution times. We use cuobjdump [28] to inspect native instruction sequences generated by the
CUDA compiler and to analyze code.

The general structure of a benchmark consists of GPU kernel code containing timing code around a code
section (typically an unrolled loop running multiple times) that exercises the hardware being measured.
A benchmark kernel runs through the entire code twice, disregarding the first iteration to avoid the
effects of cold instruction cache misses. In all cases, the kernel code size is small enough to fit into the
instruction cache.

For measuring time of the entire kernel execution we use the GPU timers which have increased precision
[25, Sec. 2.1.2]. In order to measure time while executing a kernel we use the clock() GPU intrinsic [26,
Sec. B.10]. This returns the value of a per-SM counter which is updated every clock cycle. The clock
values are first stored in registers, then written to global memory at the end of the kernel to avoid slow
global memory accesses from interfering with the timing measurements. In order to convert the result
from cycles to seconds we multiply the value using the GPU clock, which in our case is 1.35GHz.

The main characteristics of our testing system are:

OS Ubuntu 10.04 64-bit edition
CPU Intel Core i5-760
GPU NVIDIA GTX 460 (GF104 chipset with 768 MB)
BUS PCI-Express 2.0 ×16
CUDA CUDA version 3.2

3.1 GPU parallelization overhead

According to [25], the overhead introduced by GPU parallelization is one of the main factors which
influences parallel execution and memory usage. Through experimentation we identified the following
types of overhead:

• transfer overhead

• CUDA context initialization

• kernel launch overhead

Transfer overhead. In Section 2.2.1 we saw how the host (CPU) and the device (GPU) have separate
memory spaces. This implies that data is transfers between them. The transfer is done over the PCI-
Express bus which connects the two devices. Note that we are not interested in the hardware details
of the bus, but only on its impact on performance. In this case, this translates to an experiment which
measures the transfer time for different transfer sizes. In order to copy data between devices we use the
CUDA API call cudaMemcpy [26, Sec. 3.2.1].

The results of our experiment are summarized in Figure 3.1. The results show that until we saturate the
bus (i.e., copy enough data) the bandwidth increases linearly. Once we reach the saturation point, the
bandwidth remains constant.
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Figure 3.1: CPU-GPU transfer bandwidth.

CUDA context initialization overhead. Communication between the host and the device is man-
aged through the CUDA context [26, Sec. 3.3.1]. Context initialization is performed transparently when
the first CUDA API call is encountered. We measured this overhead between 65ms and 250ms, where val-
ues higher than 65ms were only encountered when running the program for the first time. This suggests
that the context is also initialized at the GPU driver level.

Kernel launch overhead. Another overhead which is introduced by CUDA is represented by the time
it takes to invoke a GPU kernel. In order to measure this we timed the execution of an empty kernel. In
our experiment we obtained an overhead of 4µs.

3.2 GPU memory system overhead

The information presented in Section 2.2.2 about the GPU memory hierarchy is not sufficient in order
to understand how to predict its performance. To achieve this we use standard memory performance
metrics: latency and bandwidth. Latency represents the execution time for a single memory instruction.
Bandwidth represents the maximum volume of data which can be transferred in a unit of time. Besides
performing latency and bandwidth measurements, we also perform experiments which measure the effect
of global memory coalescing and bank conflicts.

Memory latency. In order to measure the latency of global and shared memory we employ a tradi-
tional pointer chasing benchmark which is normally used to measure CPU cache parameters [21]. The
benchmark consists of a pointer i which traverses an array A by executing i = A[i] in an unrolled
loop. Although the measurements include the overhead of address calculation, the total time is dom-
inated by the latency of the memory access. In order to utilize only one GPU SM, the benchmark
is executed by a single scalar thread. Cache characteristics are measured by initializing the array as
A[i] = i + stride % N, where N is the size of the array and stride is the stride parameter. The
experiment assumes a least recently used replacement policy, a set-associative cache, and no prefetching.

The array size defines the cache working set and indicates the size of the cache. The stride size reveals
the cache line size because it influences the lines which are fetched; i.e., accessing the array using strides
smaller than the cache line means that a single line will contain multiple array elements.
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Figure 3.2: GPU memory latency plot results.

Figure 3.2 illustrates the results of our benchmark for stride configurations between 32 bits and 1024
bits and for arrays between 16 kB and 1 MB. The size of the caches (L1 = 16 kB – chosen as a kernel
parameter, and L2 = 384 kB) are confirmed by the latency plateaus that correspond to arrays which
fit into L1, respectively L2. Notice that for strides smaller than the cache line size, the plateaus are
independent of the used stride.

The experiment also shows that the cache line size is 128 bytes, because latency stabilises at the same
value for larger strides. Notice that in the 32-, and 64-byte stride plot the L2 latency is roughly 4,
respectively 2 times lower. This is explained by the fact that a single cache line contains 4, respectively
2 array entries.

In order to measure the latency of shared memory we performed the same benchmark on an array stored
in shared memory. We measured a latency of 50 cycles, independent of array size or stride which indicates
that no caches are present.

Notice that the latency of shared memory (50) is different from that of the L1 cache (92), although
the same hardware component is used in both cases. This ”anomaly” is explained by the fact that the
requests get compiled to different instructions. By inspecting the generated assemblies using cuobjdump

[28], the shared memory access is compiled to a load and a left shift, while normal access is compiled to a
load, multiply, and an addition. To get the actual values we subtract the latencies 1 of these instructions
from the measured values. The adjusted latencies are: for L1 (shared memory) – 36 cycles, for L2 – 300
cycles, and for global memory – 500 cycles.

Global memory bandwidth. In order to measure bandwidth we use a standard stream copy bench-
mark [21]. In contrast to the latency experiment, the strategy behind this benchmark is to generate a
very large number of memory requests in order to how many can be processed in parallel. To achieve

1Details about measuring instructions’ latency in Section 3.3
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Figure 3.3: Bandwidth measurements.

this we use the kernel from Listing 3.1 which copies data between two arrays stored in global memory.
The large number of memory requests are generated using a high number of threads and a large array.

1 int tid = blockDim.x * blockIdx.x + threadIdx.x;

2 int stride = gridDim.x * blockDim.x;

3 for(int i = tid; i < N; i+= stride){

4 dst[i] = src[i];

5 }

Listing 3.1: Bandwidth test kernel

We run experiments with varying array size from 28 MB to 196 MB and the number of threads within
a block from 32 to 1024. The upper limits of the intervals represent the maximum values which where
accepted by the GPU. To get timings only for global memory we disabled caches. The results of our
experiments are depicted in Figure 3.3. Note that for GF104, the theoretical bandwidth of global memory
is 86.4 GB/sec. The values obtained by our experiment are lower because of the overhead introduced by
our measurements (e.g., kernel call overhead, kernel also contains compute instructions, etc.)

Our first experiment (Figure 3.3a) measures the bandwidth when bus contention is high,i.e., many threads
access memory. This is achieved by keeping the array size fixed to 196 MB and varying the number of
threads within a block. The experiment reveals that 256 threads are enough to achieve the maximum
bandwidth. If the number of threads is increased beyond 256, performance drops because requests get
serialized.

The second experiment (Figure 3.3b) tests if the bandwidth depends on the amount of transfered data.
In order to avoid contention, the number of threads is fixed to 256 (value obtained from the previous
experiment) and the array size varies between 28 Mb and 196 MB. The results show that the bandwidth
increases linearly with size until it reaches the peak. This is expected, because the number of request is
directly proportional with the array size. Thus as long as there is no contention, bandwidth increases
because there are more requests served in parallel.

Shared memory bandwidth. Unfortunately the same experiments cannot be used to measure shared
memory bandwidth. The reason behind this is that we are not able to generate enough memory requests,
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without reaching the hardware limitations imposed by the GPU.

We know that bandwidth measures the amount of memory requests which can be served in parallel. Thus,
in order to reach the bandwidth limit a lot of parallel request must be generated. These requests can be
generated by independent instructions within a thread or by independent threads. Both resources are
limited by the GPU: the maximum number of independent threads is 1024, and the maximum number
of independent instructions is 63 (because independent instructions increase the need for registers and
a thread can use at most 63 registers). Using the maximum of both values the experiment measures a
very small bandwidth of 12 GB/sec. This value is lower than that obtained for global memory because
we add overhead by copying values between global and shared memory.

To estimate shared memory bandwidth, we use the data from [25, Sec. 3.2.2.1] which mentions:

Shared memory banks are organized such that successive 32-bit words are assigned to suc-
cessive banks and each bank has a bandwidth of 32 bits per clock cycle. The bandwidth of
shared memory is 32 bits per bank per clock cycle.

We can use the following formula to estimate the total bandwidth:

4 · nblock · nsm · clk
c

=
4bytes · 32 · 7 · 1.35GHz

1
= 1.2TB/sec

where nblock is the number of banks, nsm is the number of SMs, 4 represents the number of bytes read
from a single bank, 1.35GHz is the clock frequency, and c represents the time it takes for a block to
process the request.

Global memory coalescing. Another important memory performance factor is represented by co-
alescing. Coalescing is influenced by the access pattern of threads within a warp. In the previous
benchmarks coalescing problems where avoided by using unitary stride accesses, which achieves perfect
coalescing. In contrast, this experiment (Listing 3.2) uses non-unitary stride accesses which generate
multiple requests for a single warp. The number of requests is controlled using the stride parameter,
e.g., when stride = 2 there will be 2 request generated for a warp. The number of requests is increased
until 32 which corresponds to the scenario where each load of a warp generates a request.

1 __global__ void strideCopy(float *src , float *dst , int len , int

stride)

2 {

3 int i = (( blockDim.x * blockIdx.x + threadIdx.x) * stride) % len;

4 dst[i] = src[i];

5 }

Listing 3.2: Coalescing test kernel

The influence of coalescing on bandwidth can be seen in Figure 3.4: bandwidth decreases linearly with
coalescing. Note that for strides higher than 32, bandwidth remains constant. This proves that each
thread within a warp issues individual requests.

Shared memory bank conflicts. As mentioned in Section 2.2.2, to achieve high memory bandwidth
for concurrent accesses, shared memory is divided into equally sized memory modules (banks) that can
be accessed simultaneously. Therefore, any memory load or store of n addresses that spans n distinct
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Figure 3.4: Impact of coalescing on bandwidth.

memory banks can be serviced simultaneously, yielding an effective bandwidth that is n times as high as
the bandwidth of a single bank.

