Lecture 14

Climate // Identification, Ricardian, Two Way FEs, Integrated Assessment

Ivan Rudik AEM 6510

Roadmap

- Climate science for economists
- Estimating the effects of climate change
 - Ricardian model
 - Weather / two way fixed effects approach
- Integrated assessment
 - Dynamic Integrate Climate-Economy (DICE) model

A key notion for climate change is energy balance

A key notion for climate change is energy balance

Sunlight enters our atmosphere from space

A key notion for climate change is energy balance

Sunlight enters our atmosphere from space

If the earth is to maintain a stable average temperature, the incoming energy from sunlight must be matched by an outgoing flow of energy

A key notion for climate change is energy balance

Sunlight enters our atmosphere from space

If the earth is to maintain a stable average temperature, the incoming energy from sunlight must be matched by an outgoing flow of energy

30% of the incoming energy is reflected away by the surface or clouds, the remaining 70% is absorbed by the earth's surface and atmosphere and is balanced by emitting back infrared radiation (heat)

A key notion for climate change is energy balance

Sunlight enters our atmosphere from space

If the earth is to maintain a stable average temperature, the incoming energy from sunlight must be matched by an outgoing flow of energy

30% of the incoming energy is reflected away by the surface or clouds, the remaining 70% is absorbed by the earth's surface and atmosphere and is balanced by emitting back infrared radiation (heat)

If we didn't have greenhouse gases in the atmosphere the global mean surface temperature would be about $-18^{\circ}C!$

Greenhouse gases (GHGs) distort energy balance because they are transparent to incoming visible and ultraviolet light (big piece of the sun's spectrum), but they absorb infrared light which hinders the emission of energy back into space from the surface and lower atmosphere

Greenhouse gases (GHGs) distort energy balance because they are transparent to incoming visible and ultraviolet light (big piece of the sun's spectrum), but they absorb infrared light which hinders the emission of energy back into space from the surface and lower atmosphere

GHGs absorb infrared and then re-emit it in all directions, so some of the energy is returned to earth, and by conservation of energy, the earth and lower atmosphere warm up

Greenhouse gases (GHGs) distort energy balance because they are transparent to incoming visible and ultraviolet light (big piece of the sun's spectrum), but they absorb infrared light which hinders the emission of energy back into space from the surface and lower atmosphere

GHGs absorb infrared and then re-emit it in all directions, so some of the energy is returned to earth, and by conservation of energy, the earth and lower atmosphere warm up

This increases the amount of out-going radiation and equilibrium is reached when it equalizes the trapping effect of GHGs

If the earth was just a plain sphere, doubling CO_2 concentrations would lead to $1.2^{\circ}{\rm C}$ of warming

If the earth was just a plain sphere, doubling CO_2 concentrations would lead to $1.2^{\circ}\mathrm{C}$ of warming

But, additional warming also triggers **feedbacks** in the climate system that alters how much warming we get from CO_2

If the earth was just a plain sphere, doubling CO_2 concentrations would lead to $1.2^{\circ}\mathrm{C}$ of warming

But, additional warming also triggers **feedbacks** in the climate system that alters how much warming we get from CO_2

Feedbacks include things like:

If the earth was just a plain sphere, doubling CO_2 concentrations would lead to $1.2^{\circ}{
m C}$ of warming

But, additional warming also triggers **feedbacks** in the climate system that alters how much warming we get from CO_2

Feedbacks include things like:

• A warmer atmosphere being able to hold more water vapor (humidity): water vapor is the most powerful absorber of outgoing infrared energy

If the earth was just a plain sphere, doubling CO_2 concentrations would lead to $1.2^{\circ}{\rm C}$ of warming

But, additional warming also triggers **feedbacks** in the climate system that alters how much warming we get from CO_2

Feedbacks include things like:

- A warmer atmosphere being able to hold more water vapor (humidity): water vapor is the most powerful absorber of outgoing infrared energy
- Melting white sea ice being replaced dark blue ocean: the earth has become less reflective

GHGs alter the radiative properties of the atmosphere, this influence is measured by **radiative forcing**: how much human GHGs distort the average flow of radiation into the atmosphere relative to pre-industrial levels

GHGs alter the radiative properties of the atmosphere, this influence is measured by **radiative forcing**: how much human GHGs distort the average flow of radiation into the atmosphere relative to pre-industrial levels

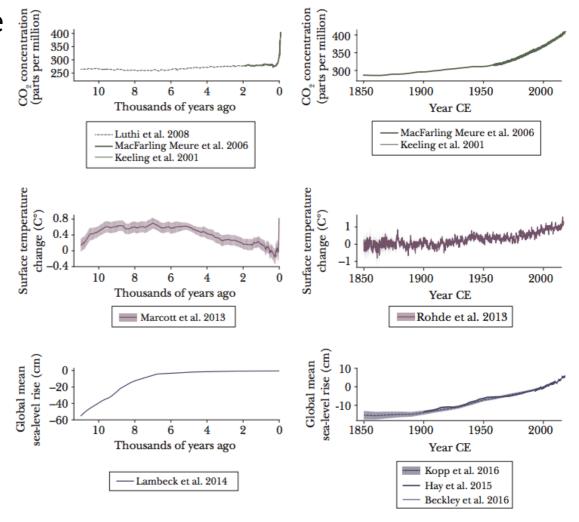
The change in CO_2 concentrations from pre-industrial to now (about 278 ppm of CO_2 to 410 ppm) exerts a radiative forcing of about $2.1W/m^2$

GHGs alter the radiative properties of the atmosphere, this influence is measured by radiative forcing: how much human GHGs distort the average flow of radiation into the atmosphere relative to pre-industrial levels

The change in CO_2 concentrations from pre-industrial to now (about 278 ppm of CO_2 to 410 ppm) exerts a radiative forcing of about $2.1W/m^2$

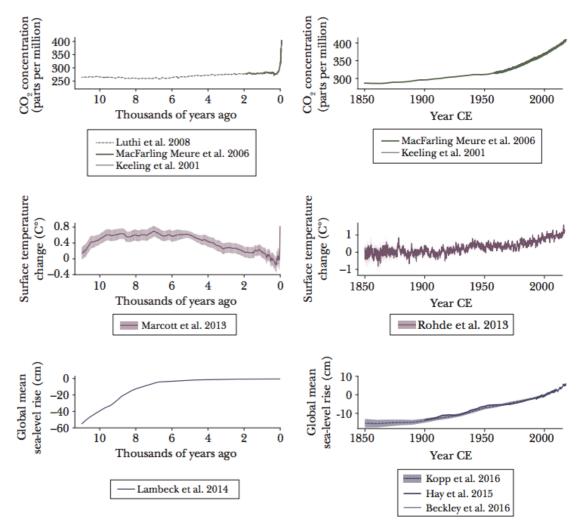
Changes in radiative forcing do not immediately translate into changes in temperature at the surface

GHGs alter the radiative properties of the atmosphere, this influence is measured by **radiative forcing**: how much human GHGs distort the average flow of radiation into the atmosphere relative to pre-industrial levels

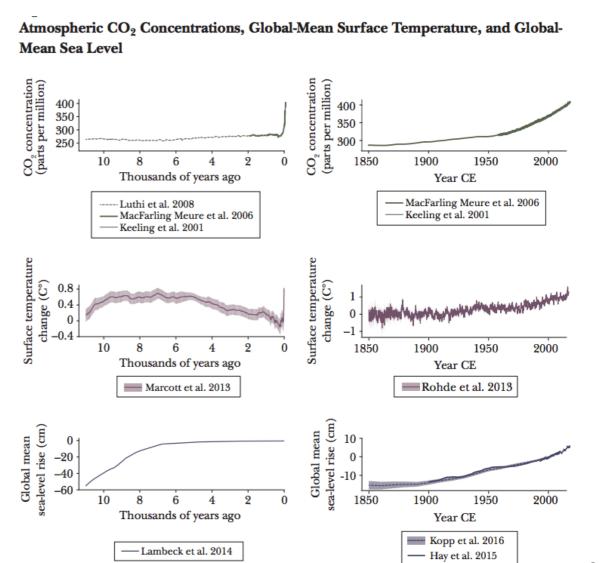

The change in CO_2 concentrations from pre-industrial to now (about 278 ppm of CO_2 to 410 ppm) exerts a radiative forcing of about $2.1W/m^2$

Changes in radiative forcing do not immediately translate into changes in temperature at the surface

The ocean is cold and can absorb a lot of heat, it takes centuries to warm and slows down the overall warming of the surface of the planet


The spike in CO_2 is large, we can see seasonal variation in CO_2 in the shorter panel caused by changes in the strength of ocean and land carbon sinks

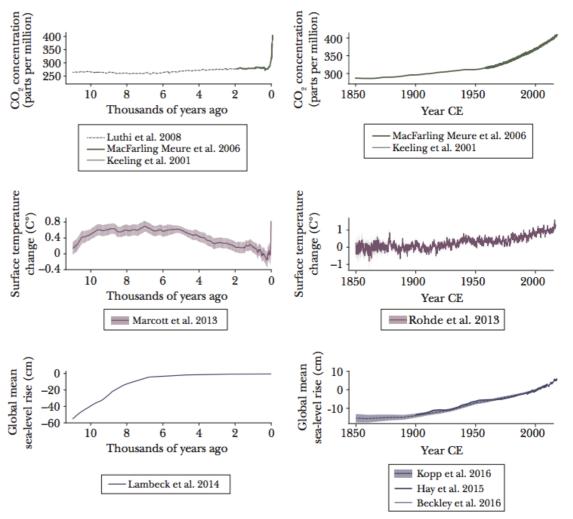
Atmospheric CO_2 Concentrations, Global-Mean Surface Temperature, and Global-Mean Sea Level


Until recently, the earth was slowly cooling because of slow variations in earth's orbit

Atmospheric CO_2 Concentrations, Global-Mean Surface Temperature, and Global-Mean Sea Level

Until recently, the earth was slowly cooling because of slow variations in earth's orbit

Now we are warming rapidly


Beckley et al. 2016

Until recently, the earth was slowly cooling because of slow variations in earth's orbit

Now we are warming rapidly

Sea level is responding only very slowly because water and ice can absorb a lot of heat

Atmospheric ${ m CO}_2$ Concentrations, Global-Mean Surface Temperature, and Global-Mean Sea Level

Climate models are mathematical representations of the physical climate system

Climate models are mathematical representations of the physical climate system

They range from very simple (1 equation!) to super complex earth system models that have very fine temporal and spatial resolution

Climate models are mathematical representations of the physical climate system

They range from very simple (1 equation!) to super complex earth system models that have very fine temporal and spatial resolution

The simplest climate models are energy balance models: they just budget the energy in different parts of the earth and atmosphere

Climate models are mathematical representations of the physical climate system

They range from very simple (1 equation!) to super complex earth system models that have very fine temporal and spatial resolution

The simplest climate models are energy balance models: they just budget the energy in different parts of the earth and atmosphere

These can be simulated in less than a second on a laptop for thousands of years

Climate models are mathematical representations of the physical climate system

They range from very simple (1 equation!) to super complex earth system models that have very fine temporal and spatial resolution

The simplest climate models are energy balance models: they just budget the energy in different parts of the earth and atmosphere

These can be simulated in less than a second on a laptop for thousands of years

Pen and paper versions of these models existed in the late 1800s

General circulation models popped up in the 1960s using fluid dynamics

These capture the 3D structure of the earth and the dynamic evolution of the atmosphere

General circulation models popped up in the 1960s using fluid dynamics

These capture the 3D structure of the earth and the dynamic evolution of the atmosphere

Recent versions of these models are called **earth system models** which have elaborate representations of the ocean, sea ice, land surface, atmospheric chemistry, vegetation dynamics, and other things

General circulation models popped up in the 1960s using fluid dynamics

These capture the 3D structure of the earth and the dynamic evolution of the atmosphere

Recent versions of these models are called **earth system models** which have elaborate representations of the ocean, sea ice, land surface, atmospheric chemistry, vegetation dynamics, and other things

These are computationally very expensive: it can take several hours on a super computer to simulate one year of climate

A central goal of climate science has Detection and Attribution of Global Climate Change been to detect and attribute changes to the climate

Statements of the Intergovernmental Panel on Climate Change (IPCC) on

First Assessment Report (1990)	"Unequivocal detection of the enhanced greenhouse effect from observations is not likely for a decade or more."
Second Assessment Report (1995)	"The balance of evidence suggests a discernible human influence on global climate."
Third Assessment Report (2001)	"Most of the observed warming over the last 50 years is <i>likely</i> * to have been due to the increase in greenhouse gas concentration."
Fourth Assessment Report (2007)	"Most of the observed increase in global average temperatures since the mid-20th century is <i>very likely</i> due to the observed increase in anthropogenic greenhouse gas concentrations."
Fifth Assessment Report (2013)	"It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

A central goal of climate science has been to detect and attribute

been to detect and attribute

First Assessment Report (1990)

Second Assessment Report (1995)

"Unequivocal detection of the enobservations is not likely for a decomposition of the constant of the interport of the interport (1990)

"Unequivocal detection of the enobservations is not likely for a decomposition of the enobservations is not likely for a decomposition of the enobservation of the enobserv

Detection is where we need to determine if there has been a change in climate, attribution is figuring out what caused it

Statements of the Intergovernmental Panel on Climate Change (IPCC) on Detection and Attribution of Global Climate Change

First Assessment Report (1990)	"Unequivocal detection of the enhanced greenhouse effect from observations is not likely for a decade or more."
Second Assessment Report (1995)	"The balance of evidence suggests a discernible human influence on global climate."
Third Assessment Report (2001)	"Most of the observed warming over the last 50 years is <i>likely</i> * to have been due to the increase in greenhouse gas concentration."
Fourth Assessment Report (2007)	"Most of the observed increase in global average temperatures since the mid-20th century is <i>very likely</i> due to the observed increase in anthropogenic greenhouse gas concentrations."
Fifth Assessment Report (2013)	"It is <i>extremely likely</i> that human influence has been the dominant cause of the observed warming since the mid-20th century."

