
Tranquilo
A trustregion optimizer for economists by economists

Janoś Gabler, University of Bonn

Sebastian Gsell, LMU Munich

Tim Mensinger, University of Bonn

Mariam Petrosyan, University of Bonn

Discrete choice dynamic programming model

Fit simulated choices to data

Backwards induction is hard to parallelize

Simulated choices are noisy

10 to 50 parameters

Each simulation run takes a few minutes

Prototypical optimization problem

Robust to noise

Parallel function evaluations

Suitable for data �tting problems

Designed for non-expert users

Assumption: Criterion function is expensive!

Goals for an optimizer

Scalar Derministic

Scalar Noisy

Least-squares Deterministic

Least-squares Noisy

Optimization Problems

min F(x)l≤x≤u

min EF(x, ϵ)l≤x≤u

min F(x) =l≤x≤u f (x)∑i i
2

min EF(x, ϵ) =l≤x≤u E f (x, ϵ)∑i i i
2

Nelder-
Mead

Bobyqa PyBobyqa DFO-LS POUNDERS
Parallel
NM

Library Nlopt Nlopt NAG NAG TAO (estimagic)

Class simplex trustregion trustregion trustregion trustregion simplex

Noisy (yes) no yes yes no (yes)

Parallel no no (yes) (yes) no yes

Least-
squares

no no no yes yes no

Existing optimizers

Recap: Trustregion optimizers

De�ne a region around

Maintain a sample of s and corresponding function evaluations

Fit a regression or interpolation model on the sample

Optimize the surrogate model to create a candidate

Evaluate the function at the candidate

Accept or reject and adjust radius

Derivative free trustregion optimization

x k

x

: criterion function

: iteration counter

: current x

: surrogate model

: candidate step

Goal:

Sample few new points

Make large progress

Model does not have to be great!

Taylor like error bounds on

Small : decrease radius

Large : increase radius

Preview: This will fail in noisy case!

Model quality, Rho, and Radius
F

k

x k

M k

s k

ρ =

M (x)−M (x +s)k k k k k

F (x)−F (x +s)k k k

M k

ρ

ρ

Surrogate should allow for internal minima

Quadratic model: points

 points with regularization

Underdetermined models often defeat intuition

Least-square structure helps

Fit linear models for each residual

Fully determined model with just points

Least squares structure

1 + n + 2
n(n+1)

2n + 1

m (x) =i a +i b xi
T f (x)i

M(x) = m (x) =∑i i
2

 a +∑i i
2

 2a b x +∑i i i
T

 x b b x =∑i
T

i i
T α + g x +T

 x Hx2
1 T

n + 1

Noise-free and serial case

TrustRegion Adaptive Noise robust QUadratIc or Linear approximation Optimizer

Fairly standard trustregion framework

Sampling: Approximate Fekete points

Subsolvers: GQTPAR or BNTR

Radius management: Same as POUNDERS

Key differences

History search and variable sample size

Switch from round to cubic trustregions close to bounds

Same code for scalar and least-squares version!

Tranquilo and Tranquilo-LS

Criterion function:

Start parameters:

Global optimum:

Tranquilo-LS in action
f(x) = x ∑

i i
2

x =0 (1, 1)

x =∗ (0, 0)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
new

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
existing

new

candidate

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
existing

candidate

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
existing

candidate

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
existing

candidate

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
existing

new

discarded

candidate

Moré-Wild Benchmark set

52 leasts-squares problems with 2 to 12 parameters

Used in POUNDERS, PyBobyqa and DFO-LS papers

Differentiable (but we don’t use derivatives)

Pro�le plots

Y-axis: share of solved problems

X-axis: computational cost in function evaluations

For each problem, cost is standardized by the cost of the best optimizer

Benchmarking

10 20

0

0.2

0.4

0.6

0.8

1 algorithm
dfols
nlopt_bobyqa
nlopt_neldermead
tranquilo_default
tranquilo_ls_default

Multiple of Minimal Number of Function Evaluations
Needed to Solve the Problem

Sh
ar

e
of

 P
ro

bl
em

s
So

lv
ed

Benchmark: Tranquilo vs. other optimizers

Parallel case

Most economists have access to:

4 to 8 cores on a laptop/desktop

16 to 64 cores on a server

In practice, criterion functions are often not parallelized

Lack of knowledge or time to write parallel code

Some problems are hard to parallelize

Cost model with batch size :