As in the coalescing benchmark, bank conflicts are influenced by the memory access pattern. The code
for this benchmark is illustrated in Listing 3.3. It uses a 32-bit element array (S) in order to map each
array access to a single 32-bit word of a bank. Thus the targeted bank is influenced by the index of the
access. In order to avoid tainting the results, the access to global memory (line 5) is fully coalesced. The
number of bank conflicts is controlled using the variable bank. A bank conflict occurs if threads tid and
tid+ n access the same bank. Translating this using the access pattern gives us:

tid · bank ≡32 (tid+ n) · bank ⇐⇒ bank · n ≡32 0

This occurs when n is a multiple of 32/gcd(32, bank), where gcd(a, b) is the greatest common divisor of
a and b. Since a warp contains 32 threads, n = 0, 31. This interval contains gcd(32, bank) multiples of
32/gcd(32, bank). In particular, there are no bank conflicts if bank is odd.

1 __global__ void conflicts(float *a, int len , int bank){

2 __shared__ float S[1024];

3 int tid = (blockDim.x * blockIdx.x + threadIdx.x);

4 int idx = (tid * bank) % 1024;

5 a[tid % len] = S[idx];

6 }

Listing 3.3: Bank conflicts test kernel

The results of the benchmark are presented in Figure 3.5. As expected, no bank conflicts occur when
bank is odd and for even values we get gcd(32, bank) conflicts. The benchmark also shows that the delay
increases linearly with the number of bank conflicts, i.e., 32 bank conflicts are two times more expensive
than 16 bank conflicts.
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Figure 3.5: Impact of bank conflicts on execution time.

3.3 GPU computation overhead

In order to optimize instruction usage we must identify their cost. Since the GF104 uses pipelined
execution units (Section 2.2.2), we adopt metrics which are used also in CPU benchmarking [21]: latency
and throughput. The latency of a compute instruction is analogous to the latency of a memory instruction
and represents the time of a single instruction. Throughput is analogous to bandwidth and represents
the number of instructions which can be executed in an unit of time.

Measuring instruction latency. The latency of an instruction corresponds to the time it takes for
it to go through the pipeline. To measure this we execute a number of dependent instructions such as
a += b;b += a; many times in an aggressively unrolled loop, using a single thread. Using cuobjdump,
we ensured that we have a one-to-one mapping with respect to native instructions. We made sure that
arithmetic does not overflow, but assume that the hardware is not optimized for special values, i.e., 0 or
1.

Listing 3.4 shows the main portion of the kernel used to benchmark add instructions. The main part is
line 3 which contains an unrolled loop of dependent instructions. By having dependent instructions we
ensure that the GPU cannot issue the next instruction until the previous instruction has finished. The
chain of instructions is executed multiple times in order to avoid poisoning because of instruction cache
misses.

1 for (int i=0;i<its;i++){

2 start = clock ();

3 repeat128(a+=b; b+=a;); // unroll macro

4 stop = clock();

5 }

Listing 3.4: Instruction latency/throughput kernel.

Table 3.1 show the results for various instructions. The results are consistent with the value of 24 cycles
mentioned in [26] for the average latency of instructions. Notice that for the div instruction the latency
is an order of magnitude higher. This is explained in [26, Sec. 5.4.1] by the fact that GPUs do not have
a native div instruction, and a div is compiled to multiple instructions.

23



3.3. GPU COMPUTATION OVERHEAD

Instruction Latency (cycles/op) Throughput (ops/cycle) #warps needed for peak
add 16 32 16
mul 20 16 16

madd 22 16 11
div 317 1.8 5
and 16 32 16
fadd 16 32 16

fmadd 18 32 16
fmul 16 32 16
fdiv 711 0.75 4
sqrt 269 1.6 5

Table 3.1: Latency and throughput of various GPU instructions.

Measuring instruction throughput. In order to measure throughput we must ensure a high number
of parallel instructions. We follow the same strategy as in the bandwidth benchmark, that is we increase
the number of parallel threads. In order to avoid imprecision caused by block scheduling we use a single
block.

The code of the kernel is the same as that for latency (Listing 3.4). The difference comes from the launch
parameters: when measuring latency we use a single thread (i.e., grid and block size are 1), and when
measuring throughput we use a single block with the maximum number of threads (i.e., grid size is 1,
block size is 1024).

Table 3.1 shows the values obtained for different instructions. Note that although there are 48 CUDA
cores the maximum throughput is 32. By varying the types of instructions in the chain we managed
to achieve a throughput of 48. The only combination which got this throughput was a madd followed
by an independent mul. This result is explained by the dual issue feature introduced in CUDA 2.1 [26,
Sec. G.4.1], where independent instructions within each warp can be issued in the same cycle. This
feature is similar to superscalar execution present on CPUs (details in Section 2.2.3).

We also conducted experiments to find the maximum number of independent instructions needed to get
maximum throughput. We investigated two sources of parallelism: thread level and instruction level.

At thread level, parallelism is achieved by executing the independent instructions of threads. As men-
tioned in Section 2.2.3, this is the main performance factor for GPUs. At instruction level, parallelism is
achieved by executing independent instructions within threads.

Our results are summarized in Figure 3.6 and in Table 3.1. In the TLP experiment (Figure 3.6a) we
use threads which contain a long chain of dependent instructions. The results show that 512 threads are
sufficient to reach maximum performance. In the ILP experiment (Figure 3.6b) we use a fixed number
of threads 256, and vary the number of independent instructions within a thread. The results show that
4 independent instructions are enough to reach peak performance.

With respect to the number of warps needed to reach peak performance we observe that 16 warps are
enough for instructions which have high throughput. As a rule of thumb, we observe that instructions
which have lower throughput need fewer warps.
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Figure 3.6: Reaching peak GPU performance using parallelism.

Conclusions

In this section we have thoroughly investigated the factors which determine GPU performance. We
used benchmarks to measure the overhead of parallelization and specific factors which influence GPU
performance. Regarding overhead we measured: context initialization, kernel launch, and transfer time
between CPU and GPU. For performance factors we investigated the role of parallelism for compute
and memory instructions and computed the latency and bandwidth/throughput of instructions. Also we
established how performance degrades when the kernel suffers from coalescing or bank conflicts problems.

The obtained results indicate a linear relation between the amount of parallelism (either thread level or
instruction level) and the performance factors. This is expected because the GPU architecture is designed
to execute data-parallel programs. The values and observations obtained through these experiments will
serve as the basis for our analytical model.

25



4
GPU model

By running the experiments presented in the previous section, we now understand how the GPU behaves
under different scenarios. In order to reach our goal of performance prediction the next step is to formalize
the observed behaviour into a model.

Our general approach is to develop an analytical model which represents an abstraction of the GPU
architecture. As described in Section 2.3, the performance of analytical models is very sensitive to the
level of abstraction which we use. In our case, this translates to how well we model the GPU performance
factors identified in the previous section.

Having this in mind, we have chosen a modular model which captures the performance factors. We
achieve this by developing individual formulas for each of the factors and combine them in order to
characterize the whole GPU kernel.

The formulas are parametrized over variables which represent the performance factors and can be grouped
intro three major categories based on the type of the modelled factor.

The first category represents the overhead introduced by parallelization. This contains formulas which
model CUDA context initialization, kernel invocation, and overhead introduced by transferring data
between CPU and GPU.

The second category deals with the delay of memory instructions on the GPU. This entails global and
shared memory latency and bandwidth, coalescing and bank conflicts effects.

The third category models the delay of instructions which do not involve memory access, i.e., compute
instructions. This covers latency and throughput of instructions as described in Table 3.1.

In what follows we explain our model in a top-down manner. We start in Section 4.1 by presenting the
design choices which are common to all categories. In the following sections 4.2, 4.3 we go into details
and explain the particularities of each category.

4.1 Approach overview

By inspecting the results of our experiments and studying the GPU architecture it is clear that parallelism
is the most important performance factor. This holds both for memory and compute instructions as
demonstrated by the fact that increasing parallelism (either by increasing the number of threads or the
number of independent instructions) leads to an increase in performance.

Unfortunately this increase is bounded by the limits imposed by hardware. Continuing to increase
parallelism after that point does not improve performance. On the contrary, as demonstrated by our
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memory benchmarks, parallelism can have a negative impact on performance by creating contention for
hardware resources (Figure 3.3a).

Since this behaviour is central to GPUs, the formulas of our model will follow a similar pattern. Thus
we need to establish bounds for performance and predict the changes in performance with respect to
parallelism.

To establish bounds we use the metrics from our experiments: for memory instructions we use latency
and bandwidth, and for compute instructions we use latency and throughput. For both instruction types
latency corresponds to bad performance, because the execution is sequential and most of the hardware
remains idle. On the other end, throughput (for compute instructions) and bandwidth (for memory
instructions) correspond to peak performance, because the execution of instructions happens in parallel.
By reaching this peak value using parallelism we reach the hardware limits of the GPU. Since bandwidth
and throughput both represent an upper bound, we will collectively refer to them as throughput.

Our experiments indicate that performance increases linearly with parallelism. This is the case for
transfer overhead (Figure 3.1), memory bandwidth (Figure 3.3) and instruction throughput (Figure 3.6).
The common behaviour is: performance starts at a low value which corresponds to latency, increases
linearly with parallelism, and stabilizes at the peak which corresponds to maximum throughput and high
bandwidth.

Using this general pattern we now proceed to explain the main parts of the model. The main formula of
our model computes the execution time of the GPU kernel by summing the delay of the overhead and
the kernel execution time:

TIME = OVERHEAD + EXECUTION
�� ��4.1

As mentioned, our formulas are grouped in three categories: overhead, memory and compute instructions.
In what follows we present the formulas for each category and how they are combined to estimate execution
time.

4.2 Modelling parallelization overhead

As the name suggests, overhead formulas model the penalty introduced by GPU parallelization. In
Section 3.1 we identified the following types of overhead:

• transfer overhead

• CUDA context initialization

• kernel launch overhead

Context initialization and kernel launch overhead can be modelled with constants, since their values do
not change. From Section 3.1 we know that CUDA initialization takes 65ms, and a kernel launch takes
4µs.

On the other hand, the overhead introduced by copying data varies with the size of the transfer. By
analysing the data from Figure 3.1 we see that the transfer bandwidth increases linearly until it reaches
the peak. To reason in terms of transfer time, we use the fact that bandwidth = size/time, thus
time = size/bandwidth. By interpreting the results using this transformations we see that until peak
bandwidth is reached, transfer time remains almost constant, and after that it increases linearly.