When trying to determine human causes, we need to simulate counterfactual climates without human influence

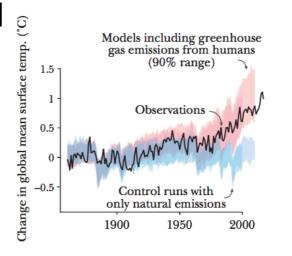
Statements of the Intergovernmental Panel on Climate Change (IPCC) on Detection and Attribution of Global Climate Change

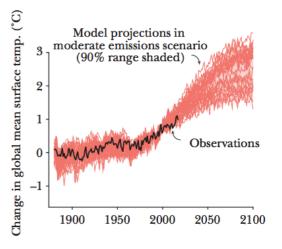
First Assessment Report (1990)	"Unequivocal detection of the enhanced greenhouse effect from observations is not likely for a decade or more."
Second Assessment Report (1995)	"The balance of evidence suggests a discernible human influence on global climate."
Third Assessment Report (2001)	"Most of the observed warming over the last 50 years is <i>likely</i> * to have been due to the increase in greenhouse gas concentration."
Fourth Assessment Report (2007)	"Most of the observed increase in global average temperatures since the mid-20th century is <i>very likely</i> due to the observed increase in anthropogenic greenhouse gas concentrations."
Fifth Assessment Report (2013)	"It is <i>extremely likely</i> that human influence has been the dominant cause of the observed warming since the mid-20th century."

When trying to determine human causes, we need to simulate counterfactual climates without human influence

The intergovernmental panel on climate change (IPCC) has reported

the current consensus on these points since 1990

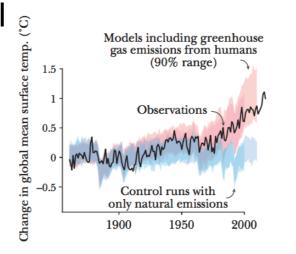

Statements of the Intergovernmental Panel on Climate Change (IPCC) on Detection and Attribution of Global Climate Change

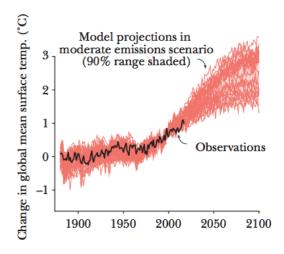

First Assessment Report (1990)	"Unequivocal detection of the enhanced greenhouse effect from observations is not likely for a decade or more."
Second Assessment Report (1995)	"The balance of evidence suggests a discernible human influence on global climate."
Third Assessment Report (2001)	"Most of the observed warming over the last 50 years is <i>likely</i> * to have been due to the increase in greenhouse gas concentration."
Fourth Assessment Report (2007)	"Most of the observed increase in global average temperatures since the mid-20th century is <i>very likely</i> due to the observed increase in anthropogenic greenhouse gas concentrations."
Fifth Assessment Report (2013)	"It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

Attribution to humans

In counterfactual climates without human activity (blue on LHS), global average temperature has barely changed

Average Annual Global Mean Surface Temperature, Compared to Distributions of Climate Model Simulations

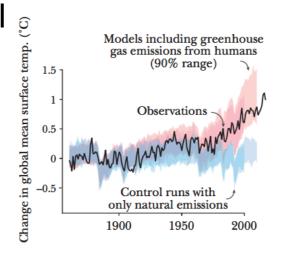


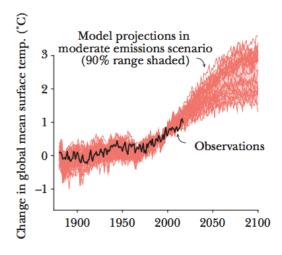

Attribution to humans

In counterfactual climates without human activity (blue on LHS), global average temperature has barely changed

In the actual observations (black), we've seen a significant increase

Average Annual Global Mean Surface Temperature, Compared to Distributions of Climate Model Simulations

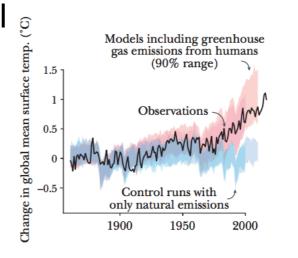


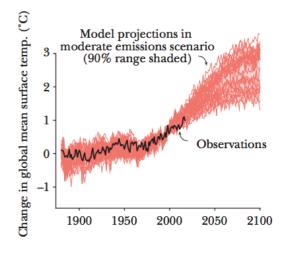

Attribution to humans

In counterfactual climates without human activity (blue on LHS), global average temperature has barely changed

In the actual observations (black), we've seen a significant increase

Average Annual Global Mean Surface Temperature, Compared to Distributions of Climate Model Simulations

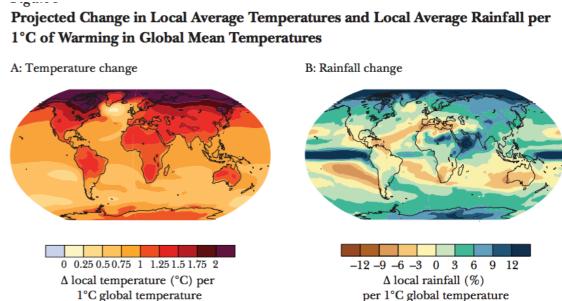

Model runs including human activity (red) closely match the observed data


Attribution to humans

In counterfactual climates without human activity (blue on LHS), global average temperature has barely changed

In the actual observations (black), we've seen a significant increase

Average Annual Global Mean Surface Temperature, Compared to Distributions of Climate Model Simulations



Model runs including human activity (red) closely match the observed data

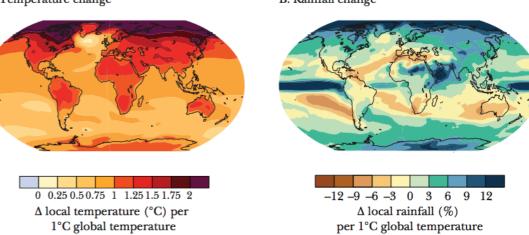
We are projected to have about triple the current warming by end of century if we follow a moderate emissions scenario (RCP 4.5)

With an average increase in temperature of 1° C, there is substantial heterogeneity across the globe

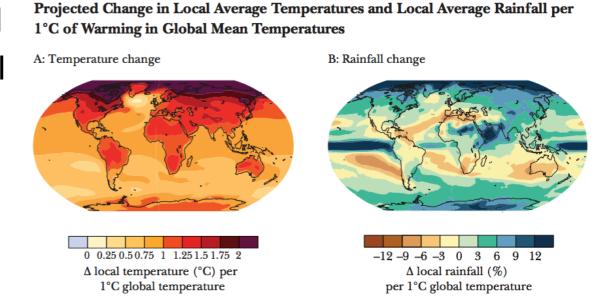
With an average increase in temperature of 1° C, there is substantial heterogeneity across the globe

The arctic is predicted to warm

substantially more than the rest of

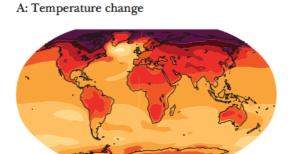

the planet, while the southern

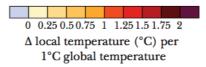
hemisphere is projected to have much less warming

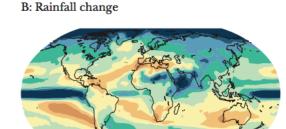

Projected Change in Local Average Temperatures and Local Average Rainfall per 1°C of Warming in Global Mean Temperatures

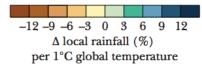
A: Temperature change

B: Rainfall change

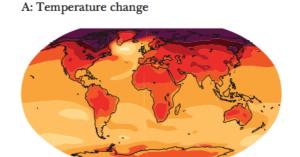

Warming also results in substantial differences in the change in rainfall

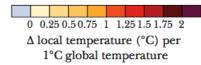


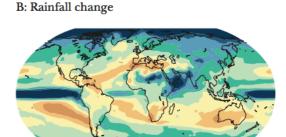

Warming also results in substantial differences in the change in rainfall

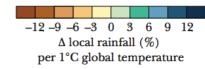

The arctic, equator, and areas around the middle east and Indian ocean will see huge increases in rain

Projected Change in Local Average Temperatures and Local Average Rainfall per 1°C of Warming in Global Mean Temperatures

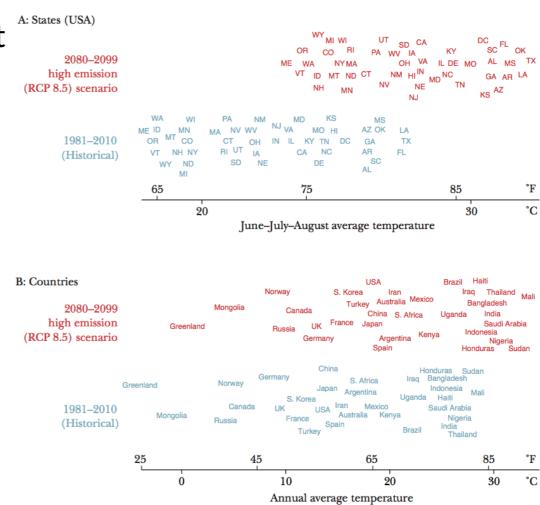



Warming also results in substantial differences in the change in rainfall


The arctic, equator, and areas around the middle east and Indian ocean will see huge increases in rain


South America and western Europe will see decreases in rainfall

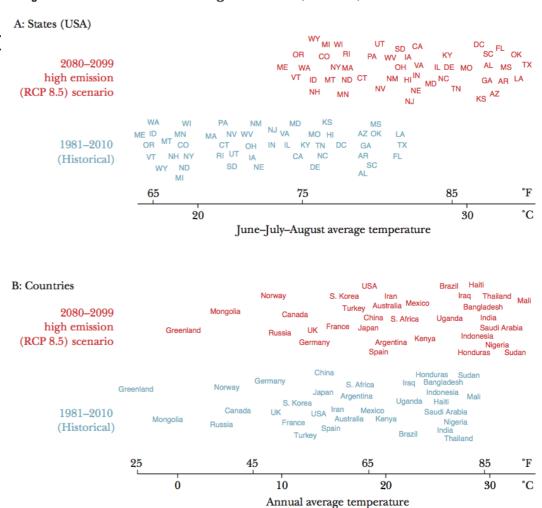
Projected Change in Local Average Temperatures and Local Average Rainfall per 1°C of Warming in Global Mean Temperatures



Changes in temperature

Climate change will be sort of like changing our current climate to that of another state or country

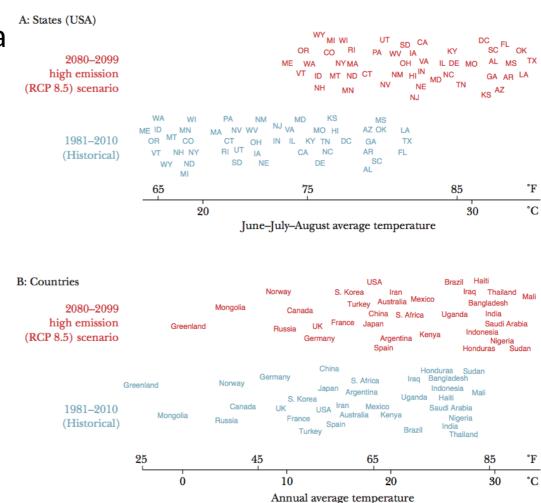
Average Temperatures for Lower 48 US States Observed during 1981–2010 and Projected for 2080–2099 in a High Emission (RCP 8.5) Scenario.



Changes in temperature

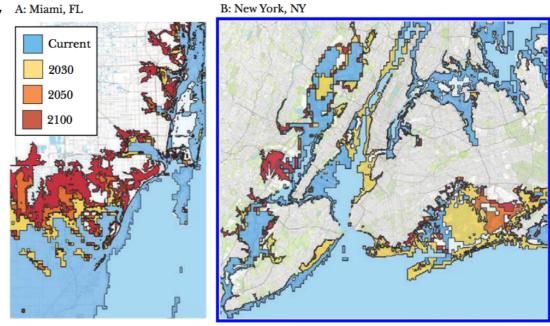
Climate change will be sort of like changing our current climate to that of another state or country

If we follow a business as usual emissions path (RCP 8.5), New York at the end of the century will have similar summer temperature to recent summer temperatures in North Carolina or Kansas


Average Temperatures for Lower 48 US States Observed during 1981–2010 and Projected for 2080–2099 in a High Emission (RCP 8.5) Scenario.

Changes in temperature

On average, temperatures in the USA will be more likely South Africa or Mexico!

