이재용, 2023/01/22

Bayesian additive regression trees and the general BART model - Tan and Roy, 2019 Review for BART for continuous outcomes

Contents BART for continuous outcomes

- Regression tree
- Formal definition
- Sum of regression trees
- Simple example
- The BART algorithm
- Performance of the BART

Regression tree

Example of $g(x; T, M)$, where the data looks like

Thus $g(x; T, M)$ is a function that assigns the value of μ_i to $E(Y|X)$ via binary decision rules denoted as T .

We can also view it as an ANOVA model

 $y = \mu_1 I \{x_2 < 100\} + \mu_2 I \{x_2 \ge 100\} I \{x_4 < 200\} I \{x_3 < 150\}$ + $\mu_3 I\{x_2 \ge 100\} I\{x_4 < 200\} I\{x_3 \ge 150\} I\{x_5 < 50\}$ + $\mu_4 I\{x_2 \ge 100\} I\{x_4 < 200\} I\{x_3 \ge 150\} I\{x_5 \ge 50\}$ + $\mu_5 I\{x_2 \ge 100\} I\{x_4 \ge 200\} + \varepsilon$,

BART for continuous outcomes

=>

BART for continuous outcomes Formal definition

$$
y = f(x) + \epsilon = \sum_{j=1}^{m} g(x; T_j, M_j) + \epsilon
$$
, mean
m regression trees,

where
$$
\epsilon \sim N(0, \sigma^2)
$$
, $x = (x_1, \ldots, x_p)$

 T_j : *j*th binary tree structure,

 $M_j: \Set{\mu_{j1}, \ldots, \mu_{jb_j}}$ (vector of terminal nodes of T_j),

 b_j : number of terminal nodes in T_j .

) + ϵ , meaning $f(x)$ is estimated by $\sum g(x; T_i, M_i)$, sum of *m* ∑ *j*=1 $g(x; T_j, M_j)$

m is usually set as 50, 100, 200

The following is an example of sum of regression trees for $m = 2$ and $p = 3$ (for x , the covariates).

In practice, each tree $g(x; T, M)$ is unknown so we need prior distributions for these functions \mathbf{v}

The uncertainty about both the functional form $(g(\cdot ; T))$ and the parameters (M) will be accounted for in the posterior predictive distribution of y.

$$
= g(x; T_1, M_1) + g(x; T_2, M_2) + \varepsilon
$$

= $\mu_{11}I\{x_1 < 100\}I\{x_2 < 200\} + \mu_{12}I\{x_1 < 100\}I\{x_2 \ge 200\} + \mu_{13}I\{x_1 \ge 100\}$
+ $\mu_{21}I\{x_3 < 100\} + \mu_{22}I\{x_3 \ge 100\}I\{x_2 < 200\} + \mu_{23}I\{x_3 \ge 100\}I\{x_2 \ge 200\} + \varepsilon$.

=> Bayesian additive regression trees (BART)

Sum of regression trees BART for continuous outcomes

Advantage of BART:

BART for continuous outcomes Simple example

For $x = (x_1, x_2, x_3)$ and $m = 4$

Initiation

We start from $m=4$ single-root nodes (as in the trees have only one terminal node), where

$$
\mu_{ji}^{(0)} = \frac{\bar{y}}{m}, j = 1, ..., m, i = 1, ..., b_j (b_j)
$$

, $j = 1,...,m$, $i = 1,...,b_j$ $(b_j:$ number of terminal nodes in j th tree).

BART for continuous outcomes Simple example

• MCMC iterations (explained more in detail on the next section) We start with the first tree (note that the order of the tree doesn't matter). For tree 1, we calculate the residual,

$$
r_1 = y - \sum_{j \neq 1} g(x; T_j, M_j).
$$

and decide whether we accept T_1^* $(T_1 = T_1^*)$ or not $(T_1 = T_1)$.

We do this for T_2, \ldots, T_m similarly.

