Lecture 10

R and the tidyverse // randomization

Ivan Rudik AEM 6510

Roadmap

- What is R?
- What is the tidyverse?
- How do we import and manipulate data?

Our goal is to take a hands on approach to learning how we do environmental economics research

A good chunk of this lecture comes from Grant Mcdermott's data science for economists notes, and RStudio education

RStudio Cloud

We will be using rstudio.cloud for our coding

We will be using rstudio.cloud for our coding

Why?

We will be using rstudio.cloud for our coding

Why?

You don't need to download/install anything

We will be using rstudio.cloud for our coding

Why?

You don't need to download/install anything

I can prepare the packages and code and make it easy to download

We will be using rstudio.cloud for our coding

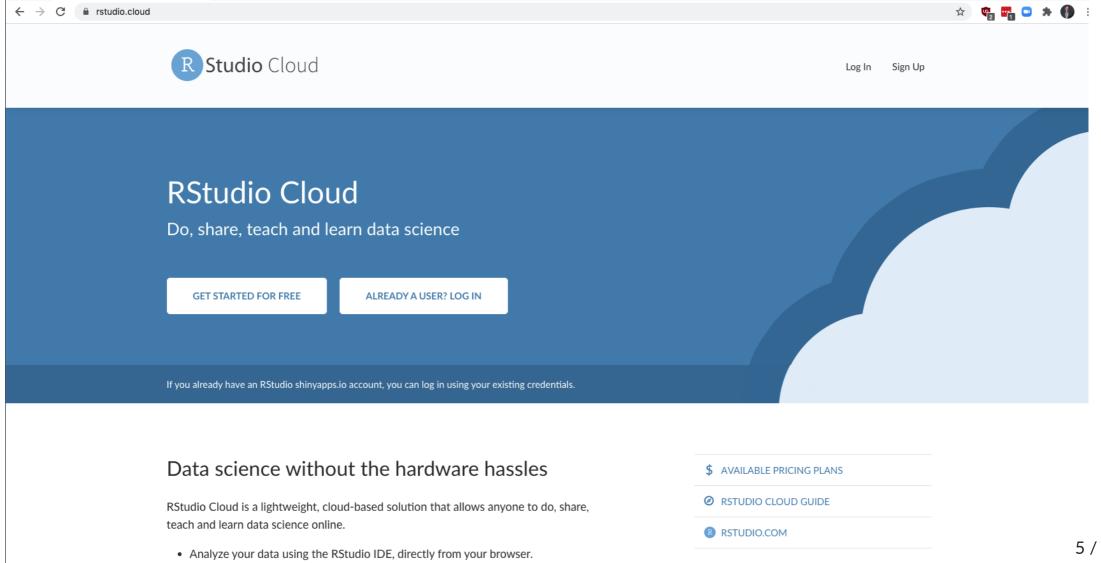
Why?

You don't need to download/install anything

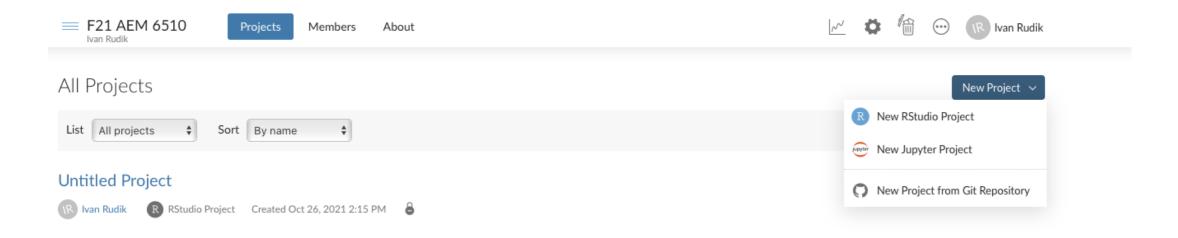
I can prepare the packages and code and make it easy to download

Let's get everything going...

