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BART for continuous outcomes

Regression tree

Example of g(x; T, M), where the data
looks like _ —

Ii,/‘zl’ 4
.

/ / ’ /

L
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Thus g(x; T, M) is a function that
assigns the value of u. to E(Y| X) via

binary decision rules denoted as 7.

We can also view it as an ANOVA model

y = mI{x; <100} + uI{x; > 100} I1{x4 < 200}{x3 < 150}
+ uszl{x; > 100} 1{x4 < 200}I1{x3 > 150}I{x5 < 50}
+ uql{x, > 100} I{x, < 200}I{x; > 150}I{xs > 50}
+ usl{x; > 100} I{x4 > 200} + €,
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Formal definition

y=f(x)+¢€= z g(x; T;, M;) + €, meaning f(x) is estimated by Z g(x; T3, M;), sum of
j=1

J=1
m regression trees,

m iIs usually set as 50, 100, 200

where € ~ N(0,67), x = (x}, ..., X,)

7} : Jth binary tree structure,
M; : {,ujl, Cos ,ujbj} (vector of terminal nodes of 1)),

bj : number of terminal nodes in 7}
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Regression tree, j = | Regression tree, j = 2

x; < 100 X, < 100

Sum of regression trees 7 y 7 X
x, < 200 x, < 200
The following is an example of sum of ~ _

& Py
regression trees for m = 2 and p = 3 (for x, / \

7N
the covariates). @

In practice, each tree g(x; T, M) is unknown so
we need prior distributions for these functions y = g(x; T1, My) + g(x; To, M) + €

= ,uHI{xl < 100} {x, < 200} + ;4121{x1 <100} {x, > 200} + /113I{X1 > 100}
+ po1l{x3 < 100} 4+ pxl{x3; > 100} 1{x; < 200} + px3l{x3 > 100} I1{x; > 200} + €.

=> Bayesian additive regression trees (BART)

Advantage of BART: ,
Subject y X1 X X3 gx; T\,M;) g(x;T,, M,) f(x)

: : 1 y, —182 235 =333 1o Mo M1z + U
The uncertainty about both the functional form >y, 54 339 244 . o oo+ s
(¢(-;7T) and the parameters (M) will be 3. y; -106 -50 —682 oy Ha  Hut o
accounted for in the posterior predictive e Moo Mt
. . . S5 ys —123 198 =77 M1 M2 M1+ U
distribution of y. 6 ye 175 108 —46 Uia Yoy Uis + Ho
7 V7 —44 11 136 M1 M2 Hi1 + U
8 ys —131 =10 =70 H11 M2 M1+ M2
9 Yo —56 68 257 K1 M2 Hi1 t Ho
10 Y10 7 324 282 Hi2 H23 M1z + Ha3
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Simple example

For x = (x;,X,,X3) and m = 4
* Initiation

We start from m = 4 single-root nodes (as in the trees have only one terminal
node), where

0o_Y ._ . | | -
u.’ = ~ J=1,...m, 1= 1,...,19]- (bj . number of terminal nodes in jth tree).
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Simple example

« MCMPC iterations (explained more in detail on the next section)

We start with the first tree (note that the order of the tree doesn’t matter).
For tree 1, we calculate the residual,
n=Jy- 28(X§ 7},1\4]-)-
J#1
By MH algorithm, we compare the newly proposed tree 1, T3, and the previous tree 1, Tl,

and decide whether we accept T;k (T} = T;k) ornot (17 = T)).

