Link to OSF-Project
Questionnaire realized with formr
see the questionnaire here


Preregistration

Available here: https://osf.io/2jw7m
Preregistration dates after the data collection, last modification was - however - before data collection. I simply clicked on “save” and not on “register” at the time.

Data import & cleaning

Import

library(tidyverse)
library(psych)
library(rio)
library(lavaanPlot)
library(BayesFactor)
library(lavaan)
library(knitr)

valid <- rio::import("https://raw.githubusercontent.com/j-5chneider/uzvvtp-las/master/data/pilot2.csv")

Delete empty rows/ rows of test run

valid <- valid %>%
  dplyr::filter(!is.na(lehramt))                 # only include students that completed the questionnaire

Sample description

and editing/deleting unreasonable values (e.g. out of range data)

Semester

# semester: no unreasonable values
ggplot(valid, aes(x = as.factor(semester))) +
  geom_bar() +
  labs(title = "Count of participants by semester",
       caption = "Note: There were no participants from 11th, 13th, 14th, 15th semester.") +
  xlab("Semester") +
  geom_text(aes(label = ..count..), stat = "count", vjust = -0.3, size = 4)


Standort

ggplot(valid, aes(x = factor(standort, labels = c("Flensburg", "Linz", "Tübingen", "Vechta")))) +  # 1= Flensburg, 2= Linz, 3= München, 4= Stuttgart, 5= Tübingen, 6= Vechta, 7= andere
  geom_bar() +
  labs(title = "Count of participants by Standort") +
  xlab("") +
  geom_text(aes(label = ..count..), stat = "count", vjust = -0.3, size = 4)

Subject

fach_freq <- data.frame(table(valid$fach))
names(fach_freq) <- c("Combination of Subjects", "Frequency")
kable(fach_freq, format = "html")
Combination of Subjects Frequency
11, 12, 15 1
12 4
12, 13 12
12, 13, 14 1
12, 13, 18 1
12, 14 1
12, 15 3
12, 17 1
12, 18 1
12, 18, 39 2
12, 29 1
12, 31 4
12, 35 1
12, 39 10
12, 40 2
12, 43 1
13 1
13, 14 1
13, 14, 23, 35 1
13, 17 1
13, 17, 34 1
13, 18 2
13, 18, 31 1
13, 23 1
13, 31 2
13, 37 4
13, 43 1
13, 44 2
13, 50 1
13, 52 1
14, 18 1
14, 31 1
15 2
15, 31 2
15, 39 1
15, 43 2
16, 18, 31 1
17, 23 1
17, 34 1
17, 34, 41 1
18 2
18, 24 1
18, 30 2
18, 30, 43 1
18, 31 1
18, 35 2
18, 36 1
18, 37 1
18, 44 1
23, 31 1
25, 27 1
27 2
31 1
31, 39 8
31, 40 1
31, 44 1
31, 50 1
34 1
34, 36 1
35 1
35, 40 1
36, 44 1
37 1
37, 50 2
38, 43 1
39 4
39, 46 1
4 2
4, 11, 12 1
4, 11, 12, 15 1
4, 12, 15 2
4, 12, 18 1
4, 12, 29 1
4, 12, 37, 39 1
4, 12, 39 3
4, 12, 46 1
4, 12, 50 1
4, 13, 39 1
4, 15, 39 1
4, 15, 40 1
4, 17, 43 1
4, 18, 37 1
4, 31, 39 1
4, 35 1
4, 35, 40 1
40 2
40, 44 1
42, 51 1
44 2
5 1
5, 12, 39 3
5, 13 2
5, 14, 18 1
5, 17 2
5, 17, 44 1
5, 31 1
5, 31, 39 2
5, 31, 44 1
5, 34 3
5, 36 1
5, 37 1
5, 6 2
50, 51 2
51 15
51, 52 1
6, 13 1
6, 13, 50 1
6, 31 3
6, 34 1
6, 34, 43 1
6, 36 1
6, 44 1
6, 50 1
7, 13, 31 1
9, 12 2



Results FF2: CFA

4-factor-model (4-5 indicators)

Testing for factor structure and measurement invariance. We expect equal loading structure, but not equal intercept structure between treatment groups.

## wrangle data ##
valid_l <- valid %>%
  mutate(id = 1:length(.$session),                                          # create ID
         tc = ifelse(tc_sr == 1 & tc_st == 2, 1,0)) %>%                     # create treatment check variable
  dplyr::select("flen_AN1":"rel_4_sr", "tc", "id", "semester", -"tc_sr", -"tc_st") %>%
  gather(key = "variable", value = "value", na.rm = T, 1:50) %>%                       # create long data set
  mutate(treat = case_when(                                                            # create treatment variable
                    str_sub(variable, -3, -1) ==  "_st" ~ "transfer",
                    str_sub(variable, -3, -1) ==  "_sr" ~ "relationierung",
                    TRUE ~ NA_character_
                    ),
         variable = case_when(                                                         # rename variable
                      str_sub(variable, -3, -1) ==  "_st" ~ str_sub(variable, 1, -4),
                      str_sub(variable, -3, -1) ==  "_sr" ~ str_sub(variable, 1, -4),
                      TRUE ~ variable
  )
  )

valid_cfa <- valid_l %>%
  dplyr::filter(!is.na(treat)) %>%
  spread(key = "variable", value = "value") %>%
  mutate(treat = case_when(
                    treat == "relationierung" ~ 1,
                    treat == "transfer"       ~ 0
  ))


# get treatment check variable and add to data set
addtc <- valid_l %>%
  dplyr::filter(variable == "tc") %>% 
  mutate(tc = value) %>% 
  dplyr::select(tc, id)

valid_cfa <- left_join(valid_cfa, addtc, by="id")


# the model
f4.model <- ' level: 1
                transfer_w   =~ t1*tfe_1 + t2*tfe_2 + t3*tfe_3 + t4*tfe_4 + t5*tfe_5
                selektion_w  =~ s1*sel_1 + s2*sel_2 + s3*sel_3 + s4*sel_4 + s5*sel_5
                enrichment_w =~ e1*enr_1 + e2*enr_2 + e3*enr_3 + e4*enr_4 + e5*enr_5
                relation_w   =~ r1*rel_1 + r2*rel_2 + r3*rel_3 + r4*rel_4

              level: 2
                transfer_b   =~ t1*tfe_1 + t2*tfe_2 + t3*tfe_3 + t4*tfe_4 + t5*tfe_5
                selektion_b  =~ s1*sel_1 + s2*sel_2 + s3*sel_3 + s4*sel_4 + s5*sel_5
                enrichment_b =~ e1*enr_1 + e2*enr_2 + e3*enr_3 + e4*enr_4 + e5*enr_5
                relation_b   =~ r1*rel_1 + r2*rel_2 + r3*rel_3 + r4*rel_4
                
                tfe_2 ~~ 0*tfe_2
                sel_5 ~~ sel_1
                enr_2 ~~ 0*enr_2
                rel_3 ~~ 0*rel_3
              '

fit_f4 <- sem(f4.model, 
              data = valid_cfa, 
              cluster = "id"
              )

lavaanPlot(model = fit_f4,
           node_options = list(shape = "box", fontname = "Helvetica"),
           edge_options = list(color = "grey"),
           coefs = TRUE)
summary(fit_f4, fit.measures = TRUE)    
## lavaan 0.6.17 ended normally after 67 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    15
## 
##                                                   Used       Total
##   Number of observations                           367         400
##   Number of clusters [id]                          197            
## 
## Model Test User Model:
##                                                       
##   Test statistic                               486.722
##   Degrees of freedom                               309
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2185.145
##   Degrees of freedom                               342
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.904
##   Tucker-Lewis Index (TLI)                       0.893
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10031.676
##   Loglikelihood unrestricted model (H1)      -9788.315
##                                                       
##   Akaike (AIC)                               20243.352
##   Bayesian (BIC)                             20594.835
##   Sample-size adjusted Bayesian (SABIC)      20309.299
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.040
##   90 Percent confidence interval - lower         0.033
##   90 Percent confidence interval - upper         0.046
##   P-value H_0: RMSEA <= 0.050                    0.996
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual (corr metric):
## 
##   SRMR (within covariance matrix)                0.081
##   SRMR (between covariance matrix)               0.108
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_w =~                                       
##     tfe_1     (t1)    1.000                           
##     tfe_2     (t2)    1.220    0.124    9.824    0.000
##     tfe_3     (t3)    1.033    0.135    7.633    0.000
##     tfe_4     (t4)    0.909    0.116    7.824    0.000
##     tfe_5     (t5)    0.880    0.114    7.730    0.000
##   selektion_w =~                                      
##     sel_1     (s1)    1.000                           
##     sel_2     (s2)    0.738    0.087    8.506    0.000
##     sel_3     (s3)    1.019    0.090   11.310    0.000
##     sel_4     (s4)    1.153    0.095   12.073    0.000
##     sel_5     (s5)    1.028    0.086   11.984    0.000
##   enrichment_w =~                                     
##     enr_1     (e1)    1.000                           
##     enr_2     (e2)    1.017    0.095   10.665    0.000
##     enr_3     (e3)    1.037    0.096   10.838    0.000
##     enr_4     (e4)    0.922    0.091   10.085    0.000
##     enr_5     (e5)    0.906    0.095    9.487    0.000
##   relation_w =~                                       
##     rel_1     (r1)    1.000                           
##     rel_2     (r2)    1.137    0.131    8.652    0.000
##     rel_3     (r3)    1.215    0.131    9.275    0.000
##     rel_4     (r4)    1.000    0.120    8.314    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_w ~~                                       
##     selektion_w      -0.029    0.029   -1.010    0.312
##     enrichment_w      0.004    0.028    0.127    0.899
##     relation_w        0.008    0.023    0.338    0.736
##   selektion_w ~~                                      
##     enrichment_w     -0.017    0.026   -0.671    0.502
##     relation_w        0.006    0.022    0.268    0.789
##   enrichment_w ~~                                     
##     relation_w        0.072    0.023    3.139    0.002
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_1             0.651    0.085    7.618    0.000
##    .tfe_2             0.720    0.082    8.836    0.000
##    .tfe_3             0.681    0.087    7.862    0.000
##    .tfe_4             0.964    0.111    8.709    0.000
##    .tfe_5             0.373    0.051    7.257    0.000
##    .sel_1             0.595    0.076    7.823    0.000
##    .sel_2             0.700    0.080    8.750    0.000
##    .sel_3             0.640    0.082    7.820    0.000
##    .sel_4             0.585    0.080    7.287    0.000
##    .sel_5             0.727    0.090    8.100    0.000
##    .enr_1             0.794    0.099    8.021    0.000
##    .enr_2             0.946    0.085   11.092    0.000
##    .enr_3             0.785    0.095    8.279    0.000
##    .enr_4             0.762    0.093    8.230    0.000
##    .enr_5             1.074    0.124    8.675    0.000
##    .rel_1             0.611    0.073    8.356    0.000
##    .rel_2             0.575    0.074    7.783    0.000
##    .rel_3             0.409    0.047    8.625    0.000
##    .rel_4             0.587    0.071    8.266    0.000
##     transfer_w        0.268    0.062    4.304    0.000
##     selektion_w       0.208    0.043    4.859    0.000
##     enrichment_w      0.152    0.042    3.582    0.000
##     relation_w        0.117    0.030    3.848    0.000
## 
## 
## Level 2 [id]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_b =~                                       
##     tfe_1     (t1)    1.000                           
##     tfe_2     (t2)    1.220    0.124    9.824    0.000
##     tfe_3     (t3)    1.033    0.135    7.633    0.000
##     tfe_4     (t4)    0.909    0.116    7.824    0.000
##     tfe_5     (t5)    0.880    0.114    7.730    0.000
##   selektion_b =~                                      
##     sel_1     (s1)    1.000                           
##     sel_2     (s2)    0.738    0.087    8.506    0.000
##     sel_3     (s3)    1.019    0.090   11.310    0.000
##     sel_4     (s4)    1.153    0.095   12.073    0.000
##     sel_5     (s5)    1.028    0.086   11.984    0.000
##   enrichment_b =~                                     
##     enr_1     (e1)    1.000                           
##     enr_2     (e2)    1.017    0.095   10.665    0.000
##     enr_3     (e3)    1.037    0.096   10.838    0.000
##     enr_4     (e4)    0.922    0.091   10.085    0.000
##     enr_5     (e5)    0.906    0.095    9.487    0.000
##   relation_b =~                                       
##     rel_1     (r1)    1.000                           
##     rel_2     (r2)    1.137    0.131    8.652    0.000
##     rel_3     (r3)    1.215    0.131    9.275    0.000
##     rel_4     (r4)    1.000    0.120    8.314    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .sel_1 ~~                                            
##    .sel_5             0.109    0.050    2.196    0.028
##   transfer_b ~~                                       
##     selektion_b       0.068    0.047    1.442    0.149
##     enrichment_b      0.238    0.057    4.203    0.000
##     relation_b        0.108    0.039    2.744    0.006
##   selektion_b ~~                                      
##     enrichment_b     -0.030    0.056   -0.529    0.597
##     relation_b       -0.029    0.042   -0.695    0.487
##   enrichment_b ~~                                     
##     relation_b        0.214    0.053    4.062    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_1             2.676    0.072   37.083    0.000
##    .tfe_2             2.713    0.072   37.578    0.000
##    .tfe_3             2.414    0.082   29.348    0.000
##    .tfe_4             2.979    0.071   42.248    0.000
##    .tfe_5             2.058    0.067   30.724    0.000
##    .sel_1             3.828    0.072   53.186    0.000
##    .sel_2             4.441    0.070   63.103    0.000
##    .sel_3             3.907    0.072   53.929    0.000
##    .sel_4             3.782    0.077   49.136    0.000
##    .sel_5             3.432    0.080   43.036    0.000
##    .enr_1             3.558    0.078   45.757    0.000
##    .enr_2             3.625    0.079   45.862    0.000
##    .enr_3             3.859    0.080   48.368    0.000
##    .enr_4             3.691    0.076   48.393    0.000
##    .enr_5             3.615    0.081   44.655    0.000
##    .rel_1             4.451    0.067   66.925    0.000
##    .rel_2             4.630    0.067   69.546    0.000
##    .rel_3             4.561    0.062   73.563    0.000
##    .rel_4             4.543    0.060   75.278    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_2             0.000                           
##    .enr_2             0.000                           
##    .rel_3             0.000                           
##    .tfe_1             0.241    0.084    2.864    0.004
##    .tfe_3             0.499    0.112    4.468    0.000
##    .tfe_4             0.105    0.091    1.149    0.251
##    .tfe_5             0.345    0.069    4.983    0.000
##    .sel_1             0.077    0.067    1.142    0.253
##    .sel_2             0.255    0.079    3.215    0.001
##    .sel_3             0.043    0.066    0.662    0.508
##    .sel_4             0.025    0.067    0.376    0.707
##    .sel_5             0.201    0.088    2.285    0.022
##    .enr_1             0.064    0.081    0.794    0.427
##    .enr_3             0.079    0.081    0.970    0.332
##    .enr_4             0.140    0.081    1.724    0.085
##    .enr_5             0.138    0.103    1.336    0.182
##    .rel_1             0.175    0.070    2.497    0.013
##    .rel_2             0.092    0.064    1.444    0.149
##    .rel_4             0.036    0.058    0.628    0.530
##     transfer_b        0.281    0.073    3.867    0.000
##     selektion_b       0.504    0.096    5.275    0.000
##     enrichment_b      0.610    0.109    5.621    0.000
##     relation_b        0.297    0.071    4.211    0.000



