Uses of Interface
microsim.statistics.IDoubleSource
-
Packages that use IDoubleSource Package Description microsim.statistics microsim.statistics.functions microsim.statistics.reflectors microsim.statistics.regression microsim.statistics.weighted.functions -
-
Uses of IDoubleSource in microsim.statistics
Methods in microsim.statistics with parameters of type IDoubleSource Modifier and Type Method Description voidTimeSeries. addSeries(java.lang.String name, IDoubleSource source, java.lang.Enum<?> valueID)Add a new series.Constructors in microsim.statistics with parameters of type IDoubleSource Constructor Description Double(IDoubleSource source)Create a statistic probe on a collection of IDoubleSource objects.Double(IDoubleSource source, java.lang.Enum<?> valueID)Create a statistic probe on a collection of IDoubleSource objects. -
Uses of IDoubleSource in microsim.statistics.functions
Classes in microsim.statistics.functions that implement IDoubleSource Modifier and Type Class Description classCountArrayFunctionThis class computes the number of values in an array taken from a data source.classMaxArrayFunctionThis class computes the maximum value in an array of source values.static classMaxArrayFunction.DoubleMaxFunction operating on double source values.static classMaxArrayFunction.FloatMaxFunction operating on float source values.static classMaxArrayFunction.IntegerMaxFunction operating on integer source values.static classMaxArrayFunction.LongMaxFunction operating on long source values.classMaxTraceFunctionA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classMaxTraceFunction.DoubleAn implementation of the MemorylessSeries class, which manages double type data sources.static classMaxTraceFunction.FloatAn implementation of the MemorylessSeries class, which manages float type data sources.static classMaxTraceFunction.IntegerAn implementation of the MemorylessSeries class, which manages integer type data sources.static classMaxTraceFunction.LongAn implementation of the MemorylessSeries class, which manages long type data sources.classMeanArrayFunctionThis class computes the average value of an array of values taken from a data source.classMeanVarianceArrayFunctionThis class computes the average and variance value of an array of values taken from a data source.classMinArrayFunctionThis class computes the minimum value in an array of source values.static classMinArrayFunction.DoubleMinFunction operating on double source values.static classMinArrayFunction.FloatMinFunction operating on float source values.static classMinArrayFunction.IntegerMinFunction operating on integer source values.static classMinArrayFunction.LongMinFunction operating on long source values.classMinTraceFunctionA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classMinTraceFunction.DoubleAn implementation of the MemorylessSeries class, which manages double type data sources.static classMinTraceFunction.FloatAn implementation of the MemorylessSeries class, which manages float type data sources.static classMinTraceFunction.IntegerAn implementation of the MemorylessSeries class, which manages integer type data sources.static classMinTraceFunction.LongAn implementation of the MemorylessSeries class, which manages long type data sources.classMovingAverageArrayFunctionThis class computes the average of the last given number of values in an array taken from a data source.classMovingAverageTraceFunctionThis class computes the average of the last values collected from a data source.classMultiTraceFunctionA MixFunction object is to collect data over time, computing some statistics on the fly, without storing the data in memory.static classMultiTraceFunction.DoubleAn implementation of the MemorylessSeries class, which manages double type data sources.static classMultiTraceFunction.FloatAn implementation of the MemorylessSeries class, which manages float type data sources.static classMultiTraceFunction.IntegerAn implementation of the MemorylessSeries class, which manages integer type data sources.static classMultiTraceFunction.LongAn implementation of the MemorylessSeries class, which manages long type data sources.classSumArrayFunctionThis class computes the sum of an array of source values.static classSumArrayFunction.DoubleSumFunction operating on double source values.static classSumArrayFunction.FloatSumFunction operating on float source values.static classSumArrayFunction.IntegerSumFunction operating on integer source values.static classSumArrayFunction.LongSumFunction operating on long source values.Constructors in microsim.statistics.functions with parameters of type IDoubleSource Constructor Description Double(IDoubleSource source, java.lang.Enum<?> valueID)Create a basic statistic probe on a IDblSource object.Double(IDoubleSource source, java.lang.Enum<?> valueID)Create a basic statistic probe on a IDblSource object.Double(IDoubleSource source, java.lang.Enum<?> valueID)Create a basic statistic probe on a IDblSource object.MovingAverageTraceFunction(IDoubleSource source, java.lang.Enum<?> valueID, int windowSize)Create a basic statistic probe on a IDoubleSource object. -