We do this for 15, ..., 1, similarly.
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Simple example

e Posterior distribution of 02

After the MCMC iterations, and the posterior draws of the regression trees are complete,
we draw the posterior distribution of o’

 Prediction
With the posterior distribution of the trees and 02, we can obtain,

1. The predicted value of y for any x of interest (by summing the terminal nodes, S,
of interest).

2. 95% prediction interval for y
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Iteration 2

Simple example

x; < 0.48
X
Initiation
x; < 1.56
Tree 1 Tree 2 Tree 3 Tree 4

DN

[teration 1 Iteration 3

Tree 1 Tree 2 Tree 3 Tree 4
Xy < 0.48

x; < 0.48 ’&/ X»

N
& b

X, < —1.42 x; < 0.76
& P & P FIGI..IRE 3 Initiation of BART. to.
Iteration 3 of the MCMC steps within BART

with m = 4. BART, Bayesian additive
regression trees; MCMC, Monte Carlo
Markov Chain

Tree 1 Tree 2 Tree 3 Tree 4

The regression trees are penalized by the prior to prevent a tree from growing too deep. This is a concept called boosting
which we see a lot in the machine learning literature, where the performance of several weak models combined together is

better than a single strong model.
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The BART algorithm - prior distribution

hae for - Y= fLEO+ £ = 4% M) T5, M) +& IS

PLLT, M), (Tm, Mm), o |
= PLLT, MO, -, (T, i) JP(a) (0 nddepdence 1s

alumed )
= [% P(Ts, M5) | PLo)

= [ 7 7(‘ P(M I Ts) P(Ts) | PLo) R

Ch el VedE
[%n({ T'P(Mu T\\ EPZT\) ]P(f) (' e /M@@”/Oumfj

b; © ool ﬂW%éC’r aﬁ temner| /)Uo(gf m ot pree

Thus we have 3 prior distributions.
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The BART algorithm - prior distribution

My 1T ~ /V(/f/(/u/ @i)
i IG (% 2
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The BART algorithm - prior distribution

IS R T 0 (1) XY X(E5) <
(2) means to give equal () A ﬁ - Te Phl, Tt a hade ot
probability to select one ( 1-td) e A e
of x; for an internal node. X E {01} SR
(3) means to give equal  hau inely o ok it Ualued oF P
probability to ¢ for the Laatd - <PIH et e Numicy
binary decision rule, for OF ool 10a€S
the selected x; from (2), (Z)  UUhifsm dStn 1o SeleGt the Glapates To St wlan
{x;<c}and {x;>c}. N an ifenal A

(3)  Uhimm den o et tHe C(HtaR= Pt n on  nfomo| fede
one. the Covanwte S Seledred
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The BART algorithm - prior distribution

The hyperparameters for the prior distributions are as follows: a, f, Hy> Oy U, A.

« a = 0.95 and f = 2 provide a balanced penalizing effect for the probability of a node splitting.

. W,, 0, are set such that E(Y | X) ~ N(mu,, mglf) assigns a high probability to the interval (min(y), max(y)).

max(y) + min(y)

Y
. For ease of posterior calculations, y is transformed as, y = = . , which results in § € (—0.5,0.5).
0.5 max(y) — min(y)
This allows us to set 4, = 0, 6, = ——, where v is to be chosen.

n/ m
e Forv =2, N(mu,,, mo'/f) assigns prior probability of 0.95 to the interval (min(y), max(y)).

. ) is set so that P(6? < s%; v, A) = 0.95, where s is the estimated variance of the residuals from the multiple
linear regression (MLR).



BART for continuous outcomes
The BART algorithm - posterior distribution

Such prior distributions induce the following posterior distribution.

Pf(Ty,/"h), S (Tm,/v(m),opl Y]

oc PLY[(T, M), (Tn, M), o ] X PLLT, M, (T M), 0 |

The.  PoSteriar didsS  can be obtaimed LY  GibhS SomPing-  Fem

PLLT: M) | Ty My Y, 0 [ =& (~J means ol excepr-
ond hen The. QTh)

PLa (T, MY oy (T, M) Y T
A L6 (2 {vA+ Sr-Ad1°E/2)
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The BART algorithm - posterior distribution

Derivation of the posterior distribution of o is as follows.