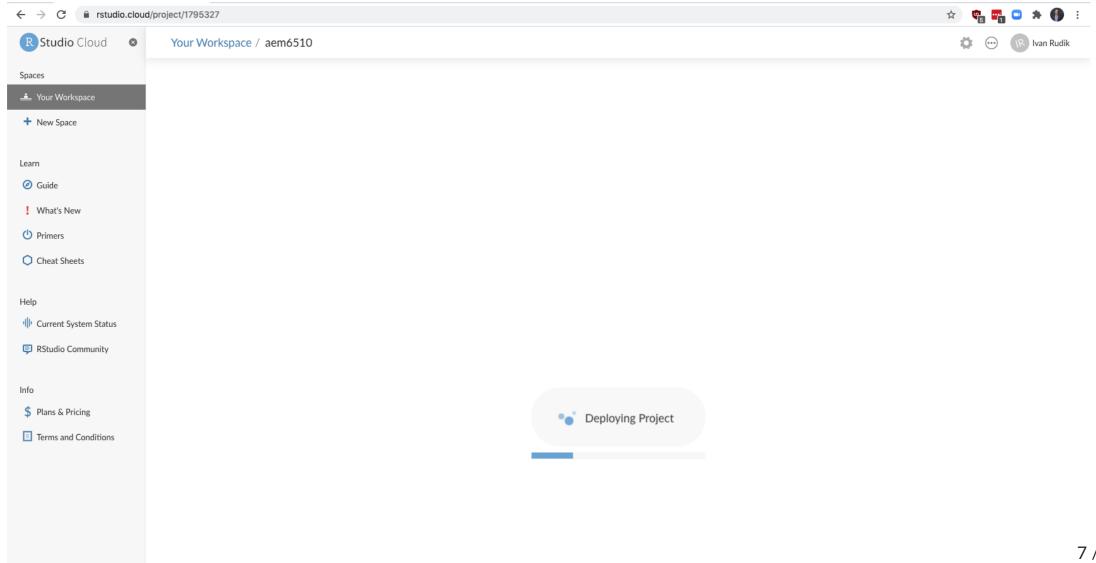
Getting started: login



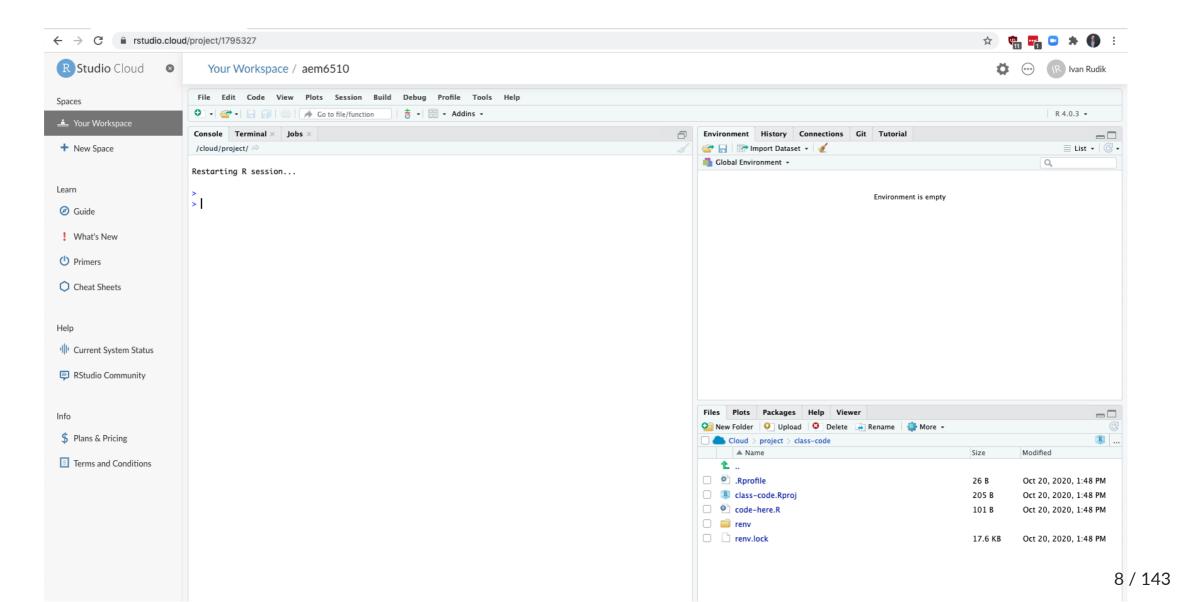
Getting started: new RStudio project



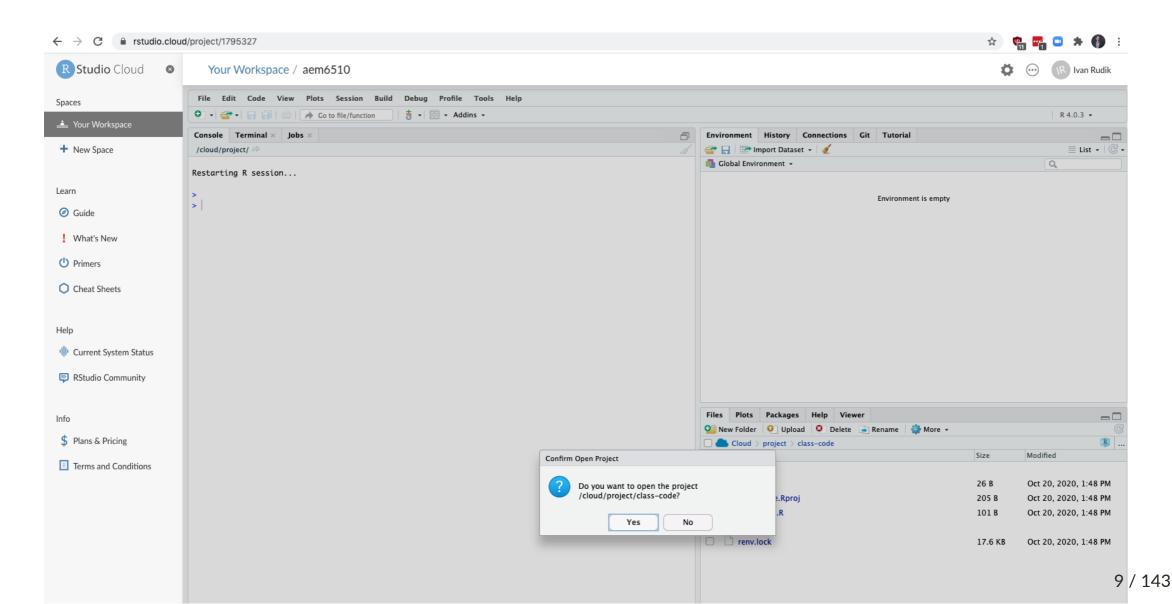
Getting started: wait for deployment



Click on class-code.Rproj



Click yes



Quick intro to R

Arithmetic operations

R can do all the standard arithmetic operations

```
1+2 ## add
## [1] 3
6-7 ## subtract
## [1] -1
5/2 ## divide
## [1] 2.5
```

Logical operations

You also have logical operations

```
1 > 2
## [1] FALSE
(1 > 2) | (1 > 0.5) # / is the or operator
## [1] TRUE
(1 > 2) & (1 > 0.5) # & is the and operator
## [1] FALSE
```

Logical operations

We can negate expressions with: !

This is helpful for filtering data

Logical operators

For value matching we use: %in%

To see whether an object is contained within (i.e. matches one of) a list of items, use %in%.

```
4 %in% 1:10

## [1] TRUE

4 %in% 5:10

## [1] FALSE
```

This is kind of like an any command in other languages

Logical operators

To evaluate whether two expressions are equal, we need to use **two** equal signs

```
1 = 1 ## This doesn't work
## Error in 1 = 1: invalid (do_set) left-hand side to assignment
1 = 1 ## This does.
## [1] TRUE
1 ≠ 2 ## Note the single equal sign when combined with a negation.
  [1] TRUE
```

In R, we can use either = or \leftarrow to handle assignment.¹

 $^{^{1}}$ The ← is really a < followed by a – . It just looks like an arrow because of the font on the slides.

In R, we can use either = or \leftarrow to handle assignment.¹

You can think of it as a (left-facing) arrow saying assign in this direction

 $^{^{1}}$ The ← is really a < followed by a – . It just looks like an arrow because of the font on the slides.

```
a \leftarrow 10 + 5
a
```

```
## [1] 15
```

You can also use = for assignment

```
b = 10 + 10
b
```

[1] 20

Most R folks prefer ← for assignment

Most R folks prefer ← for assignment

= has a specific role for evaluation within functions too

Most R folks prefer ← for assignment

= has a specific role for evaluation within functions too

It doesn't really matter though, other languages use = for both

Most R folks prefer ← for assignment

= has a specific role for evaluation within functions too

It doesn't really matter though, other languages use = for both

Use whatever you prefer, just be consistent

Help

If you are struggling with a (named) function or object in R, simply type ? commandhere

?Negate

Help

Also try vignette() for a more detailed introduction to many packages

```
# Try this:
vignette("dplyr")
```

Help

Also try vignette() for a more detailed introduction to many packages

```
# Try this:
vignette("dplyr")
```

Vignettes are a very easy way to learn how and when to use a package

What are objects?

We won't go into OOP details but here are some objects that we'll be working with regularly:

- vectors
- matrices
- data frames
- lists
- functions
- etc.

What are objects?

We won't go into OOP details but here are some objects that we'll be working with regularly:

- vectors
- matrices
- data frames
- lists
- functions
- etc.

A lot of these are probably familiar if you have coding experience

What are objects?

We won't go into OOP details but here are some objects that we'll be working with regularly:

- vectors
- matrices
- data frames
- lists
- functions
- etc.

A lot of these are probably familiar if you have coding experience

But there are always language-specific features/subtleties

Global environment

2 2 4

```
## Create a small data frame called "df".
df ← data.frame(x = 1:2, y = 3:4)
df

## x y
## 1 1 3
```

Global environment

```
## Create a small data frame called "df".

df ← data.frame(x = 1:2, y = 3:4)

df

## x y

## 1 1 3

## 2 2 4
```

Now, let's try to run a regression 1 on these "x" and "y" variables:

¹ Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.

Global environment

```
lm(y ~ x) ## The "lm" stands for linear model(s)
```

```
lm(y ~ x) ## The "lm" stands for linear model(s)
```

Error in eval(predvars, data, env): object 'y' not found

```
lm(y ~ x) ## The "lm" stands for linear model(s)
```

Error in eval(predvars, data, env): object 'y' not found

Error?

The error message is

Error in eval(predvars, data, env): object 'y' not found

The error message is

```
## Error in eval(predvars, data, env): object 'y' not found
```

R can't find the variables that we've supplied in our Global Environment

The error message is

```
## Error in eval(predvars, data, env): object 'y' not found
```

R can't find the variables that we've supplied in our Global Environment

Can you find x or y in the RStudio panel?

We have to tell R x and y are a part of the object df

We have to tell R x and y are a part of the object df

How?

$lm(formula = y \sim x, data = df)$

Χ

We have to tell R x and y are a part of the object df

How?

##

##

Coefficients:

(Intercept)

There are a various ways to solve this problem. One is to simply specify the datasource:

```
lm(y ~ x, data = df) ## Works when we add "data = df"!
##
## Call:
```

Global environment: why it matters

This matters largely for Stata users

Global environment: why it matters

This matters largely for Stata users

In Stata, the workspace is basically just a single data frame \Rightarrow all variables are in the global environment

Global environment: why it matters

This matters largely for Stata users

In Stata, the workspace is basically just a single data frame \Rightarrow all variables are in the global environment

Big problem with this is you can't have multiple data frames / datasets in memory

Working with multiple objects

We can create a second data frame in memory!

```
df2 ← data.frame(x = rnorm(10), y = runif(10))
df

## x y
## 1 1 3
## 2 2 4

df2
## x y
```

1

2

3

-0.613382890 0.2259774

0.130896371 0.2824887

-0.905843002 0.2304107

How do we index in R?

How do we index in R?

We've already seen an example of indexing in the form of R console output:

```
1+2
```

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.¹

How do we index in R?

We've already seen an example of indexing in the form of R console output:

```
1+2
```

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.¹

In this case, a vector of length one equal to the value "3"

Try the following in your console to see a more explicit example of indexed output:

```
rnorm(n = 100, mean = 0, sd = 1)
###
         0.30361622 - 0.57146408 - 0.30867380 - 0.40955540
                                                       0.04517408
                                                                   0.10430013
    [7]
         0.17380547 - 0.95164107 - 0.51172648 - 0.22425068
                                                       1.33458580
##
                                                                   1.15499579
   [13]
         0.58631875
                                                       0.13221947 - 0.28582323
##
   [19]
         0.72600767
##
                    0.71954104 0.61187714 -0.59878087 -0.97809484 -1.32639439
   [25]
         0.11650066 0.15587925 -1.57710485 2.50351974 -0.37321754
##
                                                                   2.17030535
   [31]
         0.01364178 0.19554214 0.47548680
                                            0.77800681 - 1.82338236
                                                                   0.06250832
##
   [37]
         1.12761918
                    0.51172542 -1.13028292 0.66446996
                                                       0.19853222
                                                                   0.53383038
##
   [43] -0.62655535 -2.46440515 -0.59379352 1.31853678
                                                       1.34202967
                                                                   0.01819441
##
##
   [49]
         0.64271498 - 0.71066687 \quad 0.87527370 - 0.44845575 - 1.13081044
                                                                   0.56774060
   [55] -0.97787131 -1.03423017 -0.98067760 -0.14674311
##
                                                       0.53411563
                                                                   0.10658554
   \begin{bmatrix} 61 \end{bmatrix} -0.46979377 -0.46079817 -1.01536509 0.82698389 -1.40094348 -0.67181277
##
   [67] -0.08459309
                    1.15130433
                                0.03260988 - 0.26004754 - 1.31336998 - 0.42364185
##
         0.85063648 - 0.06952117 - 0.48511227 - 0.77896876 - 0.22249120 - 0.56392488
##
   [73]
```

31 / 143

We can also use [] to index objects that we create in R.

```
a \leftarrow 11:20
## [1] 11 12 13 14 15 16 17 18 19 20
a[4] ## Get the 4th element of object "a"
## [1] 14
a[c(4, 6)] ## Get the 4th and 6th elements
## [1] 14 16
```

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

```
starwars[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame.
```

```
## # A tibble: 1 x 1
## name
## <chr>
## 1 Luke Skywalker
```

1 Luke Skywalker

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

```
starwars[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame.
## # A tibble: 1 x 1
## name
## <chr>
```

What does starwars[1:3, 1] give you?