Uses of IDoubleSource in microsim.statistics.reflectors
Classes in microsim.statistics.reflectors that implement IDoubleSource Modifier and Type Class Description classDoubleInvokerNot of interest for users. -
Uses of IDoubleSource in microsim.statistics.regression
Methods in microsim.statistics.regression with parameters of type IDoubleSource Modifier and Type Method Description static <T extends java.lang.Enum<T>>
doubleLinearRegression. computeScore(MultiKeyCoefficientMap coeffMultiMap, IDoubleSource iDblSrc, java.lang.Class<T> enumType)Uses reflection to obtain information from the iDblSrc object, so it is possibly slow.static <T extends java.lang.Enum<T>>
doubleLinearRegression. computeScore(MultiKeyCoefficientMap coeffMultiMap, IDoubleSource iDblSrc, java.lang.Class<T> enumType, boolean singleKeyCoefficients)Use this method when the underlying agent does not have any additional conditioning regression keys (such as the gender or civil status) to determine the appropriate regression co-efficients, i.e.static <T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
doubleLinearRegression. computeScore(MultiKeyCoefficientMap coeffMultiMap, IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDouble, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObject)Requires the implementation of the IObjectSource to ascertain whether any additional conditioning regression keys are used (e.g.<T extends java.lang.Enum<T>>
booleanLogitRegression. event(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
booleanLogitRegression. event(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDbl, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObj)<T extends java.lang.Enum<T>>
booleanProbitRegression. event(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
booleanProbitRegression. event(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDbl, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObj)<E extends java.lang.Enum<E>>
TMultiLogitRegression. eventType(IDoubleSource iDblSrc, java.lang.Class<E> Regressors, java.lang.Class<T> enumType)<E extends java.lang.Enum<E>>
doubleMultiLogitRegression. getLogitTransformOfScore(T event, IDoubleSource iDblSrc, java.lang.Class<E> Regressors)<T extends java.lang.Enum<T>>
doubleLogitRegression. getProbability(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
doubleLogitRegression. getProbability(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDbl, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObj)<T extends java.lang.Enum<T>>
doubleProbitRegression. getProbability(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
doubleProbitRegression. getProbability(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDbl, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObj)<T extends java.lang.Enum<T>>
doubleILinearRegression. getScore(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
doubleILinearRegression. getScore(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDouble, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObject)<T extends java.lang.Enum<T>>
doubleLinearRegression. getScore(IDoubleSource iDblSrc, java.lang.Class<T> enumType)<T extends java.lang.Enum<T>,U extends java.lang.Enum<U>>
doubleLinearRegression. getScore(IDoubleSource iDblSrc, java.lang.Class<T> enumTypeDouble, IObjectSource iObjSrc, java.lang.Class<U> enumTypeObject)Requires the implementation of the IObjectSource to ascertain whether any additional conditioning regression keys are used (e.g. -
Uses of IDoubleSource in microsim.statistics.weighted.functions
Classes in microsim.statistics.weighted.functions that implement IDoubleSource Modifier and Type Class Description classWeighted_MeanArrayFunctionThis class computes the (weighted) average (mean) value of an array of values taken from a data source, weighted by corresponding weights: weighted mean = sum (values * weights) / sum (weights) Note that the array of weights must have the same length as the array of values, otherwise an exception will be thrown.classWeighted_SumArrayFunctionThis class computes the sum of an array of source values, with each element of the array multiplied by the weight of the source (the source must implement the Weight interface).static classWeighted_SumArrayFunction.DoubleSumFunction operating on weighted double source values.static classWeighted_SumArrayFunction.FloatSumFunction operating on weighted float source values.static classWeighted_SumArrayFunction.IntegerSumFunction operating on weighted integer source values.static classWeighted_SumArrayFunction.LongSumFunction operating on weighted long source values.
-