Want to avoid idle cores

 parallel evaluations have same cost as one

Cost model for parallel optimization

b

b

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
existing

candidate

Idea 1: Parallel line search

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2 existing

candidate

line search

Idea 1: Parallel line search

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2 existing

candidate

line search

Idea 1: Parallel line search

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2 existing

candidate

line search

Idea 1: Parallel line search

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
existing

candidate

Idea 2: Speculative sampling

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
existing

candidate

Idea 2: Speculative sampling

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2 existing

candidate

speculative

Idea 2: Speculative sampling

If candidate is close to trustregion border:

Allocate up to three function evaluations to a line search

If "free" function evaluations are left:

Do speculative sampling

If any line-search or speculative point yields improvement

Accept them as new x

Combining the two

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2 existing

candidate

speculative

line search

Line search + Speculation

2 4 6
0

0.2

0.4

0.6

0.8

1
algorithm

dfols
tranquilo_ls_parallel_2
tranquilo_ls_parallel_4
tranquilo_ls_parallel_8

Multiple of Minimal Number of Batches
Needed to Solve the Problem

Sh
ar

e
of

 P
ro

bl
em

s
So

lv
ed

Benchmark: Parallel tranquilo vs. DFO-LS

Noisy case

Model does not approximate well

 is low in many iterations

Radius shrinks to zero -> optimization fails

Problems caused by noise

ρ

Re-start if trustregion collapses

Evaluate criterion multiple times at each point and average

How many evaluations is decided by the user based on

Current radius

Iteration counter

restart counter

Very hard to get right!

How DFO-LS handles noise

ρ

(k)

−2 −1 0 1
−5

0

5

10

15

20

criterion function

x

y

Why is it hard to pick sample sizes?

−2 −1 0 1
−5

0

5

10

15

20

criterion function model

x

y

Why is it hard to pick sample sizes?

−2 −1 0 1

0

5

10

15

20

criterion function model

x

y

Why is it hard to pick sample sizes?

Noise-free case
Problem: Approximation error

Tuning parameter: Radius

Performance metric:

Noisy case
Problem: Random error

Tuning parameter: Sample size

Need:

A different look on radius and ρ

ρ ρ noise

Scan history for all points with multiple evaluations of criterion

Restrict to ones that are

close to current trustregion

have the most function evaluations

Estimate

: variance of the noise on a scalar criterion function

: covariance matrix of the noise on the least-squares residuals

Locally constant approximation to an arbitrary noise term

Step 1: Estimate noise variance

σ k

Σ k

Surrogate model approximates the criterion function

Use and to simulate a noisy sample

Fit a model on the simulated sample

Optimize to get a suggested step

Repeat the simulation

Increase sample size if most rhos are small

Step 2: Simulate ρ noise

M (x)k

M k σ k

 (x)M k
~

 (x)M k
~

 s k
~

ρ =noise

 (x)− (x +)M k
~

k M k
~

k s~k

M(x)−M(x +)k k s~k

Noise free acceptance step is trivial

Now: Does candidate have a lower expected value?

Intuition: Needs large sample if values are close

Noise in the acceptance step

Power analysis:

: number of evaluations at current and candidate x

: con�dence level

: power level

: Minimal detectable effect size

Can calculate and that minimize new function evaluations

Step 3: Power analysis
 ≥

n +n 1 2

n n 1 2 σ []2
Δ min

Φ (1−α)+Φ (1−β)−1 −1 2

n ,n 1 2

α

1 − β

Δ =min M (x) −k k M (x +k k s)k

n 1 n 2

10 20
0

0.2

0.4

0.6

0.8

1
algorithm

dfols_noisy_10
dfols_noisy_3
dfols_noisy_5
tranquilo_ls_default

Multiple of Minimal Number of Function Evaluations
Needed to Solve the Problem

Sh
ar

e
of

 P
ro

bl
em

s
So

lv
ed

Benchmark: Noisy tranquilo vs. DFO-LS

We created a modular framework for derivative free trustregion optimization

Same code for scalar and least-squares version

Performance in noise-free and serial setting is similar to existing optimizers

Two ideas for parallelization:

Line search

Speculative sampling

Two ideas for noise handling

Simulate in sampling step

Power analysis for acceptance step

Summary

ρ noise