By MH algorithm, we compare the newly proposed tree 1, T_1^* , and the previous tree 1, T_1 ,

BART for continuous outcomes Simple example

• Posterior distribution of $σ^2$

After the MCMC iterations, and the posterior draws of the regression trees are complete, we draw the posterior distribution of σ^2 .

Prediction

With the posterior distribution of the trees and σ^2 , we can obtain,

- of interest).
- 2. 95% prediction interval for *y*

1. The predicted value of y for any x of interest (by summing the terminal nodes, μ_{ji} s,

Simple example BART for continuous outcomes

The regression trees are penalized by the prior to prevent a tree from growing too deep. This is a concept called boosting which we see a lot in the machine learning literature, where the performance of several weak models combined together is better than a single strong model.

FIGURE 3 Initiation of BART to Iteration 3 of the MCMC steps within BART with $m = 4$. BART, Bayesian additive regression trees; MCMC, Monte Carlo Markov Chain

 $-P(\top, M_1), \dots, (\top m, M_m), \sigma$ $= \int_{\mathbb{R}} \frac{M}{\sqrt{2}} \rho(T_3, M_3) \rho(\sigma)$ $= \left[\frac{m}{\pi} P(M_{\rm i} | T_{\rm i}) P(T_{\rm i}) P(\sigma) \right]$

Thus we have 3 prior distributions.

 M_{\cup} ; $T_{\cup} \sim N(M_{\mu}, \sigma_{\mu}^{2})$ $0² \sim I G(\frac{v}{2}, \frac{v}{2})$

(2) means to give equal probability to select one of x_i for an internal node. $PNCVS$

riv

(3) means to give equal probability to c for the binary decision rule, for the selected x_i from (2), $\{x_i < c\}$ and $\{x_i \ge c\}$.

 (3)

Unirum

The hyperparameters for the prior distributions are as follows: $\alpha, \beta, \mu_\mu, \sigma_\mu, \nu, \lambda.$

- $\alpha = 0.95$ and $\beta = 2$ provide a balanced penalizing effect for the probability of a node splitting.
- μ_μ , σ_μ are set such that $E(Y|X) \sim N(m\mu_\mu, m\sigma_\mu^2)$ assigns a high probability to the interval $(\min(y), \max(y)).$
- This allows us to set $\mu_{\mu}=0, \ \sigma_{\mu}=-\frac{1}{\mu_{\mu}}$, where ν is to be chosen. y is transformed as, $\tilde{y} =$ $\mu_\mu=0,\ \sigma_\mu=$ 0.5 *ν m ν*
- For $\nu = 2$, $N(m\mu_{\mu}, m\sigma_{\mu}^2)$ assigns prior probability of 0.95 to the interval $(\min(y), \max(y))$.
- λ is set so that $P(\sigma^2 < s^2; \nu, \lambda) = 0.95$, where s^2 is the estimated variance of the residuals from the multiple linear regression (MLR).

• For ease of posterior calculations, y is transformed as, $\tilde{y} = \frac{z}{\max(y) - \min(y)}$, which results in $\tilde{y} \in (-0.5, 0.5)$. $y - \frac{\max(y) + \min(y)}{2}$ 2 $\frac{2}{\max(y) - \min(y)}$, which results in $\tilde{y} \in (-0.5, 0.5)$

Such prior distributions induce the following posterior distribution.

 $PT(T_1, M_1), \cdots, (T_m, M_m), \sigma|Y]$

 \propto $P[Y|(T_1, M_1), \cdots, (T_m, M_m), \sigma] \times P[(T_1, M_1), \cdots, (T_m, M_m), \sigma]$

The Posterior draws can be obtained by Gibbs sampling fram

 $P[CT_{i}, M_{i}) | T_{-i}, M_{-i}, Y, \sigma] = \circledast (-i$ means all except the jth) and then

 $H \circ M \quad \mathcal{L} \circ C \left(\frac{V+h}{2} \int V \cdot A + \Sigma [Y - \mathcal{H} X] T^2 \} / 2 \right)$

 $PIOT(C, M)$, (m, Mm) , YI

Derivation of the posterior distribution of σ is as follows.