4-factor-model (4 indicators)

Ausschluss von enr_5, tfe_4, sel_2 aufgrund geringer Ladung und inhaltlich geringer Passung

  • tfe_4: Voraussetzung stark betont
  • enr_5: bei anderen: Differenz betont
  • sel_2: aktive Lehrerrolle
# Ausschluss von enr_5, tfe_4, sel_2 aufgrund geringer Ladung und inhaltlich geringer Passung
# tfe_4: Voraussetzung stark betont
# enr_5: bei anderen: Differenz betont
# sel_2: aktive Lehrerrolle
f4.model2 <- 'level: 1
                transfer_w   =~ t1*tfe_1 + t2*tfe_2 + t3*tfe_3 + t5*tfe_5
                selektion_w  =~ s1*sel_1 + s3*sel_3 + s4*sel_4 + s5*sel_5
                enrichment_w =~ e1*enr_1 + e2*enr_2 + e3*enr_3 + e4*enr_4 
                relation_w   =~ r1*rel_1 + r2*rel_2 + r3*rel_3 + r4*rel_4
                
              level: 2
                transfer_b   =~ t1*tfe_1 + t2*tfe_2 + t3*tfe_3 + t5*tfe_5
                selektion_b  =~ s1*sel_1 + s3*sel_3 + s4*sel_4 + s5*sel_5
                enrichment_b =~ e1*enr_1 + e2*enr_2 + e3*enr_3 + e4*enr_4 
                relation_b   =~ r1*rel_1 + r2*rel_2 + r3*rel_3 + r4*rel_4
                
                tfe_2 ~~ 0*tfe_2
                sel_5 ~~ sel_1
                enr_2 ~~ 0*enr_2
                rel_3 ~~ 0*rel_3
             '



fit_f4.2 <- sem(f4.model2, 
              data = valid_cfa, 
              cluster = "id",
              std.lv=TRUE
              )

lavaanPlot(model = fit_f4.2,
           node_options = list(shape = "box", fontname = "Helvetica"),
           edge_options = list(color = "grey"),
           coefs = TRUE)
summary(fit_f4.2, fit.measures = TRUE)
## lavaan 0.6.17 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        90
##   Number of equality constraints                    16
## 
##                                                   Used       Total
##   Number of observations                           373         400
##   Number of clusters [id]                          197            
## 
## Model Test User Model:
##                                                       
##   Test statistic                               298.755
##   Degrees of freedom                               214
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1708.532
##   Degrees of freedom                               240
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.942
##   Tucker-Lewis Index (TLI)                       0.935
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8565.580
##   Loglikelihood unrestricted model (H1)      -8416.203
##                                                       
##   Akaike (AIC)                               17279.160
##   Bayesian (BIC)                             17569.357
##   Sample-size adjusted Bayesian (SABIC)      17334.577
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.033
##   90 Percent confidence interval - lower         0.023
##   90 Percent confidence interval - upper         0.041
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual (corr metric):
## 
##   SRMR (within covariance matrix)                0.082
##   SRMR (between covariance matrix)               0.099
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_w =~                                       
##     tfe_1     (t1)    0.501    0.049   10.275    0.000
##     tfe_2     (t2)    0.643    0.049   13.107    0.000
##     tfe_3     (t3)    0.542    0.054   10.088    0.000
##     tfe_5     (t5)    0.477    0.044   10.831    0.000
##   selektion_w =~                                      
##     sel_1     (s1)    0.544    0.044   12.411    0.000
##     sel_3     (s3)    0.571    0.043   13.323    0.000
##     sel_4     (s4)    0.669    0.044   15.076    0.000
##     sel_5     (s5)    0.586    0.049   11.938    0.000
##   enrichment_w =~                                     
##     enr_1     (e1)    0.575    0.046   12.403    0.000
##     enr_2     (e2)    0.621    0.046   13.505    0.000
##     enr_3     (e3)    0.580    0.048   12.043    0.000
##     enr_4     (e4)    0.581    0.045   12.943    0.000
##   relation_w =~                                       
##     rel_1     (r1)    0.424    0.042   10.117    0.000
##     rel_2     (r2)    0.499    0.041   12.199    0.000
##     rel_3     (r3)    0.548    0.035   15.777    0.000
##     rel_4     (r4)    0.433    0.037   11.684    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_w ~~                                       
##     selektion_w      -0.252    0.118   -2.133    0.033
##     enrichment_w     -0.137    0.132   -1.033    0.301
##     relation_w       -0.041    0.129   -0.319    0.750
##   selektion_w ~~                                      
##     enrichment_w     -0.018    0.160   -0.113    0.910
##     relation_w       -0.001    0.158   -0.006    0.995
##   enrichment_w ~~                                     
##     relation_w        0.529    0.129    4.095    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_1             0.686    0.087    7.849    0.000
##    .tfe_2             0.716    0.086    8.364    0.000
##    .tfe_3             0.665    0.085    7.863    0.000
##    .tfe_5             0.346    0.052    6.715    0.000
##    .sel_1             0.609    0.078    7.784    0.000
##    .sel_3             0.653    0.084    7.733    0.000
##    .sel_4             0.579    0.086    6.703    0.000
##    .sel_5             0.716    0.091    7.854    0.000
##    .enr_1             0.843    0.105    8.018    0.000
##    .enr_2             0.895    0.087   10.230    0.000
##    .enr_3             0.778    0.098    7.952    0.000
##    .enr_4             0.683    0.090    7.572    0.000
##    .rel_1             0.635    0.075    8.442    0.000
##    .rel_2             0.578    0.074    7.849    0.000
##    .rel_3             0.377    0.048    7.816    0.000
##    .rel_4             0.587    0.072    8.198    0.000
##     transfer_w        1.000                           
##     selektion_w       1.000                           
##     enrichment_w      1.000                           
##     relation_w        1.000                           
## 
## 
## Level 2 [id]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer_b =~                                       
##     tfe_1     (t1)    0.501    0.049   10.275    0.000
##     tfe_2     (t2)    0.643    0.049   13.107    0.000
##     tfe_3     (t3)    0.542    0.054   10.088    0.000
##     tfe_5     (t5)    0.477    0.044   10.831    0.000
##   selektion_b =~                                      
##     sel_1     (s1)    0.544    0.044   12.411    0.000
##     sel_3     (s3)    0.571    0.043   13.323    0.000
##     sel_4     (s4)    0.669    0.044   15.076    0.000
##     sel_5     (s5)    0.586    0.049   11.938    0.000
##   enrichment_b =~                                     
##     enr_1     (e1)    0.575    0.046   12.403    0.000
##     enr_2     (e2)    0.621    0.046   13.505    0.000
##     enr_3     (e3)    0.580    0.048   12.043    0.000
##     enr_4     (e4)    0.581    0.045   12.943    0.000
##   relation_b =~                                       
##     rel_1     (r1)    0.424    0.042   10.117    0.000
##     rel_2     (r2)    0.499    0.041   12.199    0.000
##     rel_3     (r3)    0.548    0.035   15.777    0.000
##     rel_4     (r4)    0.433    0.037   11.684    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .sel_1 ~~                                            
##    .sel_5             0.132    0.055    2.407    0.016
##   transfer_b ~~                                       
##     selektion_b       0.355    0.140    2.543    0.011
##     enrichment_b      0.676    0.132    5.122    0.000
##     relation_b        0.399    0.140    2.852    0.004
##   selektion_b ~~                                      
##     enrichment_b     -0.151    0.140   -1.079    0.280
##     relation_b       -0.133    0.139   -0.957    0.339
##   enrichment_b ~~                                     
##     relation_b        0.418    0.118    3.551    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_1             2.675    0.071   37.871    0.000
##    .tfe_2             2.705    0.072   37.662    0.000
##    .tfe_3             2.410    0.081   29.633    0.000
##    .tfe_5             2.059    0.067   30.647    0.000
##    .sel_1             3.840    0.068   56.728    0.000
##    .sel_3             3.894    0.068   57.022    0.000
##    .sel_4             3.772    0.072   52.600    0.000
##    .sel_5             3.435    0.075   45.721    0.000
##    .enr_1             3.549    0.073   48.946    0.000
##    .enr_2             3.615    0.074   49.100    0.000
##    .enr_3             3.849    0.075   51.599    0.000
##    .enr_4             3.689    0.071   51.689    0.000
##    .rel_1             4.444    0.063   70.641    0.000
##    .rel_2             4.614    0.064   72.058    0.000
##    .rel_3             4.559    0.058   78.570    0.000
##    .rel_4             4.550    0.057   79.878    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_2             0.000                           
##    .enr_2             0.000                           
##    .rel_3             0.000                           
##    .tfe_1             0.230    0.086    2.678    0.007
##    .tfe_3             0.492    0.111    4.415    0.000
##    .tfe_5             0.352    0.070    5.034    0.000
##    .sel_1             0.122    0.073    1.670    0.095
##    .sel_3             0.068    0.069    0.987    0.324
##    .sel_4             0.017    0.071    0.244    0.807
##    .sel_5             0.200    0.090    2.231    0.026
##    .enr_1             0.079    0.085    0.924    0.355
##    .enr_3             0.164    0.087    1.881    0.060
##    .enr_4             0.119    0.077    1.545    0.122
##    .rel_1             0.164    0.070    2.347    0.019
##    .rel_2             0.116    0.064    1.817    0.069
##    .rel_4             0.039    0.058    0.671    0.502
##     transfer_b        1.000                           
##     selektion_b       1.000                           
##     enrichment_b      1.000                           
##     relation_b        1.000