We model this behaviour using the following equation:

TRANSFER(size) =
size

min(BWpeak, BWinc(size))
=

size

min(5000, 100 · size+ 692)

�� ��4.2
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Figure 4.1: Comparison between predicted and measured transfer time.

where, size is the number of bytes transferred, BWpeak is the maximum bandwidth (in our case this
is 5000 MB/sec), and BWinc(size) is a function which computes the bandwidth obtained for a transfer
of size bytes. Since our experiments show a linear increase, we use linear regression to construct the
bandwidth function. Using our values this yields the function:

BWinc(size) = 100 · size+ 692

The validation of our function is shown in Figure 4.1. Our function has good behaviour when bandwidth
has not reach the maximum. After the peak point, it looses some precision, because of microarchitectural
effects which we do not model.

By combining the functions for all three types of overhead we obtain

OVERHEAD = TRANSFER(size) + CUDA + LAUNCH = TRANSFER(size) + 65ms+ 4µs
�� ��4.3

4.3 Modelling kernel execution time

The other important part of our model is the kernel execution time. At an abstract level, a GPU kernel
can be viewed as a sequence of instructions. These instructions are executed on the GPU by a number
of parallel threads. The execution time is the time it takes for all threads to complete execution. A way
to estimate this is by predicting the time for each instruction and summing over the values. Since the
delay is computed in cycles we divide using the clock speed in order to convert the results into seconds.

EXECUTION = nthreads ·
∑

i∈insns

delay(i)

clk

�� ��4.4

A problem which arises in this case, is what value do we use as the delay of an instruction. We know
that the delay of an instruction can vary between latency and throughput. As mentioned before, latency
corresponds to bad performance and throughput corresponds to peak performance.

Using either values can lead to gross inaccuracies. If we use latency then the execution time is very
pessimistic because it assumes that there is no parallelism. If we use throughput, we hit the other
extreme, that is our execution time will be very optimistic. Our experiments indicate that the delay of
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Figure 4.2: Comparison between executing instruction on the GPU and in the model.

instructions is greatly influenced by the amount of parallelism and to what extent the GPU can exploit
it. Thus we seek to create a delay formula which takes into account latency, throughput and parallelism.

On the GPU platform, parallelism can come from two major sources: instruction level and thread level. At
instruction level, we have independent instructions within a thread which can be used to hide latency and
achieve good performance. At the thread level, having more threads means there are more independent
instructions.

Another important factor that we must take into account is the hardware which is used to execute the
instructions. For example, a multiplication will be executed by a CUDA core, while a load will be
executed by the memory subsystem. The two subsystems have different latencies, throughputs and more
importantly have different factors which influence performance. For example, the performance of the
global memory is influenced by coalescing while that of a CUDA core is not. To account for this we need
to distinguish between memory and compute instructions.

4.3.1 Compute instructions

We start by presenting how we model the delay of compute instructions. As mentioned in the previous
section, the most important factor is parallelism which can be provided either by independent instructions
or by multiple threads.

Using the values reported by our experiments we know that performance can vary between latency and
throughput. Since the GPU uses pipelines, instructions can be executed in parallel as illustrated in Figure
4.2a. That is, instructions are executed in parallel until the hardware limit is reached (in our example the
limit is 3). After that point, the next instruction has to wait until a slot in the pipeline becomes empty.

Since we do not know the limit for the GF104, we model a pipeline with a limit of 1 and adjust the
latencies of instructions accordingly. We have two cases to model. The first corresponds to the case when
the pipeline is not full. In this case the total delay remains constant because the instructions are executed
in parallel. In the second case a stall occurs when the pipeline is full. We account for this by adding a
penalty factor.

Since our pipeline corresponds to sequential execution and we have parallel instructions, we use an

29



4.3. MODELLING KERNEL EXECUTION TIME

adjusted delay which equally divides the total delay between the parallel instructions. This behaviour is
captured by the following formula and illustrated in Figure 4.2b:

delay(i) =


latencyi

ILP · TLP if ILP · TLP ≤ maxi

latencyi
ILP · TLP ·maxi +

warpsize
throughputi

otherwise

�� ��4.5

where warpsize is the size of a warp (e.g., 32), ILP and TLP represent the amount of instruction-,
respectively thread-level parallelism, throughputi and latencyi represent the throughput and latency of
instruction i, and maxi represents the level of parallelism at which peak throughput is obtained (details
in Section 3.3).

The penalty term warpsize/throughputi in the second case is computed by reasoning about what happens
when there are multiple parallel instructions. Since there are many parallel instructions, the total time
can be expressed as the number of instructions divided by the throughput. Equating this into our formula
we obtain:

latencyi + nops · penalty =
nops · warpsize
throughputi

⇐⇒ penalty =
warpsize

throughputi
− latencyi

nops

Since we have many instructions we can ignore the latencyi/nops term which leaves us with:

penalty =
warpsize

throughputi
.

The two branches of the formula capture the possible scenarios:

1. Latency is hidden by parallelism. This corresponds to the average case when the GPU can execute
multiple instructions in parallel. That is, until we reach a peak throughput the latency of the
instruction remains constant.

2. The other scenario is when there is enough parallelism to completely hide latency. From our
experiments, we know that increasing parallelism after this point does not lead to any gain in
performance. Thus the work of the extra threads is serialized. We model this by adding a penalty
for each parallel instruction. The penalty is equal to the reciprocal throughput since the hardware
runs at peak performance.

The two scenarios are separated using a threshold for the level of parallelism – maxi. The threshold
varies depending on the type of instruction. Our experiments have shown that the most common value
is 16 independent instructions (see Table 3.1).

Notice that the delay of an instruction changes from one segment of code to the other based on the
amount of provided parallelism.

To validate our formula we measured the throughput for a kernel which contains a number of dependent
madd instructions by varying the number of warps.

Let us consider a kernel with n dependent madd instructions. The throughput is the number of instructions
divided by the execution time. The total number of instructions is equal to the number of madds in a kernel
(n) multiplied by the number of spawned threads (TLP ). Since we deal with dependent instructions
ILP = 1. Using our formula we have that the total execution time is TLP ·

∑n
i=1 delay(madd). By

dividing the two values we obtain:

n · TLP
n · TLP · delay(madd)

=
1

delay(madd)
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Figure 4.3: Comparison between predicted and measured throughput.

Using the information from Table 3.1 we know that madd has a latency of 22 cycles, a throughput of 16
instructions per cycle, and the number of warps needed to reach peak is 11. Plugging these numbers into
our formula we obtain:

delay(madd) =


22
TLP if TLP ≤ 11

22
TLP · 11 + 32

16 otherwise

The validation results can be seen in Figure 4.3. Note that until we reach the threshold, which in this case
is 11 warps, throughput increases linearly. After this point, the throughput remains constant. Although
we show the validation for madd, this behaviour is common to all GPU instructions.

4.3.2 Memory instructions

The other important part of our model is the delay of memory instructions. Memory instructions are
handled differently because they are not only influenced by parallelism, but also by coalescing and bank
conflicts.

Since our experiments indicate that memory behaves similarly to compute, we use a similar approach to
obtain the following formula:

delay(i) =


latency

ILP · TLP if ILP · TLP ≤ maxp

latency
ILP · TLP + penalty otherwise

�� ��4.6

where latency is the memory latency, maxp is the level of parallelism needed to reach peak performance,
ILP and TLP are the instruction-, respectively the thread-level parallelism factors, and penalty is the
serialization term at peak performance.

We now focus on computing the penalty term. The major difference between compute and memory
comes from the way we compute the serialization term. In the compute case only parallelism played a
role. Therefore we used only the throughput to calculate it. In the memory case, we also need to account
for coalescing and bank conflicts effects.
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In general, the memory performance factors can be expressed using two parameters. The first parameter,
transfer, represents the amount of data that is read or written to memory. This amount can be higher
than the requested size because of bad coalescing and bank conflicts. The second parameter, bandwidth
represents the speed of the transfer. This parameter captures the effects of parallelism in the memory
subsystem. That is, having more requests means higher bandwidth, until the peak is reached, after which
requests get serialized.

To compute the value for penalty we again reason about what happens when there are many memory
requests. Since there are many data transfers, the delay can be computed by dividing the transfer size
to the bandwidth. By equating this into our formula, we obtain:

latency + nreq · penalty =
nreq · transfer

BW
⇐⇒ penalty =

transfer

BW
− latency

nreq

where nreq is the number of requests which captures both ILP and TLP , transfer is the amount of data
transferred per request, and BW is the memory bandwidth. Since we have many requests we can ignore
the latency/nreq term, which leaves us with

penalty =
transfer

BW
.

�� ��4.7

The amount of transferred data depends on the type of the accessed memory. For global memory transfer
size can be increased by bad coalescing, and for shared memory transfer size can be increased by a large
number of bank conflicts.

Global memory. In the global memory case, the important factor which influences performance is
coalescing. We know from Figure 3.4 that bandwidth drops linearly when requests are scattered. As
explained in Section 2.2.3, bad coalescing means that there are more requests issued per warp (see Figure
2.8). We account for this in our transfer formula by introducing a coalescing term:

penalty =
size · c
BW

�� ��4.8

where size is the line size of a global memory transaction, c is the number of requests generated by bad
coalescing, and BW is the global memory bandwidth.

Figure 4.4a depicts the behaviour of our formula in the same conditions as the coalescing experiment
from Section 3.2. We instantiate the formula using the values obtained from our experiments: BW is
86.4 GB/s, maxp is 8, and latency is 500 cycles. To use the bandwidth in our formula we express it in
bytes/cycle using the GPU clock, which gives us BW = 86.4/1.35 = 64. Thus we obtain:

delay(i) = 500 + 8 · 128 · c
64

= 500 + 16 · c

To make the comparison easier with Figure 3.4, we plot the bandwidth which is the inverse of the delay.
As expected, bandwidth drops when coalescing is increased.

Shared memory. In the shared memory case, we do not have coalescing issues, but instead we have
bank conflicts. Having bank conflicts means that requests to the same bank are serialized. We account
for this by having two components in our penalty formula:

penalty =
warpsize · size
nbanks ·BW

+
c · size
BW

�� ��4.9
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Figure 4.4: Predicted values for coalescing and bank conflicts.

where size is the number of transferred bytes, nbanks is the number of banks, c is the number of bank
conflicts and BW is the bandwidth of a single shared memory bank.