Let $y = (y_1, ..., y_n)^T$ with $\sigma^2 \sim IG(\frac{v}{2}, \frac{v\lambda}{2})$. We obtain the posterior draw of σ as follows:

 $p(\sigma^2 | (T_1, M_1), \ldots, (T_m, M_m), y) \propto$

 $=$

 $=$

$$
p(y|(T_1, M_1), \ldots, (T_m, M_m), \sigma)p(\sigma^2)
$$
\n
$$
\left\{ \prod (\sigma^2)^{-\frac{1}{2}} \exp\left[-\frac{(y - f(x))^2}{2\sigma^2} \right] \right\} (\sigma^2)^{-(\frac{v}{2}+1)} \exp\left(-\frac{\nu \lambda}{2\sigma^2} \right)
$$
\n
$$
(\sigma^2)^{-(\frac{\nu+n}{2}+1)} \exp\left[-\frac{\nu \lambda + \sum (y - f(x))^2}{2\sigma^2} \right].
$$

Since \bigoplus depends on $(T_{\neg i}, M_{\neg j}, Y, \sigma)$ through $\mathcal{V}_j = \mathcal{Y} - \sum_{h \notin j} \mathcal{Y}(x_j \cdot T_h, M_h) \leq \Rightarrow \mathcal{V}_j = \mathcal{Y}(x_j \cdot T_{j}, M_j) + \mathcal{E}$ $(\cdot : Y = \overset{m}{\geq} \mathcal{B}(X; T, M) + \mathcal{E})$ \bigotimes is equivalent to $-\rho\Gamma\zeta_{5}M_{3})lV_{3},\sigma$ We integrate ant Mi To obtam $-\rho(\tau_{\text{S}}\mid\kappa,\sigma)$ Since we wed a anjuscate normal prior on M_{3i}

The new tree T^\ast_j can be proposed given the previous tree T_j by the following four local steps: (i) $\frac{\partial w}{\partial x}$ $\qquad \qquad \qquad$

Cii) Prune,

 $Liv)$ change, $55 ==$

We draw from $P(T_j\,|\,r_j,\sigma)$ by the MH algorithm with the acceptance ratio,

 $\alpha(\Gamma_{5},\Gamma_{5}^{*}) = min(1, \frac{2(\Gamma_{5}^{*},\Gamma_{3})}{2(\Gamma_{5},\Gamma_{3}^{*})} \frac{p(r_{i}|x,\Gamma_{5}^{*},M_{J})}{p(r_{i}|x,\tau_{5},M_{J})} \frac{p(r_{5}^{*})}{p(r_{5})})$ Thunsition patho livelihoud patho the structure ratio

• Transition ratio for the "grow" proposal

terminal node and growing two children from T_j .

 $P(T_3*1T_3) = P(\theta n w)$ $P(\theta n w) = 0.25$ (default) X P (Selecting terminal node to som from) by: number of terminal nodes in Ts $X P$ (selective ovaniate to split Aun) p ; number of x vaniables left in the Partition of the $X P (Selectrips$ value to split on) Chose terminal node M ; number of unique values left in the chosen vaniable $= P(\theta^p w) \frac{1}{b_0} \frac{1}{p} \frac{1}{p}$ after adjusting for the Parents spirts

 $q(T^*_j, T_j) = P(T^*_j | T_j)$: the probability of moving from T_j to T^*_j , i.e., selecting a *j*

• Transition ratio for the "grow" proposal

 $q(T_j, T_j^*) = P(T_j | T_j^*)$: the probability of selecting the correct internal node to prune on such that T^*_j becomes T_j . = $P(PM1P) \frac{1}{W_2*}$

where w_{γ}^* denotes the number of internal nodes that have only two children terminal nodes. 2