We haven't covered them properly yet, but lists are a more complex type of array object in R

We haven't covered them properly yet, but lists are a more complex type of array object in R

They can contain a random assortment of objects that don't share the same characteristics

We haven't covered them properly yet, but lists are a more complex type of array object in R

They can contain a random assortment of objects that don't share the same characteristics

• e.g. a list can contain a scalar, a string, and a data frame, or even another list

The relevance to indexing is that lists require two square brackets [[]] to index the parent list item and then the standard [] within that parent item:

```
my_list ← list(
    a = "hello",
    b = c(1,2,3),
    c = data.frame(x = 1:5, y = 6:10)
    )
    my_list[[1]] ## Return the 1st list object

## [1] "hello"

my list[[2]][3] ## Return the 3rd element of the 2nd list object
```

[1] 3

Lists provide a nice segue to our other indexing operator: \$

• Let's continue with the my_list example from the previous slide.

```
my_list
## $a
## [1] "hello"
##
## $b
## [1] 1 2 3
##
## $c
##
    Χ
## 1 1 6
## F F 10
```

Lists provide a nice segue to our other indexing operator: \$.

Let's continue with the my_list example

```
my_list
## $a
## [1] "hello"
##
## $b
## [1] 1 2 3
##
## $c
###
```

We can call these objects directly by name using the dollar sign, e.g.

```
my_list$a ## Return list object "a"
## [1] "hello"
my list$b[3] ## Return the 3rd element of list object "b"
## [1] 3
my_list$c$x ## Return column "x" of list object "c"
## [1] 1 2 3 4 5
```

The \$ form of indexing also works for other object types

In some cases, you can also combine the two index options:

```
starwars$name[1] # first element of the name column of the starwars data frame
```

```
## [1] "Luke Skywalker"
```

However, note some key differences between the output from this example and that of our previous starwars[1, 1] example:

```
starwars$name[1]

## [1] "Luke Skywalker"

starwars[1, 1]

## # A tibble: 1 x 1

## name

## <chr>
## 1 Luke Skywalker
```

Removing objects

Use rm() to remove an object or objects from your working environment.

```
a \leftarrow "hello"
b \leftarrow "world"
rm(a, b)
```

You can also use rm(list = ls()) to remove all objects in your working environment (except packages), but this is frowned upon

Removing objects

Use rm() to remove an object or objects from your working environment.

```
a \leftarrow "hello"
b \leftarrow "world"
rm(a, b)
```

You can also use rm(list = ls()) to remove all objects in your working environment (except packages), but this is frowned upon

Just start a new R session instead

The tidyverse

What is "tidy" data?

Resources:

- Vignette (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

What is "tidy" data?

Resources:

- Vignette (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

Key points:

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

What is "tidy" data?

Resources:

- Vignette (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

Key points:

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) than wide

Checklist

```
Install tidyverse: install.packages('tidyverse')
Install nycflights13: install.packages('nycflights13', repos = 'https://cran.rstudio.com')
```

Tidyverse vs. base R

Lots of debate over tidyverse vs base R

Lots of debate over tidyverse vs base R

The answer is obvious: We should teach the tidyverse first

- Good documentation and support
- Consistent philosophy and syntax
- Nice front-end for big data tools
- For data cleaning, plotting, the tidyverse is elite

Base R is still great

- Base R is extremely flexible and powerful
- The tidyverse can't do everything
- Using base R and the tidyverse together is often a good idea

One point of convenience is that there is often a direct correspondence between a tidyverse command and its base R equivalent:

tidyverse	base
?readr::read_csv	?utils::read.csv
?dplyr::if_else	?base::ifelse
?tibble::tibble	?base::data.frame

Tidyverse functions typically have extra features on top of base R

One point of convenience is that there is often a direct correspondence between a tidyverse command and its base R equivalent:

tidyverse	base
?readr::read_csv	?utils::read.csv
?dplyr::if_else	?base::ifelse
?tibble::tibble	?base::data.frame

Tidyverse functions typically have extra features on top of base R

There are always many ways to achieve a single goal in R

Let's load the tidyverse meta-package and check the output.

library(tidyverse)

Let's load the tidyverse meta-package and check the output.

library(tidyverse)

We have actually loaded a number of packages: ggplot2, tibble, dplyr, etc

Let's load the tidyverse meta-package and check the output.

library(tidyverse)

We have actually loaded a number of packages: ggplot2, tibble, dplyr, etc

We can also see information about the package versions and some namespace conflicts

The tidyverse actually comes with a lot more packages than those that are just loaded automatically

```
tidyverse packages()
    [1] "broom"
                      "cli"
                                    "cravon"
                                                 "dbplyr"
                                                               "dplvr"
###
    [6] "forcats"
                      "ggplot2"
                                    "haven"
                                                 "hms"
                                                               "httr"
###
   [11] "jsonlite"
                      "lubridate"
                                    "magrittr"
                                                 "modelr"
                                                               "pillar"
   [16] "purrr"
                      "readr"
                                    "readxl"
                                                 "reprex"
                                                               "rlang"
                                    "stringr"
                                                 "tibble"
                                                               "tidvr"
   [21] "rstudioapi" "rvest"
  [26] "xml2"
                      "tidyverse"
```

e.g. the **lubridate** package is for working with dates and the **rvest** package is for webscraping

The tidyverse actually comes with a lot more packages than those that are just loaded automatically

```
tidyverse packages()
    [1] "broom"
                      "cli"
                                    "cravon"
                                                  "dbplyr"
                                                               "dplvr"
###
    [6] "forcats"
                      "ggplot2"
                                    "haven"
                                                  "hms"
                                                               "httr"
###
   [11] "jsonlite"
                      "lubridate"
                                    "magrittr"
                                                  "modelr"
                                                               "pillar"
   [16] "purrr"
                      "readr"
                                    "readxl"
                                                  "reprex"
                                                               "rlang"
                                    "stringr"
                                                  "tibble"
                                                               "tidvr"
   [21] "rstudioapi" "rvest"
  [26] "xml2"
                      "tidyverse"
```

e.g. the **lubridate** package is for working with dates and the **rvest** package is for webscraping

These packages have to be loaded separately

We're going to focus on two workhorse packages:

- 1. dplyr
- 2. tidyr

These are the packages for cleaning and wrangling data

We're going to focus on two workhorse packages:

- 1. dplyr
- 2. tidyr

These are the packages for cleaning and wrangling data

They are thus the ones that you will likely make the most use of

We're going to focus on two workhorse packages:

- 1. dplyr
- 2. tidyr

These are the packages for cleaning and wrangling data

They are thus the ones that you will likely make the most use of

Data cleaning and wrangling occupies an inordinate amount of time, no matter where you are in your research career

The pipe operator %>% lets us perform a sequence of operations in a very nice and tidy way

The pipe operator %>% lets us perform a sequence of operations in a very nice and tidy way

Suppose we wanted to figure out the average highway miles per gallon of Audi's in the mpg dataset:

```
mpg
```

```
## # A tibble: 234 x 11
##
      manufacturer model
                                                cyl trans drv
                                                                              hwy fl
                                                                                         class
                                displ year
                                                                       ctv
                                <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <int> <int> <chr> <chr> 
      <chr>
                     <chr>
##
                                  1.8 1999
                                                  4 auto(l... f
    1 audi
##
                     a4
                                                                        18
                                                                               29 p
                                                                                         comp...
                                                  4 manual... f
##
    2 audi
                     a4
                                  1.8
                                       1999
                                                                        21
                                                                               29 p
                                                                                         comp...
                                                  4 manual... f
    3 audi
                                        2008
                                                                        20
                                                                               31 p
##
                     a4
                                                                                         comp...
                                                  4 auto(a... f
                                        2008
##
    4 audi
                     a4
                                                                        21
                                                                               30 p
                                                                                         comp...
    5 audi
                                  2.8
                                       1999
                                                  6 auto(l... f
###
                     a4
                                                                        16
                                                                               26 p
                                                                                         comp...
                                                  6 manual... f
    6 audi
                                  2.8
                                       1999
                                                                               26 p
                                                                        18
##
                     a4
                                                                                         comp...
```

50 / 143

There's two ways you might do this without taking advantage of pipes:

There's two ways you might do this without taking advantage of pipes:

The first is to do it step-by-step, line-by-line which requires a lot of variable assignment

```
audis_mpg ← filter(mpg, manufacturer="audi")
audis_mpg_grouped ← group_by(filter(mpg, manufacturer="audi"), model)
summarise(audis_mpg_grouped, hwy_mean = mean(hwy))
```

Next you could do it all in one line which is hard to read

Or, you could use pipes %>%:

Or, you could use pipes %>%:

It performs the operations from left to right, exactly like you'd think of them: take this object (mpg), do this (filter), then do this (group by car model), then do this (take the mean of highway miles)

Use vertical space

Pipes are even more readable if we write it over several lines:

```
mpg %>%
  filter(manufacturer="audi") %>%
  group by(model) %>%
  summarise(hwy mean = mean(hwy))
## # A tibble: 3 x 2
###
    model
               hwy mean
###
    <chr>
                  <dbl>
            28.3
## 1 a4
                25.8
## 2 a4 quattro
## 3 a6 quattro
                   24
```

Using vertical space costs nothing and makes for much more readable code

dplyr

Aside: dplyr 1.0.0 release

Please make sure that you are running at least dplyr 1.0.0 before continuing.

```
packageVersion('dplyr')

## [1] '1.0.5'

# install.packages('dplyr') ## install updated version if < 1.0.0</pre>
```

The five key dplyr verbs

- 1. filter: Subset/filter rows based on their values
- 2. arrange: Reorder/arrange rows based on their values
- 3. select: Select columns/variables
- 4. mutate: Create new columns/variables
- 5. summarise: Collapse multiple rows into a single summary value, potentially by a grouping variable

The five key dplyr verbs

- 1. filter: Subset/filter rows based on their values
- 2. arrange: Reorder/arrange rows based on their values
- 3. select: Select columns/variables
- 4. mutate: Create new columns/variables
- 5. summarise: Collapse multiple rows into a single summary value, potentially by a grouping variable

Let's practice these commands together using the starwars data frame that comes pre-packaged with dplyr

Starwars

Here's the starwars dataset, it has 87 observations of 14 variables

starwars

```
## # A tibble: 87 x 14
###
      name
              height mass hair color
                                        skin color eye color birth year sex
               <int> <dbl> <chr>
                                                                  <dbl> <chr> <chr>
###
      <chr>
                                        <chr>
                                                   <chr>
                        77 blond
                                        fair
###
    1 Luke S...
                 172
                                                   blue
                                                                    19
                                                                         male mascu...
    2 C-3P0
                                        gold
                                                  yellow
##
                 167
                        75 <NA>
                                                                   112
                                                                         none
                                                                               mascu...
##
   3 R2-D2
                  96
                        32 <NA>
                                        white, bl... red
                                                                    33
                                                                         none
                                                                               mascu...
                                        white
                                                   yellow
###
    4 Darth ...
                 202
                       136 none
                                                                    41.9 male mascu...
                                        light
##
    5 Leia 0...
               150
                        49 brown
                                                   brown
                                                                    19
                                                                         fema... femin...
   6 Owen L...
               178
                       120 brown, grey light
                                                   blue
                                                                    52
                                                                         male mascu...
##
                                                                         fema... femin...
   7 Beru W...
                 165
                        75 brown
                                        light
                                                   blue
                                                                    47
###
   8 R5-D4
               97
                        32 <NA>
                                       white, red red
##
                                                                    NA
                                                                         none mascu...
                        84 black
   9 Biggs ...
                 183
                                       light
                                                   brown
                                                                         male mascu...
##
                                                                    24
## 10 Obi-Wa...
                 182
                        77 auburn, wh… fair
                                                   blue-gray
                                                                    57
                                                                         male mascu...
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## #
       films <list>, vehicles <list>, starships <list>
```

Here we are subsetting the observations of humans that are at least 190cm

```
starwars %>%
filter(
   species = "Human",
   height \ge 190
)
```

```
## # A tibble: 4 x 14
###
             height mass hair color skin color eye color birth year sex
    name
          <int> <dbl> <chr>
                                   <chr>
                                             <chr>
                                                      <dbl> <chr> <chr>
###
    <chr>
## 1 Darth Va...
                202
                    136 none
                               white
                                             vellow
                                                           41.9 male mascu...
                               fair
## 2 Qui-Gon ...
                193 89 brown
                                             blue
                                                           92
                                                                male mascu...
                               fair
## 3 Dooku
                193 80 white
                                             brown
                                                           102
                                                                male mascu…
## 4 Bail Pre... 191 NA black
                                             brown
                                                           67
                                                                male mascu...
                                   tan
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
## #
      vehicles <list>, starships <list>
```

You can filter using regular expressions with grep-type commands or the stringr package

```
starwars %>%
  filter(stringr::str detect(name, "Skywalker"))
## # A tibble: 3 x 14
            height mass hair color skin color eye color birth year sex
                                                                      gender
###
    name
                                            <chr>
          <int> <dbl> <chr>
                                  <chr>
                                                          <dbl> <chr> <chr>
###
    <chr>
## 1 Luke Sk... 172 77 blond
                                  fair
                                            blue
                                                           19 male
                                                                      mascu...
                                  fair
## 2 Anakin ... 188 84 blond
                                            blue
                                                        41.9 male
                                                                      mascu...
## 3 Shmi Sk... 163
                     NA black
                                  fair
                                            brown
                                                           72 female femin...
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
## #
     vehicles <list>, starships <list>
```

This subsets the observations for individuals whose names contain "Skywalker"

A very common filter use case is identifying/removing missing data cases:

```
starwars %>%
  filter(is.na(height))
## # A tibble: 6 x 14
###
    name
              height mass hair color skin color eye color birth year sex
                                                                               gender
               <int> <dbl> <chr>
                                       <chr>
###
     <chr>
                                                  <chr>
                                                                 <dbl> <chr> <chr>
## 1 Arvel C...
                        NA brown
                                       fair
                  NA
                                                  brown
                                                                    NA male
                                                                               mascu...
## 2 Finn
                  NA
                        NA black
                                       dark
                                                  dark
                                                                    NA male
                                                                               mascu...
                                      light
                                                  hazel
                                                                    NA female femin...
## 3 Rev
                  NA
                        NA brown
                                      light
## 4 Poe Dam...
                  NA
                        NA brown
                                                  brown
                                                                    NA male
                                                                               mascu...
## 5 BB8
                  NA
                                                  black
                        NA none
                                       none
                                                                    NA none
                                                                               mascu...
                        NA unknown
## 6 Captain...
                  NA
                                      unknown
                                                  unknown
                                                                    NA <NA>
                                                                               <NA>
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
       vehicles <list>, starships <list>
## #
```

starwars %>%

To remove missing observations, use negation:

```
filter(!is.na(height))
## # A tibble: 81 x 14
                                         skin_color eye_color birth_year sex
##
      name
              height mass hair color
               <int> <dbl> <chr>
                                                                    <dbl> <chr> <chr>
##
      <chr>
                                         <chr>
                                                     <chr>
                         77 blond
                                         fair
                                                     blue
###
    1 Luke S...
                  172
                                                                      19
                                                                           male
                                                                                 mascu...
    2 C-3P0
                         75 <NA>
                                         gold
                                                    yellow
##
                  167
                                                                     112
                                                                           none
                                                                                 mascu...
    3 R2-D2
                                         white, bl... red
##
                  96
                         32 <NA>
                                                                      33
                                                                           none
                                                                                 mascu...
                                         white
                                                                      41.9 male mascu...
##
    4 Darth ...
                  202
                        136 none
                                                     yellow
    5 Leia 0...
                  150
                         49 brown
                                         light
                                                     brown
                                                                      19
                                                                           fema... femin...
##
    6 Owen L...
                  178
                        120 brown, grey light
                                                     blue
                                                                      52
                                                                           male mascu...
##
    7 Beru W...
                  165
                         75 brown
                                         light
                                                     blue
                                                                           fema... femin...
##
                                                                      47
                                         white, red red
   8 R5-D4
                         32 <NA>
##
                  97
                                                                      NA
                                                                           none mascu...
                         84 black
###
    9 Biggs ...
                  183
                                         light
                                                     brown
                                                                      24
                                                                           male mascu...
## 10 Obi-Wa...
                  182
                         77 auburn, wh... fair
                                                                           male mascu...
                                                     blue-gray
                                                                      57
## # ... with 71 more rows, and 5 more variables: homeworld <chr>, species <chr>,
```