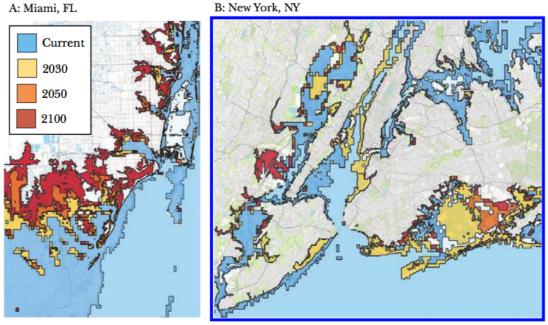

Average Temperatures for Lower 48 US States Observed during 1981–2010 and Projected for 2080–2099 in a High Emission (RCP 8.5) Scenario.

Changes in flooding

Climate change will cause sea-level rise and increase hurricane intensity

Areas Projected to Experience Floods at Least Once every 100 Years on Average (1% annual risk) in Miami, FL, and New York, NY

Source: Hsiang, Kopp, Jina, Rising, et al. (2017).


Note: These projections account for median projected sea-level rise and for projected changes in tropical cyclone intensity in a high-emission (RCP 8.5) scenario.

Changes in flooding

Climate change will cause sea-level rise and increase hurricane intensity

This increases the size and frequency of flooding events in coastal regions

Areas Projected to Experience Floods at Least Once every 100 Years on Average (1% annual risk) in Miami, FL, and New York, NY

Source: Hsiang, Kopp, Jina, Rising, et al. (2017).

Note: These projections account for median projected sea-level rise and for projected changes in tropical cyclone intensity in a high-emission (RCP 8.5) scenario.

Climate change will affect a lot of outcomes that are important for economics

• Precipitation: changes in the mean or variance of precipitation has significant implications for agriculture

Climate change will affect a lot of outcomes that are important for economics

- Precipitation: changes in the mean or variance of precipitation has significant implications for agriculture
- Humidity: humidity is important for human health, high humidity makes it difficult to cool yourself through sweating

Climate change will affect a lot of outcomes that are important for economics

- Precipitation: changes in the mean or variance of precipitation has significant implications for agriculture
- Humidity: humidity is important for human health, high humidity makes it difficult to cool yourself through sweating
- Cyclones/hurricanes: climate change is expected to increase the strength and frequency of high intensity hurricanes but decrease the frequency of lower intensity hurricanes

Climate change will affect a lot of outcomes that are important for economics

• Ocean acidification: the ocean absorbs a large chunk of the CO_2 we emit, it turns into carbonic acid in water and will alter marine ecosystems in negative ways

Climate change will affect a lot of outcomes that are important for economics

- Ocean acidification: the ocean absorbs a large chunk of the CO_2 we emit, it turns into carbonic acid in water and will alter marine ecosystems in negative ways
- Ecosystems: Animals and plants will need to migrate to adapt to climate change, slow moving organisms (e.g. Redwoods) will not be able to track the climate zones they live in

Climate change will affect a lot of outcomes that are important for economics

- Ocean acidification: the ocean absorbs a large chunk of the CO_2 we emit, it turns into carbonic acid in water and will alter marine ecosystems in negative ways
- Ecosystems: Animals and plants will need to migrate to adapt to climate change, slow moving organisms (e.g. Redwoods) will not be able to track the climate zones they live in
- Tipping elements: There are multiple stable states of climate and climate change can lead to a rapid switch from one to another (e.g. permanent ice sheet melt, rainforest dieback, AMOC collapse)

What is the definition of climate?

What is the definition of climate?

A formal definition is that it is the distribution of possible weather at a particular place and time

What is the definition of climate?

A formal definition is that it is the distribution of possible weather at a particular place and time

At each point in space i, and each time t, there is a vector of random variables \mathbf{v}_{it} that characterizes the conditions of the atmosphere and ocean

 $\mathbf{v}_{it} = [temperature_{it}, precipitation_{it}, humidity_{it}, \ldots]$

For some interval in time $\tau = [\underline{t}, \overline{t}]$ (e.g. a day, month, year, etc) there is a joint probability distribution $\psi(\mathbf{C}_{i\tau})$ which characterizes the possible realizations of \mathbf{v}_{it}

For some interval in time $\tau = [\underline{t}, \overline{t}]$ (e.g. a day, month, year, etc) there is a joint probability distribution $\psi(\mathbf{C}_{i\tau})$ which characterizes the possible realizations of \mathbf{v}_{it}

 $C_{i\tau}$ is a vector is parameters that define the distributions (e.g. mean, variance, kurtosis, etc)

For some interval in time $\tau = [\underline{t}, \overline{t}]$ (e.g. a day, month, year, etc) there is a joint probability distribution $\psi(\mathbf{C}_{i\tau})$ which characterizes the possible realizations of \mathbf{v}_{it}

 $C_{i\tau}$ is a vector is parameters that define the distributions (e.g. mean, variance, kurtosis, etc)

 $C_{i\tau}$ thus defines the climate since it tells us what are the possible realized states (weather)

For each time interval τ there's also an empirical distribution $\psi(\mathbf{c}_{i\tau})$ which characterizes the distribution of \mathbf{v}_{it} that actually occurred

For each time interval τ there's also an empirical distribution $\psi(\mathbf{c}_{i\tau})$ which characterizes the distribution of \mathbf{v}_{it} that actually occurred

The empirical distribution is just the distribution of actual weather

For each time interval τ there's also an empirical distribution $\psi(\mathbf{c}_{i\tau})$ which characterizes the distribution of \mathbf{v}_{it} that actually occurred

The empirical distribution is just the distribution of actual weather

 $C_{i\tau}$ and $c_{i\tau}$ are **not** the same: $C_{i\tau}$ characterizes the expected distribution of weather, while $c_{i\tau}$ characterizes the actual distribution of weather

For each time interval τ there's also an empirical distribution $\psi(\mathbf{c}_{i\tau})$ which characterizes the distribution of \mathbf{v}_{it} that actually occurred

The empirical distribution is just the distribution of actual weather

 $C_{i\tau}$ and $c_{i\tau}$ are **not** the same: $C_{i\tau}$ characterizes the expected distribution of weather, while $c_{i\tau}$ characterizes the actual distribution of weather

e.g. $C_{i\tau}$ is the expected minimum temperature in December, $c_{i\tau}$ is the actual minimum temperature

The key takeaway: climate is not weather nor the realized distribution of weather

The key takeaway: climate is not weather nor the realized distribution of weather

The actual weather is drawn from $\psi(\mathbf{C}_{i\tau})$, but $\mathbf{C}_{i\tau}$ is never actually observed

The key takeaway: climate is not weather nor the realized distribution of weather

The actual weather is drawn from $\psi(\mathbf{C}_{i\tau})$, but $\mathbf{C}_{i\tau}$ is never actually observed

All we actually observe is $\mathbf{c}_{i\tau}$ which includes things like

The key takeaway: climate is not weather nor the realized distribution of weather

The actual weather is drawn from $\psi(\mathbf{C}_{i\tau})$, but $\mathbf{C}_{i\tau}$ is never actually observed

All we actually observe is $\mathbf{c}_{i\tau}$ which includes things like

Observed/sample mean or variance of temperature in January

The key takeaway: climate is not weather nor the realized distribution of weather

The actual weather is drawn from $\psi(\mathbf{C}_{i\tau})$, but $\mathbf{C}_{i\tau}$ is never actually observed

All we actually observe is $\mathbf{c}_{i\tau}$ which includes things like

- Observed/sample mean or variance of temperature in January
- Observed/sample total rainfall in January

The key takeaway: climate is not weather nor the realized distribution of weather

The actual weather is drawn from $\psi(\mathbf{C}_{i\tau})$, but $\mathbf{C}_{i\tau}$ is never actually observed

All we actually observe is $\mathbf{c}_{i\tau}$ which includes things like

- Observed/sample mean or variance of temperature in January
- Observed/sample total rainfall in January
- Maximum observed wind gust in a 24 hour period

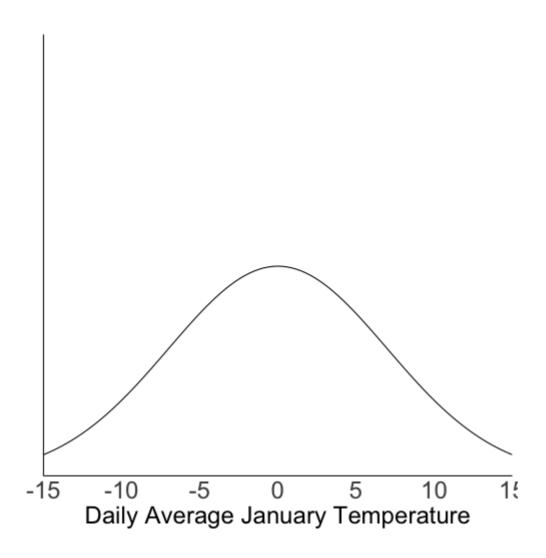
 $\mathbf{C}_{i au}$ includes things like

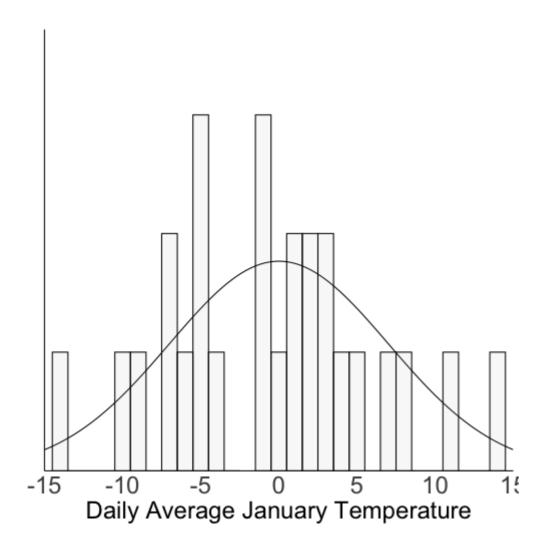
Climate versus weather

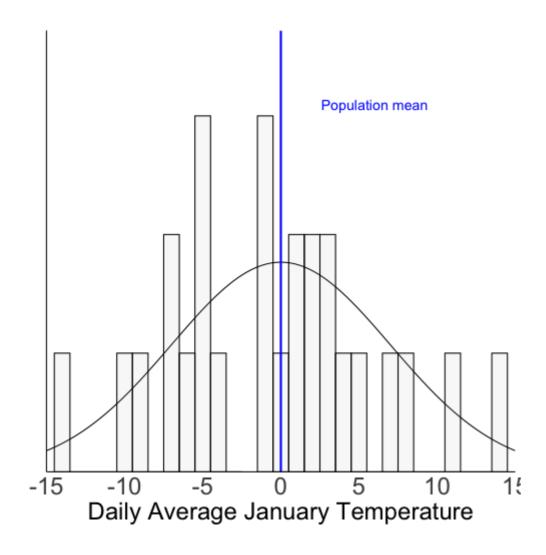
 $\mathbf{C}_{i\tau}$ includes things like

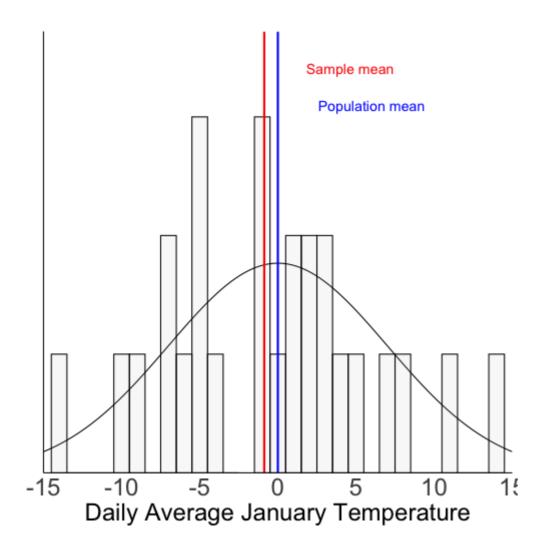
• Population/actual mean or variance of temperature in January

Climate versus weather


 $\mathbf{C}_{i\tau}$ includes things like


- Population/actual mean or variance of temperature in January
- Population/actual total rainfall in January


Climate versus weather


 $\mathbf{C}_{i\tau}$ includes things like

- Population/actual mean or variance of temperature in January
- Population/actual total rainfall in January
- Theoretical maximum wind gust in a 24 hour period

Climate can affect social outcomes in two ways:

1. Direct effect: The climate during τ affects the actual weather realizations ${\bf c}$ which affects the economy

Climate can affect social outcomes in two ways:

- 1. Direct effect: The climate during τ affects the actual weather realizations ${\bf c}$ which affects the economy
- 2. Belief effect: Beliefs **b** about **C** can affect decisions and economic outcomes regardless of what **c** actually happens

Climate can affect social outcomes in two ways:

- 1. Direct effect: The climate during τ affects the actual weather realizations ${\bf c}$ which affects the economy
- 2. Belief effect: Beliefs **b** about **C** can affect decisions and economic outcomes regardless of what **c** actually happens

We can write that an outcome Y is a function of climate through these two channels

$$Y(\mathbf{C}) = Y[\mathbf{c}(\mathbf{C}), \mathbf{b}(\mathbf{C})]$$

The marginal effect of climate on Y is given by the vector of derivatives

$$rac{dY(\mathbf{C})}{d\mathbf{C}} = \sum_{k=1}^K rac{\partial Y(\mathbf{C})}{\partial \mathbf{c}_k} \cdot rac{d\mathbf{c}_k}{d\mathbf{C}} + \sum_{n=1}^N rac{\partial Y(\mathbf{C})}{\partial \mathbf{b}_n} rac{d\mathbf{b}_n}{d\mathbf{C}}$$

The marginal effect of climate on Y is given by the vector of derivatives

$$rac{dY(\mathbf{C})}{d\mathbf{C}} = \sum_{k=1}^K rac{\partial Y(\mathbf{C})}{\partial \mathbf{c}_k} \cdot rac{d\mathbf{c}_k}{d\mathbf{C}} + \sum_{n=1}^N rac{\partial Y(\mathbf{C})}{\partial \mathbf{b}_n} rac{d\mathbf{b}_n}{d\mathbf{C}}$$

The first sum is the direct effect, the second sum is the belief effect

The marginal effect of climate on Y is given by the vector of derivatives

$$rac{dY(\mathbf{C})}{d\mathbf{C}} = \sum_{k=1}^K rac{\partial Y(\mathbf{C})}{\partial \mathbf{c}_k} \cdot rac{d\mathbf{c}_k}{d\mathbf{C}} + \sum_{n=1}^N rac{\partial Y(\mathbf{C})}{\partial \mathbf{b}_n} rac{d\mathbf{b}_n}{d\mathbf{C}}$$

The first sum is the direct effect, the second sum is the belief effect

The belief effect and interactions between belief and direct effects are commonly called adaptations, e.g. crop switching, or buying an air conditioner

In an ideal scenario how would we estimate the effects of climate change?