The first term corresponds to the requests which are served in parallel by all banks, while the second
term represents the requests which are serialized.

Figure 4.4b shows how our formula behaves in the same situation as the shared memory experiment
depicted in Figure 3.5. As parameters we use the values measured in our experiments: latency is 36
cycles, bank bandwidth 32 bytes per cycle, 32 banks, and for the peak value we use 8 warps. Applying
the formula using these values we obtain:

delay(i) = 36 + 8 ·
(

4

32
+

4 · c
32

)
= 37 + c

The figure shows that the function has the same shape as the experiment.

4.4 Summary

In this section we have presented the analytical model which is used to predict GPU execution time.
Besides the execution time, we model also the overhead introduced by parallelization. The formulas
were created by identifying performance factors and quantifying their effect using benchmarks. Table 4.1
shows a summary of the parameters of our model.

In the next chapters we will explore how our model is instantiated and present how we compute values
for the parameters.
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Target Parameters Formula

Overhead

• CUDA context initialization

• kernel call overhead

• CPU-GPU communication

�� ��4.3

Execution

Common:

• instruction-level parallelism

• thread-level parallelism

• peak parallelism

Compute:

• latency

• throughput

Memory:

• latency

• bandwidth

• coalescing

• bank conflicts

�� ��4.4�� ��4.5�� ��4.6�� ��4.8�� ��4.9

Table 4.1: Summary of model parameters.

34



5
Model instantiation

Now that we have an analytical model we are half way to reaching our goal of performance prediction.
All that is missing is to instantiate the model by computing values for the parameters.

As with every analytical model, the accuracy is governed by two major factors. The first is the level of
abstraction encoded in the model. The second represents the values with which the model is evaluated.
In the previous section, we saw that our model takes into account all major GPU parameters. In this
section we present ways of computing values for those parameters.

To do this, we must understand what are the sources of these parameters. Because our model is an
abstraction of the hardware, a single parameter corresponds to a suite of microarchitectural factors. The
effects are related in nature, but can come from a multitude of sources.

Let us take for example memory bandwidth. In reality bandwidth is influenced by the whole memory
subsystem and not just by coalescing and bank conflicts. It is also influenced by channel conflicts, the
path used for issuing a request and lots of other hardware details which our model abstracts from.

This illustrates the conflict between accuracy and abstraction in an analytical model. Higher accuracy
comes from using multiple parameters. But, having to compute multiple parameters can lead to perfor-
mance loss and/or make the model only applicable to a single architecture.

To balance this, we abstract the minor factors by incorporating their average behaviour into the values of
major parameters. An example of this, is that we do not use the theoretical memory bandwidth value in
our model, but instead use a measured value. Since the value is measured it already contains a penalty
for the effects which we do not model explicitly.

In what follows, we describe the sources of different parameters (Section 5.1), present the instantiation
workflow of the whole system (Section 5.2) and explain the trade-offs involved. We conclude this section
by showing what metrics can be computed using our model (Section 5.3).

5.1 Parameters

In the previous section we validated the formulas of our model by instantiating the parameters using
values computed from benchmarks. In this section we explain what are the sources of the parameters
and how we can compute values for them.

From a modelling point of view we can group the parameters into three categories based on their source:
hardware, kernel, and runtime. We now proceed to explain what factors fall in each category and for
each source we describe the methodology for computing values.
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Figure 5.1: Instruction scheduling example.

Hardware factors. In the first category, we have factors which are influenced entirely by hardware.
These factors do not depend on the kernel, or the values of the input parameters, and typically represent
hardware limitations. In our model these factors are: hardware constants (e.g., warp size, number of
banks), latency of instructions, throughput for compute instructions, and memory bandwidth.

Values for these parameters are obtained from hardware specifications like the CUDA C Programming
guide [26] or CUDA C Best Practices guide [25] (e.g., warp size, number of banks). The advantage of
this is that it requires little effort.

In case the information is missing, another way to compute values is through benchmarks similar to those
performed in Section 3. Because the official documentation from NVIDIA does not specifically give values
for the GF104, we also employ benchmarks to confirm values of hardware parameters. An example of
this is global memory latency: the official documentation gives a value between 400 and 800 cycles, while
our benchmark shows that it is 500 cycles (details in Section 3.2).

Kernel factors. The next category deals with factors which are influenced by the kernel code. The
most important factor which falls in this category is instruction-level parallelism (ILP). ILP represents
the number of independent instructions which can be executed in parallel. Instructions can be executed
in parallel if there are no dependencies between them.

Another factor that influences ILP is instruction scheduling: by ordering instructions using the relation
defined by dependencies we obtain only a partial order, i.e., independent instructions can be scheduled
in any order. Because the hardware is optimized for certain types of instructions the order is important.
In CUDA, instruction scheduling is the responsibility of the compiler.

Since the ILP value depends only on the instructions of the kernel we compute its value by examining the
data-flow graph and reporting the available parallelism. Since there is no official documentation about
the scheduling order, we use an as-soon-as-possible (ASAP) ordering of instructions using the latencies
obtained through experimentation.

To showcase the importance of scheduling consider the example from Figure 5.1. We have to schedule
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the provided basic block (Figure 5.1a) on two compute units where an addition takes two cycles and
every other instruction takes one cycle. The difference in scheduling can be seen by comparing the total
execution time of two possible schedules. The schedule from Figure 5.1c takes six cycles, while that from
Figure 5.1d takes five cycles. The difference between the two schedules lies in the way ties are broken, e.g.,
scheduling first I5 then I3 or the other way around. In our case we use the heuristic proposed by Cooper
et al. [7] which suggest scheduling the instruction which finishes first. In their paper, they empirically
prove that for real world programs this method works well.

Runtime factors. The last category, represents the factors which are influenced by dynamic sources.
That is, they depend on the actual values of the runtime parameters. The most important factor in this
category is thread-level parallelism (TLP). As we saw in the previous sections, TLP is the key performance
factor on the GPU, because it enables peak performance. The main factor which influences TLP is the
kernel launch configuration, which specifies the number of available warps. As we seen, having more
warps leads to better performance. Besides this, TLP can decrease because of dependencies: a warp has
to wait for the result of an instruction or for a memory request in order to be able to execute.

Because of its dynamic nature, we compute TLP by simulating the GPU execution at a very coarse level.
The main goal of the simulation is to keep track of the number of active warps which corresponds to
TLP. By performing this simulation we also achieve another goal: we can identify hotspots and report
them to the user as potential bottlenecks.

5.2 Instantiation workflow

In this section we present the general workflow for computing parameters values. For parameters which
depend entirely on the hardware we run benchmarks or use specifications. The benchmarks and speci-
fications are presented in detail in Section 2.2.2 and Section 3. Here we focus on parameters which are
influenced by the GPU kernel and the launch configuration: parallelism (both instruction- and thread-
level), coalescing, bank conflicts, and data transfer size.

Figure 5.2 gives an overview of our performance prediction system. The main workflow is depicted in
Figure 5.2a. We start by running program analyses to compute the majority of parameters (coalescing,
bank conflicts, instruction-level parallelism).

The architecture of our system is presented in Figure 5.2b. The analyses represent the foundation upon
which we run our simulation.

In our model we estimate thread-level parallelism by running a coarse level simulation. Since the current
program representation is not suitable for such a task we use the analyses results to create a simplified
version. To run the simulation we also require the size of the workload, which is determined by the kernel
launch parameters. Since the C language does not have such a concept, we compute suitable values for
the block and grid size.

After running the simulation we aggregate the results into a report which contains performance estima-
tions.

In what follows we focus on explaining the GPU simulation since it computes the most important param-
eter of the performance model, TLP. Because the simulation relies on program analysis we give a brief
overview of the system and defer the details to Section 6.
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Figure 5.2: Overview of performance prediction

Parameters computed using program analysis

Our primary technique for computing parameters values is program analysis. In the context of vfEmbed-
ded– the tool in which we integrated our work, program analysis has a central role. vfEmbedded mainly
relies on dynamic program analysis to compute data dependencies which are then used to parallelize
programs.

In parallel with our efforts of performance prediction, a static analysis module has been developed and
integrated which contains analyses designed to automatically transform programs to the GPU.

The module provides a report which contains the size of the transfered data, the size of requests for each
memory access, and information regarding loads which can benefit from shared memory. The results
are used as parameters in our model to estimate transfer overhead and compute the delay of memory
instructions. Since the analysis only provides coalescing information, we adapt the technique to compute
bank conflicts. Details about this procedure are provided in Section 6.1.

Another important parameter which is computed using program analysis is ILP. Since ILP is determined
by the dependencies of the program it can be computed statically. To this end, we developed an analysis
which estimates the amount of ILP for a program (Section 6.2).

In summary, the parameters computed using program analysis are:

• coalescing

• bank conflicts

• instruction-level parallelism

• size of transfered data

5.2.1 GPU simulation

The only parameter left to compute is thread-level parallelism (TLP). In contrast to instruction-level
parallelism, TLP is influenced by dynamic variables, such as kernel parameters values, block and grid
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compute memory idle

2 1W1

1 1W2

W0 3 1

Figure 5.3: Interleaving of warps on the GPU. Numbers represent warps which are ready to execute.

size.

In our model, TLP represents how well threads can be interleaved and corresponds to the number of
ready to execute warps. This number varies depending on the computation which are executed. To
illustrate this, consider an SM which allows only one warp to execute computations, and only one warp
to access memory. Figure 5.6 shows a possible interleaving of a kernel with 2 compute (coloured in blue)
and memory (coloured green) instructions using 3 warps. Note that warps execute in parallel only if
enough resources are available. The numbers attached to compute instructions represent the available
warps. Even if we assume a fixed scheduling, it is infeasible to capture this behaviour with a formula.

Since we cannot use a formula, we turn our attention to another performance prediction technique –
simulation. Although more costly than formulas, simulations are designed to model dynamic behaviour
with high accuracy.

To keep the computation cost manageable we make some simplifications to the simulation. That is, we
focus on keeping track of available warps and do not model the full GPU hardware. This has the added
benefit that it makes our model more generally suitable for a range of GPUs.

We now proceed to explain the simulation workflow. We start by presenting the inputs to the simulation:
the representation and the kernel launch parameters. After this, we show the simulation algorithm and
explain its features and design choices.