2) dplyr::arrange

arrange sorts the data frame based on the variables you supply:

```
starwars %>%
  arrange(birth_year)

## # A tibble: 87 x 14
```

```
height mass hair_color skin_color eye_color birth_year sex
##
      name
                 <int> <dbl> <chr>
                                                                       <dbl> <chr> <chr>
###
      <chr>
                                          <chr>
                                                      <chr>
##
    1 Wicket ...
                    88
                        20
                              brown
                                          brown
                                                      brown
                                                                         8
                                                                             male
                                                                                    mascu...
    2 IG-88
                   200 140
                                          metal
##
                              none
                                                      red
                                                                        15
                                                                             none
                                                                                    mascu...
                                          fair
###
    3 Luke Sk...
                   172 77
                              blond
                                                      blue
                                                                        19
                                                                             male
                                                                                    mascu...
##
    4 Leia Or…
                   150
                        49
                              brown
                                          light
                                                      brown
                                                                        19
                                                                             fema... femin...
    5 Wedge A...
                   170
                                          fair
                                                      hazel
                                                                             male
###
                        77
                              brown
                                                                        21
                                                                                    mascu...
    6 Plo Koon
                   188
                                                      black
                                                                        22
                                                                             male
###
                        80
                              none
                                          orange
                                                                                    mascu...
    7 Biggs D...
                   183
                              black
                                          light
                                                      brown
                                                                             male
###
                        84
                                                                        24
                                                                                    mascu...
    8 Han Solo
                   180
                                          fair
                                                                             male
##
                         80
                              brown
                                                      brown
                                                                        29
                                                                                    mascu...
###
    9 Lando C...
                   177
                         79
                              black
                                          dark
                                                      brown
                                                                        31
                                                                             male
                                                                                    mascu...
                        78.2 black
                                          fair
                                                                        31.5 male mascu...
  10 Boba Fe...
                   183
                                                      brown
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
```

63 / 143

2) dplyr::arrange

starwars %>%

We can also arrange items in descending order using arrange(desc())

```
arrange(desc(birth year))
## # A tibble: 87 x 14
              height mass hair_color skin_color eye_color birth_year sex
##
      name
               <int> <dbl> <chr>
                                                     <chr>
                                                                     <dbl> <chr> <chr>
##
      <chr>
                                        <chr>
###
    1 Yoda
                   66
                         17 white
                                        green
                                                     brown
                                                                       896 male mascu...
    2 Jabba ...
                       1358 <NA>
                                                                       600 herm... mascu...
##
                 175
                                        green-tan,... orange
##
    3 Chewba...
                  228
                        112 brown
                                        unknown
                                                     blue
                                                                       200 male
                                                                                  mascu...
##
    4 C-3P0
                  167
                         75 <NA>
                                        gold
                                                     yellow
                                                                       112 none
                                                                                  mascu...
                         80 white
    5 Dooku
                  193
                                        fair
                                                     brown
                                                                       102 male
##
                                                                                 mascu...
                                        fair
    6 Qui-Go...
                  193
                         89 brown
                                                     blue
                                                                        92 male
##
                                                                                 mascu...
    7 Ki-Adi...
                  198
                         82 white
                                        pale
                                                     vellow
                                                                        92 male
##
                                                                                 mascu...
                                                                        91 male mascu...
   8 Finis ...
                         NA blond
                                        fair
                                                     blue
##
                  170
    9 Palpat...
                                        pale
##
                  170
                         75 grey
                                                     yellow
                                                                        82 male mascu...
## 10 Cliegg...
                  183
                         NA brown
                                        fair
                                                     blue
                                                                        82 male mascu...
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
```

64 / 143

Use commas to select multiple columns out of a data frame, deselect a column with "-", select across multiple columns with "first:last":

```
starwars %>%
  select(name:skin_color, species, -height)
## # A tibble: 87 x 5
```

```
mass hair color
                                               skin color
                                                           species
###
      name
                          <dbl> <chr>
###
      <chr>
                                               <chr>
                                                           <chr>
    1 Luke Skywalker
                             77 blond
                                               fair
                                                           Human
##
    2 C-3P0
                             75 <NA>
                                               gold
                                                           Droid
##
    3 R2-D2
                             32 <NA>
                                               white, blue Droid
##
    4 Darth Vader
                            136 none
                                               white
                                                           Human
##
##
    5 Leia Organa
                             49 brown
                                              light
                                                           Human
    6 Owen Lars
                            120 brown, grey
                                              light
##
                                                           Human
    7 Beru Whitesun lars
                             75 brown
                                               light
###
                                                           Human
   8 R5-D4
                             32 <NA>
                                               white, red
                                                           Droid
##
    9 Biggs Darklighter
                             84 black
                                               light
##
                                                           Human
## 10 Ohi-Wan Kenohi
                             77 auburn white fair
                                                            Human
```

starwars %>%

You can also rename your selected variables in place

```
select(alias = name, crib = homeworld)
## # A tibble: 87 x 2
      alias
###
                         crib
      <chr>
                         <chr>
###
    1 Luke Skywalker
                         Tatooine
##
###
    2 C-3P0
                         Tatooine
   3 R2-D2
                         Naboo
##
    4 Darth Vader
                         Tatooine
##
                         Alderaan
    5 Leia Organa
##
    6 Owen Lars
                         Tatooine
##
   7 Beru Whitesun lars Tatooine
###
   8 R5-D4
                         Tatooine
    9 Biggs Darklighter Tatooine
  10 Obi-Wan Kenobi
                         Stewjon
## # ... with 77 more rows
```

If you just want to rename columns without subsetting them, you can use

rename:

```
starwars %>%
  rename(alias = name, crib = homeworld)
```

```
## # A tibble: 87 x 14
      alias
               height mass hair color
                                          skin color eye color birth year sex
##
                <int> <dbl> <chr>
                                                                      <dbl> <chr> <chr>
###
      <chr>
                                          <chr>
                                                      <chr>
                                          fair
    1 Luke S...
                  172
                         77 blond
                                                      blue
                                                                       19
                                                                            male
##
                                                                                  mascu...
    2 C-3P0
                  167
                         75 <NA>
                                          gold
                                                     yellow
                                                                      112
##
                                                                            none
                                                                                  mascu...
    3 R2-D2
                   96
                         32 <NA>
                                          white, bl... red
                                                                       33
##
                                                                            none
                                                                                  mascu...
    4 Darth ...
                  202
                        136 none
                                          white
                                                     yellow
                                                                       41.9 male
##
                                                                                  mascu...
                                                                            fema... femin...
##
    5 Leia 0...
                  150
                         49 brown
                                          light
                                                      brown
                                                                       19
                                                                            male mascu...
    6 Owen L...
                  178
                        120 brown, grey light
                                                      blue
##
                                                                       52
                                                                            fema... femin...
    7 Beru W...
                         75 brown
                                          light
                                                      blue
##
                  165
                                                                       47
    8 R5-D4
                   97
                         32 <NA>
                                          white, red red
##
                                                                       NA
                                                                            none
                                                                                  mascu...
    9 Biggs ...
                         84 black
                  183
                                          light
                                                                            male mascu...
##
                                                      brown
                                                                       24
## 10 Ohi-Wa
                  182
                         77 auhurn wh fair
                                                      hlue-grav
                                                                       57
                                                                            male mascu
```

3) dplyr::select cont.

The select(contains(PATTERN)) option provides a nice shortcut in relevant cases.

```
starwars %>%
   select(name, contains("color"))
## # A tibble: 87 x 4
                          hair color
                                         skin color
                                                     eye color
###
      name
                          <chr>
                                                     <chr>
###
      <chr>
                                         <chr>
                                         fair
                                                     blue
    1 Luke Skywalker
                          blond
##
##
    2 C-3P0
                          <NA>
                                         gold
                                                     yellow
##
    3 R2-D2
                          <NA>
                                         white, blue red
    4 Darth Vader
                                         white
                                                     yellow
##
                          none
                                         light
###
    5 Leia Organa
                          brown
                                                     brown
    6 Owen Lars
                                        light
                                                     blue
##
                          brown, grey
    7 Beru Whitesun lars brown
                                         light
                                                     blue
###
   8 R5-D4
                          <NA>
                                        white, red
                                                     red
##
    9 Biggs Darklighter
                         black
                                         light
##
                                                     brown
## 10 Ohi-Wan Kenohi
                          auhurn white fair
                                                     hlue-grav
```

The select(..., everything()) option is another useful shortcut if you only want to bring some variable(s) to the "front" of a data frame

```
starwars %>%
  select(species, homeworld, everything()) %>%
  head(5)
## # A tibble: 5 x 14
                                  height mass hair color skin color
###
    species homeworld name
                                                                  eve color
    <chr> <chr>
                                   <int> <dbl> <chr>
###
                 <chr>
                                                       <chr>
                                                                  <chr>
                                     172 77 blond fair
                                                                  blue
## 1 Human Tatooine Luke Skywalker
## 2 Droid
          Tatooine C-3PO
                                     167 75 <NA>
                                                       gold yellow
## 3 Droid
          Naboo R2-D2
                                     96 32 <NA>
                                                       white, blue red
                                                       white
## 4 Human Tatooine
                    Darth Vader
                                     202
                                          136 none
                                                                  vellow
## 5 Human Alderaan Leia Organa
                                    150
                                                       light
                                           49 brown
                                                                  brown
## # ... with 6 more variables: birth_year <dbl>, sex <chr>, gender <chr>,
## #
      films <list>, vehicles <list>, starships <list>
```