In an ideal scenario how would we estimate the effects of climate change?

Basically run an experiment:

In an ideal scenario how would we estimate the effects of climate change?

Basically run an experiment:

1. Have two identical copies of earth

In an ideal scenario how would we estimate the effects of climate change?

Basically run an experiment:

- 1. Have two identical copies of earth
- 2. Pump a lot of CO_2 into the atmosphere of one of the earths, hold the other climate constant

In an ideal scenario how would we estimate the effects of climate change?

Basically run an experiment:

- 1. Have two identical copies of earth
- 2. Pump a lot of CO_2 into the atmosphere of one of the earths, hold the other climate constant
- 3. Compare outcomes across the two earths as a function of whatever **c** parameters are of interest (e.g. average temperature, heating degree days, etc)

This experiment will give us an accurate, unbiased estimate of the *effect* of climate change net of adaptations since people in the climate changed earth presumably took up adaptive actions to deal with it

This experiment will give us an accurate, unbiased estimate of the *effect* of climate change net of adaptations since people in the climate changed earth presumably took up adaptive actions to deal with it

What doesn't it tell us?

This experiment will give us an accurate, unbiased estimate of the *effect* of climate change net of adaptations since people in the climate changed earth presumably took up adaptive actions to deal with it

What doesn't it tell us?

1. The gross effect of climate change

This experiment will give us an accurate, unbiased estimate of the *effect* of climate change net of adaptations since people in the climate changed earth presumably took up adaptive actions to deal with it

What doesn't it tell us?

- 1. The gross effect of climate change
- 2. The **cost** of adaptation (unless we have data on adaptive actions)

We don't have an alternative earth so we need to make due with just one

We don't have an alternative earth so we need to make due with just one

The simplest way to try to recover an estimate of the effect of climate change is to use a cross-sectional regression

We don't have an alternative earth so we need to make due with just one

The simplest way to try to recover an estimate of the effect of climate change is to use a cross-sectional regression

Main idea: compare areas with different climates, look at how outcomes of interest differ

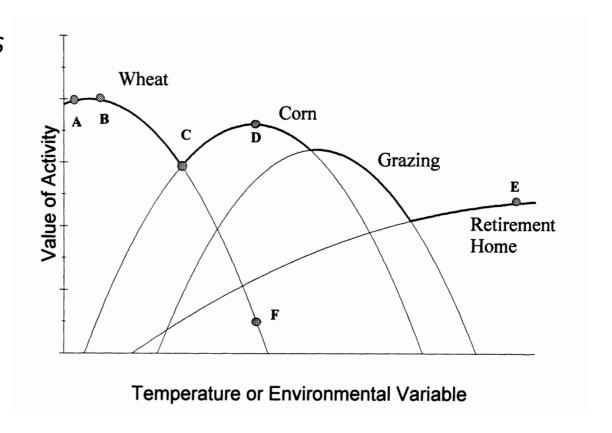
We don't have an alternative earth so we need to make due with just one

The simplest way to try to recover an estimate of the effect of climate change is to use a cross-sectional regression

Main idea: compare areas with different climates, look at how outcomes of interest differ

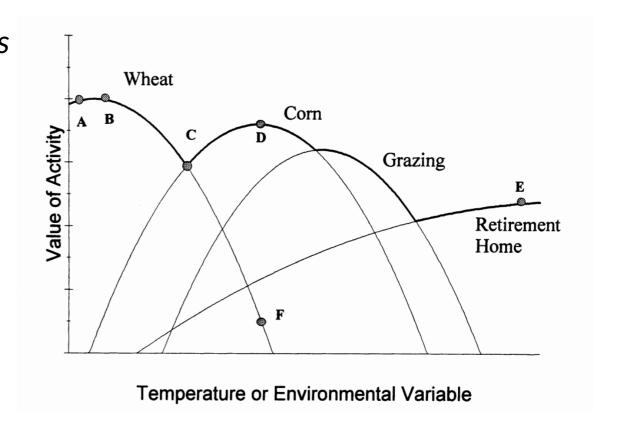
What is the association between climate and outcomes at a given point in time?

We don't have an alternative earth so we need to make due with just one


The simplest way to try to recover an estimate of the effect of climate change is to use a cross-sectional regression

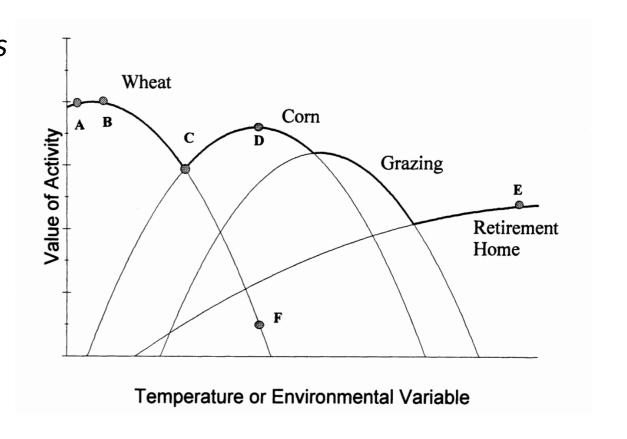
Main idea: compare areas with different climates, look at how outcomes of interest differ

What is the association between climate and outcomes at a given point in time?


Mendelsohn, Nordhaus, Shaw (1994) do this for agriculture

Main idea: Compare farmland values in areas with different climates, conditional on other relevant variables

Main idea: Compare farmland values in areas with different climates, conditional on other relevant variables


Why farmland values instead of profits or production?

Main idea: Compare farmland values in areas with different climates, conditional on other relevant variables

Why farmland values instead of profits or production?

What do farmland values tell us?

The value of land is the present value of the expected stream of profits that can be obtained from that land

The value of land is the present value of the expected stream of profits that can be obtained from that land

That means farmland values internalize expected adaptive behavior like crop switching, input substitution, irrigation, etc

The value of land is the present value of the expected stream of profits that can be obtained from that land

That means farmland values internalize expected adaptive behavior like crop switching, input substitution, irrigation, etc

Why focus on agriculture?

The value of land is the present value of the expected stream of profits that can be obtained from that land

That means farmland values internalize expected adaptive behavior like crop switching, input substitution, irrigation, etc

Why focus on agriculture?

1. Agriculture is expected to be very climate sensitive

The value of land is the present value of the expected stream of profits that can be obtained from that land

That means farmland values internalize expected adaptive behavior like crop switching, input substitution, irrigation, etc

Why focus on agriculture?

- 1. Agriculture is expected to be very climate sensitive
- 2. Lots of good data

Ag data: 1982 Census of Agriculture

Climate data: 30 year average temperature and precipitation (normal) from 1951-1980

Socio-economic data

Soil data

 $farmland value_i = \alpha + climate vars'_i \cdot \beta + controls'_i \cdot \gamma + \varepsilon_i$

 $farmland value_i = \alpha + climate vars'_i \cdot \beta + controls'_i \cdot \gamma + \varepsilon_i$

We are interested in β which tells us the average marginal effect of changes in climate variables

 $farmland value_i = \alpha + climate vars'_i \cdot \beta + controls'_i \cdot \gamma + \varepsilon_i$

We are interested in β which tells us the average marginal effect of changes in climate variables

Key assumption for β to be estimated correctly:

$$farmland value_i = \alpha + climate vars'_i \cdot \beta + controls'_i \cdot \gamma + \varepsilon_i$$

We are interested in β which tells us the average marginal effect of changes in climate variables

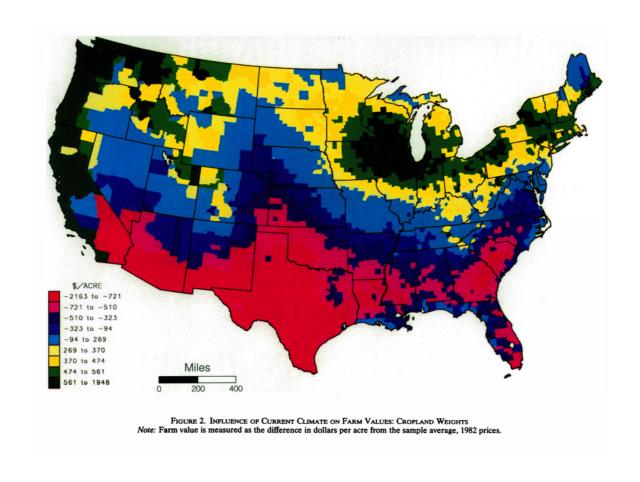
Key assumption for β to be estimated correctly:

$$\mathbb{E}\left[\mathbf{climate\ vars}_i\ \ arepsilon_i|\mathbf{controls}_i
ight]=0$$

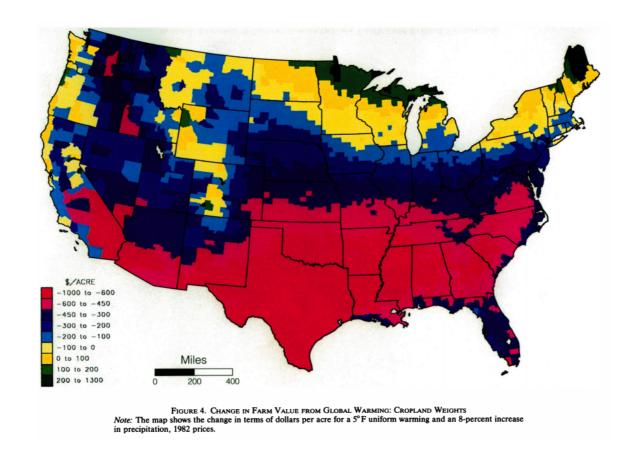
$$farmland value_i = \alpha + climate vars'_i \cdot \beta + controls'_i \cdot \gamma + \varepsilon_i$$

We are interested in β which tells us the average marginal effect of changes in climate variables

Key assumption for β to be estimated correctly:


$$\mathbb{E}\left[\mathbf{climate\ vars}_i\ \ arepsilon_i|\mathbf{controls}_i
ight]=0$$

Climate must be uncorrelated with omitted variables conditional on controls


	Cropland weights			Crop-revenue weights	
ndependent variables	1982 (i)	1982 (ii)	1978 (iii)	1982 (iv)	1978 (v)
Constant	1,490	1,329	1,173	1,451	1,307
	(71.20)	(60.18)	(57.95)	(46.36)	(52.82)
January temperature	-57.0	-88.6	-103	-160	-138
	(6.22)	(9.94)	(12.55)	(12.97)	(13.83)
January temperature squared	-0.33	-1.34	-2.11	-2.68	-3.00
	(1.43)	(6.39)	(11.03)	(9.86)	(14.11)
April temperature	-137	-18.0	23.6	13.6	31.8
	(10.81)	(1.56)	(2.23)	(1.00)	(2.92)
April temperature squared	-7.32	-4.90	-4.31	-6.69	-6.63
	(9.42)	(7.43)	(7.11)	(9.44)	(11.59)
July temperature	-167	- 155	-177	-87.7	-132
	(13.10)	(14.50)	(18.07)	(6.80)	(12.55)
July temperature squared	-3.81	-2.95	-3.87	-0.30	-1.27
	(5.08)	(4.68)	(6.69)	(0.53)	(2.82)
October temperature	351.9	192	175	217	198
	(19.37)	(11.08)	(11.01)	(8.89)	(9.94
October temperature squared	6.91	6.62	7.65	12.4	12.4
october temperature squared	(6.38)	(7.09)	(8.93)	(12.50)	(15.92)
lanuary rain	75.1	85.0	56.5	280	172
January rain	(3.28)	(3.88)	(2.81)	(9.59)	(7.31
January rain squared	-5.66	2.73	2.20	- 10.8	-4.09
anuary rain squared	(1.86)	(0.95)	(0.82)	(3.64)	(1.72
A 11 i	110	104	128	82.8	113
April rain	(4.03)	(4.44)	(5.91)	(2.34)	(4.05)
A					
April rain squared	-10.8	-16.5	-10.8	-62.1	-30.6
	(1.17)	(1.96)	(1.41)	(5.52)	(3.35)
July rain	-25.6	-34.5	-11.3	-116	-5.28
	(1.87)	(2.63)	(0.94)	(6.06)	(0.34
July rain squared	19.5	52.0	37.8	57.0	34.8
	(3.42)	(9.43)	(7.54)	(8.20)	(6.08)
October rain	-2.30	-50.3	-91.6	-124	- 135
	(0.09)	(2.25)	(4.45)	(3.80)	(5.15)
October rain squared	-39.9	2.28	0.25	171	106
	(2.65)	(0.17)	(0.02)	(14.17)	(11.25)

Data are weighted either by cropland or crop-revenue

Results are pretty sensitive to this choice: cropland weights

The value of current climate for farmland across the US

The value of 5° C of warming and 8% increase in precipitation under farmland weighting

The value of 5°C of warming and 8% increase in precipitation under crop-revenue weighting

This shows a very different story because crop-revenue weights put more emphasis on irrigated land and products which will likely do better under a warmer, more humid climate

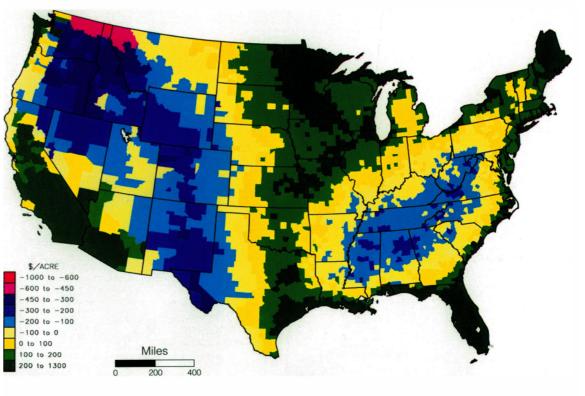


FIGURE 5. CHANGE IN FARM VALUE FROM GLOBAL WARMING: CROP-REVENUE WEIGHTS Notes: The map shows the change in terms of dollars per acre for a 5°F uniform warming and an 8-percent increase in precipitation, 1982 prices.