Simulation input representation. The current program representation is designed for program anal-
ysis. This makes it unsuitable for simulation since some information is missing (e.g., delays of instructions)
or there is information which the simulation abstracts from (e.g., data-flow). Thus we perform a conver-
sion which adds the missing information and abstracts unnecessary details. Since our representation is
flat we call it a trace. A trace represents the computations of a warp.

As we saw in the previous example we only need to keep track of the active warps. To do this we
need to model the execution units and the warps which execute on them. From this point of view, we
distinguish between instructions which target the execution units of the SM and instructions which target
the memory subsystem. The former we name compute and the latter memory instructions.

From a performance prediction point of view we are only interested in the amount of time it takes an
instruction to execute. Thus we add a single attribute to the each operation which represents its delay.

To increase the performance of our simulation we abstract control-flow. That is we create a flat trace
of the control-flow graph of the program. Sequential control-flow is not affected, but branches and loops
are. For branches we serialize all the alternatives. This corresponds to branch divergence as explained
in Section 2.2.3. In the loop case, we make the assumption they are synchronous and do not cause
divergence. Thus, we flatten them by multiplying the delay of the instructions which constitute the body
by the loop count.

In summary a trace of a GPU kernel is a flattening of the programs control-flow graph, where each node is
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int off = x + 3 * y;
for(i = 0; i < 10; i++)
      out[i] = in[i+idx];
      out[i+2]= in[i + idx + 2]; 
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Figure 5.4: Creating a GPU trace.

either compute or memory and is decorated with the delay of the instruction. Because we use the average
number of iterations when flattening loops, we obtain a trace which models the average behaviour of a
kernel warp.

Figure 5.4 shows an example of the creation of a trace. For ease of reading, we use a high-level language
as the initial representation. For delays we assume that each compute instruction takes 10 cycles, while
a memory instruction takes 30 cycles. Notice that the delay of instructions which correspond to the loop
is adjusted using the loop count, i.e., it is higher by a factor of 10.

The second part of the figure shows how we prepare the trace for the simulation. Since ILP can be
computed statically, we adjust the delays of instructions using its value. This is the first step in computing
the delay formulas

�� ��4.5 and
�� ��4.6 . In the example kernel, we have an ILP of 2 for the body of the loop,

and an ILP of 1 everywhere else.

Computing kernel launch parameters. The other prerequisite for the simulation are the kernel
launch parameters: the grid and block size. The current infrastructure on which we work supports
converting loops to GPU kernels. In order to be able to compute a valid mapping between the loop
iteration space and the GPU thread grid several constraints must be satisfied. One of the constraints
requires the loops to be normalized. This amounts to having all the induction variables start at zero and
incrementing them by one at every iteration.

Because we have the loop counts we need to focus only on computing a suitable block size. As mentioned
in Section 2.2.3, block size is influenced by the number of used registers, the amount of allocated shared
memory, and by the hardware constraints of the GPU.

Since the current program representation makes use of virtual registers we must use register allocation
techniques to estimate the number of used registers. Details about this analysis are available in Section
6.4. To compute the amount of shared memory we process the information reported by the program
analysis infrastructure. Details are given in Section 6.1.

To abstract loop dimensionality we compute the number of warps per block (nw) and then convert that
number into a block size. This also ensures that the block size is a multiple of the warp size, thus avoiding
spawning threads which do no useful computation. If the loop is one dimensional, then the conversion is
just a multiplication between the number of warps and the warp size. In the two dimensional case, we
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fix the y component to the warp size and set the x component to the number of warps per block. This
is captured by the following formula:

blocks(nw) =

{
nw · warpsize if loop is 1D

(nw, warpsize) if loop is 2D

The problem now becomes to compute nw given the total number of threads nt (which corresponds to
the loop counts), the number of registers per thread nr, and the amount of shared memory per block ns.

We use three strategies to compute nw: evenly divide work amongst SMs, achieve high utilization, and
ensure enough warps to hide latency of instructions. Using these strategies we obtain several values for
nw from which we choose the minimum. This corresponds to:

nw = min
(
n1
w, n

2
w, n

3
w

)
To evenly divide work we divide nt by the number of SMs, that is:

n1
w =

nt
nSM · warpsize

To achieve high utilization we compute the maximum number of warps with respect to registers, shared
memory, and hardware limits:

n2
w = min

(
maxw,

maxr
warpsize · nr

,
maxs

warpsize · ns

)
where maxw is the maximum number of resident warps, maxr is the total number of registers per SM,
and maxs is the total amount of shared memory.

The third strategy computes the number of warps needed to hide the latency of instructions. To do this
we adopt the strategy from [26, Sec. 5.2.3], which indicates the following formula:

warpsl(i) =

{
c · L for compute instructions
c · L
ai for memory instructions

where c is the compute factor specific to each CUDA generation (for CUDA 2.1 c = 4), L is the latency
of the instruction, and ai is the arithmetic intensity. For more details about how we compute arithmetic
intensity we refer the reader to Section 6.3. Since the kernel has multiple instructions we take the
maximum:

n3
w = max

i∈insns
warpsl(i)

Simulation algorithm. Having the trace and the launch parameters we can perform our simulation.
As mentioned to estimate TLP we need to keep track of the ready to execute warps. We do this by
simulating the execution units of the GPU. Our target is to model the execution described in Section
2.2.3.

Our approach contains two steps: distribution of workload, and simulation. The goal of the first step is
to create the input for simulation. That is, using a trace and the launch parameters, create warps which
can then be simulated. The goal of the second step is to keep track of the active warps by simulating
GPU execution. In what follows we present the two steps and the trade-offs involved.

41



5.2. INSTANTIATION WORKFLOW

Compute
units

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

Memory
units

...

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

Ready
queue

Memory
queue

... C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C 50

M 150

M 150

C 50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

Block
queue

... C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C 50

M 150

M 150

C 50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

C10

C110

C50

M 150

M 150

C50

M 150

M 150

Figure 5.5: GPU simulation architecture overview.

As mentioned earlier, the first step deals with creating warps which will be simulated. It is infeasible to
simulate the full workload of the GPU because it can contain an arbitrary amount of warps.

To make the workload manageable, we assume that blocks have roughly the same behaviour. This means
that they take roughly an equal amount of time to execute. This assumption is reasonable because blocks
contain warps which model average behaviour. Furthermore, this fits with the general GPU model which
is optimized for data-parallel algorithms.

This allows us to simulate only a fraction of the workload and extrapolate the results. That is, if we have
a workload of n warps, we only simulate W warps and obtain a runtime of t cycles. We extrapolate the
results as follows:

total =
t · n
W

Another assumption that we make is that the workload is equally distributed. This means that each SM
receives an equal amount of blocks, which allows us to simulate only a single SM. Since SMs execute in
parallel, the total execution time is the execution time of a single SM.

In summary, if we have a workload of n warps, and a GPU with SM multiprocessors, we perform the
simulation on:

min
( n

SM
,W
)

We now proceed to explain the simulation algorithm. Figure 5.5 contains an overview of the simulation
architecture. We use two types of execution units which correspond to the types of trace instructions.
The execution units are modelled as queues which contain warps. We model contention on them by using
queues. That is, when an execution unit is busy and a warp requests access we enqueue the warp in
order to process it later. To respect the hardware limit regarding maximum resident warps resw, we use
a block queue and allow the execution of up to resw warps.

The value of TLP is the number of warps which are ready to execute. When an instruction is executed
we adjust its delay by dividing with the TLP factor. By doing this we obtain the final formulas of our
model:

�� ��4.5 and
�� ��4.6 .
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Figure 5.6: Example of adjusting delay using TLP.

As we saw in those formulas, the division by TLP models the fact that the instructions latencies are
hidden using other warps. In our simulation the TLP factor can change for the warps in the ready queue
by the time they get executed. If this happens then the total execution time changes and the simulation
is not faithful to the model. To account for this we also adjust the delays of instructions from the ready
queue and mark them as processed. When they are executed we only divide by TLP if we have not
already done so.

Figure 5.6 shows an example of adjusting the delay of a warp using TLP = 2. The scenario assumes that
there are 2 warps, one in the queue and one which is executing. Notice that only the first instruction is
affected. The other instructions will be adjusted when they will be scheduled for execution.

We keep track of the total time by performing a lock-step simulation of the execution units. The simulation
looks at the delay of the current instruction from the warps which are executing and selects the minimum
value. To simulate the passage of time a global clock is incremented with the selected delay. The next
step is adjusting the delays of warps instructions by subtracting the chosen delay. Instructions whose
delay is lower than 0 are removed from the warp.

To identify hotspots we keep track of the time when only memory instructions are executed. We do
this by associating to each memory instruction a value which represents the percentage of its delay in
which the GPUs compute units where idle. This corresponds to a scenario when the ready queue and
the compute units are empty and only memory instructions are executed.

Listing 5.1 contains the pseudo-code of the algorithm. To make the simulation more general we parametrize
it on:

• number of compute units which corresponds to GPUs that can execute warps in parallel

• number of memory units which corresponds to the number of outstanding memory requests

• maximum number of resident warps and blocks

• maximum number of warps to simulate which balances precision with efficiency

• the queuing and dequeuing strategy used for execution units and queues which allows us to see the
effects of scheduling policies on performance

5.3 Reporting performance

After instantiating the model and running the simulation we need to give the user information that will
help him decide if GPU parallelization is beneficial for his program. Our report contains three types of
information: values for metrics which characterize the performance of the kernel, memory hotspots, and
recommendations for parameters which influence performance.
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Algorithm 5.1 Simulation algorithm

procedure simulate(blocks)
time← 0
queuer, queueb ← split blocks according to number of SMs and resw
queuem, unitc, unitm ← ∅
while queuer 6= ∅ or queueb 6= ∅ do

if queuer has space for another block then
add blocks of warps from queueb to queuer

end if
unitc, unitm ← distribute warps from queuer
TLP ← |queuer|+ |unitc| . TLP is the number of executing warps
unitc, unitm ← adjust delay using TLP
delay ← mindelay (unitc, unitm) . instruction with the minimum delay
if unitc = ∅ then

increase idle time of instructions from unitm by delay
end if
unitc, unitm ← subtract delay from unitc and unitm
time← time+ delay

end while
end procedure

The first category contains metrics discussed in Section 2.3.2: speedup, and effective bandwidth. Fur-
thermore we also compute arithmetic intensity and number of floating point instructions per second
(FLOPS). Besides arithmetic intensity, all the others are derived from execution time.