vV VA

Lety = (yq, ...,y,)! with¢? ~ IG(E, 7). We obtain the posterior draw of ¢ as follows:

p(o-zl(Tla Ml)a ceey (TmaMm)a y) X p(yl(Tla Ml)a ceey (Tma Mm)’ G)p(o-z)
_ wt [ 0= SO\, acen o (VA
B {H(G ) exp 202 }(G ) 2 exp ( 202)

VA Y (5= )

202

v+hn
= (0" Pexp




BART for continuous outcomes
The BART algorithm - posterior distribution

Cince @ deggd! m (T, M~ Y, o) M

o= Y= 2o T M) <=> o= g, M) *E

. (- Y= 805 M)+ £
&) S eqyivalent T = ; )
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The BART algorithm - the MH algorithm

The new tree 7;* can be proposed given the previous tree 7} by the following

four local steps: (Y G [
| , Q —_ O/ %
®

(i) Prime =>
) P OE i

(i) CluapP F}; c% —> g/\\o ﬂ

P —

LIV) Chonse CL)/ g => F4DN
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The BART algorithm - the MH algorithm

We draw from P(]}\ i o) by the MH algorithm with the acceptance ratio,

2Tt ) PGl T M) PTG

2T, ) Plolx g, M) AT)
e J - — g l/—\j
NN prtte liWelieud 1atlo  the Smeinre rodio

o (T T) = min (1,
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The BART algorithm - the MH algorithm

* [ransition ratio for the “grow” proposal

q(]}*, T;) = P(Y}.>X< | T3): the probability of moving from 7 to 7}* i.e., selecting a

terminal node and growing two children from 7}

PT¥IT) = Plomw) Ploms) = 6,28  (olehurt)
X P(Selectnd tammal rede T o fom) by © pwnker of  taminal Aedet mo T3

X P( Clecire- lale t SPit o) e temnal  node

= Plomp) ] D onumber of  UNSUE VUL  left TN Tthe  ChoSan  \oinpl<
I 0Pter  odiusting fu- the  Pents QIS
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The BART algorithm - the MH algorithm

* [ransition ratio for the “grow” proposal

q(]}, 7;.*) = P(Y}\ 7;.*): the probability of selecting the correct internal node to

prune on such that 7;* becomes 7}

P(Ts | T5¥) = P(ame) p(Leteching e Gwegr imiemal rgle
o Pmne )

= P(p/WIG) l/\/l?

where wgk denotes the number of internal nodes that have only two children

terminal nodes.
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The BART algorithm - the MH algorithm

* [ransition ratio for the “grow” proposal

Thererar <

This gives a transition ratio of

a(1;.1,)  P(T;IT) ~ P(prune) bypn < Kk V)R

a(1,.17)  P(TyITy)  PEOW) Wy &S

7L thee we nho X Wlel [t 40 o Moo Wane
el i< tanltoan 1o Wil be Sef o O
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The BART algorithm - the MH algorithm

* |ikelihood ratio for the “grow” proposal

J
for the terminal node where the two children are grown, we only need to

concentrate on this terminal node.

Since the rest of the tree structure will be the same between 7 and 7}* except

Let [ be the terminal node and /; and [, be the two children of the grow step.
Then,

% 2 B : § ' ‘

P(rlx,T;,M;) P(ryj, ...,Iy, jl0?)

2 - 2
0-2 (0-2 + n[()'/zl) 0-;21 ( Zi_-l rl(L.k,o-j) ( Zil rl«R.k»‘j ) ( Z‘Izl rlll.k)'j)

— - > , 5 EXPp +
\ (6% + n102) (0% + ngo?)
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The BART algorithm - the MH algorithm

* Tree structure ratio for the “grow” proposal

T can be specified by,

J
Pep; 1(0) : bability of the selected node 8 will split, and
X : probability of the selected node @ will split, an
SPLIT (1 +d,)
Pry p(0) o« —— : probability of a certain variable and value is selected.
pn

P(T;) H()Ellt*lrmin 11'(1 — PspritO) ] 1 perr Psprir(O] 1 perr Prure(0)

internals internals

. * . . —_—
Since 1; and 7} only differ at the children nodes, p(1)) ™ [],.,, (1 - Psprir(O)]] verr PspLir@]lpe,  Prupe(9)

terminals

[1 — Psprir(01)1[1 — Psprir(0r)1PspriT(0)Prure(0)
1 — Psprrr(0)

1 — o 1 — o a l l
(l+d0,. )P (1+d(;R )P (1+d, )h pn

(4
(14+dy)”?