TABLE 5-PREDICTED IMPACT OF GLOBAL WARMING ON FARMLAND VALUES AND FARM RENTS

		Change in farmland values (billions of dollars, 1982 prices)		Change in farmland rents (percentage of 1982 farm marketings)	
Year	Weight	Impact	Truncated impact	Impact	Truncated impact
1982	Cropland	-\$125.2	-\$118.8	-4.4	-4.2
1978	Cropland	-\$162.8	-\$141.4	- 5.7	-4.9
1982	Crop revenue	\$34.5	\$34.8	1.2	1.2
1978	Crop revenue	-\$14.0	\$21.0	-0.5	0.7

Notes: The global-warming scenario is a uniform 5°F increase with a uniform 8-percent precipitation increase. The "impact" column shows the estimated loss; the "truncated impact" columns show the impact when the loss in farmland value in each county is limited to the original value of the land. The last two columns are annualized impacts, as explained in the text, as a percentage of 1982 farm marketings.

Results are pretty different depending on weighting

Overall takeaway: climate change could be moderately bad (4-6% losses), or mildly positive

Should we believe these results? Why or why not?

Should we believe these results? Why or why not?

Remember the **key assumption**: climate is uncorrelated with omitted variables conditional on controls

Should we believe these results? Why or why not?

Remember the **key assumption**: climate is uncorrelated with omitted variables conditional on controls

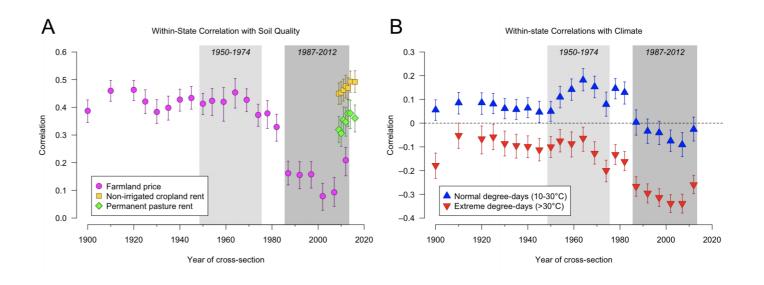
This is very unlikely to hold in the cross-section

Should we believe these results? Why or why not?

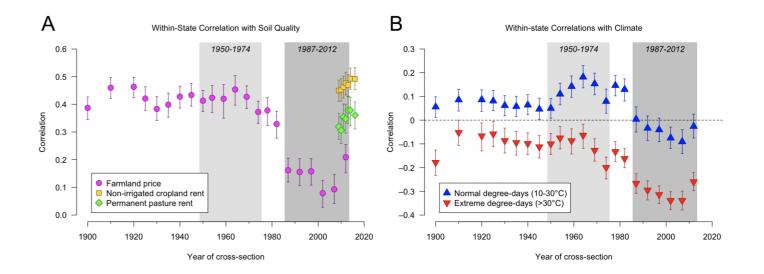
Remember the **key assumption**: climate is uncorrelated with omitted variables conditional on controls

This is very unlikely to hold in the cross-section

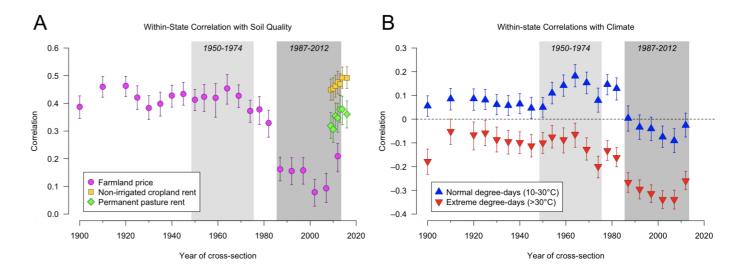
What else varies across space similarly to temperature?


Should we believe these results? Why or why not?

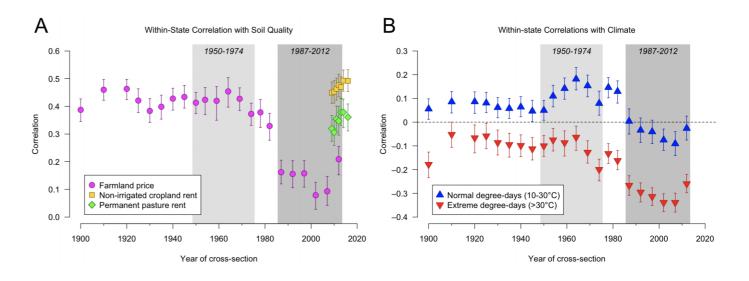
Remember the **key assumption**: climate is uncorrelated with omitted variables conditional on controls


This is very unlikely to hold in the cross-section

What else varies across space similarly to temperature?

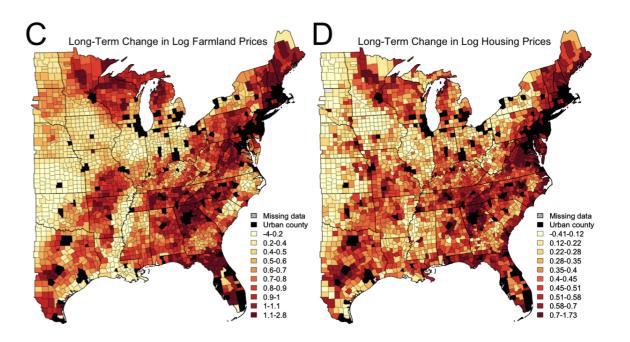

Ozone, wealth, other productive uses of land besides agriculture, lots of things

Since 1900, correlations between farmland values and soil quality and measures of climate are decreasing

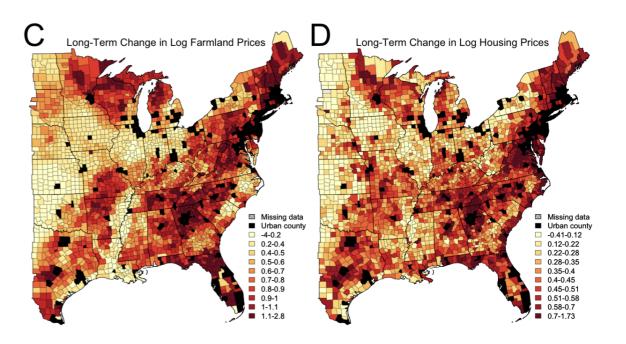


Since 1900, correlations between farmland values and soil quality and measures of climate are decreasing

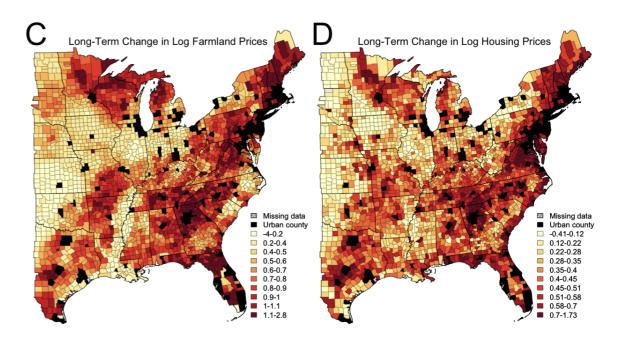
Indicates that there are other major factors influencing farmland values


Since 1900, correlations between farmland values and soil quality and measures of climate are decreasing

Indicates that there are other major factors influencing farmland values


What could be driving this?

Big increases in farmland value in weird places (Ozark and Appalachin Mountains, Vermont, upper Minnesota)


Big increases in farmland value in weird places (Ozark and Appalachin Mountains, Vermont, upper Minnesota)

Strong correlation between changes in farmland values and changes in housing values

Big increases in farmland value in weird places (Ozark and Appalachin Mountains, Vermont, upper Minnesota)

Strong correlation between changes in farmland values and changes in housing values

This points to demand for land for non-farm purposes (vacation homes!) as a primary driver of farmland values

So demand for non-farm purposes appears to affect farmland value

So demand for non-farm purposes appears to affect farmland value

Why is this a problem for estimating the effects of climate change?

So demand for non-farm purposes appears to affect farmland value

Why is this a problem for estimating the effects of climate change?

People's demand for housing is a function of climate

Demand for housing is in ε_i since it affects farmland values

 \rightarrow our key assumption is violated

The big issue with cross-sectional approaches is that there are A LOT of variables we don't have data for

The big issue with cross-sectional approaches is that there are A LOT of variables we don't have data for

These will be inside ε_i and many of them may be correlated with climate, so we need to control for them

The big issue with cross-sectional approaches is that there are A LOT of variables we don't have data for

These will be inside ε_i and many of them may be correlated with climate, so we need to control for them

It is diffcult to control for lots and lots of variables in the cross-section

Example: effect of climate on global mortality

Example: effect of climate on global mortality

Very hot and very cold temperatures are both bad for mortality, what's the overall effect of climate change?

Example: effect of climate on global mortality

Very hot and very cold temperatures are both bad for mortality, what's the overall effect of climate change?

• Climate is spatially correlated with economic development: countries in cooler climates are generally richer, have more safety net policies, etc

Example: effect of climate on global mortality

Very hot and very cold temperatures are both bad for mortality, what's the overall effect of climate change?

- Climate is spatially correlated with economic development: countries in cooler climates are generally richer, have more safety net policies, etc
 - This will overstate the effect of climate change on mortality: countries in cooler climates are healthier because they're rich, not just because of the climate

Example: effect of climate on global mortality

Example: effect of climate on global mortality

Very hot and very cold temperatures are both bad for mortality, what's the overall effect of climate change?

1. Will not account for adaptation: mortality doesn't capture expected future outcomes like farmland values do, people will migrate, buy air conditioning, etc

Example: effect of climate on global mortality

Very hot and very cold temperatures are both bad for mortality, what's the overall effect of climate change?

- 1. Will not account for adaptation: mortality doesn't capture expected future outcomes like farmland values do, people will migrate, buy air conditioning, etc
 - This will overstate the effect of climate change: we are ignoring the possibility of adaptation

Panel approaches to estimation

How can we find a way to handle all these possible omitted variables?

How can we find a way to handle all these possible omitted variables?

Use panel data: data where you have a time series for each person, country, etc over time

How can we find a way to handle all these possible omitted variables?

Use panel data: data where you have a time series for each person, country, etc over time

Why does this help?

How can we find a way to handle all these possible omitted variables?

Use panel data: data where you have a time series for each person, country, etc over time

Why does this help?

Panel data approaches allow you to better control for large sets of variables for which you might not have data

How can we find a way to handle all these possible omitted variables?

Use panel data: data where you have a time series for each person, country, etc over time

Why does this help?

Panel data approaches allow you to better control for large sets of variables for which you might not have data

How? Let's find out

Suppose that the true relationship for climate change on farmland value is

$$ext{farmland value}_{it} = ext{time invariant vars}_i \cdot \alpha + \\ ext{climate vars}'_{it} \cdot \beta + ext{controls}'_{it} \cdot \gamma + \varepsilon_{it}$$

It is the same as before but now we have observations for each county i and year t

Suppose that the true relationship for climate change on farmland value is

$$ext{farmland value}_{it} = ext{time invariant vars}_i \cdot \alpha + \\ ext{climate vars}'_{it} \cdot \beta + ext{controls}'_{it} \cdot \gamma + \varepsilon_{it}$$

It is the same as before but now we have observations for each county i and year t

We also broke out the **entire** set of variables that are specific to each county i, but do not vary over time: time invariant $vars_i$

What we can do is estimate this using an approach called fixed effects

This demeans all the data within each i, let bars indicate means within i

$$egin{align*} & ext{farmland value}_{it} = \ & ext{(time invariant vars}_i' - \overline{ ext{time invariant vars}_i') \cdot lpha + \ & ext{(climate vars}_{it}' - \overline{ ext{climate vars}_{it}') \cdot eta + \ & ext{(controls}_{it}' - \overline{ ext{controls}_{it}') \cdot \gamma + arepsilon_{it}} \end{aligned}$$

Remember: time invariant $vars_i$ does not vary over time

This means that when we average within i, we have that

 $\overline{ ext{time invariant vars}_i} = ext{time invariant vars}_i$

It falls out of the estimating equation!