3) dplyr::select

You can also use relocate to do the same thing

```
starwars %>%
  relocate(species, homeworld) %>%
  head(5)
## # A tibble: 5 x 14
###
    species homeworld name
                                 height mass hair color skin color
                                                                 eve color
    <chr>
         <chr>
                    <chr>
                                  <int> <dbl> <chr>
                                                      <chr>
                                                                 <chr>
###
## 1 Human Tatooine Luke Skywalker
                                    fair
                                                                 blue
                                    167 75 <NA> gold yellow
         Tatooine C-3PO
## 2 Droid
                                                      white, blue red
## 3 Droid
          Naboo
                    R2-D2
                                    96 32 <NA>
## 4 Human
         Tatooine
                    Darth Vader
                                    202
                                         136 none
                                                      white
                                                                 vellow
## 5 Human
         Alderaan
                    Leia Organa
                                    150
                                          49 brown
                                                      light
                                                                 brown
## # ... with 6 more variables: birth year <dbl>, sex <chr>, gender <chr>,
      films <list>, vehicles <list>, starships <list>
## #
```

A tibble: 87 x 4

You can create new columns from scratch as transformations of existing columns:

```
starwars %>%
  select(name, birth_year) %>%
  mutate(dog_years = birth_year * 7) %>%
  mutate(comment = paste0(name, " is ", dog_years, " in dog years."))
```

```
birth year dog years comment
###
      name
                               <dbl>
                                          <dbl> <chr>
###
      <chr>
    1 Luke Skywalker
                                19
                                           133 Luke Skywalker is 133 in dog years.
    2 C-3P0
                               112
                                           784 C-3PO is 784 in dog years.
##
###
   3 R2-D2
                                33
                                           231 R2-D2 is 231 in dog years.
    4 Darth Vader
                                           293. Darth Vader is 293.3 in dog years.
                                41.9
###
    5 Leia Organa
                                19
                                                Leia Organa is 133 in dog years.
##
                                                Owen Lars is 364 in dog years.
    6 Owen Lars
                                52
###
    7 Beru Whitesun lars
                                                Beru Whitesun lars is 329 in dog yea...
###
                                47
## 8 R5-D4
                                МΔ
                                            N\Delta R5-D4 is N\Delta in dog years
```

A tibble: 87 x 4

Note: mutate creates variables in order, so you can chain multiple mutates in a single call

```
starwars %>%
  select(name, birth_year) %>%
  mutate(
    dog_years = birth_year * 7, ## Separate with a comma
    comment = paste0(name, " is ", dog_years, " in dog years.")
    )
```

```
##
                         birth year dog years comment
      name
                               <dbl>
                                         <dbl> <chr>
      <chr>
##
##
    1 Luke Skywalker
                               19
                                          133 Luke Skywalker is 133 in dog years.
    2 C-3P0
                                          784 C-3PO is 784 in dog years.
##
                              112
   3 R2-D2
                               33
                                          231 R2-D2 is 231 in dog years.
###
    4 Darth Vader
                               41.9
                                          293. Darth Vader is 293.3 in dog years.
###
                                               Leia Organa is 133 in dog years.
    5 Leia Organa
                               19
###
   6 Owen Lars
                                52
                                          364 Owen lars is 364 in dog years
```

Boolean, logical and conditional operators all work well with mutate too:

```
starwars %>%
  select(name, height) %>%
  filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>%
  mutate(tall1 = height > 180) %>% # TRUE or FALSE
  mutate(tall2 = ifelse(height > 180, "Tall", "Short")) ## Same effect, but can choose labels
```

Lastly, combining mutate with across allows you to easily work on a subset of variables:

```
starwars %>%
  select(name:eye_color) %>%
  mutate(across(where(is.character), toupper)) %>% # Take all character variables, uppercase then
head(5)
```

```
## # A tibble: 5 x 6
                           mass hair color skin color
                    height
                                                         eve color
###
    name
                     <int> <dbl> <chr>
                                                         <chr>
##
     <chr>
                                            <chr>
## 1 LUKE SKYWALKER
                       172
                              77 BLOND
                                            FAIR
                                                         BLUE
## 2 C-3P0
                             75 <NA>
                                            GOLD
                                                         YELLOW
                       167
## 3 R2-D2
                        96
                              32 <NA>
                                            WHITE, BLUE RED
## 4 DARTH VADER
                             136 NONE
                                            WHITE
                                                         YELLOW
                       202
## 5 LEIA ORGANA
                       150
                              49 BROWN
                                             LIGHT
                                                         BROWN
```

5) dplyr::summarise

Summarising useful in combination with the group_by command

```
starwars %>%
  group_by(species, gender) %>% # for each species-gender combo
  summarise(mean_height = mean(height, na.rm = TRUE)) # calculate the mean height
```

```
## # A tibble: 42 x 3
## # Groups:
             species [38]
                        mean height
###
     species gender
##
     <chr>
              <chr>
                             <dbl>
   1 Aleena
              masculine
##
                                79
   2 Besalisk masculine
##
                               198
              masculine
   3 Cerean
                               198
##
   4 Chagrian masculine
                               196
##
   5 Clawdite
              feminine
                               168
##
              feminine
   6 Droid
                                96
##
              masculine
   7 Droid
###
                               140
   8 Dug
          masculine
                               112
##
   9 Ewok
           masculine
                                88
###
```

5) dplyr::summarise

Note that including "na.rm = TRUE" is usually a good idea with summarise functions, it keeps NAs from propagating to the end result

```
## Probably not what we want
starwars %>%
  summarise(mean_height = mean(height))

## # A tibble: 1 x 1
## mean_height
## <dbl>
## 1 NA
```

5) dplyr::summarise

We can also use across within summarise:

```
starwars %>%
  group_by(species) %>% # for each species
  summarise(across(where(is.numeric), mean, na.rm = T)) %>% # take the mean of all numeric varianchead(5)
```

```
## # A tibble: 5 x 4
    species height mass birth year
###
    <chr> <dbl> <dbl>
###
                              <dbl>
## 1 Aleena
                 79
                      15
                                NaN
## 2 Besalisk 198
                     102
                                NaN
                                 92
## 3 Cerean
                198
                      82
## 4 Chagrian
              196
                     NaN
                                NaN
## 5 Clawdite
                168
                      55
                                NaN
```

```
group_by and ungroup: For (un)grouping
```

• Particularly useful with the summarise and mutate commands

```
group_by and ungroup: For (un)grouping
```

• Particularly useful with the summarise and mutate commands

slice: Subset rows by position rather than filtering by values

• E.g. starwars %>% slice(c(1, 5))

pull: Extract a column from as a data frame as a vector or scalar

• E.g. starwars %>% filter(gender="female") %>% pull(height)

pull: Extract a column from as a data frame as a vector or scalar

• E.g. starwars %>% filter(gender="female") %>% pull(height)

count and distinct: Number and isolate unique observations

- E.g. starwars %>% count(species), or starwars %>% distinct(species)
- You could also use a combination of mutate, group_by, and n(), e.g.
 starwars %>% group_by(species) %>% mutate(num = n()).

There are also a whole class of window functions for getting leads and lags, percentiles, cumulative sums, etc.

• See vignette("window-functions").

The last set of commands we need are the join commands

The last set of commands we need are the join commands

These are the same as merge in stata but with a bit more functionality

We merge data with join operations:

- inner_join(df1, df2)
- left_join(df1, df2)
- right_join(df1, df2)
- full_join(df1, df2)
- semi_join(df1, df2)
- anti_join(df1, df2)

(You can visualize the operations here)

Lets use the data that comes with the the nycflights 13 package.

```
library(nycflights13)
flights
```

```
## # A tibble: 336,776 x 19
##
                   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      <int> <int> <int>
                                                        <dbl>
###
                             <int>
                                             <int>
                                                                  <int>
                                                                                   <int>
       2013
##
                               517
                                                515
                                                                    830
                                                                                     819
       2013
                               533
                                                529
                                                                    850
                                                                                     830
##
##
       2013
                               542
                                                540
                                                                    923
                                                                                     850
##
       2013
                               544
                                                545
                                                            -1
                                                                   1004
                                                                                    1022
###
       2013
                               554
                                                600
                                                                    812
                                                                                     837
                                                            -6
###
       2013
                               554
                                                558
                                                                    740
                                                                                     728
                                                            -4
       2013
                               555
                                                600
                                                            -5
                                                                    913
                                                                                     854
##
       2013
                               557
                                                600
                                                            -3
                                                                    709
                                                                                     723
##
       2013
###
                               557
                                                600
                                                            -3
                                                                    838
                                                                                     846
       2013
                               558
                                                600
                                                            -2
## 10
                                                                    753
                                                                                     745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
```