Standardized Solution

standardizedSolution(fit_f4.2)
##              lhs op          rhs label est.std    se      z pvalue ci.lower
## 1     transfer_w =~        tfe_1    t1   0.517 0.048 10.779  0.000    0.423
## 2     transfer_w =~        tfe_2    t2   0.605 0.045 13.499  0.000    0.518
## 3     transfer_w =~        tfe_3    t3   0.554 0.048 11.449  0.000    0.459
## 4     transfer_w =~        tfe_5    t5   0.629 0.052 12.037  0.000    0.527
## 5    selektion_w =~        sel_1    s1   0.572 0.042 13.697  0.000    0.490
## 6    selektion_w =~        sel_3    s3   0.577 0.042 13.814  0.000    0.495
## 7    selektion_w =~        sel_4    s4   0.660 0.041 15.915  0.000    0.579
## 8    selektion_w =~        sel_5    s5   0.569 0.042 13.402  0.000    0.486
## 9   enrichment_w =~        enr_1    e1   0.531 0.042 12.782  0.000    0.450
## 10  enrichment_w =~        enr_2    e2   0.549 0.038 14.263  0.000    0.474
## 11  enrichment_w =~        enr_3    e3   0.549 0.042 13.033  0.000    0.467
## 12  enrichment_w =~        enr_4    e4   0.575 0.043 13.495  0.000    0.492
## 13    relation_w =~        rel_1    r1   0.469 0.043 10.848  0.000    0.385
## 14    relation_w =~        rel_2    r2   0.548 0.043 12.619  0.000    0.463
## 15    relation_w =~        rel_3    r3   0.666 0.040 16.841  0.000    0.589
## 16    relation_w =~        rel_4    r4   0.492 0.041 12.127  0.000    0.412
## 17         tfe_1 ~~        tfe_1         0.733 0.050 14.764  0.000    0.635
## 18         tfe_2 ~~        tfe_2         0.633 0.054 11.666  0.000    0.527
## 19         tfe_3 ~~        tfe_3         0.693 0.054 12.939  0.000    0.588
## 20         tfe_5 ~~        tfe_5         0.604 0.066  9.172  0.000    0.475
## 21         sel_1 ~~        sel_1         0.673 0.048 14.075  0.000    0.579
## 22         sel_3 ~~        sel_3         0.667 0.048 13.827  0.000    0.572
## 23         sel_4 ~~        sel_4         0.564 0.055 10.299  0.000    0.457
## 24         sel_5 ~~        sel_5         0.676 0.048 13.970  0.000    0.581
## 25         enr_1 ~~        enr_1         0.718 0.044 16.275  0.000    0.632
## 26         enr_2 ~~        enr_2         0.699 0.042 16.532  0.000    0.616
## 27         enr_3 ~~        enr_3         0.698 0.046 15.089  0.000    0.608
## 28         enr_4 ~~        enr_4         0.669 0.049 13.642  0.000    0.573
## 29         rel_1 ~~        rel_1         0.780 0.041 19.193  0.000    0.700
## 30         rel_2 ~~        rel_2         0.699 0.048 14.676  0.000    0.606
## 31         rel_3 ~~        rel_3         0.556 0.053 10.547  0.000    0.453
## 32         rel_4 ~~        rel_4         0.758 0.040 19.034  0.000    0.680
## 33    transfer_w ~~   transfer_w         1.000 0.000     NA     NA    1.000
## 34   selektion_w ~~  selektion_w         1.000 0.000     NA     NA    1.000
## 35  enrichment_w ~~ enrichment_w         1.000 0.000     NA     NA    1.000
## 36    relation_w ~~   relation_w         1.000 0.000     NA     NA    1.000
## 37    transfer_w ~~  selektion_w        -0.252 0.118 -2.133  0.033   -0.484
## 38    transfer_w ~~ enrichment_w        -0.137 0.132 -1.033  0.301   -0.396
## 39    transfer_w ~~   relation_w        -0.041 0.129 -0.319  0.750   -0.295
## 40   selektion_w ~~ enrichment_w        -0.018 0.160 -0.113  0.910   -0.333
## 41   selektion_w ~~   relation_w        -0.001 0.158 -0.006  0.995   -0.310
## 42  enrichment_w ~~   relation_w         0.529 0.129  4.095  0.000    0.276
## 43         tfe_1 ~1                      0.000 0.000     NA     NA    0.000
## 44         tfe_2 ~1                      0.000 0.000     NA     NA    0.000
## 45         tfe_3 ~1                      0.000 0.000     NA     NA    0.000
## 46         tfe_5 ~1                      0.000 0.000     NA     NA    0.000
## 47         sel_1 ~1                      0.000 0.000     NA     NA    0.000
## 48         sel_3 ~1                      0.000 0.000     NA     NA    0.000
## 49         sel_4 ~1                      0.000 0.000     NA     NA    0.000
## 50         sel_5 ~1                      0.000 0.000     NA     NA    0.000
## 51         enr_1 ~1                      0.000 0.000     NA     NA    0.000
## 52         enr_2 ~1                      0.000 0.000     NA     NA    0.000
## 53         enr_3 ~1                      0.000 0.000     NA     NA    0.000
## 54         enr_4 ~1                      0.000 0.000     NA     NA    0.000
## 55         rel_1 ~1                      0.000 0.000     NA     NA    0.000
## 56         rel_2 ~1                      0.000 0.000     NA     NA    0.000
## 57         rel_3 ~1                      0.000 0.000     NA     NA    0.000
## 58         rel_4 ~1                      0.000 0.000     NA     NA    0.000
## 59    transfer_w ~1                      0.000 0.000     NA     NA    0.000
## 60   selektion_w ~1                      0.000 0.000     NA     NA    0.000
## 61  enrichment_w ~1                      0.000 0.000     NA     NA    0.000
## 62    relation_w ~1                      0.000 0.000     NA     NA    0.000
## 63    transfer_b =~        tfe_1    t1   0.722 0.077  9.425  0.000    0.572
## 64    transfer_b =~        tfe_2    t2   1.000 0.000     NA     NA    1.000
## 65    transfer_b =~        tfe_3    t3   0.612 0.064  9.570  0.000    0.486
## 66    transfer_b =~        tfe_5    t5   0.626 0.055 11.352  0.000    0.518
## 67   selektion_b =~        sel_1    s1   0.842 0.081 10.423  0.000    0.684
## 68   selektion_b =~        sel_3    s3   0.909 0.082 11.145  0.000    0.749
## 69   selektion_b =~        sel_4    s4   0.981 0.076 12.984  0.000    0.833
## 70   selektion_b =~        sel_5    s5   0.795 0.076 10.434  0.000    0.645
## 71  enrichment_b =~        enr_1    e1   0.899 0.096  9.377  0.000    0.711
## 72  enrichment_b =~        enr_2    e2   1.000 0.000     NA     NA    1.000
## 73  enrichment_b =~        enr_3    e3   0.820 0.079 10.388  0.000    0.665
## 74  enrichment_b =~        enr_4    e4   0.860 0.076 11.259  0.000    0.710
## 75    relation_b =~        rel_1    r1   0.723 0.087  8.331  0.000    0.553
## 76    relation_b =~        rel_2    r2   0.825 0.077 10.725  0.000    0.675
## 77    relation_b =~        rel_3    r3   1.000 0.000     NA     NA    1.000
## 78    relation_b =~        rel_4    r4   0.910 0.119  7.632  0.000    0.676
## 79         tfe_2 ~~        tfe_2         0.000 0.000     NA     NA    0.000
## 80         sel_1 ~~        sel_5         0.847 0.295  2.874  0.004    0.269
## 81         enr_2 ~~        enr_2         0.000 0.000     NA     NA    0.000
## 82         rel_3 ~~        rel_3         0.000 0.000     NA     NA    0.000
## 83         tfe_1 ~~        tfe_1         0.479 0.111  4.329  0.000    0.262
## 84         tfe_3 ~~        tfe_3         0.626 0.078  8.006  0.000    0.473
## 85         tfe_5 ~~        tfe_5         0.608 0.069  8.804  0.000    0.473
## 86         sel_1 ~~        sel_1         0.291 0.136  2.141  0.032    0.025
## 87         sel_3 ~~        sel_3         0.173 0.148  1.167  0.243   -0.118
## 88         sel_4 ~~        sel_4         0.037 0.148  0.252  0.801   -0.253
## 89         sel_5 ~~        sel_5         0.368 0.121  3.043  0.002    0.131
## 90         enr_1 ~~        enr_1         0.192 0.172  1.112  0.266   -0.146
## 91         enr_3 ~~        enr_3         0.328 0.129  2.533  0.011    0.074
## 92         enr_4 ~~        enr_4         0.261 0.131  1.988  0.047    0.004
## 93         rel_1 ~~        rel_1         0.478 0.125  3.813  0.000    0.232
## 94         rel_2 ~~        rel_2         0.319 0.127  2.509  0.012    0.070
## 95         rel_4 ~~        rel_4         0.172 0.217  0.791  0.429   -0.254
## 96    transfer_b ~~   transfer_b         1.000 0.000     NA     NA    1.000
## 97   selektion_b ~~  selektion_b         1.000 0.000     NA     NA    1.000
## 98  enrichment_b ~~ enrichment_b         1.000 0.000     NA     NA    1.000
## 99    relation_b ~~   relation_b         1.000 0.000     NA     NA    1.000
## 100   transfer_b ~~  selektion_b         0.355 0.140  2.543  0.011    0.081
## 101   transfer_b ~~ enrichment_b         0.676 0.132  5.122  0.000    0.417
## 102   transfer_b ~~   relation_b         0.399 0.140  2.852  0.004    0.125
## 103  selektion_b ~~ enrichment_b        -0.151 0.140 -1.079  0.280   -0.426
## 104  selektion_b ~~   relation_b        -0.133 0.139 -0.957  0.339   -0.406
## 105 enrichment_b ~~   relation_b         0.418 0.118  3.551  0.000    0.187
## 106        tfe_1 ~1                      3.858 0.387  9.956  0.000    3.098
## 107        tfe_2 ~1                      4.203 0.340 12.380  0.000    3.538
## 108        tfe_3 ~1                      2.718 0.216 12.576  0.000    2.294
## 109        tfe_5 ~1                      2.705 0.199 13.600  0.000    2.315
## 110        sel_1 ~1                      5.938 0.552 10.763  0.000    4.857
## 111        sel_3 ~1                      6.197 0.649  9.548  0.000    4.925
## 112        sel_4 ~1                      5.535 0.511 10.834  0.000    4.534
## 113        sel_5 ~1                      4.657 0.408 11.401  0.000    3.857
## 114        enr_1 ~1                      5.546 0.653  8.496  0.000    4.267
## 115        enr_2 ~1                      5.819 0.447 13.021  0.000    4.943
## 116        enr_3 ~1                      5.444 0.523 10.415  0.000    4.420
## 117        enr_4 ~1                      5.456 0.539 10.114  0.000    4.399
## 118        rel_1 ~1                      7.581 0.803  9.439  0.000    6.007
## 119        rel_2 ~1                      7.638 0.777  9.828  0.000    6.115
## 120        rel_3 ~1                      8.313 0.537 15.466  0.000    7.259
## 121        rel_4 ~1                      9.574 1.313  7.289  0.000    6.999
## 122   transfer_b ~1                      0.000 0.000     NA     NA    0.000
## 123  selektion_b ~1                      0.000 0.000     NA     NA    0.000
## 124 enrichment_b ~1                      0.000 0.000     NA     NA    0.000
## 125   relation_b ~1                      0.000 0.000     NA     NA    0.000
##     ci.upper
## 1      0.611
## 2      0.693
## 3      0.649
## 4      0.732
## 5      0.654
## 6      0.659
## 7      0.742
## 8      0.653
## 9      0.612
## 10     0.624
## 11     0.632
## 12     0.659
## 13     0.554
## 14     0.633
## 15     0.744
## 16     0.571
## 17     0.830
## 18     0.740
## 19     0.798
## 20     0.733
## 21     0.766
## 22     0.761
## 23     0.671
## 24     0.771
## 25     0.805
## 26     0.781
## 27     0.789
## 28     0.765
## 29     0.859
## 30     0.793
## 31     0.659
## 32     0.836
## 33     1.000
## 34     1.000
## 35     1.000
## 36     1.000
## 37    -0.020
## 38     0.122
## 39     0.212
## 40     0.296
## 41     0.308
## 42     0.782
## 43     0.000
## 44     0.000
## 45     0.000
## 46     0.000
## 47     0.000
## 48     0.000
## 49     0.000
## 50     0.000
## 51     0.000
## 52     0.000
## 53     0.000
## 54     0.000
## 55     0.000
## 56     0.000
## 57     0.000
## 58     0.000
## 59     0.000
## 60     0.000
## 61     0.000
## 62     0.000
## 63     0.872
## 64     1.000
## 65     0.737
## 66     0.734
## 67     1.000
## 68     1.069
## 69     1.129
## 70     0.944
## 71     1.087
## 72     1.000
## 73     0.975
## 74     1.009
## 75     0.893
## 76     0.976
## 77     1.000
## 78     1.144
## 79     0.000
## 80     1.425
## 81     0.000
## 82     0.000
## 83     0.696
## 84     0.779
## 85     0.743
## 86     0.558
## 87     0.464
## 88     0.328
## 89     0.606
## 90     0.530
## 91     0.581
## 92     0.518
## 93     0.724
## 94     0.568
## 95     0.597
## 96     1.000
## 97     1.000
## 98     1.000
## 99     1.000
## 100    0.629
## 101    0.934
## 102    0.674
## 103    0.123
## 104    0.140
## 105    0.649
## 106    4.617
## 107    4.869
## 108    3.142
## 109    3.094
## 110    7.019
## 111    7.469
## 112    6.536
## 113    5.458
## 114    6.826
## 115    6.695
## 116    6.469
## 117    6.513
## 118    9.155
## 119    9.161
## 120    9.366
## 121   12.148
## 122    0.000
## 123    0.000
## 124    0.000
## 125    0.000