This means that when we average within i, we have that

 $\overline{ ext{time invariant vars}_i} = \overline{ ext{time invariant vars}_i}$

It falls out of the estimating equation!

This is why this approach is called **fixed effects**: anything 'fixed' (i.e. time-invariant) within i is controlled for by demeaning within i

$$\begin{aligned} & \text{farmland value}_{it} - \overline{\text{farmland value}}_{it} = \\ & (\textbf{climate vars}'_{it} - \overline{\textbf{climate vars}'_{it}}') \cdot \beta + (\textbf{controls}'_{it} - \overline{\textbf{controls}'_{it}}') \cdot \gamma + \varepsilon_{it} \end{aligned}$$

What does this mean?

What does this mean?

All variables that are time-invariant within a county over time are implicitly controlled for when we demean the data!

This means we do not need to explicitly control for time-invariant things like soil quality, elevation, average sunlight, etc for which we might not have data

We re-write the equation by including county fixed effects α_i

$$farmland value_{it} = \alpha_i + climate vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

where α_i is a dummy variable equal to 1 for county i and 0 otherwise

We re-write the equation by including county fixed effects α_i

$$farmland value_{it} = \alpha_i + climate vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

where α_i is a dummy variable equal to 1 for county i and 0 otherwise

Since α_i is always the same for county i no matter which year t, it effectively controls for all things in county i that are not changing over time, **time invariant vars**'_i, just like demeaning the data

Notice that there's nothing special about doing this with respect to i

Notice that there's nothing special about doing this with respect to i

We could easily do this with respect to t for variables that are changing over time but are the same across all counties so there is no t index

farmland value_{it} = **common vars**'_t ·
$$\alpha$$
 + **climate vars**'_{it} · β + **controls**'_{it} · γ + ε _{it}

Notice that there's nothing special about doing this with respect to i

We could easily do this with respect to t for variables that are changing over time but are the same across all counties so there is no t index

$$ext{farmland value}_{it} = ext{common vars}_t' \cdot \alpha + \\ ext{climate vars}_{it}' \cdot \beta + ext{controls}_{it}' \cdot \gamma + \varepsilon_{it}$$

Take the average of the all the variables within a given year t (across all counties), and then demean the variables

$$egin{aligned} & ext{farmland value}_{it} - \overline{ ext{farmland value}_{it}} = \ & ext{(common vars}_t' - \overline{ ext{common vars}_t'}) \cdot lpha + \ & ext{(climate vars}_{it}' - \overline{ ext{climate vars}_{it}'}) \cdot eta + \ & ext{(controls}_{it}' - \overline{ ext{controls}_{it}'}) \cdot \gamma + arepsilon_{it} \end{aligned}$$

where now the bar indicates the average within each year t

$$egin{align*} & ext{farmland value}_{it} = \ & ext{(common vars}_t' - \overline{ ext{common vars}_t'}) \cdot lpha + \ & ext{(climate vars}_{it}' - \overline{ ext{climate vars}_{it}'}) \cdot eta + \ & ext{(controls}_{it}' - \overline{ ext{controls}_{it}'}) \cdot \gamma + arepsilon_{it} \ \end{aligned}$$

where now the bar indicates the average within each year t

Similar to before, common $\mathbf{vars}_t' = \mathbf{common} \ \mathbf{vars}_t$ since these variables are not changing within a given t

This gives us:

$$\begin{aligned} & \text{farmland value}_{it} - \overline{\text{farmland value}}_{it} = \\ & (\mathbf{climate\ vars}'_{it} - \overline{\mathbf{climate\ vars}'_{it}}') \cdot \beta + (\mathbf{controls}'_{it} - \overline{\mathbf{controls}}'_{it}) \cdot \gamma + \varepsilon_{it} \end{aligned}$$

This is the same idea as when we demeaned within each county i so its equivalent to each year having its own intercept:

$$farmland value_{it} = \eta_t + climate vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

where η_t is called a year fixed effect

What does this mean?

What does this mean?

All variables that are invariant across all counties within a year are implicitly controlled for when we demean the data

What does this mean?

All variables that are invariant across all counties within a year are implicitly controlled for when we demean the data

What does this control for?

What does this mean?

All variables that are invariant across all counties within a year are implicitly controlled for when we demean the data

What does this control for?

Recessions, the current president, nationwide ag policy, etc

Key thing: we can have fixed effects for i and t at the same time to simultaneously control for:

- 1. Variables that are constant within a county over time
- 2. Variables that are constant across counties within a given year

$$farm outcome_{it} = \alpha_i + \eta_t + climate \ vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

Key thing: we can have fixed effects for i and t at the same time to simultaneously control for:

- 1. Variables that are constant within a county over time
- 2. Variables that are constant across counties within a given year

$$farm outcome_{it} = \alpha_i + \eta_t + climate \ vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

This implicitly controls for A LOT of variables

Key thing: we can have fixed effects for i and t at the same time to simultaneously control for:

- 1. Variables that are constant within a county over time
- 2. Variables that are constant across counties within a given year

$$farm outcome_{it} = \alpha_i + \eta_t + climate \ vars'_{it} \cdot \beta + controls'_{it} \cdot \gamma + \varepsilon_{it}$$

This implicitly controls for A LOT of variables

What's left 'omitted' that can cause us problems with estimating the effects of climate change?

What's left 'omitted' that can cause us problems with estimating the effects of climate change?

What's left 'omitted' that can cause us problems with estimating the effects of climate change?

Only variables that are changing both within a county AND over time

What's left 'omitted' that can cause us problems with estimating the effects of climate change?

Only variables that are changing both within a county AND over time

This is the norm for panel regressions in applied economics (although you can't do this with farmland values)

Note that you can't have a fixed effect with respect to *i* and *t* here

Note that you can't have a fixed effect with respect to i and t here

e.g. ω_{it} , a county-by-year fixed effect

Note that you can't have a fixed effect with respect to *i* and *t* here

e.g. ω_{it} , a county-by-year fixed effect

A county-by-year fixed effect controls for all things that are time-invariant within a county-year (e.g. things not changing in Tompkins County in 2019)

Note that you can't have a fixed effect with respect to *i* and *t* here

e.g. ω_{it} , a county-by-year fixed effect

A county-by-year fixed effect controls for all things that are time-invariant within a county-year (e.g. things not changing in Tompkins County in 2019)

Our data only vary at the county-year level

Note that you can't have a fixed effect with respect to *i* and *t* here

e.g. ω_{it} , a county-by-year fixed effect

A county-by-year fixed effect controls for all things that are time-invariant within a county-year (e.g. things not changing in Tompkins County in 2019)

Our data only vary at the county-year level

A county-by-year fixed effect would control for everything on which we have data: we can't actually estimate anything

Alternative explanation for FE in climate economics

What's the "gold standard" for estimating causal effects?

Alternative explanation for FE in climate economics

What's the "gold standard" for estimating causal effects?

Randomized control trials

What's the "gold standard" for estimating causal effects?

Randomized control trials

Suppose we have a group of 100 people and want to know the effect of a drug on hypertension

We randomly assign 50 people to get treatment (e.g. drugs), and the other 50 people are controls (e.g. no drugs)

Since we randomly assigned treatment, both groups should be identical on average

Since we randomly assigned treatment, both groups should be identical on average

The difference we see between the two groups in average hypertension outcomes after the drug treatment can be attributed to the drug

Since we randomly assigned treatment, both groups should be identical on average

The difference we see between the two groups in average hypertension outcomes after the drug treatment can be attributed to the drug

Randomization is key for estimating the effect of different kinds of treatments

Is climate random from our (the economist's) perspective?

Is climate random from our (the economist's) perspective?

No!

Is climate random from our (the economist's) perspective?

No!

People move to specific climates because of tastes

Is climate random from our (the economist's) perspective?

No!

People move to specific climates because of tastes

Farmers select crops that are suitable to grow in their current climate

Is climate random from our (the economist's) perspective?

No!

People move to specific climates because of tastes

Farmers select crops that are suitable to grow in their current climate

Tourist economies are selected to be in specific climates

Is weather random from our (the economist's) perspective?

Is weather random from our (the economist's) perspective?

Sort of: Randomness comes from weather being a random variable drawn from $\psi(C_{it})$

Is weather random from our (the economist's) perspective?

Sort of: Randomness comes from weather being a random variable drawn from $\psi(C_{it})$

i: We know Ithaca's generally cold in January and warm in July

Is weather random from our (the economist's) perspective?

Sort of: Randomness comes from weather being a random variable drawn from $\psi(C_{it})$

i: We know Ithaca's generally cold in January and warm in July

But in Ithaca in January, there's some randomness in how cold it is, given the climate C_{it}

t: We know the climate is generally getting warmer across the earth

t: We know the climate is generally getting warmer across the earth

But in any given year, there's some randomness in global temperature, given the climate C_{it}

If we demean the data to control for time-invariant climate features of a county i, and trends in climate t what are we estimating the effect of?

If we demean the data to control for time-invariant climate features of a county i, and trends in climate t what are we estimating the effect of?

Deviations in weather from average weather

If we demean the data to control for time-invariant climate features of a county i, and trends in climate t what are we estimating the effect of?

Deviations in weather from average weather

We might think these are as good as random

If we demean the data to control for time-invariant climate features of a county i, and trends in climate t what are we estimating the effect of?

Deviations in weather from average weather

We might think these are as good as random

When farmers decide to plant in spring, they can't predict deviations from average weather during the growing season

If we demean the data to control for time-invariant climate features of a county i, and trends in climate t what are we estimating the effect of?

Deviations in weather from average weather

We might think these are as good as random

When farmers decide to plant in spring, they can't predict deviations from average weather during the growing season

They appear to be effectively random

If weather is random, then we can estimate the marginal effect of weather c_{it}

If weather is random, then we can estimate the marginal effect of weather c_{it}

Does this help us understand the marginal effect of climate C_{it} ?

If weather is random, then we can estimate the marginal effect of weather c_{it}

Does this help us understand the marginal effect of climate C_{it} ?

A reasonable assumption is that the effect of weather provides an upper bound on the effect of climate change

If weather is random, then we can estimate the marginal effect of weather c_{it}

Does this help us understand the marginal effect of climate C_{it} ?

A reasonable assumption is that the effect of weather provides an upper bound on the effect of climate change

Why?

Climate change is a long-run phenomenon: in the long-run we can adapt

Climate change is a long-run phenomenon: in the long-run we can adapt

Farmers can switch crops, people can migrate, households can install air conditioning

Climate change is a long-run phenomenon: in the long-run we can adapt

Farmers can switch crops, people can migrate, households can install air conditioning

These actions aren't possible on a day to day basis

Climate change is a long-run phenomenon: in the long-run we can adapt

Farmers can switch crops, people can migrate, households can install air conditioning

These actions aren't possible on a day to day basis

Estimating the effect of weather is useful then, it tells us how bad climate change might be

Deschenes and Greenstone

This 'random weather' approach was used by Deschenes and Greenstone (2007) to estimate the effect of weather on **farm profits**

$$\text{farm profits}_{it} = \alpha_{\mathbf{i}} + \eta_{\mathbf{t}} + \mathbf{climate vars}'_{it} \cdot \beta + \mathbf{controls}'_{it} \cdot \gamma + \varepsilon_{it}$$

Deschenes and Greenstone

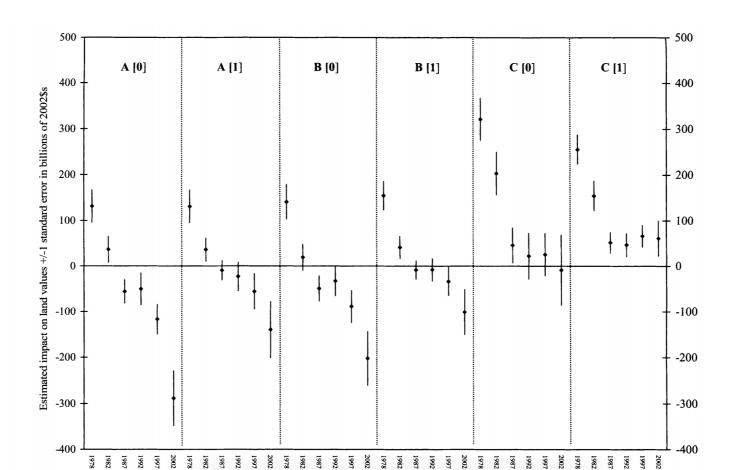
This 'random weather' approach was used by Deschenes and Greenstone (2007) to estimate the effect of weather on **farm profits**

$$\text{farm profits}_{it} = \alpha_{\mathbf{i}} + \eta_{\mathbf{t}} + \mathbf{climate vars}'_{it} \cdot \beta + \mathbf{controls}'_{it} \cdot \gamma + \varepsilon_{it}$$

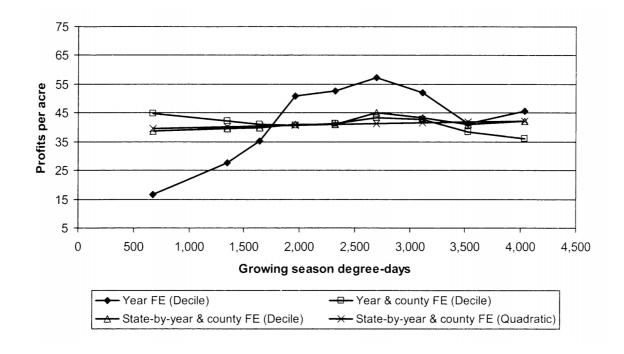
Why profits?