Speedup is computed by dividing the sequential time by the sum of GPU kernel execution and the
overhead. We obtain the sequential time from the available infrastructure:

speedup =
sequential

overhead+ parallel

Effective bandwidth is computed by dividing the size of the accessed data by the execution time. We
compute the size by combining the size of each memory instruction with the number of times it was
executed.

bandwidth =
accessed size

overhead+ parallel

FLOPS is a widely used metric for reporting performance of computer systems. It represents the ratio
between the number of floating point instructions and the total execution time. The number of floating
point instructions is computed using the dynamic instructions counters available in vfEmbedded .

FLOPS =
number of floating point instructions

overhead+ parallel

Arithmetic intensity is a GPU specific metric which measures the ratio between compute and memory
instructions. This can be viewed as a metric which computes the data-parallelism of a kernel. Having
high arithmetic intensity means that there are more computations performed per data element. Details
about how we compute this metric are presented in Section 6.3.

AI =
compute instructions

memory instructions
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Besides these metrics, we also report the memory hotspots of the kernel as computed in our simulation.

As part of running our simulation we compute values for parameters which influence the performance
of the kernel. We use heuristics to compute values for block size. Furthermore, for shared memory
optimizations we choose the ones which are the most beneficial. We do this by preprocessing the shared
memory opportunities presented by the program analysis infrastructure. Because shared memory size is
limited, there can be scenarios where all the opportunities do not fit. When this occurs, we choose the
ones which are the most beneficial from an execution time point of view. Details about this are presented
in Section 6.1.
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6
Supporting analyses

In this section we present the analyses which we use to compute values for parameters. As mentioned in
the previous section, this represents the foundation of our analytical model because it computes values for
the majority of parameters. In what follows we present the available infrastructure (Section 6.1) and then
focus on the developed analyses: instruction-level parallelism (Section 6.2), arithmetic intensity (Section
6.3), and spill/reload analysis (Section 6.4).

6.1 Available infrastructure

In order to implement our program analyses we mainly rely on the existing infrastructure of vfEmbedded .
We were able to reuse and build upon it in order to compute values for the parameters of our model. We
work on an annotated program representation which contains information suitable for both static and
dynamic analyses.

Since our analyses work with language agnostic concepts (e.g., data-flow) we do not clutter the presen-
tation with details regarding the representation. For our purposes, it suffices to say that the program
is represented using a typed control- and data-flow graph (CDFG) which is in static single assignment
form (SSA) [8]. The nodes of the control-flow graph represent basic blocks which correspond to sequences
of instructions through which control flows sequentially. Edges between basic blocks represent jumps in
the program. At the basic block level, nodes correspond to instructions and edges correspond to data
dependencies between instructions. Other details regarding the representation will be given when needed.

Available information

From the static analysis module we make use of the generated report. This contains the size of the
transferred data, the size of requests for each memory access, and information regarding loads which can
benefit from shared memory. An important property of the report is that it is parametrized. This is
useful from a users point of view to generalize to other instances, but in our case this can hinder our
goal of performance prediction because the variables can correspond to any value. The report can be
instantiated using values which correspond to loop counts. To obtain those counts, we use the dynamic
analysis infrastructure and evaluate the report, but even after this step variables can remain.

To illustrate this consider the kernel from Listing 6.1. Note that the value of j depends on the inbound
variable s which is not constrained by the loop count N. In this case, the coalescing report for the a[j]

access will be parametrized by s. Since we don’t know anything about the actual value of s, we assume
bad coalescing and consider the maximum number of requests (32).
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1 for(int i = 0; i < N; i++){

2 int j = s * i;

3 a[j] = j + i;

4 }

Listing 6.1: Kernel for which the instantiated report contains variables

As a general rule, when interpreting values which contain variables we take a pessimistic approach. As
the static analysis package is not yet published, we cannot provide any references, and restrict ourselves
to explaining only the parts which we use.

The number of memory requests represents the coalescing parameter in formula
�� ��4.8 , while the size of

the transferred data is used to compute parallelization overhead
�� ��4.2 . When the number of requests is

a variable we assume bad coalescing using the maximum number of requests, i.e., 32. If we encounter a
parametrized transfer we cannot provide a maximum value, and ignore the transfer. Although it sounds
unreasonable, in practice this choice has little impact on the quality of our predictions because most of
the values in GPU programs are dependent on loop counts, for which we already have values.

Processing shared memory information

The existing infrastructure produces information about which loads can benefit from shared memory.
Without this information all loads would be to global memory because the concept of shared memory is
not available in the C language.

In order to give the user a real estimation about the actual benefits of GPU parallelization, we suggest
which sharing opportunities give the best results and compute the number of bank conflicts.

Computing bank conflicts. From a performance prediction point of view, having shared memory
implies that coalescing effects are replaced with bank conflicts. In order to compute the number of bank
conflicts for a memory instruction we adapt the technique developed for computing coalescing.

The static analysis infrastructure computes coalescing requests by analysing memory expressions. The
expressions symbolically represent the address of the instruction and are parametrized with program
variables. Algorithm 6.1 gives an overview of the algorithm. We receive as inputs the access expression
f which corresponds to a generic warp, the number of banks nb and the width of a bank bw. To compute
bank conflicts we instantiate the expression for all the threads of a generic warp. The number of bank
conflicts is detected by looking at how many of these offsets fall within the same bank. If we cannot fully
evaluate the expressions we pessimistically return the maximum number of bank conflicts.

Instantiating shared memory opportunities. As mentioned the output of the static analysis is a
list of sharing opportunities. It can be the case that not all of these fit into shared memory, which leads
to the need to choose between them.

We can view this a knapsack problem: we have a knapsack which corresponds to shared memory capacity,
and the opportunities are objects which we must pick. The weight of an object represents the size that
it occupies in the knapsack, which in our case is the size of the opportunity. The value of an opportunity
depends on the number of times that instruction was executed.

As with other results obtained from static analysis, the size of an opportunity is parametrized using the
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Algorithm 6.1 Bank conflicts algorithm

procedure get bank conflicts(f ,nb,bw)
offsets ← [f(x), f(x+ 1), . . . , f(x+ warpsize)]
banks← map (λ o→ (o / bw) mod nb) offsets . compute the bank accessed by each thread
if banks contains variables then

return maxconflicts

else
bankmap ← create mapping from banks to threads
return max(bankmap,maxconflicts)

end if
end procedure

dimensions of the block. To obtain numeric values, we instantiate the variables which correspond to
the block size. To do this we use the same methodology as that used for computing block size in the
simulation. The only difference is that we ignore shared memory constraints since our goal is to compute
them.

Since in the general case knapsack problems are NP-hard, we use a greedy heuristic to solve our problem.

Algorithm 6.2 Greedy algorithm for choosing shared memory opportunities

procedure get shared memory(oportunities,block,freq,memsh)
sizes← evaluate oportunities using block
opportunities← remove opportunites which have parametric size
benefits← map (λsi → freqi/si) sizes
sort opportunities in decreasing order of benefits
shared← choose first n entries from opportunities which fit in memsh

return shared
end procedure

Algorithm 6.2 contains the main steps of the algorithm. We start by evaluating the opportunities using
the given block size. We compute the benefit of each opportunity by dividing its execution frequency
to its size. Thus opportunities which are often executed are preferred. We sort in decreasing order the
opportunities based on their benefit, and choose the ones which fit into the available shared memory.

6.2 Instruction-level parallelism approximation

As we saw in Section 4 one of the most important parameters of our model is the ILP factor. ILP
represents the number of instructions which can run in parallel. To illustrate this concept consider the
following example:

1 e = a + b

2 f = c + d

3 g = e * f

The instruction on line 3 depends on the previous two instructions, thus it cannot be computed until
both of them have completed. On the other hand, the two additions do not depend on other instructions,
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so they can be computed in parallel. If we assume that an instruction takes 1 cycle to complete, then
the three instructions will finish in 2 cycles, giving an ILP of 3/2.

In order to estimate the amount of ILP we analyse the data-flow graph (DFG). Our formula for computing
ILP is to take the ratio between the number of instructions in the graph, and the longest dependency
chain. That is:

ILP =
ninsns
p

�� ��6.1

where ILP is the instruction-level parallelism, ninsns represents the instructions of the DFG, and p
represents the longest path in the DFG.

The longest path corresponds to instructions which are sequentially executed. If we assume that each
instruction takes the same amount of time t, then the execution time will be the sum of the instructions
on the longest path. This is because other instructions have less dependencies and will finish sooner.
Using this analogy, ILP can be viewed as a form of speedup:

ILP =
sequential execution

parallel execution
=
ninsns · t
p · t

=
ninsns
p

In general computing the longest path in a graph is an NP-hard problem. In the case of acyclic graphs,
the problem can be solved using a topological sort in O(|V |+ |E|), where V is the vertex set and E is the
edge set of the graph. In order to use this algorithm, we take advantage that our DFG is in SSA form.
A property of SSA is that each variable has exactly one definition. This means that the graph does not
contain any cycles.

If we apply the formula to the previous example we obtain ILP = 3/2 which is the exact value. Note that
our parameter is an approximation for the real ILP value. This is because in reality, ILP also depends on
the ability of the hardware to extract it. That is if we have a program with infinite ILP, the hardware is
not able to process it. In our model we explicitly model this behaviour by adding serialization penalties,
as explained in Section 4, formulas

�� ��4.5 and
�� ��4.6 .

6.3 Arithmetic intensity analysis

As described in Section 2.2.3, an SM relies on thread-level parallelism to maximize utilization of its
functional units. Utilization is therefore directly linked to the number of resident warps. At every
instruction issue time, a warp scheduler selects a warp that is ready to execute its next instruction, if
any, and issues the instruction to the active threads of the warp.

In Section 5.2.1 one of our strategies for computing block size is to ensure there are enough warps to hide
latency. In that case, arithmetic intensity was used to scale the latency of memory instructions. This
corresponds to the empirical observation that more warps are needed to hide latency if the ratio between
on-chip and off-chip instructions is high.

In order to compute this value, we analyse the kernel and compute the number of on-chip and off-
chip instructions. An instruction is considered on-chip if all of its arguments are either registers of other
compute instructions or come from shared memory. In all other cases we consider the instruction off-chip.