Reliability

## McDonalds Omega for these factors ##

# Transfer
rel_data4.1.0 <- valid_cfa %>%
  dplyr::filter(treat == 0) %>%
  dplyr::select("tfe_1" , "tfe_2" , "tfe_3" , "tfe_5") 

rel_tr_ctml <- MBESS::ci.reliability(rel_data4.1.0)$est
rel_tr_ctml_l <- MBESS::ci.reliability(rel_data4.1.0)$ci.lower
rel_tr_ctml_u <- MBESS::ci.reliability(rel_data4.1.0)$ci.upper

rel_data4.1.1 <- valid_cfa %>%
  dplyr::filter(treat == 1) %>%
  dplyr::select("tfe_1" , "tfe_2" , "tfe_3" , "tfe_5")

rel_tr_stp <- MBESS::ci.reliability(rel_data4.1.1)$est
rel_tr_stp_l <- MBESS::ci.reliability(rel_data4.1.1)$ci.lower
rel_tr_stp_u <- MBESS::ci.reliability(rel_data4.1.1)$ci.upper

# Selektion
rel_data4.2.0 <- valid_cfa %>%
  dplyr::filter(treat == 0) %>%
  dplyr::select("sel_1" , "sel_3" , "sel_4" , "sel_5") 

rel_se_ctml <- MBESS::ci.reliability(rel_data4.2.0)$est
rel_se_ctml_l <- MBESS::ci.reliability(rel_data4.2.0)$ci.lower
rel_se_ctml_u <- MBESS::ci.reliability(rel_data4.2.0)$ci.upper

rel_data4.2.1 <- valid_cfa %>%
  dplyr::filter(treat == 1) %>%
  dplyr::select("sel_1" , "sel_3" , "sel_4" , "sel_5") 

rel_se_stp <- MBESS::ci.reliability(rel_data4.2.1)$est
rel_se_stp_l <- MBESS::ci.reliability(rel_data4.2.1)$ci.lower
rel_se_stp_u <- MBESS::ci.reliability(rel_data4.2.1)$ci.upper


# Enrichment
rel_data4.3.0 <- valid_cfa %>%
  dplyr::filter(treat == 0) %>%
  dplyr::select("enr_1" , "enr_2" , "enr_3" , "enr_4") 

rel_en_ctml <- MBESS::ci.reliability(rel_data4.3.0)$est
rel_en_ctml_l <- MBESS::ci.reliability(rel_data4.3.0)$ci.lower
rel_en_ctml_u <- MBESS::ci.reliability(rel_data4.3.0)$ci.upper

rel_data4.3.1 <- valid_cfa %>%
  dplyr::filter(treat == 1) %>%
  dplyr::select("enr_1" , "enr_2" , "enr_3" , "enr_4") 

rel_en_stp <- MBESS::ci.reliability(rel_data4.3.1)$est
rel_en_stp_l <- MBESS::ci.reliability(rel_data4.3.1)$ci.lower
rel_en_stp_u <- MBESS::ci.reliability(rel_data4.3.1)$ci.upper

# Relationierung
rel_data4.4.0 <- valid_cfa %>%
  dplyr::filter(treat == 0) %>%
  dplyr::select("rel_1" , "rel_2" , "rel_3" , "rel_4") 

rel_re_ctml <- MBESS::ci.reliability(rel_data4.4.0)$est
rel_re_ctml_l <- MBESS::ci.reliability(rel_data4.4.0)$ci.lower
rel_re_ctml_u <- MBESS::ci.reliability(rel_data4.4.0)$ci.upper

rel_data4.4.1 <- valid_cfa %>%
  dplyr::filter(treat == 1) %>%
  dplyr::select("rel_1" , "rel_2" , "rel_3" , "rel_4") 

rel_re_stp <- MBESS::ci.reliability(rel_data4.4.1)$est
rel_re_stp_l <- MBESS::ci.reliability(rel_data4.4.1)$ci.lower
rel_re_stp_u <- MBESS::ci.reliability(rel_data4.4.1)$ci.upper
  • Transfer
    • McDonalds \(\sf{\omega_{CTML}}\)= 0.621, 95%CI[NA, NA]
    • McDonalds \(\sf{\omega_{STP}}\)= 0.818, 95%CI[NA, NA]
  • Selektion
    • McDonalds \(\sf{\omega_{CTML}}\)= 0.797, 95%CI[NA, NA]
    • McDonalds \(\sf{\omega_{STP}}\)= 0.834, 95%CI[NA, NA]
  • Enrichment
    • McDonalds \(\sf{\omega_{CTML}}\)= 0.756, 95%CI[NA, NA]
    • McDonalds \(\sf{\omega_{STP}}\)= 0.783, 95%CI[NA, NA]
  • Relationierung
    • McDonalds \(\sf{\omega_{CTML}}\)= 0.784, 95%CI[NA, NA]
    • McDonalds \(\sf{\omega_{STP}}\)= 0.731, 95%CI[NA, NA]



Check 4 indicators with Study 1 data

Let’s see, if the data from item selection wave (exploratory, first data collection wave) fits the model with 4 indicators each factor.

# unfortunately I cannot share the data via this file
# however you can access the data on [link pending]
itemsel <- read_csv2(file = "https://raw.githubusercontent.com/j-5chneider/uzvvtp-las/master/data/pilot1.csv")

# rename variables to fit latest labels
itemsel <- itemsel %>%
  mutate(tfe_1 = tfe_tfe_02,
         tfe_2 = tfe_tfe_03,
         tfe_3 = tfe_tfe_08,
         tfe_4 = tfe_did_01,
         tfe_5 = tfe_did_05,
         sel_1 = tfo_sel_01,
         sel_2 = tfo_sel_02,
         sel_3 = tfo_sel_04,
         sel_4 = tfo_sel_08,
         sel_5 = tfo_sel_09,
         enr_1 = tfo_enr_01,
         enr_2 = tfo_enr_02,
         enr_3 = tfo_enr_03,
         enr_4 = tfo_enr_04,
         enr_5 = tfo_enr_05,
         rel_1 = rel_rel_02,
         rel_2 = rel_rel_03,
         rel_3 = rel_rel_08,
         rel_4 = rel_rel_09)


f4.itemsel <- ' transfer   =~ tfe_1 + tfe_2 + tfe_3 + tfe_5
                selektion  =~ sel_1 + sel_3 + sel_4 + sel_5
                enrichment =~ enr_1 + enr_2 + enr_3 + enr_4 
                relation   =~ rel_1 + rel_2 + rel_3 + rel_4
                
                # tfe_2 ~~ 0*tfe_2  # Heywood Cases
                # sel_5 ~~ sel_1
                # enr_2 ~~ 0*enr_2
                # rel_3 ~~ 0*rel_3
             '