Deschenes and Greenstone

This 'random weather' approach was used by Deschenes and Greenstone (2007) to estimate the effect of weather on **farm profits**

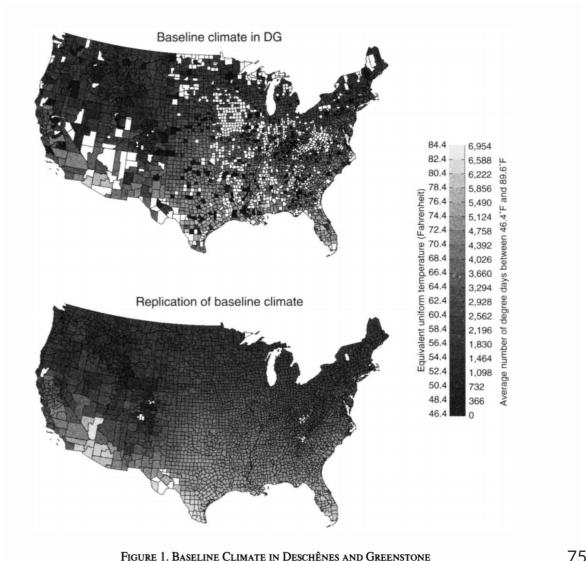

$$\text{farm profits}_{it} = \alpha_{\mathbf{i}} + \eta_{\mathbf{t}} + \mathbf{climate vars}'_{it} \cdot \beta + \mathbf{controls}'_{it} \cdot \gamma + \varepsilon_{it}$$

Why profits?

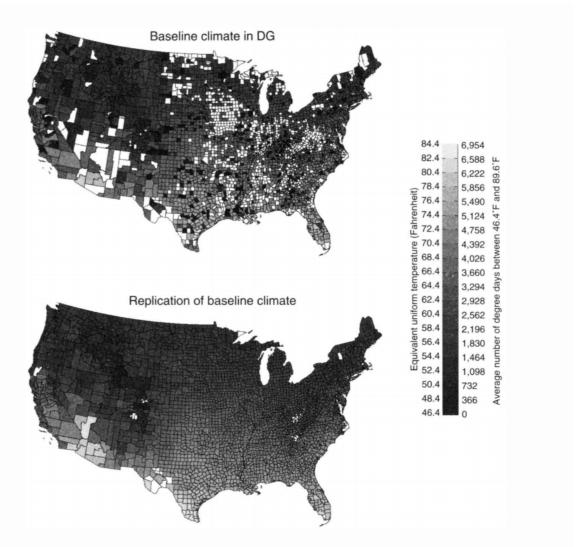

Because farmland values shouldn't change in response to random annual weather shocks (since they're random and transient, not permanent changes)

Deschenes and Greenstone: cross-section

DG shows why the cross-sectional approach doesn't cut it, the estimated effects are very sensitive to controls, sample

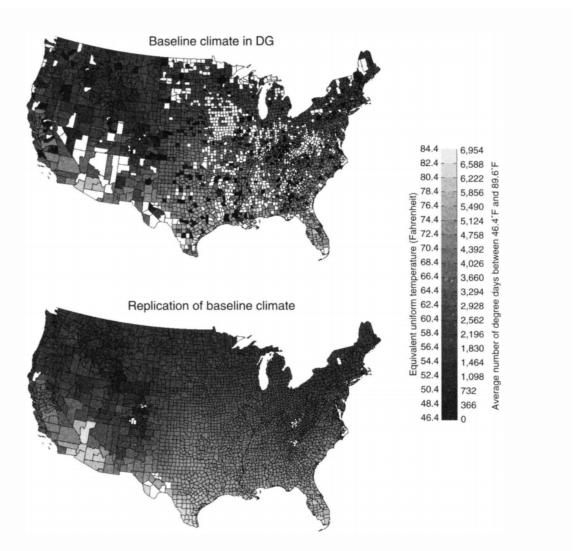


DG use degree days to capture climate: the sum of daily average temperature during the growing season


Main takeaway: little effect of climate change!

This is super surprising right?

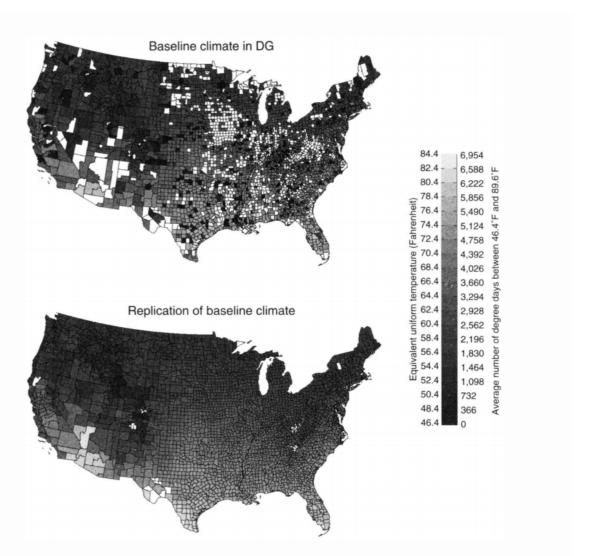
This is super surprising right?


It should be

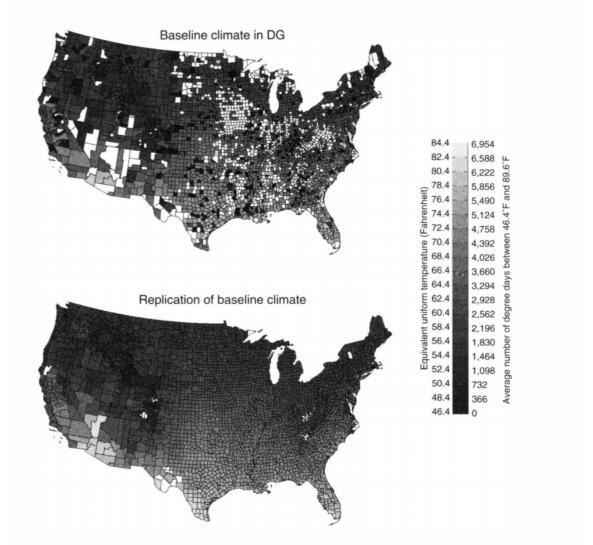
This is super surprising right?

It should be

In the short run, we'd think very hot weather would be bad for crops

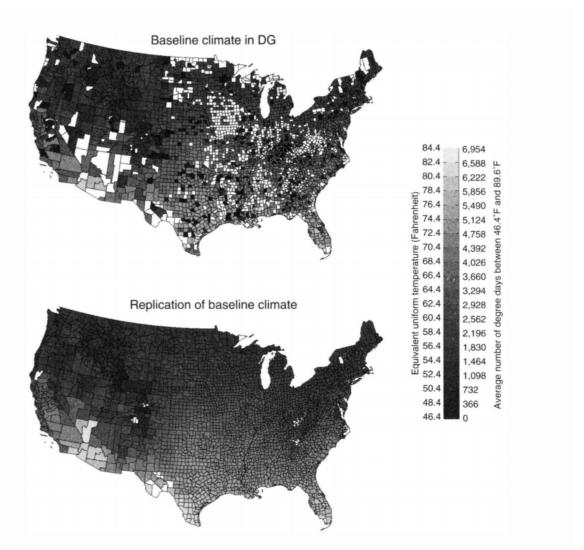


This is super surprising right?


It should be

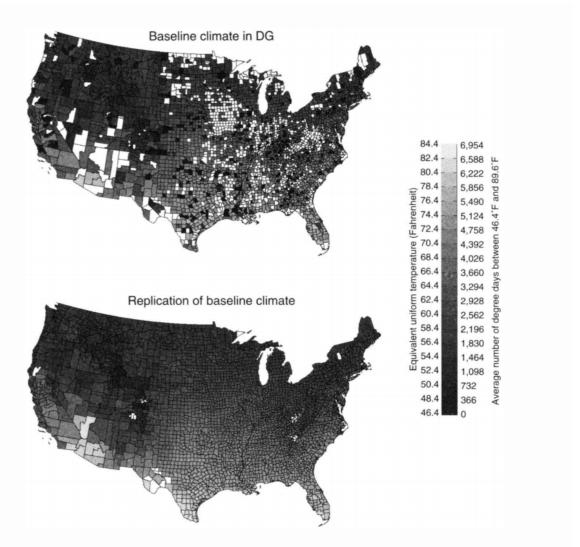
In the short run, we'd think very hot weather would be bad for crops

We'd expect farmers have little ability to adapt to (randomly) hot weather during the growing season



In the long run, it would be less surprising to find little effect since farmers can change crops or add irrigation if its persistently hot

In the long run, it would be less surprising to find little effect since farmers can change crops or add irrigation if its persistently hot


Turns out this result is because of a massive data error and too liberal use of fixed effects

In the long run, it would be less surprising to find little effect since farmers can change crops or add irrigation if its persistently hot

Turns out this result is because of a massive data error and too liberal use of fixed effects

Moral of the story: data cleaning is the most important part of research, be extremely careful

Are there cases where the effect of a change in weather tells us the effect of a change in climate?

Are there cases where the effect of a change in weather tells us the effect of a change in climate?

Recall, climate affects outcomes through two channels:

Are there cases where the effect of a change in weather tells us the effect of a change in climate?

Recall, climate affects outcomes through two channels:

- 1. Direct effect: The climate during τ affects the actual weather realizations \mathbf{c} which affects the economy
- 2. Belief effect: Beliefs **b** about **C** can affect decisions and economic outcomes regardless of what **c** actually happens

If there are situations where belief effects are approximately zero, then marginal effect of weather = marginal effect of climate

If there are situations where belief effects are approximately zero, then marginal effect of weather = marginal effect of climate

Suppose we're considering a farmer who's maximizing profit:

If there are situations where belief effects are approximately zero, then marginal effect of weather = marginal effect of climate

Suppose we're considering a farmer who's maximizing profit:

$$\pi_t(x_t;C_t) = \max_{x_t} \mathbb{E}_t \left\{ p_t^o[lpha(C_t)\,x_t(C_t)] - p_t^i x_t(C_t)^2/2
ight\}$$

where $\pi_t(x_t; C_t)$ is maximized expected profit, $x_t(C_t)$ is how many acre are planted as a function of the expected climate, p_t^o is the output price, p_t^i is the input price, and $\alpha(C_t)$ is how climate affects output

Suppose we're considering a farmer who's maximizing profit:

$$\pi_t(x_t;C_t) = \max_{x_t} \mathbb{E}_t \left\{ p_t^o[lpha(C_t)\,x_t(C_t)] - p_t^i x_t(C_t)^2/2
ight\}$$

Suppose we're considering a farmer who's maximizing profit:

$$\pi_t(x_t;C_t) = \max_{x_t} \mathbb{E}_t \left\{ p_t^o[lpha(C_t)\,x_t(C_t)] - p_t^i x_t(C_t)^2/2
ight\}$$

Let $x_t^*(C_t)$ be the optimal choice of x_t given some climate C_t (i.e. the solution to the maximization problem)

Suppose we're considering a farmer who's maximizing profit:

$$\pi_t(x_t; C_t) = \max_{x_t} \mathbb{E}_t \left\{ p_t^o[lpha(C_t) \, x_t(C_t)] - p_t^i x_t(C_t)^2/2
ight\}$$

Let $x_t^*(C_t)$ be the optimal choice of x_t given some climate C_t (i.e. the solution to the maximization problem)

We can re-write the problem as:

$$\pi_t(x_t^*; C_t) = \mathbb{E}_t \left\{ p_t^o[lpha(C_t) \, x_t^*(C_t)] - p_t^i x_t^*(C_t)^2 / 2
ight\}$$

Suppose we're considering a farmer who's maximizing profit:

$$\pi_t(x_t; C_t) = \max_{x_t} \mathbb{E}_t \left\{ p_t^o[lpha(C_t) \, x_t(C_t)] - p_t^i x_t(C_t)^2/2
ight\}$$

Let $x_t^*(C_t)$ be the optimal choice of x_t given some climate C_t (i.e. the solution to the maximization problem)

We can re-write the problem as:

$$\pi_t(x_t^*; C_t) = \mathbb{E}_t \left\{ p_t^o[lpha(C_t) \, x_t^*(C_t)] - p_t^i x_t^*(C_t)^2 / 2
ight\}$$

Now differentiate with respect to C_t

Differentiate with respect to C_t :

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o \left[rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + lpha(C_t) rac{dx_t^*(C_t)}{dC_t}
ight] - p_t^i x_t^*(C_t) rac{dx_t^*(C_t)}{dC_t}
ight\} .$$

Differentiate with respect to C_t :

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o \left[rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + lpha(C_t) rac{dx_t^*(C_t)}{dC_t}
ight] - p_t^i x_t^*(C_t) rac{dx_t^*(C_t)}{dC_t}
ight\}$$

Collect terms into direct effects and belief effects:

Differentiate with respect to C_t :

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o \left[rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + lpha(C_t) rac{dx_t^*(C_t)}{dC_t}
ight] - p_t^i x_t^*(C_t) rac{dx_t^*(C_t)}{dC_t}
ight\} .$$

Collect terms into direct effects and belief effects:

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + \left[p_t^o lpha(C_t) - p_t^i x_t^*(C_t)
ight] rac{dx_t^*(C_t)}{dC_t}
ight\}$$

Differentiate with respect to C_t :

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o \left[rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + lpha(C_t) rac{dx_t^*(C_t)}{dC_t}
ight] - p_t^i x_t^*(C_t) rac{dx_t^*(C_t)}{dC_t}
ight\} .$$

Collect terms into direct effects and belief effects:

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + \left[p_t^o lpha(C_t) - p_t^i x_t^*(C_t)
ight] rac{dx_t^*(C_t)}{dC_t}
ight\}$$

The first term is the direct effect while the second is the belief effect

What does the firm's profit-max FOCs tell us about the direct effect?