Algorithm 6.3 gives an overview of the algorithm. We have as input: the data-flow graph DFG, the
variables which are stored in shared memory sh, and the input and output variables of the kernel inouts.
Using sets on and off we keep track of the variables which are either on- or off-chip. Variable n denotes
the number of on-chip instructions, while variable m denotes the number of off-chip. The algorithm also

49



6.4. SPILL/RELOAD ANALYSIS

Algorithm 6.3 Arithmetic intensity algorithm

procedure arithmetic intensity(DFG,sh,inouts)
on← sh
off← inouts
n,m← 0
for all nodes v ∈ V (DFG) in BFS order do

if uses(v) ∩ off = ∅ then
n← n+ 1

else
m← m+ 1

end if
if v is ld/st and uses(v) ∩ off = ∅ then

on← defs(v) ∪ on
else

off← defs(v) ∪ off
end if

end for
return n/m

end procedure

makes use of two functions: uses which returns the operands of an instruction, and defs which returns
the result variable of the instruction.

As per our definition, we initialize on with variables stored in shared memory. We consider the input and
output variables to be off-chip because they are stored in global memory. The algorithm examines the
nodes of the DFG in a breadth-first manner in order to ensure that all of the current nodes operands are
already processed. We distinguish between two types of instructions: memory (represented by loads and
stores) and everything else. For all instructions we check if their operands are on- or off-chip and increase
the corresponding counters. In the case of memory instructions we also add the resulting variable to the
corresponding set. This is done so that depending instructions treat them accordingly.

6.4 Spill/reload analysis

The program representation of our infrastructure uses virtual registers. Usually the number of live
variables at an instruction (i.e., register pressure) is much higher than the number of hardware registers.
Even though GPUs have thousands of registers, they are shared between thousands of threads. To solve
this problem the compiler introduces spill code by saving some of the registers to memory and restoring
them when they are needed.

From a performance prediction point of view, we are interested in this behaviour because spill code
introduces memory accesses which are costly. If we know that an instruction generates a spill, then we
modify the trace such that it contains an additional memory instructions. We know from [26, Sec. 5.3.2.2]
that on the Fermi architecture spilled variables are cached. In accordance to this we use the shared
memory timings.

To detect spills we use the well known MIN [3] algorithm which spills the value which has the furthest
use. The algorithm is given in Algorithm 6.4. It operates on the data-flow graph of a basic block.

To compute the instruction which has the furthest use, we define the nextUse function. This function
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computes the next-use distance of a variable v at an instruction I by counting the number of instructions
between I and the next use of v in the block. If I is the next use, the distance is 0, and if there is no
other use in the block, the distance is ∞.

The variables which are currently in registers are denoted in the set W . Initially W is empty. The
algorithm traverses the basic block from entry to exit, updating W according to the effects of each
instruction. On the GPU, an instruction I can be viewed as:

I : (y1, . . . , ym︸ ︷︷ ︸
defs(I)

)← τ(x1, . . . , xn︸ ︷︷ ︸
uses(I)

)

xi are the operands which must be available in registers, and yi are the results which are written to
registers. At any program point, the register file cannot contain more than k (the number of available
registers) elements. The effects of an instruction I on W are:

1. All variables in uses(I)−W have to be reloaded before I. Thus, they have to be added to W . If
W does not have enough room, |W |+ |uses(I)−W | − k variables in W have to be spilled.

2. None of the variables in |defs(I) can be in W directly in front of I since all of these variables are dead
there. Hence, we need defs(I)| free registers. If there is not enough room in W , |W |+ |defs(I)−k|
variables have to be evicted from W .

These steps are performed by the algorithm on each instruction using the helper function LIMIT. The
function takes the current register set W and sorts it according to the next-use distance from I, and
evicts all but the first m variables. The first call to LIMIT makes room for the operands and the
second provides room for the results. In the latter case, the next-use distance is measured from the next
instruction because the uses of I do not matter when I writes its results.

The algorithm also utilizes the fact that the program is in SSA form. A property of SSA is that each
variable has exactly one definition and thus needs to be spilled at most once. If a variable is evicted
multiple times, a spill is placed only at the first eviction. We keep track of evicted variables using the
set S which corresponds to the variables spilled from W . We modify S in two scenarios: when a variable
is reloaded, and when it is spilled. In the first scenario, since the variable is reloaded it must have been
spilled previously. In the second scenario we only spill a variable if it was not already spilled and its next
use is not ∞.

As a starting value for k we use the maximum number of registers per thread, which in the Fermi
architecture is 64.

Summary

In this section we have seen how we employ the current program analysis infrastructure to compute
values for the parameters of the model. We show how we compute values for coalescing and bank
conflicts, instruction-level parallelism, and arithmetic intensity.

To improve the precision of our model we also take into consideration register spills. The MIN algorithm
works well for code which has long basic blocks as shown in [10]. Since it only looks at the basic block
level, it can insert spills and reloads inside loops which leads to unnecessary memory instructions. An
improvement would be to generate spills at the function level as done by current compilers.
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Algorithm 6.4 MIN algorithm

procedure min algorithm(DFG, k)
W,S ← ∅
for I ∈ DFG do

R← uses(I)−W
W ←W ∪R
S ← S ∪R
LIMIT(W,S, I, k)
l← k − |defs(I)|
LIMIT(W,S, next(I), l)
W ←W ∪ defs(I)
reload variables from R

end for
end procedure

procedure limit(W,S, I,m)
sort(W, I)
W,W ′ ← split(W,m)
for w ∈W ′ do

if w /∈ S ∧ nextUse(I,m) 6=∞ then
add a spill for w before I

end if
S ← S − w

end for
end procedure

52



7
Validation

In this section we show how well the execution times predicted by the proposed performance model
comply with the actual measured times.

In our experiments we used the NVIDIA GTX 460 GPU. Since this is the same card on which we
performed experiments in Section 3 we use those values for instantiating hardware parameters. For
examples of values for instructions we refer to Table 3.1. For global memory we use a latency of 500
cycles (Figure 3.2) and a bandwidth of 86.4 GB/sec (Figure 3.3). Since we are performing the simulation
on a single SM, we scale the bandwidth accordingly. That is, we use a value of 86.4/7 = 12.34 GB/sec.
For shared memory we use a latency of 36 cycles (Figure 3.2) and for bandwidth we use the theoretical
value of 4 bytes/cycle. The behaviour of the obtained formulas can be seen throughout the figures in
Section 4.

Because we do not model caches, when performing measurements on the GPU we disable them. We do
this by compiling with the flags -Xptxas -dlcm=cs which enables streaming behaviour. That is, at every
cache query the results will be invalidated.

We perform several experiments which validate different aspects of our model. The experiments can be
grouped into two categories. The first category tests fundamental properties of our model in isolation,
while the second is designed to test the interaction between them. We compute precision by dividing the
predicted time to the measured time. In this setup, good precision equates to a value close to one, while
optimistic predictions are smaller than one and pessimistic predictions are greater.

As a general remark, input parameters are chosen such that the dynamic analyses performed by the
underlying analysis system finish in reasonable time.

7.1 Fundamental benchmarks

The first experiment is designed to test the accuracy of the instruction delay formula
�� ��4.5 . We do this

by using a kernel similar to the one from Listing 3.4 which we used to benchmark the GPU. To simulate
the same workload we wrap the kernel in a loop with 1024 iterations. Our tool reports an ILP of 1, and
suggests a block size of 160 which corresponds to an evenly distributed workload across the SMs. Since
there are no memory instructions we do not report any hotspots. We performed this benchmark using
mul instructions and achieved a precision of 0.93 which validates our model.

The next experiment is designed to test a deficiency in our system: because we do not analyse binaries
compiled by GPUs, instructions can differ. To illustrate this we consider the same kernel, but we use
madd instructions encoded as a = a * b + c. The GPU compiler uses a single instruction to encode
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this , while our compiler uses a mul followed by an add. In this case the predictions are pessimistic, as
indicated by the 2.12 precision value. This is expected, because the program which we analyse contains
roughly two times more instructions.

The last fundamental experiment is designed to measure the global memory effects. Again we use a
similar kernel as the one for benchmarking (see Listing 3.1). The system identifies the two loads as the
main memory hotspots. When comparing execution time, we obtain a precision of 2.04. The main culprit
behind this is our assumption about equally distributed workload which translates to equally dividing
the bandwidth between SMs. In practice, a single SM could reach the full bandwidth of the GPU.

7.2 Complex benchmarks

We tested our system with two other experiments which test the interaction between performance factors.
In both cases, because of the large workload, the suggested block size was (32, 32) which corresponds to
the hardware limits.

To test coalescing effects we define a matrix transposition kernel. The matrices are linearised and each
thread transposes a tile of the whole matrix. Listing 7.1 illustrates the main portion of the kernel. Only
line 3 represents the actual kernel computation which is also executed on the GPU. Note that the access
to odata is column wise, which implies that consecutive iterations do not access contiguous memory
portions. On the GPU, this translates to bad coalescing. In this case our simulation suggests that the
access to odata is more costly than that to idata. Regarding precision we obtain a value of 1.64 which
further validates our approach.

1 for( y = 0; y < size_y; ++y){

2 for(x = 0; x < size_x; ++x){

3 odata[x * size_y + y] = idata[y * size_x + x];

4 }

5 }

Listing 7.1: Transpose kernel

Our last experiment is designed to test the interaction of all performance effects, including shared memory.
To this end we use a more complex program – a 2D convolution filter. The algorithm process the pixels
of a 2D image by combining them with a filter. Listing 7.2 shows the kernel code. We see that for each
input pixel the filter is overlaid over the neighbourhood and an average value is computed. Because of
space constraints we omit the out-of-bounds check performed along the image edges.

In this case the static analysis reports that the whole filter array and a portion of the in_image can
be stored into shared memory. These shared opportunities fit into the capacity of the shared memory,
thus no selection is involved.

Again notice that we have bad coalescing for in_row and out_row, because both are accessed column-
wise. Because we have put in_row in shared memory, coalescing is not a problem but bank conflicts may
appear. In this case, the results of our bank conflict analysis indicate that the access to in_row does not
suffer any conflicts.

The precision which we obtained for this benchmark is 1.89 which again shows that our approach works.
Regarding the predicted hotspots, our system indicates that the access to out_row is the most costly.
This shows the benefits of shared memory because even though the accesses to in_row and filter are
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Experiment Precision General remarks

mul 0.93 Good accuracy because of throughput

madd 2.12 Analysed code differs

memcpy 2.04 Memory bandwidth estimated for 1 SM

transpose 1.64 –

convolution 1.89 –

Table 7.1: Summary of validation experiments.

more frequent, the access to out_row is to global memory and is uncoalesced.