# without restrictions
fit_itemsel <- sem(f4.itemsel, 
                   data = itemsel, 
                   # cluster = "id",      # there is no multilevel structure in wave 1
                   std.lv=TRUE
                   )

lavaanPlot(model = fit_itemsel,
          node_options = list(shape = "box", fontname = "Helvetica"),
          edge_options = list(color = "grey"),
          coefs = TRUE)
summary(fit_itemsel, fit.measures = TRUE)
## lavaan 0.6.17 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        38
## 
##                                                   Used       Total
##   Number of observations                           203         399
## 
## Model Test User Model:
##                                                       
##   Test statistic                               162.236
##   Degrees of freedom                                98
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1263.053
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.944
##   Tucker-Lewis Index (TLI)                       0.931
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4818.189
##   Loglikelihood unrestricted model (H1)      -4737.072
##                                                       
##   Akaike (AIC)                                9712.379
##   Bayesian (BIC)                              9838.280
##   Sample-size adjusted Bayesian (SABIC)       9717.887
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.057
##   90 Percent confidence interval - lower         0.041
##   90 Percent confidence interval - upper         0.072
##   P-value H_0: RMSEA <= 0.050                    0.227
##   P-value H_0: RMSEA >= 0.080                    0.005
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.058
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer =~                                         
##     tfe_1             0.824    0.080   10.367    0.000
##     tfe_2             0.807    0.076   10.587    0.000
##     tfe_3             0.792    0.082    9.617    0.000
##     tfe_5             0.706    0.081    8.730    0.000
##   selektion =~                                        
##     sel_1             0.759    0.078    9.671    0.000
##     sel_3             0.955    0.084   11.341    0.000
##     sel_4             0.955    0.091   10.536    0.000
##     sel_5             0.868    0.101    8.590    0.000
##   enrichment =~                                       
##     enr_1             1.056    0.096   11.020    0.000
##     enr_2             0.900    0.088   10.206    0.000
##     enr_3             1.087    0.092   11.841    0.000
##     enr_4             0.811    0.103    7.911    0.000
##   relation =~                                         
##     rel_1             0.768    0.078    9.893    0.000
##     rel_2             1.011    0.078   13.013    0.000
##     rel_3             0.986    0.081   12.111    0.000
##     rel_4             0.988    0.078   12.723    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   transfer ~~                                         
##     selektion         0.221    0.086    2.588    0.010
##     enrichment        0.489    0.073    6.717    0.000
##     relation          0.317    0.079    4.003    0.000
##   selektion ~~                                        
##     enrichment        0.300    0.082    3.663    0.000
##     relation          0.363    0.076    4.750    0.000
##   enrichment ~~                                       
##     relation          0.697    0.053   13.241    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .tfe_1             0.650    0.090    7.228    0.000
##    .tfe_2             0.579    0.083    7.015    0.000
##    .tfe_3             0.762    0.097    7.848    0.000
##    .tfe_5             0.799    0.095    8.399    0.000
##    .sel_1             0.701    0.088    7.941    0.000
##    .sel_3             0.641    0.101    6.354    0.000
##    .sel_4             0.843    0.117    7.226    0.000
##    .sel_5             1.279    0.149    8.565    0.000
##    .enr_1             0.987    0.129    7.660    0.000
##    .enr_2             0.911    0.111    8.185    0.000
##    .enr_3             0.815    0.117    6.969    0.000
##    .enr_4             1.455    0.159    9.129    0.000
##    .rel_1             0.778    0.088    8.857    0.000
##    .rel_2             0.558    0.079    7.066    0.000
##    .rel_3             0.692    0.089    7.781    0.000
##    .rel_4             0.581    0.079    7.319    0.000
##     transfer          1.000                           
##     selektion         1.000                           
##     enrichment        1.000                           
##     relation          1.000



Results FF3: Experimental Study

We realized two different stimuli preceding a run through the instrument each. The stimuli are descriptions of two theories from education relevant to classroom practice: Cognitive Theory of Multimedia Learning (CTML) vs. Strukturtheoretische Professionstheorie (SPT). The conditions are varied within person and randomized in their order between person. The conditions were designed to have an effect on the subscale “Transfer”: The short description in the CTML-condition was written to be especially suitable to beliefs of “Transfer”. In this subscale we thus expect ratings to be higher in the CTML-condition (vs. SPT-condition).

For the other subscales results will be computed exploratory.

The stimuli (German)

  • CTML group: “Der „Spatial Contiguity Effect“ aus der Theorie des multimedialen Lernens, trifft Aussagen über die Kombination von Text und Bild in Lernmaterialien, beispielsweise bei der Gestaltung von Arbeitsblättern. Hierfür tragen Schroeder & Cenkci (2018) Befunde zusammen, ob Bilder und erklärender Text separat (getrennt nebeneinander) oder integriert (einzelne Textstücke direkt an relevanter Stelle im Bild) den Lernerfolg besser fördern. Das Ergebnis zeigt, dass integrierte Darstellungen einen positiven Effekt auf die Lernleistung besitzen. Dies gilt für computerbasierte Darstellungen, aber besonders für Darstellungen auf Arbeitsblättern. Wurden mobile Endgeräte verwendet, so konnte kein Unterschied in der Lernleistung zwischen den beiden Darstellungsformen festgestellt werden.”
  • SPT group: “Im strukturtheoretischen Ansatz zur Professionalität im Lehrberuf adressiert Helsper (2004) das „Arbeitsbündnis zwischen Lehrperson und Schüler/-in“. Der Lehrerberuf ist aus dieser Perspektive durch Aufgaben und Anforderungen geprägt, die in sich widersprüchlich sind, also per se nicht aufgelöst werden können. So wird an Lehrpersonen beispielsweise die Anforderung gerichtet, sich als Person auf Lernende einzulassen und Nähe aufzubauen, andererseits müssen sie jedoch ihrer Rolle als Lehrperson gerecht werden, die z.B. bei der Notengebung eine gewisse Distanz gebietet (Nähe-Distanz-Antinomie). Beide Anforderungen vollauf zu realisieren ist nicht möglich und so scheint es für Lehrpersonen unmöglich „richtig“ zu handeln. Professionelles Handeln von Lehrpersonen äußert sich folglich darin, diese Widersprüche auszuhalten und sie sachgerecht zu bewältigen.”



Frequentist Data analysis

valid_exp <- valid_cfa %>%
  dplyr::filter(tc == 1)    # only include participants who 
                            # answered the treatment check correctly
  
# Ausschluss von enr_5, tfe_4, sel_2 aufgrund geringer Ladung
exp.model <- 'level: 1
                transfer_w   =~ tfe_1 + tfe_2 + tfe_3 + tfe_5
                selektion_w  =~ sel_1 + sel_3 + sel_4 + sel_5
                enrichment_w =~ enr_1 + enr_2 + enr_3 + enr_4 
                relation_w   =~ rel_1 + rel_2 + rel_3 + rel_4
                
                transfer_w ~ treat
                selektion_w ~ treat
                enrichment_w ~ treat
                relation_w ~ treat
                
              level: 2
                transfer_b   =~ tfe_1 + tfe_2 + tfe_3 + tfe_5
                selektion_b  =~ sel_1 + sel_3 + sel_4 + sel_5
                enrichment_b =~ enr_1 + enr_2 + enr_3 + enr_4 
                relation_b   =~ rel_1 + rel_2 + rel_3 + rel_4
                
                tfe_2 ~~ 0*tfe_2
                sel_5 ~~ sel_1
                sel_5 ~~ 0*sel_5       # new in this model: Haywood Case
                enr_2 ~~ 0*enr_2
                rel_3 ~~ 0*rel_3
            '

fit_exp <- sem(exp.model, 
               data = valid_exp, 
               cluster = "id"
               )