2
- )
< (2+dy)”

[(1 4+ dy)P — alpn

= a

because dy, = dg, = dg + 1.
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The BART algorithm - the MH algorithm

Once we have the draw of P(Y} | i o), we then draw

Pl | Ts, 1y, 0 ) ~ /\/([O}AZZ}Q,~,~]/[}4(0;,2+O”ZJ
o [6%0u*] /[ nicy +o”"’-J>

where r;; Is the subset of elements in 7; allocated to the terminal node parameter

H;; and n; is the number of r;;’s allocated to p;;.
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The BART algorithm - the MH algorithm

The derivation of the posterior distribution of y;; is as follows.

Let r;; = (Fjp5 - - - r:jini)T be a subset from 7; where n; is the number of ;s allocated to the terminal node with parameter

J

and K | T] ~ N(//t,u, 05). Then, the posterior distribution of Hi; IS given by

P(Ilji|Tj, o, "j) X p(rjilTjaﬂjia G)P(Ilji|Tj)

- Fiin — Wii)? (i — )2
& exp Zh J;O..z Ji exp Hji — Hy
(niO'/?; + 0'2) yj?i — 2 (oﬁzhrﬁh + 62/,1”) ,uji-
X eXx
d 20'202
2 2 2
%Zhrjih'*‘o' Ky
('uji n.c2+oc? )
T
x EXp — ,
2 H

n;o2+o?
u

p:; and h indexes the subjects allocated to the terminal node with parameter p;;- We note that r;; | Ly pij 6~ N(,ujl-, c°)

where Zh (Fiin = ﬂji)2 is the summation of the

squared difference between the parameter ;;
and r;;,’s allocated to the terminal node with

parameter p;;
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Performance of BART - synthetic data

The point estimates of BLR were ) BLR BART withm = 1 BART with m = 50
far way from the true values and * - °
many of the true values were not ° M ’M m e il | o ||
covered by the 95% credible |H | ”' ' HH‘H gt IR ST
intervals. R IR RUIRILR
For BART, as m (humber of

. BART with m = 100 BART with m = 150 BART with m = 200
trees) increased, there was a )
significant improvement in point N ° .
estimates and the credible I U = | M .t |
intervals were also narrowed. R “o T T T
Note that there was no . IR o Nt T
signficant improvement in result o F B B B o F k% B B N

by increasing m after 50.

FIGURE 5 Posterior mean and 95% credible interval of Bayesian linear regression (BLR) and Bayesian additive regression trees (BART)

with m = 1, 50, 100, 150, 200 for 30 randomly selected testing set outcomes. n = 1000, black = true value, red = model estimates [Colour
figure can be viewed at wileyonlinelibrary.com]|
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Performance of BART - real data

The figure shows the 10
RMSEs produced by each
method from the 10-fold
cross-validation. Both BART
and RF produced very similar
prediction performances and
are better compared to MLR.
MLR produced a mean of the
RMSE of 0.24 while BART and
RF produced a mean of 0.23.
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FIGURE 6 Root mean squared error (RMSE; y-axis) for the
10-fold cross-validation of multiple linear regression (MLR), random
forest, and Bayesian additive regression trees (BART) of log
transformed standardized hospitalization ratio (SHR). x-axis
indicates the RMSE for the xth fold [Colour figure can be viewed at
wileyonlinelibrary.com |