1 for (y = 0; y < image_height; y += 1){

2 for (x = 0; x < image_width * 3; x += 3){

3 unsigned char *out_row = out_image[y * image_width * 3];

4 int fx , fy;

5 int red ,grn ,blu;

6 for (fy = 0; fy < filter_height; fy += 1){

7 int py = y + fy - (filter_height / 2);

8 unsigned char *in_row = in_image[py * image_width * 3];

9 for (fx = 0; fx < filter_width; fx += 1){

10 int px = x + 3*(fx - filter_width / 2);

11 int coeff = filter[fx + fy * filter_width ];

12 red += in_row[px + 0] * coeff;

13 grn += in_row[px + 1] * coeff;

14 blu += in_row[px + 2] * coeff;

15 }

16 }

17 out_row[x + 0] = red * filter_gain;

18 out_row[x + 1] = grn * filter_gain;

19 out_row[x + 2] = blu * filter_gain;

20 }

21 }

Listing 7.2: Convolution kernel

Conclusions

The experiments performed in this section validate our model. As mentioned, our goal was not cycle-
accurate execution but rather obtaining relative speedup and identifying bottlenecks. A summary of
our experiments is given in Table 7.1. In general we obtain good results for calibration benchmarks,
because our model is derived from their behaviour. In the memory case, we lose precision because of
the assumptions which we made. Furthermore, we validated our model on complex kernels. Again when
memory instructions are introduced we can see that precision decreases, and we become more pessimistic.

The quality of our results needs to be judged also in the context of vfEmbedded– the system in which
we integrated our work. Since it employs an interactive compilation workflow, the error of our model is
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acceptable. Furthermore, data-parallel kernels usually achieve a speedup of 100× on the GPU. Even if
we are 10 times more pessimistic, our tool would still report a 10× speedup which will determine the
user to parallelize the kernel.

Regarding bottlenecks, our system correctly classified the instructions which caused the GPU to idle.
Since the kernels which we tested already achieved the maximum performance no real bottlenecks were
found. We believe this feature will be useful for more complicated kernels, which employ synchronization
or have map-reduce patterns.
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8
Related work

Performance prediction has been extensively studied in the context of parallel and sequential systems
[5, 20, 30, 34] for the past 30 years. Since GPUs have only recently emerged as a viable parallel platform
there is little work about predicting performance for them [1, 2, 12, 19].

Most of these models target the previous generation of GPUs: the GF80 and GF200. Although the same
performance factors are present, their impact is different than in our architecture. For example, on the
GF80 instruction-level parallelism was not exploited and memory requests did not pass through a cache
hierarchy.

Furthermore, all the models use as input native CUDA kernels and do not deal at all with parallelization
overhead. In our case, as input we have a sequential program which has to be transformed to run on the
GPU. Since the program is compiled for sequential execution, instructions can differ to the point where
the two programs cannot be compared.

These factors make the comparison of results impossible. Thus we settle on presenting the other ap-
proaches and compare the techniques. In what follows we group related work into two categories: ana-
lytical models and GPU simulators.

8.1 GPU analytical models

As we have seen, an important part of our research consist of a GPU analytical model. The current GPU
analytical models [12, 19, 1, 35] target the CUDA architecture and propose techniques which address
similar issues as those described in Section 3.

One of the first approaches to define a GPU analytical model is presented in [19]. The authors propose a
solution which combines several known models of parallel computation: PRAM, BSP, and QRQW. Their
model is simple, thus efficient to compute. The main drawback is that they do not model factors like
shared memory bank conflicts, and global memory coalescing. Also, they assume that warps are always
ready to execute, which corresponds to achieving maximum performance.

In [12] Hong and Kim develop a technique which models the number of memory requests by taking into
account memory bandwidth and the number of parallel threads. They perform validation using a set
of micro-benchmarks and report an absolute error between 5.4% and 13.3%. Their main contribution
is the development of two metrics, memory warp parallelism (MWP) and computation warp parallelism
(CWP), which characterize the data-, respectively instruction-, level parallelism of a whole GPU kernel.

Baghsorkhi et al. [1] propose the first model which takes into account branch divergence and bank
conflicts. The model uses techniques from program analysis and symbolic evaluation to make accurate
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predictions. The main contribution is the fact that the model can statically determine loop bounds, data
access patterns and control flow patterns for a restricted class of kernels. Another contribution is the
characterization of GPU parallelism in the context of branch divergence.

We see several major differences between these studies and our work. That is, instead of trying to
build an analytical model based on an abstraction of GPU architecture and then verifying the model
by benchmarks, we adopt the reverse strategy. We first design benchmarks (Section 3), observe the
benchmark results, and then derive a corresponding analytical model respectively for instruction pipeline,
shared memory, and global memory (Section 4). This approach allows us to observe and consider only
the architecture and programming factors that are most relevant to performance.

Zhang and Owens [35] use an approach that is similar to ours. They design a set of micro-benchmarks
from which they derive the simple throughput models. In contrast to our simple simulation, to estimate
time they gather statistics using an actual GPU simulator, Barra [6]. This makes their approach more
accurate but more resource demanding. Furthermore, another difference is the fact that they do not
model bank conflicts.

8.2 GPU simulators

Another successful approach to predicting GPU performance is by using simulators [6, 17, 16, 2]. The
majority of simulators target the CUDA platform and perform simulation either of PTX or native GPU
code. NVIDIA’s Parallel Thread Execution (PTX) [27] is a virtual instruction set architecture with
explicit data-parallel semantics which is suitable for the CUDA architecture.

We present the results in order to compare techniques which could be used to improve our simulation
algorithm. We mainly focus on aspects related to the GPU architecture and the execution model.

Collange et al. [6] implement Barra, a GPU functional simulator for NVIDIA’s Tesla GPUs. Barra is
implemented using UNISM, a modular simulation framework, and uses as input CUDA binary kernels
which are usually executed by the GPU. The advantage of this approach is that it provides cycle-accurate
performance estimations and allows the user to monitor all the GPU activities. Because it uses emulation
the running times of the simulation can be quite long. Since the binary instruction set can be modified
from generation to generation, this approach is not very flexible. Calibration is done in a similar manner
with our benchmarks.

Kerr et al. [16, 17] introduce another GPU simulator framework called Ocelot. The framework provides
an emulation and compilation infrastructure that implements the CUDA runtime API. At the core of the
simulator lies a virtual machine which emulates PTX instructions. By taking this approach the authors
allow not only the emulation of CUDA kernels, but also their translation to different architectures. Besides
predicting GPU performance, Ocelot computes control and data dependencies by gathering instruction
and memory traces.

The most complex GPU simulator to date, GPGPU-Sim, is developed by Bakhoda et al. in [2]. Their
main goal is to provide a tool which allows users to experiment with different GPU architectures and
easily explore the design space. GPGPU-Sim achieves this by emulating the PTX instruction set and
by closely following the CUDA architecture. Also, the simulator features cycle-accurate performance
predictions and allows the changing of several architectural details such as the interconnection network
between the SMs.

58



9
Conclusions

Today, programmers are unable to effectively exploit all the computational power provided by the GPU.
This is mainly because the programming models are not mature enough, thus the programmers must
carefully reason about their programs and manually optimize them. Having to always try optimizations
and run benchmarks to see their effect incurs a high development cost and requires intimate knowledge
of the underlying architecture.

In this thesis we addressed this problem by creating a parametrized analytical model which allows pro-
grammers to estimate execution time and identify potential bottlenecks in their programs. Besides
prediction, our tool also suggests values for parameters that influence performance.

Our system has as input a data-parallel sequential program written in ANSI C99 and is able to provide
performance insights which allow the user to quantitatively assess if the program is worth parallelizing to
the GPU. Our tool answers three main questions: If I convert this program to the GPU what performance
should I expect? What values should I use for parameters which influence performance? If the program
runs slow, where should I start optimizing.

The system is integrated with an existing production ready analysis tool vfEmbedded [33] which paral-
lelizes sequential programs. Our system builds upon its existing GPU mapping capabilities by adding a
performance estimation module.

At the heart of our system lies a parametrized GPU model. The model is developed by characterizing the
GPU behaviour through benchmarks and deriving formulas which measure performance. We target three
major GPU components: the instruction pipeline, the shared memory and the global memory systems.
In order to compute values for the models parameters we employ three techniques. Benchmarks are
used to derive values for hardware parameters such as throughput and latency. For static parameters like
instruction-level parallelism we employ program analysis. Lastly, for dynamic parameters like thread-level
parallelism we use a coarse-level simulation.

By using simulation we are able to pinpoint potential bottlenecks such as memory hotspots. Another
major part of the model deals with predicting the overhead introduced by parallelization.

To our knowledge this is the only analytical model developed for the Fermi architecture. Although we
only calibrated our model for a specific GPU, we believe that our techniques and model apply to other
GPUs. To this day, the performance factors of GPUs are more or less the same. Because we employ
benchmarks to create the model, a similar methodology could be applied to other GPUs in order to
capture their behaviour.
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Future work

This thesis represents the first step towards performance prediction for GPUs. Our work has several
limitations which we hope to address in future work.

First, an important GPU component that is not modelled by our system is the cache hierarchy. Usu-
ally caches improve performance of memory operations which leads to increased bandwidth. Because
we employ simulation, we can extend the infrastructure to include a cache subsystem. In our current
implementation we have already done so but we where unable to correctly calibrate them.

Another important subject relates to instructions which require synchronization. Because the infrastruc-
ture deals with pure data-parallel programs, synchronization was not necessary. Another important class
of GPU kernels are those which contain map-reduce patterns. The reduce part of those kernels requires
synchronization. To this end, in our implementation we have added a synchronization type of operation
which models such instructions. In our simulation, warps with such instructions get synchronized at the
block level. Because this is not currently used by any program, we chose to omit it.

Future work includes also calibration and validation for other CUDA or AMD GPUs. The GPU which
we use for benchmarking and validation, the GTX 460, is a mid level product which is not designed
specifically for GPGPU programming. To this end, we plan to test on GPUs which specifically target
GPGPU programming such as the Tesla C2050. Since NVIDIA is not the only vendor which targets
GPGPU, we also plan to see how well we can adapt our model to other GPUs, such as those from AMD.
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