83 / 143

planes

```
## # A tibble: 3,322 x 9
      tailnum year type
                                                  model engines seats speed engine
                                   manufacturer
###
              <int> <chr>
                                                            <int> <int> <int> <chr>
###
      <chr>
                                  <chr>
                                                  <chr>
               2004 Fixed wing m... EMBRAER
##
    1 N10156
                                                  EMB-1...
                                                                     55
                                                                           NA Turbo-...
               1998 Fixed wing m... AIRBUS INDUST... A320-...
                                                                           NA Turbo-...
    2 N102UW
                                                                    182
##
##
    3 N103US
               1999 Fixed wing m... AIRBUS INDUST... A320-...
                                                                    182
                                                                           NA Turbo-...
                                                                           NA Turbo-...
##
    4 N104UW
               1999 Fixed wing m... AIRBUS INDUST... A320-...
                                                                    182
    5 N10575
               2002 Fixed wing m... EMBRAER
                                                                     55
                                                                           NA Turbo-...
##
                                                  EMB-1...
###
    6 N105UW
               1999 Fixed wing m... AIRBUS INDUST... A320-...
                                                                    182
                                                                           NA Turbo-...
                                                                    182
                                                                           NA Turbo-...
##
    7 N107US
               1999 Fixed wing m... AIRBUS INDUST... A320-...
   8 N108UW
               1999 Fixed wing m... AIRBUS INDUST... A320-...
                                                                    182
                                                                           NA Turbo-...
##
                                                                    182
###
    9 N109UW
               1999 Fixed wing m... AIRBUS INDUST... A320-...
                                                                           NA Turbo-...
                                                                    182
                                                                           NA Turbo-...
## 10 N110UW
               1999 Fixed wing m... AIRBUS INDUST... A320-...
## # ... with 3,312 more rows
```

Let's perform a left join on the flights and planes datasets

 Note: I'm going subset columns after the join, but only to keep text on the slide

Let's perform a left join on the flights and planes datasets

 Note: I'm going subset columns after the join, but only to keep text on the slide

```
left join(flights, planes) %>%
  select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, model)
## Joining, by = c("year", "tailnum")
## # A tibble: 336,776 x 10
##
      year month day dep_time arr_time carrier flight tailnum type model
     <int> <int> <int>
                                  <int> <chr>
                                                <int> <chr>
                                                              <chr> <chr>
##
                         <int>
   1 2013
                           517
                                    830 UA
                                                 1545 N14228 <NA> <NA>
##
      2013
                           533
                                    850 UA
                                                 1714 N24211 <NA> <NA>
###
##
      2013
                           542
                                    923 AA
                                                 1141 N619AA <NA> <NA>
  4 2013
                                                 725 N804JB
                                                              <NA> <NA>
###
                           544
                                   1004 B6
                                                                                           85 / 143
                           012 DI
                                                  LC1 NCCODN ZNAS ZNAS
```

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name), and told us what it chose

```
## Joining, by = c("year", "tailnum")
```

There's an obvious problem here: the variable year does not have a consistent meaning across our joining datasets

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name), and told us what it chose

```
## Joining, by = c("year", "tailnum")
```

There's an obvious problem here: the variable year does not have a consistent meaning across our joining datasets

In one it refers to the year of flight, in the other it refers to year of construction

Luckily, there's an easy way to avoid this problem: try ?dplyr::join

You just need to be more explicit in your join call by using the by = argument

```
left_join(
  flights,
  planes %>% rename(year_built = year), ## Not necessary w/ below line, but helpful
  by = "tailnum" ## Be specific about the joining column
  ) %>%
  select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_built, type, model
  head(3) ## Just to save vertical space on the slide
```

```
## # A tibble: 3 x 11
##
     year month day dep time arr time carrier flight tailnum year built type
    <int> <int> <int>
                       <int>
                               <int> <chr>
                                             <int> <chr>
                                                              <int> <chr>
###
     2013
                         517
                                 830 UA
                                           1545 N14228
                                                               1999 Fixed w...
     2013
             1 1
                         533 850 UA 1714 N24211
                                                               1998 Fixed w...
## 2
## 3
     2013
             1
                  1
                         542
                                 923 AA
                                              1141 N619AA
                                                               1990 Fixed w...
## # ... with 1 more variable: model <chr>
```

Note what happens if we again specify the join column but don't rename the ambiguous year:

```
## # A tibble: 3 x 11
##
    year.x year.y month day dep time arr time carrier flight tailnum type model
###
     <int> <int> <int> <int><</pre>
                               <int>
                                          <int> <chr>
                                                         <int> <chr>
                                                                      <chr> <chr>
## 1
      2013
             1999
                                   517
                                            830 UA
                                                         1545 N14228 Fixe... 737-...
                            1
## 2
      2013
             1998
                                   533
                                           850 UA
                                                        1714 N24211 Fixe... 737-...
## 3
      2013
             1990
                                   542
                                            923 AA
                                                         1141 N619AA Fixe... 757-...
```

Note what happens if we again specify the join column but don't rename the ambiguous year:

```
## # A tibble: 3 x 11
    year.x year.y month day dep time arr time carrier flight tailnum type model
###
###
     <int> <int> <int> <int><</pre>
                              <int>
                                         <int> <chr>
                                                        <int> <chr> <chr> <chr>
## 1
      2013
             1999
                                  517
                                           830 UA
                                                       1545 N14228 Fixe... 737-...
                            1
             1998
                                  533 850 UA 1714 N24211 Fixe... 737-...
## 2
      2013
                                                        1141 N619AA Fixe... 757-...
## 3
      2013
             1990
                                  542
                                           923 AA
```

Make sure you know what "year.x" and "year.y" are

tidyr

Key tidyr verbs

- 1. pivot_longer: Pivot wide data into long format (i.e. "melt", "reshape long")
- 2. pivot_wider: Pivot long data into wide format (i.e. "cast", "reshape wide")
- 3. separate: Split one column into multiple columns
- 4. unite: Combine multiple columns into one

Key tidyr verbs

- 1. pivot_longer: Pivot wide data into long format (i.e. "melt", "reshape long")
- 2. pivot_wider: Pivot long data into wide format (i.e. "cast", "reshape wide")
- 3. separate: Split one column into multiple columns
- 4. unite: Combine multiple columns into one

Let's practice these verbs together in class

```
stocks ← data.frame(
    time = as.Date('2009-01-01') + 0:1,
    X = rnorm(2, 0, 1),
    Y = rnorm(2, 0, 2),
    Z = rnorm(2, 0, 4)
    )
stocks
```

```
## time X Y Z
## 1 2009-01-01 0.6163028 1.779204 -1.461802
## 2 2009-01-02 -0.1024888 2.548539 -2.816719
```

We have 4 variables, the date and the stocks

How do we get this in tidy form?

```
stocks %>% pivot_longer(-time, names_to = "stock", values_to = "price")
```

We need to pivot the stock name variables x, y, z longer

- 1. Choose non-time variables: -time
- 2. Decide what variable holds the names: names_to = "stock"
- 3. Decide what variable holds the values: values_to = "price"

```
stocks %>% pivot_longer(-time, names_to = "stock", values_to = "price")
```

```
## # A tibble: 6 x 3
    time stock price
###
    <date> <chr>
                    <dbl>
###
## 1 2009-01-01 X
                    0.616
## 2 2009-01-01 Y
                1.78
## 3 2009-01-01 Z
                -1.46
## 4 2009-01-02 X
                -0.102
## 5 2009-01-02 Y
                 2.55
## 6 2009-01-02 Z
                   -2.82
```

Let's quickly save the "tidy" (i.e. long) stocks data frame for use on the next slide

```
tidy_stocks ← stocks %>%
  pivot_longer(-time, names_to = "stock", values_to = "price")
```

2) tidyr::pivot_wider

<dbl>

0.616

-1.46

1.78

<dbl>

-0.102

2.55

-2.82

<chr>

2 Y

1 X

3 Z

```
tidy_stocks %>% pivot_wider(names_from = stock, values_from = price)
## # A tibble: 2 x 4
    time X
###
                        Y Z
    <date> <dbl> <dbl> <dbl>
###
## 1 2009-01-01 0.616 1.78 -1.46
## 2 2009-01-02 -0.102 2.55 -2.82
tidy stocks %>% pivot wider(names from = time, values from = price)
## # A tibble: 3 x 3
    stock \( 2009-01-01 \) \( \cdot 2009-01-02 \)
###
```

2) tidyr::pivot_wider

```
tidy stocks %>% pivot wider(names from = stock, values from = price)
## # A tibble: 2 x 4
    time X
###
                    Y 7
    <date> <dbl> <dbl> <dbl>
###
## 1 2009-01-01 0.616 1.78 -1.46
## 2 2009-01-02 -0.102 2.55 -2.82
tidy stocks %>% pivot wider(names from = time, values from = price)
## # A tibble: 3 x 3
    stock \ 2009-01-01 \ \ \ 2009-01-02 \
###
                     <dbl>
##
  <chr>
          <fdb>
## 1 X
          0.616
                          -0.102
## 2 Y 1.78 2.55
                          -2.82
## 3 Z
              -1.46
```

Note that the second example has effectively transposed the data

3) tidyr::separate

```
economists ← data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
economists
###
                name
          Adam.Smith
## 1
## 2
      Paul, Samuelson
## 3 Milton.Friedman
economists %>% separate(name, c("first_name", "last_name"))
     first_name last_name
###
           Adam
                    Smith
## 1
## 2
           Paul Samuelson
## 3
         Milton Friedman
```

3) tidyr::separate

```
economists \leftarrow data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
economists
###
                 name
          Adam, Smith
## 1
      Paul, Samuelson
## 2
## 3 Milton.Friedman
economists %>% separate(name, c("first name", "last name"))
     first name last name
##
## 1
           Adam
                     Smith
           Paul Samuelson
## 2
## 3
         Milton Friedman
```

This command is pretty smart. But to avoid ambiguity, you can also specify the separation character with separate(..., sep=".")