What does the firm's profit-max FOCs tell us about the direct effect?

From the firm's profit maximization problem,

$$\left[p_t^o lpha(C_t) - p_t^i x_t^*(C_t)
ight] = rac{d\pi(x_t)}{dx} = 0 ext{ at } x_t^*$$

What does the firm's profit-max FOCs tell us about the direct effect?

From the firm's profit maximization problem,

$$\left[p_t^olpha(C_t)-p_t^ix_t^*(C_t)
ight]=rac{d\pi(x_t)}{dx}=0 ext{ at } x_t^*.$$

This gives us that

$$egin{aligned} rac{d\pi_t}{dC_t} = & \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t) + \left[p_t^o lpha(C_t) - p_t^i x_t^*(C_t)
ight] rac{dx_t^*(C_t)}{dC_t}
ight\} \ = & \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t)
ight\} \end{aligned}$$

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t)
ight\}$$

All that's left is the direct effect!

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t)
ight\}$$

All that's left is the direct effect!

This is an application of the **Envelope Theorem**

$$rac{d\pi_t}{dC_t} = \mathbb{E}_t \left\{ p_t^o rac{dlpha(C_t)}{dC_t} \, x_t^*(C_t)
ight\}$$

All that's left is the direct effect!

This is an application of the **Envelope Theorem**

Envelope Theorem:

The marginal effect of a parameter (climate) on an optimized objective (profit) is only composed of its direct effect and not secondary effects through changes in choice variables (belief effect)

Why is the envelope theorem useful?

Why is the envelope theorem useful?

The direct effect of climate is just the effect of weather

Why is the envelope theorem useful?

The direct effect of climate is just the effect of weather

For outcomes that are optimized objectives, the marginal effect of weather is equivalent to the marginal effect of climate!

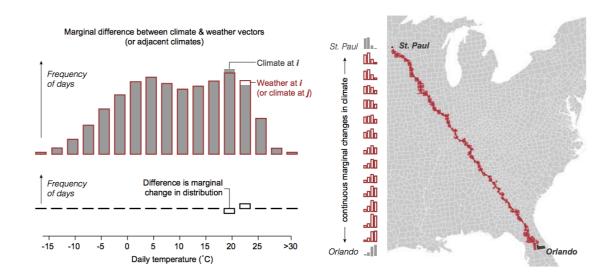
Why is the envelope theorem useful?

The direct effect of climate is just the effect of weather

For outcomes that are optimized objectives, the marginal effect of weather is equivalent to the marginal effect of climate!

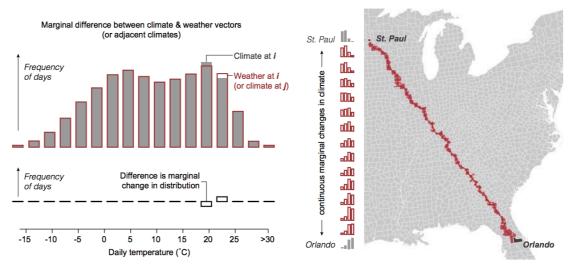
This helps us better pin down the effects of climate change on a subset of interesting outcomes on which we may have data:

Why is the envelope theorem useful?


The direct effect of climate is just the effect of weather

For outcomes that are optimized objectives, the marginal effect of weather is equivalent to the marginal effect of climate!

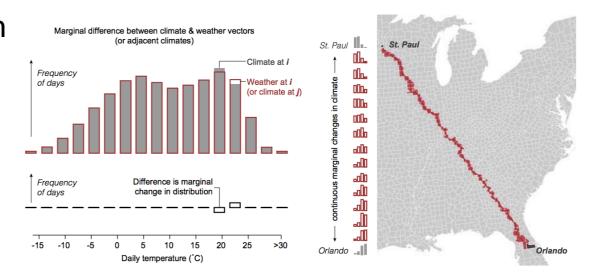
This helps us better pin down the effects of climate change on a subset of interesting outcomes on which we may have data:


- 1. Firm profits
- 2. Ag land values (discounted stream of profits)
- 3. Income

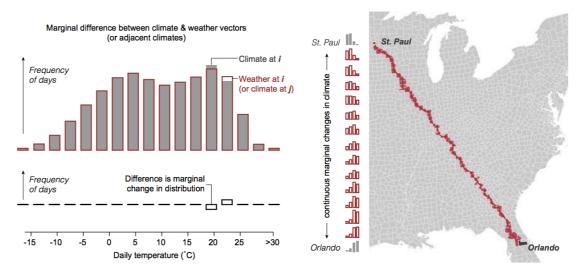
If we have the marginal effect of climate change, we can integrate across climates to get the total effect of climate change

If we have the marginal effect of climate change, we can integrate across climates to get the total effect of climate change

The left hand side shows the variation that allows us to estimate the marginal effect of climate change



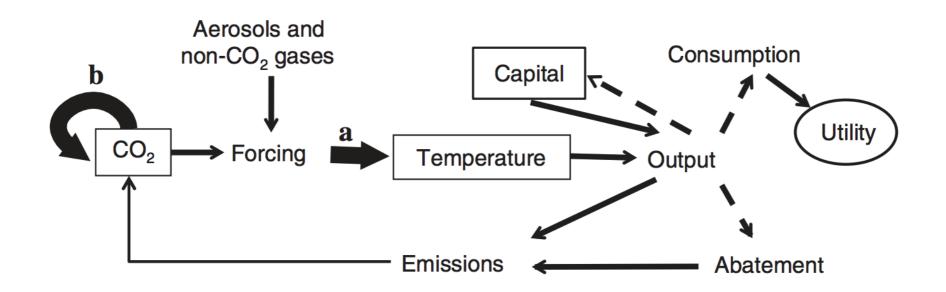
Gray: The actual climate (average weather distribution)


Red: Weather as drawn from the distribution of climate

Difference: Deviations from average

The right side shows us how we can estimate the effect of non-marginal changes in climate: we integrate (sum) over marginal changes in climate

The right side shows us how we can estimate the effect of non-marginal changes in climate: we integrate (sum) over marginal changes in climate



If we want to know what happens to St. Paul with Orlando's climate we just add up all the marginal effects for climates along the way (red)

Integrated assessment

Integrated assessment is the combination of both economic and climate models

The most famous integrated assessment model (IAM) is Bill Nordhaus' Dynamic Integrated Climate Economy (DICE) model

Integrated assessment

Why do we need integrated assessment models?

Integrated assessment

Why do we need integrated assessment models?

So we can compute the social cost of carbon (SCC): the present value of the marginal damage caused by an extra ton of CO_2 along a given economic trajectory

We compute the SCC at time t in a three step procedure:

- 1. Take a baseline economy (trajectories of emissions, consumption, temperature, etc)
- 2. Take this baseline and then increase CO_2 emissions at some time t by 1 ton
- 3. Compute the SCC at time t as the difference in present value of the sum of damage after time t between 1. and 2.

The baseline economy can be anything you want, business as usual, an optimal economy, whatever

The baseline economy can be anything you want, business as usual, an optimal economy, whatever

The social cost of carbon is defined for any particular future trajectory

The baseline economy can be anything you want, business as usual, an optimal economy, whatever

The social cost of carbon is defined for any particular future trajectory

Key: the social cost of carbon along the optimal trajectory will also be the socially optimal carbon tax

The social cost of carbon depends on what we believe the economy and climate will be doing in the future

The social cost of carbon depends on what we believe the economy and climate will be doing in the future

Consider two possible futures: high economic growth and low economic growth

The social cost of carbon depends on what we believe the economy and climate will be doing in the future

Consider two possible futures: high economic growth and low economic growth

The lower economic growth world is poorer \rightarrow we should save more for the future

The social cost of carbon depends on what we believe the economy and climate will be doing in the future

Consider two possible futures: high economic growth and low economic growth

The lower economic growth world is poorer \rightarrow we should save more for the future

One way we can save for the future is by avoiding the accumulation CO_2

The social cost of carbon depends on what we believe the economy and climate will be doing in the future

Consider two possible futures: high economic growth and low economic growth

The lower economic growth world is poorer \rightarrow we should save more for the future

One way we can save for the future is by avoiding the accumulation CO_2

If we think of the environment as an asset we are saving for the future by preserving/saving environmental quality

We have iso-elastic utility: $U(c_t) = c_t^{1-\eta}/(1-\eta)$

We have iso-elastic utility: $U(c_t) = c_t^{1-\eta}/(1-\eta)$

We store wealth as capital K_t and it can accumulate over time through investment, it also depreciates over time: $K_{t+1} = (1 - \delta)K_t + I_t$

We have iso-elastic utility: $U(c_t) = c_t^{1-\eta}/(1-\eta)$

We store wealth as capital K_t and it can accumulate over time through investment, it also depreciates over time: $K_{t+1} = (1 - \delta)K_t + I_t$

We produce output Y_t using a Cobb-Douglas production function: $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$ where A_t measures productivity and L_t is labor

We have iso-elastic utility: $U(c_t) = c_t^{1-\eta}/(1-\eta)$

We store wealth as capital K_t and it can accumulate over time through investment, it also depreciates over time: $K_{t+1} = (1 - \delta)K_t + I_t$

We produce output Y_t using a Cobb-Douglas production function: $Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$ where A_t measures productivity and L_t is labor

The production process generates industrial emissions E_t as a by-product which go into the atmospheric CO_2 stock M_t^a

There are also exogenous non-industrial emissions B_t (e.g. land-use change) that enter the atmospheric CO_2 stock M_t^a

Net emissions are $e_t=(1-\alpha_t)E_t+B_t$ where $\alpha_t\in[0,1]$ is the percent of industrial emissions abated

There are three different CO_2 stocks: atmosphere M_t^a , upper ocean M_t^u , and lower ocean M_t^l

 CO_2 can move according to the following linear system:

$$egin{bmatrix} M_{t+1}^a \ M_{t+1}^u \ M_{t+1}^l \end{bmatrix} = egin{bmatrix} \phi_{11} & \phi_{21} & 0 \ \phi_{12} & \phi_{22} & \phi_{32} \ 0 & \phi_{23} & \phi_{33} \end{bmatrix} egin{bmatrix} M_t^a \ M_t^u \ M_t^l \end{bmatrix} + egin{bmatrix} e_t \ 0 \ 0 \end{bmatrix}$$

 CO_2 in the atmosphere can be exchanged with the upper ocean. The opper ocean can exchange with the atmosphere and lower ocean. The lower ocean can exchange only with the upper ocean. Emissions only directly enter the atmosphere.

93 / 97

Atmospheric CO_2 traps heat and increases radiative forcing which is a function of the CO_2 stock and other exogenous forcers EF_t

$$F_t(M_t^a) = f_{2x} \, log_2(M_t^{atm}/M_{pre}) + EF_t$$

Temperature at the surface of the earth T_t^s and in the lower ocean T_t^o is:

$$egin{align} T_{t+1}^s &= T_t^s + C_1 \left[F_{t+1}(M_{t+1}^a) - rac{f_{2x}}{s} T_t^s + C_3 \left(T_t^o - T_t^s
ight)
ight] \ T_{t+1}^o &= C_4 \, T_t^s + (1 - C_4) \, T_t^o \ \end{array}$$

Surface temperature is a function of itself (first and third term), radiative forcing (second term), and heat transfer with the ocean (last term)

Ocean temperature is a convex combination of itself and surface temperature where C_4 determines how quickly the lower ocean warms

Integrated assessment: climate-economy linkage

Surface temperature causes damages to production of output so that output net of damages is:

$$Y_t^n = rac{Y_t}{1 + d_1 \, T_t^2}$$

Integrated assessment: climate-economy linkage

Surface temperature causes damages to production of output so that output net of damages is:

$$Y_t^n = rac{Y_t}{1+d_1\,T_t^2}$$

Net output can be used for consumption, investment, and abatement

$$Y_t^n = c_t + I_t + Y_t^n G_t(lpha_t)$$

where $G_t(\alpha_t)$ is the fraction of output spent on abatement

Integrated assessment: web version

Plug and play version of the DICE model: http://webdice.rdcep.org/

Under the parameters tab you can simulate outcomes that optimize policy, choose a particular kind of carbon tax, or enforce a climate treaty

You can also change parameters (e.g. growth, sensitivity of climate to emissions, etc)