lavaanPlot(model = fit_exp,
          node_options = list(shape = "box", fontname = "Helvetica"),
          edge_options = list(color = "grey"),
          coefs = TRUE)
# options(max.print=2000)
standardizedSolution(fit_exp)
##              lhs op          rhs est.std    se       z pvalue ci.lower ci.upper
## 1     transfer_w =~        tfe_1   0.611 0.063   9.656  0.000    0.487    0.735
## 2     transfer_w =~        tfe_2   0.829 0.068  12.107  0.000    0.695    0.964
## 3     transfer_w =~        tfe_3   0.405 0.083   4.865  0.000    0.242    0.568
## 4     transfer_w =~        tfe_5   0.529 0.073   7.205  0.000    0.385    0.672
## 5    selektion_w =~        sel_1   0.421 0.089   4.705  0.000    0.246    0.596
## 6    selektion_w =~        sel_3   0.654 0.087   7.529  0.000    0.484    0.825
## 7    selektion_w =~        sel_4   0.645 0.083   7.786  0.000    0.482    0.807
## 8    selektion_w =~        sel_5   0.440 0.081   5.456  0.000    0.282    0.598
## 9   enrichment_w =~        enr_1   0.464 0.105   4.418  0.000    0.258    0.670
## 10  enrichment_w =~        enr_2   0.442 0.089   4.941  0.000    0.267    0.618
## 11  enrichment_w =~        enr_3   0.371 0.117   3.181  0.001    0.142    0.599
## 12  enrichment_w =~        enr_4   0.610 0.102   5.975  0.000    0.410    0.810
## 13    relation_w =~        rel_1   0.088 0.113   0.781  0.435   -0.133    0.308
## 14    relation_w =~        rel_2   0.475 0.102   4.666  0.000    0.275    0.674
## 15    relation_w =~        rel_3   0.560 0.097   5.795  0.000    0.371    0.750
## 16    relation_w =~        rel_4   0.425 0.101   4.217  0.000    0.227    0.622
## 17    transfer_w  ~        treat   0.038 0.066   0.572  0.568   -0.092    0.167
## 18   selektion_w  ~        treat  -0.121 0.070  -1.722  0.085   -0.259    0.017
## 19  enrichment_w  ~        treat  -0.030 0.080  -0.375  0.708   -0.187    0.127
## 20    relation_w  ~        treat  -0.257 0.088  -2.918  0.004   -0.430   -0.084
## 21         tfe_1 ~~        tfe_1   0.627 0.077   8.118  0.000    0.476    0.778
## 22         tfe_2 ~~        tfe_2   0.312 0.114   2.749  0.006    0.090    0.535
## 23         tfe_3 ~~        tfe_3   0.836 0.067  12.422  0.000    0.704    0.968
## 24         tfe_5 ~~        tfe_5   0.721 0.078   9.293  0.000    0.569    0.873
## 25         sel_1 ~~        sel_1   0.823 0.075  10.922  0.000    0.675    0.970
## 26         sel_3 ~~        sel_3   0.572 0.114   5.027  0.000    0.349    0.795
## 27         sel_4 ~~        sel_4   0.585 0.107   5.477  0.000    0.375    0.794
## 28         sel_5 ~~        sel_5   0.807 0.071  11.382  0.000    0.668    0.946
## 29         enr_1 ~~        enr_1   0.785 0.097   8.050  0.000    0.594    0.976
## 30         enr_2 ~~        enr_2   0.805 0.079  10.167  0.000    0.649    0.960
## 31         enr_3 ~~        enr_3   0.862 0.086   9.976  0.000    0.693    1.032
## 32         enr_4 ~~        enr_4   0.628 0.125   5.044  0.000    0.384    0.872
## 33         rel_1 ~~        rel_1   0.992 0.020  50.190  0.000    0.954    1.031
## 34         rel_2 ~~        rel_2   0.775 0.097   8.017  0.000    0.585    0.964
## 35         rel_3 ~~        rel_3   0.686 0.108   6.338  0.000    0.474    0.899
## 36         rel_4 ~~        rel_4   0.820 0.086   9.585  0.000    0.652    0.987
## 37    transfer_w ~~   transfer_w   0.999 0.005 199.623  0.000    0.989    1.008
## 38   selektion_w ~~  selektion_w   0.985 0.017  57.794  0.000    0.952    1.019
## 39  enrichment_w ~~ enrichment_w   0.999 0.005 207.134  0.000    0.990    1.009
## 40    relation_w ~~   relation_w   0.934 0.045  20.576  0.000    0.845    1.023
## 41    transfer_w ~~  selektion_w  -0.059 0.108  -0.551  0.582   -0.270    0.151
## 42    transfer_w ~~ enrichment_w   0.094 0.119   0.791  0.429   -0.139    0.328
## 43    transfer_w ~~   relation_w   0.107 0.122   0.879  0.380   -0.132    0.346
## 44   selektion_w ~~ enrichment_w  -0.052 0.131  -0.399  0.690   -0.309    0.205
## 45   selektion_w ~~   relation_w   0.022 0.157   0.142  0.887   -0.286    0.330
## 46  enrichment_w ~~   relation_w   0.602 0.134   4.488  0.000    0.339    0.865
## 47         treat ~~        treat   1.000 0.000      NA     NA    1.000    1.000
## 48         tfe_1 ~1                0.000 0.000      NA     NA    0.000    0.000
## 49         tfe_2 ~1                0.000 0.000      NA     NA    0.000    0.000
## 50         tfe_3 ~1                0.000 0.000      NA     NA    0.000    0.000
## 51         tfe_5 ~1                0.000 0.000      NA     NA    0.000    0.000
## 52         sel_1 ~1                0.000 0.000      NA     NA    0.000    0.000
## 53         sel_3 ~1                0.000 0.000      NA     NA    0.000    0.000
## 54         sel_4 ~1                0.000 0.000      NA     NA    0.000    0.000
## 55         sel_5 ~1                0.000 0.000      NA     NA    0.000    0.000
## 56         enr_1 ~1                0.000 0.000      NA     NA    0.000    0.000
## 57         enr_2 ~1                0.000 0.000      NA     NA    0.000    0.000
## 58         enr_3 ~1                0.000 0.000      NA     NA    0.000    0.000
## 59         enr_4 ~1                0.000 0.000      NA     NA    0.000    0.000
## 60         rel_1 ~1                0.000 0.000      NA     NA    0.000    0.000
## 61         rel_2 ~1                0.000 0.000      NA     NA    0.000    0.000
## 62         rel_3 ~1                0.000 0.000      NA     NA    0.000    0.000
## 63         rel_4 ~1                0.000 0.000      NA     NA    0.000    0.000
## 64         treat ~1                0.981 0.000      NA     NA    0.981    0.981
## 65    transfer_w ~1                0.000 0.000      NA     NA    0.000    0.000
## 66   selektion_w ~1                0.000 0.000      NA     NA    0.000    0.000
## 67  enrichment_w ~1                0.000 0.000      NA     NA    0.000    0.000
## 68    relation_w ~1                0.000 0.000      NA     NA    0.000    0.000
## 69    transfer_b =~        tfe_1   0.560 0.160   3.500  0.000    0.246    0.874
## 70    transfer_b =~        tfe_2   1.000 0.000      NA     NA    1.000    1.000
## 71    transfer_b =~        tfe_3   0.853 0.109   7.828  0.000    0.639    1.067
## 72    transfer_b =~        tfe_5   0.818 0.089   9.205  0.000    0.644    0.992
## 73   selektion_b =~        sel_1   1.067 0.083  12.831  0.000    0.904    1.230
## 74   selektion_b =~        sel_3   0.812 0.078  10.424  0.000    0.659    0.965
## 75   selektion_b =~        sel_4   0.906 0.059  15.369  0.000    0.791    1.022
## 76   selektion_b =~        sel_5   1.000 0.000      NA     NA    1.000    1.000
## 77  enrichment_b =~        enr_1   0.892 0.070  12.827  0.000    0.756    1.028
## 78  enrichment_b =~        enr_2   1.000 0.000      NA     NA    1.000    1.000
## 79  enrichment_b =~        enr_3   0.998 0.065  15.259  0.000    0.869    1.126
## 80  enrichment_b =~        enr_4   0.922 0.075  12.282  0.000    0.775    1.069
## 81    relation_b =~        rel_1   0.931 0.096   9.741  0.000    0.743    1.118
## 82    relation_b =~        rel_2   0.838 0.084   9.981  0.000    0.673    1.002
## 83    relation_b =~        rel_3   1.000 0.000      NA     NA    1.000    1.000
## 84    relation_b =~        rel_4   0.901 0.077  11.760  0.000    0.751    1.051
## 85         tfe_2 ~~        tfe_2   0.000 0.000      NA     NA    0.000    0.000
## 86         sel_1 ~~        sel_5    -Inf   NaN      NA     NA      NaN      NaN
## 87         sel_5 ~~        sel_5   0.000 0.000      NA     NA    0.000    0.000
## 88         enr_2 ~~        enr_2   0.000 0.000      NA     NA    0.000    0.000
## 89         rel_3 ~~        rel_3   0.000 0.000      NA     NA    0.000    0.000
## 90         tfe_1 ~~        tfe_1   0.686 0.179   3.829  0.000    0.335    1.038
## 91         tfe_3 ~~        tfe_3   0.272 0.186   1.465  0.143   -0.092    0.637
## 92         tfe_5 ~~        tfe_5   0.331 0.145   2.277  0.023    0.046    0.616
## 93         sel_1 ~~        sel_1  -0.139 0.178  -0.783  0.434   -0.487    0.209
## 94         sel_3 ~~        sel_3   0.341 0.126   2.695  0.007    0.093    0.589
## 95         sel_4 ~~        sel_4   0.179 0.107   1.674  0.094   -0.031    0.388
## 96         enr_1 ~~        enr_1   0.204 0.124   1.647  0.100   -0.039    0.447
## 97         enr_3 ~~        enr_3   0.005 0.130   0.038  0.970   -0.251    0.261
## 98         enr_4 ~~        enr_4   0.150 0.138   1.081  0.280   -0.122    0.421
## 99         rel_1 ~~        rel_1   0.134 0.178   0.754  0.451   -0.214    0.483
## 100        rel_2 ~~        rel_2   0.299 0.141   2.124  0.034    0.023    0.574
## 101        rel_4 ~~        rel_4   0.189 0.138   1.367  0.172   -0.082    0.459
## 102   transfer_b ~~   transfer_b   1.000 0.000      NA     NA    1.000    1.000
## 103  selektion_b ~~  selektion_b   1.000 0.000      NA     NA    1.000    1.000
## 104 enrichment_b ~~ enrichment_b   1.000 0.000      NA     NA    1.000    1.000
## 105   relation_b ~~   relation_b   1.000 0.000      NA     NA    1.000    1.000
## 106   transfer_b ~~  selektion_b   0.050 0.129   0.386  0.700   -0.203    0.302
## 107   transfer_b ~~ enrichment_b   0.457 0.125   3.661  0.000    0.212    0.701
## 108   transfer_b ~~   relation_b   0.160 0.128   1.257  0.209   -0.090    0.411
## 109  selektion_b ~~ enrichment_b  -0.192 0.105  -1.828  0.068   -0.397    0.014
## 110  selektion_b ~~   relation_b  -0.113 0.106  -1.064  0.287   -0.320    0.095
## 111 enrichment_b ~~   relation_b   0.506 0.086   5.881  0.000    0.337    0.675
## 112        tfe_1 ~1                4.340 0.712   6.095  0.000    2.945    5.736
## 113        tfe_2 ~1                6.334 1.796   3.527  0.000    2.814    9.853
## 114        tfe_3 ~1                2.500 0.245  10.208  0.000    2.020    2.980
## 115        tfe_5 ~1                2.877 0.300   9.588  0.000    2.289    3.465
## 116        sel_1 ~1                4.991 0.527   9.463  0.000    3.957    6.025
## 117        sel_3 ~1                5.642 0.709   7.954  0.000    4.252    7.032
## 118        sel_4 ~1                4.566 0.473   9.663  0.000    3.640    5.492
## 119        sel_5 ~1                3.804 0.365  10.434  0.000    3.090    4.519
## 120        enr_1 ~1                4.345 0.481   9.030  0.000    3.402    5.288
## 121        enr_2 ~1                4.432 0.488   9.081  0.000    3.476    5.389
## 122        enr_3 ~1                4.274 0.416  10.271  0.000    3.459    5.090
## 123        enr_4 ~1                5.135 0.644   7.979  0.000    3.873    6.396
## 124        rel_1 ~1                6.507 0.697   9.335  0.000    5.141    7.874
## 125        rel_2 ~1                7.101 0.837   8.488  0.000    5.461    8.740
## 126        rel_3 ~1                7.283 0.735   9.913  0.000    5.843    8.723
## 127        rel_4 ~1                7.237 0.809   8.943  0.000    5.651    8.824
## 128   transfer_b ~1                0.000 0.000      NA     NA    0.000    0.000
## 129  selektion_b ~1                0.000 0.000      NA     NA    0.000    0.000
## 130 enrichment_b ~1                0.000 0.000      NA     NA    0.000    0.000
## 131   relation_b ~1                0.000 0.000      NA     NA    0.000    0.000



Did the participants respond too similar between the two stimuli (failed to implement strong stimuli)? Computing ICCs:

lavInspect(fit_exp, "icc")
## tfe_1 tfe_2 tfe_3 tfe_5 sel_1 sel_3 sel_4 sel_5 enr_1 enr_2 enr_3 enr_4 rel_1 
## 0.335 0.197 0.483 0.474 0.449 0.384 0.492 0.502 0.432 0.435 0.503 0.385 0.437 
## rel_2 rel_3 rel_4 treat 
## 0.386 0.451 0.454 0.000



BF Data Analysis (with predicted values)

# wrangle data again without missings
miss <- valid_exp %>%
          dplyr::select(-c(enr_5, tfe_4, sel_2)) %>%
          dplyr::filter(!complete.cases(.)) %>%
          dplyr::select(id) %>%
          unique()

valid_exp_nona <- valid_exp %>%
  dplyr::select(-c(enr_5, tfe_4, sel_2)) %>%
  dplyr::filter(!(id %in% miss$id) & id != 114 & id != 142)    # filter out cases with missings
                                                        # in addition:
                                                        # id 114 and 142 seem to 
                                                        # have answered only on one 
                                                        # stimuli completely

# compute model without missings
fit_exp_nona <- sem(exp.model,
                    data = valid_exp_nona,
                    cluster = "id"
                    )

# extract predicted values from lavaan model
pred_exp <- data.frame(lavPredict(fit_exp_nona, 
                                  method = "regression",
                                  append.data = T,
                                  level = 1))

# compute BF
ttestBF(x = pred_exp$transfer_w[pred_exp$treat == 1], 
        y = pred_exp$transfer_w[pred_exp$treat == 0],
        paired = T,
        nullInterval = c(-Inf, 0)     # Expectation was a negative effect
        )
## Bayes factor analysis
## --------------
## [1] Alt., r=0.707 -Inf<d<0    : 0.0312 ±0.13%
## [2] Alt., r=0.707 !(-Inf<d<0) : 1.26   ±0%
## 
## Against denominator:
##   Null, mu = 0 
## ---
## Bayes factor type: BFoneSample, JZS



Results FF4: Convergent Validity

  • We expect “Transfer” to have a moderate positive correlation with “umsetzung”
  • We expect “Transfer” to have a negative correlation with “differenz”
  • We expect “enrichment” to have a small positive correlation with “differenz”
  • All other results will be computed exploratory

Reliability of Umsetzbarkeit and Unabhängigkeit

valid_fl <- valid_l %>%
  dplyr::filter(str_sub(variable, 1, 5) == "flen_") %>%
  spread(key = "variable", value = "value") %>%
  dplyr::select(-treat, -semester)

valid_con <- left_join(valid_cfa, valid_fl, by = "id")