• Transition ratio for the "grow" proposal

Therefore, This gives a transition ratio of $\frac{q\left(T_j^*,T_j\right)}{q\left(T_j,T_j^*\right)}=\frac{P\left(T_j^*|T_j\right)}{P\left(T_j|T_j^*\right)}=\frac{P(prune)}{P(grow)}\frac{b_jpn}{w_2^*}. \tag{4.47}$ there are no x unideres with the or more unique values, this transition ratio will be set to

• Likelihood ratio for the "grow" proposal

Let l be the terminal node and l_L and l_R be the two children of the grow step.
— Then,

$$
\frac{P(r_j|x, T_j^*, M_j)}{P(r_j|x, T_j, M_j)} = \frac{P(r_{l_{(L,1)},j}, \ldots, r_{l_{(L,n_L)},j} | \sigma^2) P(r_{l_{(R,1)},j}, \ldots, r_{l_{(R,n_R)},j} | \sigma^2)}{P(r_{1,j}, \ldots, r_{n_j},j} | \sigma^2)}
$$
\n
$$
= \sqrt{\frac{\sigma^2 (\sigma^2 + n_l \sigma_\mu^2)}{(\sigma^2 + n_L \sigma_\mu^2) (\sigma^2 + n_R \sigma_\mu^2)}} \exp\left[\frac{\sigma_\mu^2}{2\sigma^2} \left(\frac{\left(\sum_{k=1}^{n_L} r_{l_{(L,k)},j}\right)^2}{\sigma^2 + n_L \sigma_\mu^2} + \frac{\left(\sum_{k=1}^{n_R} r_{l_{(R,k)},j}\right)^2}{\sigma^2 + n_R \sigma_\mu^2} - \frac{\left(\sum_{k=1}^{n_L} r_{l_{(L,k)},j}\right)^2}{\sigma^2 + n_l \sigma_\mu^2}\right)\right].
$$

Since the rest of the tree structure will be the same between T_j and T_j^* except *j*

for the terminal node where the two children are grown, we only need to concentrate on this terminal node.

• Tree structure ratio for the "grow" proposal

 T_j can be specified by,

 $P_{\rm{SPLIT}}(\theta) \propto \frac{1}{(1+|d|)^{\beta}}$: probability of the selected node θ will split, and : probability of a certain variable and value is selected. Since T_i and T_i^* only differ at the children nodes, *α* $\frac{1}{(1+d_{\theta})^{\beta}}$: probability of the selected node θ $P_{\text{RULE}}(\theta) \propto$ 1 *p* 1 *η* T_j and T_j^*

$$
= \frac{\prod_{\theta \in H^{*}_{terminals}} (1 - P_{SPLIT}(\theta)) \prod_{\theta \in H^{*}_{internals}} P_{SPLIT}(\theta) \prod_{\theta \in H^{*}_{internals}} P_{RULE}(\theta)}{\prod_{\theta \in H_{terminals}} (1 - P_{SPLIT}(\theta)) \prod_{\theta \in H_{internals}} P_{SPLIT}(\theta) \prod_{\theta \in H_{internals}} P_{RULE}(\theta)}
$$
\n
$$
= \frac{\left[1 - P_{SPLIT}(\theta_L)\right] \left[1 - P_{SPLIT}(\theta_R)\right] P_{SPLIT}(\theta) P_{RULE}(\theta)}{1 - P_{SPLIT}(\theta)}
$$
\n
$$
= \frac{\left(1 - \frac{\alpha}{(1 + d_{\theta_L})^{\beta}}\right) \left(1 - \frac{\alpha}{(1 + d_{\theta_R})^{\beta}}\right) \frac{\alpha}{(1 + d_{\theta})^{\beta}} \frac{1}{p} \frac{1}{\eta}}{1 - \frac{\alpha}{(1 + d_{\theta})^{\beta}}}
$$
\n
$$
= \alpha \frac{\left(1 - \frac{\alpha}{(2 + d_{\theta})^{\beta}}\right)^2}{\left[(1 + d_{\theta})^{\beta} - \alpha\right] p \eta}
$$

because $d_{\theta_L} = d_{\theta_R} = d_{\theta} + 1$.

