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Discrete choice dynamic programming model

Fit simulated choices to data

Backwards induction is hard to parallelize

Simulated choices are noisy

10 to 50 parameters

Each simulation run takes a few minutes

Prototypical optimization problem



Robust to noise

Parallel function evaluations

Suitable for data �tting problems

Designed for non-expert users

Assumption: Criterion function is expensive!

Goals for an optimizer



Scalar Derministic

Scalar Noisy

Least-squares Deterministic

Least-squares Noisy

Optimization Problems

min  F(x)l≤x≤u

min  EF(x, ϵ)l≤x≤u

min  F(x) =l≤x≤u  f  (x)∑i i
2

min  EF(x, ϵ) =l≤x≤u E  f  (x, ϵ  )∑i i i
2



Nelder-
Mead

Bobyqa PyBobyqa DFO-LS POUNDERS
Parallel
NM

Library Nlopt Nlopt NAG NAG TAO (estimagic)

Class simplex trustregion trustregion trustregion trustregion simplex

Noisy (yes) no yes yes no (yes)

Parallel no no (yes) (yes) no yes

Least-
squares

no no no yes yes no

Existing optimizers



Recap: Trustregion optimizers



De�ne a region around 

Maintain a sample of s and corresponding function evaluations

Fit a regression or interpolation model on the sample

Optimize the surrogate model to create a candidate

Evaluate the function at the candidate

Accept or reject and adjust radius

Derivative free trustregion optimization

x  k

x



: criterion function

: iteration counter

: current x

: surrogate model

: candidate step

Goal:

Sample few new points

Make large progress

Model does not have to be great!

Taylor like error bounds on 

Small : decrease radius

Large : increase radius

Preview: This will fail in noisy case!

Model quality, Rho, and Radius
F

k
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Surrogate should allow for internal minima

Quadratic model:  points

 points with regularization

Underdetermined models often defeat intuition

Least-square structure helps

Fit linear models  for each residual 

Fully determined model with just  points

Least squares structure

1 + n +  2
n(n+1)

2n + 1
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T f  (x)i
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Noise-free and serial case



TrustRegion Adaptive Noise robust QUadratIc or Linear approximation Optimizer

Fairly standard trustregion framework

Sampling: Approximate Fekete points

Subsolvers: GQTPAR or BNTR

Radius management: Same as POUNDERS

Key differences

History search and variable sample size

Switch from round to cubic trustregions close to bounds

Same code for scalar and least-squares version!

Tranquilo and Tranquilo-LS



Criterion function: 

Start parameters: 

Global optimum: 

Tranquilo-LS in action
f(x) =  x  ∑

i i
2

x  =0 (1, 1)

x =∗ (0, 0)
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Moré-Wild Benchmark set

52 leasts-squares problems with 2 to 12 parameters

Used in POUNDERS, PyBobyqa and DFO-LS papers

Differentiable (but we don’t use derivatives)

Pro�le plots

Y-axis: share of solved problems

X-axis: computational cost in function evaluations

For each problem, cost is standardized by the cost of the best optimizer

Benchmarking
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Benchmark: Tranquilo vs. other optimizers



Parallel case



Most economists have access to:

4 to 8 cores on a laptop/desktop

16 to 64 cores on a server

In practice, criterion functions are often not parallelized

Lack of knowledge or time to write parallel code

Some problems are hard to parallelize

Cost model with batch size :

Want to avoid idle cores

 parallel evaluations have same cost as one

Cost model for parallel optimization

b

b
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If candidate is close to trustregion border:

Allocate up to three function evaluations to a line search

If "free" function evaluations are left:

Do speculative sampling

If any line-search or speculative point yields improvement

Accept them as new x

Combining the two
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Benchmark: Parallel tranquilo vs. DFO-LS



Noisy case



Model does not approximate well

 is low in many iterations

Radius shrinks to zero -> optimization fails

Problems caused by noise

ρ



Re-start if trustregion collapses

Evaluate criterion multiple times at each point and average

How many evaluations is decided by the user based on

Current radius

Iteration counter 

restart counter

Very hard to get right!

How DFO-LS handles noise

ρ

(k)



−2 −1 0 1
−5

0

5

10

15

20

criterion function

x

y

Why is it hard to pick sample sizes?



−2 −1 0 1
−5

0

5

10

15

20

criterion function model

x

y

Why is it hard to pick sample sizes?



−2 −1 0 1

0

5

10

15

20

criterion function model

x

y

Why is it hard to pick sample sizes?



Noise-free case
Problem: Approximation error

Tuning parameter: Radius

Performance metric: 

Noisy case
Problem: Random error

Tuning parameter: Sample size

Need: 

A different look on radius and ρ

ρ ρ  noise



Scan history for all points with multiple evaluations of criterion

Restrict to ones that are

close to current trustregion

have the most function evaluations

Estimate

: variance of the noise on a scalar criterion function

: covariance matrix of the noise on the least-squares residuals

Locally constant approximation to an arbitrary noise term

Step 1: Estimate noise variance

σ  k

Σ  k



Surrogate model  approximates the criterion function

Use  and  to simulate a noisy sample

Fit a model  on the simulated sample

Optimize  to get a suggested step 

Repeat the simulation

Increase sample size if most rhos are small

Step 2: Simulate ρ  noise

M  (x)k

M  k σ  k

 (x)M  k
~

 (x)M  k
~

 s  k
~

ρ  =noise  

 (x  )−  (x  +  )M  k
~

k M  k
~

k s~k

M(x  )−M(x  +  )k k s~k



Noise free acceptance step is trivial

Now: Does candidate have a lower expected value?

Intuition: Needs large sample if values are close

Noise in the acceptance step



Power analysis: 

: number of evaluations at current and candidate x

: con�dence level

: power level

: Minimal detectable effect size

Can calculate  and  that minimize new function evaluations

Step 3: Power analysis
 ≥

n  +n  1 2

n  n  1 2 σ [  ]2
Δ  min

Φ (1−α)+Φ (1−β)−1 −1 2

n  ,n  1 2

α

1 − β

Δ  =min M  (x  ) −k k M  (x  +k k s  )k

n  1 n  2
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Benchmark: Noisy tranquilo vs. DFO-LS



We created a modular framework for derivative free trustregion optimization

Same code for scalar and least-squares version

Performance in noise-free and serial setting is similar to existing optimizers

Two ideas for parallelization:

Line search

Speculative sampling

Two ideas for noise handling

Simulate  in sampling step

Power analysis for acceptance step

Summary

ρ  noise