Umsetzbarkeit

# Umsetzbarkeit
omega(valid_con |> dplyr::select(flen_UM1, flen_UM2, flen_UM3, flen_UM4), 1)
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.68 
## G.6:                   0.63 
## Omega Hierarchical:    0.69 
## Omega H asymptotic:    1 
## Omega Total            0.69 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g  F1*   h2   u2 p2
## flen_UM1 0.50      0.25 0.75  1
## flen_UM2 0.39      0.15 0.85  1
## flen_UM3 0.69      0.47 0.53  1
## flen_UM4 0.79      0.63 0.37  1
## 
## With Sums of squares  of:
##   g F1* 
## 1.5 0.0 
## 
## general/max  2.71e+16   max/min =   1
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 2  and the fit is  0 
## The number of observations was  400  with Chi Square =  0.48  with prob <  0.79
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.01
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.064
## BIC =  -11.5
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 2  and the fit is  0 
## The number of observations was  400  with Chi Square =  0.48  with prob <  0.79
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.064
## BIC =  -11.5 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.87   0
## Multiple R square of scores with factors      0.76   0
## Minimum correlation of factor score estimates 0.51  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.69 0.69
## Omega general for total scores and subscales  0.69 0.69
## Omega group for total scores and subscales    0.00 0.00


Unabhängigkeit

# Unabhängigkeit
omega(valid_con |> dplyr::select(flen_WI1, flen_WI2, flen_WI3), 1)
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.4 
## G.6:                   0.32 
## Omega Hierarchical:    0.43 
## Omega H asymptotic:    1 
## Omega Total            0.43 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##             g  F1*   h2   u2 p2
## flen_WI1 0.23      0.05 0.95  1
## flen_WI2 0.45      0.21 0.79  1
## flen_WI3 0.65      0.42 0.58  1
## 
## With Sums of squares  of:
##    g  F1* 
## 0.67 0.00 
## 
## general/max  1.21e+16   max/min =   1
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 0  and the fit is  0 
## The number of observations was  400  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 0  and the fit is  0 
## The number of observations was  400  with Chi Square =  0  with prob <  NA
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  NA 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.71   0
## Multiple R square of scores with factors      0.51   0
## Minimum correlation of factor score estimates 0.01  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.43 0.43
## Omega general for total scores and subscales  0.43 0.43
## Omega group for total scores and subscales    0.00 0.00



Frequentist Data Analysis

con.model <- 'level: 1
                transfer_w   =~ tfe_1 + tfe_2 + tfe_3 + tfe_5
                selektion_w  =~ sel_1 + sel_3 + sel_4 + sel_5
                enrichment_w =~ enr_1 + enr_2 + enr_3 + enr_4 
                relation_w   =~ rel_1 + rel_2 + rel_3 + rel_4
                
              level: 2
                transfer_b   =~ tfe_1 + tfe_2 + tfe_3 + tfe_5
                selektion_b  =~ sel_1 + sel_3 + sel_4 + sel_5
                enrichment_b =~ enr_1 + enr_2 + enr_3 + enr_4 
                relation_b   =~ rel_1 + rel_2 + rel_3 + rel_4
                
                umsetzung =~ flen_UM1 + flen_UM2 + flen_UM3 + flen_UM4
                differenz =~ flen_WI1 + flen_WI2 + flen_WI3
                
                tfe_2 ~~ 0*tfe_2
                sel_5 ~~ sel_1
                enr_2 ~~ 0*enr_2
                rel_3 ~~ 0*rel_3
            '

fit_con <- sem(con.model, 
               data = valid_con, 
               cluster = "id"
               )

Covariances not shown in plot.

lavaanPlot(model = fit_con,
          node_options = list(shape = "box", fontname = "Helvetica"),
          edge_options = list(color = "grey"),
          coefs = TRUE)
standardizedSolution(fit_con)
##              lhs op          rhs est.std    se      z pvalue ci.lower ci.upper
## 1     transfer_w =~        tfe_1   0.597 0.062  9.573  0.000    0.474    0.719
## 2     transfer_w =~        tfe_2   0.794 0.066 12.020  0.000    0.665    0.924
## 3     transfer_w =~        tfe_3   0.421 0.077  5.471  0.000    0.270    0.572
## 4     transfer_w =~        tfe_5   0.493 0.072  6.833  0.000    0.351    0.634
## 5    selektion_w =~        sel_1   0.448 0.082  5.459  0.000    0.287    0.608
## 6    selektion_w =~        sel_3   0.633 0.087  7.321  0.000    0.464    0.803
## 7    selektion_w =~        sel_4   0.639 0.083  7.666  0.000    0.476    0.803
## 8    selektion_w =~        sel_5   0.341 0.090  3.793  0.000    0.165    0.517
## 9   enrichment_w =~        enr_1   0.412 0.108  3.823  0.000    0.201    0.623
## 10  enrichment_w =~        enr_2   0.401 0.090  4.451  0.000    0.224    0.577
## 11  enrichment_w =~        enr_3   0.355 0.128  2.770  0.006    0.104    0.606
## 12  enrichment_w =~        enr_4   0.582 0.121  4.819  0.000    0.345    0.818
## 13    relation_w =~        rel_1   0.282 0.101  2.783  0.005    0.083    0.480
## 14    relation_w =~        rel_2   0.589 0.110  5.341  0.000    0.373    0.805
## 15    relation_w =~        rel_3   0.549 0.098  5.622  0.000    0.357    0.740
## 16    relation_w =~        rel_4   0.321 0.108  2.969  0.003    0.109    0.533
## 17         tfe_1 ~~        tfe_1   0.644 0.074  8.665  0.000    0.498    0.790
## 18         tfe_2 ~~        tfe_2   0.369 0.105  3.514  0.000    0.163    0.575
## 19         tfe_3 ~~        tfe_3   0.823 0.065 12.690  0.000    0.696    0.950
## 20         tfe_5 ~~        tfe_5   0.757 0.071 10.654  0.000    0.618    0.896
## 21         sel_1 ~~        sel_1   0.800 0.073 10.897  0.000    0.656    0.944
## 22         sel_3 ~~        sel_3   0.599 0.110  5.464  0.000    0.384    0.814
## 23         sel_4 ~~        sel_4   0.591 0.107  5.549  0.000    0.383    0.800
## 24         sel_5 ~~        sel_5   0.884 0.061 14.438  0.000    0.764    1.004
## 25         enr_1 ~~        enr_1   0.830 0.089  9.341  0.000    0.656    1.004
## 26         enr_2 ~~        enr_2   0.839 0.072 11.636  0.000    0.698    0.981
## 27         enr_3 ~~        enr_3   0.874 0.091  9.616  0.000    0.696    1.052
## 28         enr_4 ~~        enr_4   0.662 0.140  4.712  0.000    0.386    0.937
## 29         rel_1 ~~        rel_1   0.921 0.057 16.162  0.000    0.809    1.032
## 30         rel_2 ~~        rel_2   0.654 0.130  5.038  0.000    0.399    0.908
## 31         rel_3 ~~        rel_3   0.699 0.107  6.527  0.000    0.489    0.909
## 32         rel_4 ~~        rel_4   0.897 0.069 12.908  0.000    0.761    1.033
## 33    transfer_w ~~   transfer_w   1.000 0.000     NA     NA    1.000    1.000
## 34   selektion_w ~~  selektion_w   1.000 0.000     NA     NA    1.000    1.000
## 35  enrichment_w ~~ enrichment_w   1.000 0.000     NA     NA    1.000    1.000
## 36    relation_w ~~   relation_w   1.000 0.000     NA     NA    1.000    1.000
## 37    transfer_w ~~  selektion_w  -0.084 0.102 -0.821  0.412   -0.284    0.116
## 38    transfer_w ~~ enrichment_w   0.030 0.119  0.256  0.798   -0.202    0.263
## 39    transfer_w ~~   relation_w   0.100 0.111  0.898  0.369   -0.118    0.318
## 40   selektion_w ~~ enrichment_w  -0.004 0.132 -0.032  0.974   -0.262    0.254
## 41   selektion_w ~~   relation_w   0.127 0.137  0.923  0.356   -0.142    0.396
## 42  enrichment_w ~~   relation_w   0.524 0.137  3.828  0.000    0.255    0.792
## 43         tfe_1 ~1                0.000 0.000     NA     NA    0.000    0.000
## 44         tfe_2 ~1                0.000 0.000     NA     NA    0.000    0.000
## 45         tfe_3 ~1                0.000 0.000     NA     NA    0.000    0.000
## 46         tfe_5 ~1                0.000 0.000     NA     NA    0.000    0.000
## 47         sel_1 ~1                0.000 0.000     NA     NA    0.000    0.000
## 48         sel_3 ~1                0.000 0.000     NA     NA    0.000    0.000
## 49         sel_4 ~1                0.000 0.000     NA     NA    0.000    0.000
## 50         sel_5 ~1                0.000 0.000     NA     NA    0.000    0.000
## 51         enr_1 ~1                0.000 0.000     NA     NA    0.000    0.000
## 52         enr_2 ~1                0.000 0.000     NA     NA    0.000    0.000
## 53         enr_3 ~1                0.000 0.000     NA     NA    0.000    0.000
## 54         enr_4 ~1                0.000 0.000     NA     NA    0.000    0.000
## 55         rel_1 ~1                0.000 0.000     NA     NA    0.000    0.000
## 56         rel_2 ~1                0.000 0.000     NA     NA    0.000    0.000
## 57         rel_3 ~1                0.000 0.000     NA     NA    0.000    0.000
## 58         rel_4 ~1                0.000 0.000     NA     NA    0.000    0.000
## 59    transfer_w ~1                0.000 0.000     NA     NA    0.000    0.000
## 60   selektion_w ~1                0.000 0.000     NA     NA    0.000    0.000
## 61  enrichment_w ~1                0.000 0.000     NA     NA    0.000    0.000
## 62    relation_w ~1                0.000 0.000     NA     NA    0.000    0.000
## 63    transfer_b =~        tfe_1   0.564 0.124  4.551  0.000    0.321    0.806
## 64    transfer_b =~        tfe_2   1.000 0.000     NA     NA    1.000    1.000
## 65    transfer_b =~        tfe_3   0.818 0.081 10.131  0.000    0.660    0.976
## 66    transfer_b =~        tfe_5   0.804 0.077 10.480  0.000    0.654    0.955
## 67   selektion_b =~        sel_1   0.952 0.075 12.630  0.000    0.805    1.100
## 68   selektion_b =~        sel_3   0.893 0.075 11.965  0.000    0.747    1.039
## 69   selektion_b =~        sel_4   0.947 0.061 15.413  0.000    0.827    1.068
## 70   selektion_b =~        sel_5   0.981 0.078 12.557  0.000    0.828    1.134
## 71  enrichment_b =~        enr_1   0.942 0.078 12.073  0.000    0.789    1.095
## 72  enrichment_b =~        enr_2   1.000 0.000     NA     NA    1.000    1.000
## 73  enrichment_b =~        enr_3   0.928 0.072 12.844  0.000    0.787    1.070
## 74  enrichment_b =~        enr_4   0.888 0.072 12.282  0.000    0.747    1.030
## 75    relation_b =~        rel_1   0.857 0.080 10.721  0.000    0.701    1.014
## 76    relation_b =~        rel_2   0.842 0.075 11.264  0.000    0.695    0.988
## 77    relation_b =~        rel_3   1.000 0.000     NA     NA    1.000    1.000
## 78    relation_b =~        rel_4   0.983 0.089 11.066  0.000    0.809    1.157
## 79     umsetzung =~     flen_UM1   0.490 0.067  7.302  0.000    0.359    0.622
## 80     umsetzung =~     flen_UM2   0.381 0.073  5.210  0.000    0.238    0.525
## 81     umsetzung =~     flen_UM3   0.693 0.061 11.356  0.000    0.574    0.813
## 82     umsetzung =~     flen_UM4   0.790 0.061 12.874  0.000    0.670    0.911
## 83     differenz =~     flen_WI1   0.172 0.095  1.818  0.069   -0.013    0.358
## 84     differenz =~     flen_WI2   0.495 0.106  4.656  0.000    0.287    0.703
## 85     differenz =~     flen_WI3   0.675 0.128  5.280  0.000    0.424    0.925
## 86         tfe_2 ~~        tfe_2   0.000 0.000     NA     NA    0.000    0.000
## 87         sel_1 ~~        sel_5   1.312 2.140  0.613  0.540   -2.883    5.507
## 88         enr_2 ~~        enr_2   0.000 0.000     NA     NA    0.000    0.000
## 89         rel_3 ~~        rel_3   0.000 0.000     NA     NA    0.000    0.000
## 90         tfe_1 ~~        tfe_1   0.682 0.140  4.886  0.000    0.409    0.956
## 91         tfe_3 ~~        tfe_3   0.331 0.132  2.502  0.012    0.072    0.590
## 92         tfe_5 ~~        tfe_5   0.353 0.124  2.856  0.004    0.111    0.595
## 93         sel_1 ~~        sel_1   0.093 0.144  0.647  0.518   -0.189    0.374
## 94         sel_3 ~~        sel_3   0.203 0.133  1.519  0.129   -0.059    0.464
## 95         sel_4 ~~        sel_4   0.103 0.116  0.884  0.377   -0.125    0.331
## 96         sel_5 ~~        sel_5   0.038 0.153  0.249  0.804   -0.262    0.338
## 97         enr_1 ~~        enr_1   0.112 0.147  0.764  0.445   -0.176    0.401
## 98         enr_3 ~~        enr_3   0.139 0.134  1.033  0.302   -0.124    0.401
## 99         enr_4 ~~        enr_4   0.211 0.129  1.638  0.101   -0.041    0.463
## 100        rel_1 ~~        rel_1   0.265 0.137  1.930  0.054   -0.004    0.534
## 101        rel_2 ~~        rel_2   0.291 0.126  2.314  0.021    0.045    0.538
## 102        rel_4 ~~        rel_4   0.034 0.175  0.197  0.844   -0.308    0.376
## 103     flen_UM1 ~~     flen_UM1   0.760 0.066 11.540  0.000    0.631    0.889
## 104     flen_UM2 ~~     flen_UM2   0.855 0.056 15.308  0.000    0.745    0.964
## 105     flen_UM3 ~~     flen_UM3   0.519 0.085  6.131  0.000    0.353    0.685
## 106     flen_UM4 ~~     flen_UM4   0.375 0.097  3.864  0.000    0.185    0.565
## 107     flen_WI1 ~~     flen_WI1   0.970 0.033 29.790  0.000    0.907    1.034
## 108     flen_WI2 ~~     flen_WI2   0.755 0.105  7.181  0.000    0.549    0.961
## 109     flen_WI3 ~~     flen_WI3   0.544 0.173  3.156  0.002    0.206    0.883
## 110   transfer_b ~~   transfer_b   1.000 0.000     NA     NA    1.000    1.000
## 111  selektion_b ~~  selektion_b   1.000 0.000     NA     NA    1.000    1.000
## 112 enrichment_b ~~ enrichment_b   1.000 0.000     NA     NA    1.000    1.000
## 113   relation_b ~~   relation_b   1.000 0.000     NA     NA    1.000    1.000
## 114    umsetzung ~~    umsetzung   1.000 0.000     NA     NA    1.000    1.000
## 115    differenz ~~    differenz   1.000 0.000     NA     NA    1.000    1.000
## 116   transfer_b ~~  selektion_b   0.161 0.114  1.415  0.157   -0.062    0.384
## 117   transfer_b ~~ enrichment_b   0.451 0.108  4.180  0.000    0.239    0.662
## 118   transfer_b ~~   relation_b   0.192 0.118  1.628  0.104   -0.039    0.424
## 119   transfer_b ~~    umsetzung   0.002 0.107  0.015  0.988   -0.208    0.211
## 120   transfer_b ~~    differenz   0.182 0.130  1.403  0.161   -0.072    0.436
## 121  selektion_b ~~ enrichment_b  -0.163 0.104 -1.570  0.116   -0.366    0.040
## 122  selektion_b ~~   relation_b  -0.191 0.105 -1.824  0.068   -0.397    0.014
## 123  selektion_b ~~    umsetzung   0.180 0.098  1.832  0.067   -0.013    0.373
## 124  selektion_b ~~    differenz   0.225 0.114  1.966  0.049    0.001    0.449
## 125 enrichment_b ~~   relation_b   0.453 0.088  5.133  0.000    0.280    0.626
## 126 enrichment_b ~~    umsetzung  -0.014 0.100 -0.139  0.890   -0.209    0.182
## 127 enrichment_b ~~    differenz  -0.180 0.122 -1.477  0.140   -0.419    0.059
## 128   relation_b ~~    umsetzung   0.002 0.100  0.016  0.987   -0.195    0.198
## 129   relation_b ~~    differenz  -0.468 0.128 -3.655  0.000   -0.719   -0.217
## 130    umsetzung ~~    differenz   0.173 0.111  1.563  0.118   -0.044    0.390
## 131        tfe_1 ~1                4.209 0.555  7.583  0.000    3.121    5.297
## 132        tfe_2 ~1                5.900 1.213  4.865  0.000    3.523    8.277
## 133        tfe_3 ~1                2.507 0.218 11.499  0.000    2.080    2.934
## 134        tfe_5 ~1                2.594 0.215 12.040  0.000    2.172    3.016
## 135        sel_1 ~1                5.000 0.486 10.277  0.000    4.046    5.953
## 136        sel_3 ~1                5.709 0.675  8.459  0.000    4.386    7.032
## 137        sel_4 ~1                4.828 0.504  9.576  0.000    3.840    5.816
## 138        sel_5 ~1                3.837 0.339 11.306  0.000    3.172    4.502
## 139        enr_1 ~1                4.690 0.554  8.471  0.000    3.605    5.775
## 140        enr_2 ~1                4.493 0.461  9.738  0.000    3.588    5.397
## 141        enr_3 ~1                4.461 0.425 10.493  0.000    3.628    5.294
## 142        enr_4 ~1                4.900 0.532  9.206  0.000    3.856    5.943
## 143        rel_1 ~1                6.344 0.633 10.019  0.000    5.103    7.585
## 144        rel_2 ~1                7.094 0.865  8.198  0.000    5.398    8.790
## 145        rel_3 ~1                6.843 0.628 10.892  0.000    5.612    8.075
## 146        rel_4 ~1                7.601 0.898  8.468  0.000    5.841    9.360
## 147     flen_UM1 ~1                4.348 0.230 18.876  0.000    3.896    4.799
## 148     flen_UM2 ~1                2.823 0.159 17.748  0.000    2.511    3.135
## 149     flen_UM3 ~1                3.760 0.202 18.579  0.000    3.363    4.157
## 150     flen_UM4 ~1                3.670 0.198 18.522  0.000    3.282    4.059
## 151     flen_WI1 ~1                3.943 0.211 18.684  0.000    3.529    4.357
## 152     flen_WI2 ~1                2.382 0.140 17.068  0.000    2.108    2.655
## 153     flen_WI3 ~1                2.310 0.136 16.928  0.000    2.042    2.577
## 154   transfer_b ~1                0.000 0.000     NA     NA    0.000    0.000
## 155  selektion_b ~1                0.000 0.000     NA     NA    0.000    0.000
## 156 enrichment_b ~1                0.000 0.000     NA     NA    0.000    0.000
## 157   relation_b ~1                0.000 0.000     NA     NA    0.000    0.000
## 158    umsetzung ~1                0.000 0.000     NA     NA    0.000    0.000
## 159    differenz ~1                0.000 0.000     NA     NA    0.000    0.000