Once we have the draw of $P(T_j | r_j, \sigma)$, we then draw

 $P(M_{J_i} | T_j, N_i, \sigma) \sim N([J_M^2 \Sigma Y_{J_i}] / [N_i J_M^2 + \sigma^2])$ 10^{-2} Ou²]/[M_i Ou²+0²])

where r_{ji} is the subset of elements in r_j allocated to the terminal node parameter μ_{ji} and n_i is the number of r_{ji} 's allocated to μ_{ji} .

The derivation of the posterior distribution of μ_{ji} is as follows.

Let $r_{ji} = (r_{ji1},\ldots,r_{jin_i})^T$ be a subset from r_j where n_i is the number of r_{jih} 's allocated to the terminal node with parameter μ_{ji} and h indexes the subjects allocated to the terminal node with parameter μ_{ji} . We note that r_{ji} | T_j , $\mu_{ji},\sigma\sim N(\mu_{ji},\sigma^2)$ μ_{ji} | $T_j \thicksim N(\mu_{\mu}, \sigma_{\mu}^2)$. Then, the posterior distribution of μ_{ji} is given by

 $p(\mu_{ji}|T_i,\sigma,r_j) \propto p(r_{ji}|T_j,\mu_{ji},\sigma)p(\mu_{ji}|T_j)$

$$
\propto \exp\left[-\frac{\sum_{h} (r_{jih} - \mu_{ji})^2}{2\sigma^2}\right] \exp\left[-\frac{(\mu_{ji} - \mu_{ji})^2}{2\sigma_{\mu}^2}\right]
$$

$$
\propto \exp\left[-\frac{(n_i\sigma_{\mu}^2 + \sigma^2)\mu_{ji}^2 - 2(\sigma_{\mu}^2 \sum_{h} r_{jih} + \sigma^2 \sigma_{\mu}^2)}{2\sigma^2 \sigma_{\mu}^2}\right]
$$

$$
\propto \exp\left[-\frac{(\mu_{ji} - \frac{\sigma_{\mu}^2 \sum_{h} r_{jih} + \sigma^2 \mu_{\mu}}{n_i \sigma_{\mu}^2 + \sigma^2})^2}{2\frac{\sigma^2 \sigma_{\mu}^2}{n_i \sigma_{\mu}^2 + \sigma^2}}\right],
$$

where $\sum_{i} (r_{iik} - \mu_{ii})^2$ is the summation of the squared difference between the parameter μ_{ji} and r_{jih} 's allocated to the terminal node with parameter *μji*∑*^h* $(r_{jih} - \mu_{ji})^2$

BART for continuous outcomes Performance of BART - synthetic data

The point estimates of BLR were far way from the true values and many of the true values were not covered by the 95% credible intervals.

For BART, as *m* (number of trees) increased, there was a significant improvement in point estimates and the credible intervals were also narrowed. Note that there was no signficant improvement in result by increasing m after 50.

FIGURE 5 Posterior mean and 95% credible interval of Bayesian linear regression (BLR) and Bayesian additive regression trees (BART) with $m = 1, 50, 100, 150, 200$ for 30 randomly selected testing set outcomes. $n = 1000$, black = true value, red = model estimates [Colour figure can be viewed at wileyonlinelibrary.com]

BART for continuous outcomes Performance of BART - real data

The figure shows the 10 RMSEs produced by each method from the 10-fold cross-validation. Both BART and RF produced very similar prediction performances and are better compared to MLR. MLR produced a mean of the RMSE of 0.24 while BART and RF produced a mean of 0.23.

III IVICUILIIIC

FIGURE 6 Root mean squared error (RMSE; y -axis) for the 10-fold cross-validation of multiple linear regression (MLR), random forest, and Bayesian additive regression trees (BART) of log transformed standardized hospitalization ratio (SHR). x-axis indicates the RMSE for the xth fold [Colour figure can be viewed at wileyonlinelibrary.com]