BF Data Analysis (with predicted values)

pred_con <- data.frame(lavPredict(fit_con, method = "regression", level = 2))

Correlation Transfer ~~ Unsetzbarkeit

correlationBF(y = pred_con$transfer_b, x = pred_con$umsetzung, 
              #rscale = .3,                                   # width of prior: standard
              nullInterval = c(.3, 1)                        # assumption was medium effect
              )
## Bayes factor analysis
## --------------
## [1] Alt., r=0.333 0.3<rho<1    : 8.35e-06 ±NA%
## [2] Alt., r=0.333 !(0.3<rho<1) : 0.218    ±NA%
## 
## Against denominator:
##   Null, rho = 0 
## ---
## Bayes factor type: BFcorrelation, Jeffreys-beta*

Correlation Transfer ~~ Unabhängigkeit

correlationBF(y = pred_con$transfer_b, x = pred_con$differenz, 
              # rscale = .3,                                    # width of prior: standard
              nullInterval = c(-1, 0)                          # assumption was negative effect
              )
## Bayes factor analysis
## --------------
## [1] Alt., r=0.333 -1<rho<0    : 0.0411 ±NA%
## [2] Alt., r=0.333 !(-1<rho<0) : 27.3   ±NA%
## 
## Against denominator:
##   Null, rho = 0 
## ---
## Bayes factor type: BFcorrelation, Jeffreys-beta*

Correlation Enrichment ~~ Unabhängigkeit

correlationBF(y = pred_con$enrichment_b, x = pred_con$differenz, 
              # rscale = .3,                                    # width of prior: standard
              nullInterval = c(.1, 1)                        # assumption was small effect
              )
## Bayes factor analysis
## --------------
## [1] Alt., r=0.333 0.1<rho<1    : 0.000125 ±NA%
## [2] Alt., r=0.333 !(0.1<rho<1) : 68.3     ±NA%
## 
## Against denominator:
##   Null, rho = 0 
## ---
## Bayes factor type: BFcorrelation, Jeffreys-beta*

Correlation Relationierung ~~ Unabhängigkeit
(not preregistered, therefore exploratory)

correlationBF(y = pred_con$relation_b, x = pred_con$differenz, 
              # rscale = .3,                                    # width of prior: standard
              nullInterval = c(.1, 1)                        # assumption was small effect
              )
## Bayes factor analysis
## --------------
## [1] Alt., r=0.333 0.1<rho<1    : 6.72e-08 ±NA%
## [2] Alt., r=0.333 !(0.1<rho<1) : 1.15e+18 ±NA%
## 
## Against denominator:
##   Null, rho = 0 
## ---
## Bayes factor type: BFcorrelation, Jeffreys-beta*



Used packages & Setup

installed.packages()[names(sessionInfo()$otherPkgs), "Version"]
##        knitr       lavaan  BayesFactor       Matrix         coda   lavaanPlot 
##       "1.45"     "0.6-17" "0.9.12-4.7"      "1.6-5"     "0.19-4"      "0.8.1" 
##          rio        psych    lubridate      forcats      stringr        dplyr 
##      "1.0.1"      "2.4.1"      "1.9.3"      "1.0.0"      "1.5.1"      "1.1.4" 
##        purrr        readr        tidyr       tibble      ggplot2    tidyverse 
##      "1.0.2"      "2.1.5"      "1.3.1"      "3.2.1"      "3.4.4"      "2.0.0"
R.Version()
## $platform
## [1] "x86_64-w64-mingw32"
## 
## $arch
## [1] "x86_64"
## 
## $os
## [1] "mingw32"
## 
## $crt
## [1] "ucrt"
## 
## $system
## [1] "x86_64, mingw32"
## 
## $status
## [1] ""
## 
## $major
## [1] "4"
## 
## $minor
## [1] "3.1"
## 
## $year
## [1] "2023"
## 
## $month
## [1] "06"
## 
## $day
## [1] "16"
## 
## $`svn rev`
## [1] "84548"
## 
## $language
## [1] "R"
## 
## $version.string
## [1] "R version 4.3.1 (2023-06-16 ucrt)"
## 
## $nickname
## [1] "Beagle Scouts"