3) tidyr::separate

A related function is separate_rows, for splitting up cells that contain multiple fields or observations (a frustratingly common occurence with survey data)

```
jobs ← data.frame(
  name = c("Jack", "Jill"),
  occupation = c("Homemaker", "Philosopher, Philanthropist, Troublemaker")
  )
jobs
```

```
## name occupation
## 1 Jack Homemaker
## 2 Jill Philosopher, Philanthropist, Troublemaker
```

3) tidyr::separate

A related function is separate_rows, for splitting up cells that contain multiple fields or observations (a frustratingly common occurence with survey data)

```
## Now split out Jill's various occupations into different rows
jobs %>% separate_rows(occupation)
```

```
## # A tibble: 4 x 2
## name occupation
## <chr> <chr>
## 1 Jack Homemaker
## 2 Jill Philosopher
## 3 Jill Philanthropist
## 4 Jill Troublemaker
```

```
gdp ← data.frame(
    yr = rep(2016, times = 4),
    mnth = rep(1, times = 4),
    dy = 1:4,
    gdp = rnorm(4, mean = 100, sd = 2)
    )
gdp
```

```
## yr mnth dy gdp
## 1 2016 1 1 104.73167
## 2 2016 1 2 102.67609
## 3 2016 1 3 97.35823
## 4 2016 1 4 97.84164
```

```
## Combine "yr", "mnth", and "dy" into one "date" column
gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-")
```

```
## date gdp
## 1 2016-1-1 104.73167
## 2 2016-1-2 102.67609
## 3 2016-1-3 97.35823
## 4 2016-1-4 97.84164
```

Note that unite will automatically create a character variable:

Note that unite will automatically create a character variable:

If you want to convert it to something else (e.g. date or numeric) then you will need to modify it using mutate

4 2016-01-04 97.8

```
library(lubridate)
gdp_u %>% mutate(date = ymd(date))

## # A tibble: 4 x 2
## date gdp
## <date> <dbl>
## 1 2016-01-01 105.
## 2 2016-01-02 103.
## 3 2016-01-03 97.4
```

Other tidyr goodies

Use crossing to get the full combination of a group of variables

```
crossing(side=c("left", "right"), height=c("top", "bottom"))

## # A tibble: 4 x 2

## side height

## <chr> <chr>
## 1 left bottom

## 2 left top

## 3 right bottom

## 4 right top
```

Other tidyr goodies

Use crossing to get the full combination of a group of variables

```
crossing(side=c("left", "right"), height=c("top", "bottom"))

## # A tibble: 4 x 2

## side height

## <chr> <chr>
## 1 left bottom

## 2 left top

## 3 right bottom

## 4 right top
```

See ?expand and ?complete for more specialized functions that allow you to fill in (implicit) missing data or variable combinations in existing data frames

Randomization and inference

What is a causal effect?

What is a causal effect?

A starting point is that a causal effect is a comparison between two potential outcomes

What is a causal effect?

A starting point is that a causal effect is a comparison between two potential outcomes

What the difference in some outcome in the presence vs the absence of a given treatment?

What is a causal effect?

A starting point is that a causal effect is a comparison between two potential outcomes

What the difference in some outcome in the presence vs the absence of a given treatment?

e.g. what is the difference in health between high and low levels of air pollution?

What is a causal effect?

A starting point is that a causal effect is a comparison between two potential outcomes

What the difference in some outcome in the presence vs the absence of a given treatment?

e.g. what is the difference in health between high and low levels of air pollution?

Let's begin formalizing this idea

The Rubin causal model: potential outcomes

Suppose we have a set of observational units

• These can be people, states, animals, air quality monitors, etc

Each unit has two potential outcomes, but only one is observed

The Rubin causal model: potential outcomes

Suppose we have a set of observational units

• These can be people, states, animals, air quality monitors, etc

Each unit has two potential outcomes, but only one is observed

The potential outcome is Y_i^1 if unit i received some treatment, and Y_i^0 if the unit did not

The Rubin causal model: potential outcomes

Suppose we have a set of observational units

• These can be people, states, animals, air quality monitors, etc

Each unit has two potential outcomes, but only one is observed

The potential outcome is Y_i^1 if unit i received some treatment, and Y_i^0 if the unit did not

 Y_i^0 corresponds to the control state of the world for i

The Rubin causal model: observable outcomes

Note that these potential outcomes are not the same as observable outcomes

The Rubin causal model: observable outcomes

Note that these potential outcomes are not the same as observable outcomes

Observable outcomes are outcomes that actually show up in the data (i.e. the factual outcome)¹

¹The potential outcome that did not happen is called the counterfactual outcome.

The Rubin causal model: observable outcomes

Note that these potential outcomes are not the same as observable outcomes

Observable outcomes are outcomes that actually show up in the data (i.e. the factual outcome)¹

We can write the observable outcome Y_i as a simple equation:

$$Y_i = D_i Y_i^{\, 1} + (1 - D_i) Y_i^{\, 0}$$

where $D_i = 1$ if i received treatment and 0 otherwise

¹The potential outcome that did not happen is called the *counterfactual outcome*.

The Rubin causal model: treatment effects

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$$

This is the basis of the Rubin causal model

The Rubin causal model: treatment effects

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$$

This is the basis of the Rubin causal model

Rubin defines a treatment/causal effect δ_i as the difference between the two potential outcomes:

$$\delta_i = Y_i^{\,1} - Y_i^{\,0}$$

The Rubin causal model: treatment effects

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$$

This is the basis of the Rubin causal model

Rubin defines a treatment/causal effect δ_i as the difference between the two potential outcomes:

$$\delta_i = Y_i^{\,1} - Y_i^{\,0}$$

This leads to an obvious problem: we only observe one of these two states for each unit i but we need to know both to recover δ_i

The Rubin causal model: average treatment effect

We can derive three parameters of interest from the definition of a treatment effect:

Average treatment effect (ATE):

$$E[\delta_i] = E[Y_i^{\, 1} - Y_i^{\, 0}] = E[Y_i^{\, 1}] - E[Y_i^{\, 0}]$$

The Rubin causal model: average treatment effect

We can derive three parameters of interest from the definition of a treatment effect:

Average treatment effect (ATE):

$$E[\delta_i] = E[Y_i^{\, 1} - Y_i^{\, 0}] = E[Y_i^{\, 1}] - E[Y_i^{\, 0}]$$

This is the average of the individual treatment effects

The Rubin causal model: average treatment effect

We can derive three parameters of interest from the definition of a treatment effect:

Average treatment effect (ATE):

$$E[\delta_i] = E[Y_i^{\, 1} - Y_i^{\, 0}] = E[Y_i^{\, 1}] - E[Y_i^{\, 0}]$$

This is the average of the individual treatment effects

It is also unknowable

Average treatment on the treated (ATT):

$$E[\delta_i|D_i=1]=E[Y_i^1-Y_i^0|D_i=1]=E[Y_i^1|D_i=1]-E[Y_i^0|D_i=1]$$

Average treatment on the treated (ATT):

$$E[\delta_i|D_i=1]=E[Y_i^1-Y_i^0|D_i=1]=E[Y_i^1|D_i=1]-E[Y_i^0|D_i=1]$$

This is the average of the individual treatment effects only for the i in the treated group

Average treatment on the treated (ATT):

$$E[\delta_i|D_i=1]=E[Y_i^1-Y_i^0|D_i=1]=E[Y_i^1|D_i=1]-E[Y_i^0|D_i=1]$$

This is the average of the individual treatment effects only for the i in the treated group

It is also unknowable since we never observe $E[Y_i^0|D_i=1]$

Average treatment on the treated (ATT):

$$E[\delta_i|D_i=1]=E[Y_i^1-Y_i^0|D_i=1]=E[Y_i^1|D_i=1]-E[Y_i^0|D_i=1]$$

This is the average of the individual treatment effects only for the i in the treated group

It is also unknowable since we never observe $E[Y_i^0 | D_i = 1]$

If the treatment effect differs across i then $ATE \neq ATT$

Average treatment on the untreated (ATU):

$$E[\delta_i|D_i=0]=E[Y_i^1-Y_i^0|D_i=0]=E[Y_i^1|D_i=0]-E[Y_i^0|D_i=0]$$

Average treatment on the untreated (ATU):

$$E[\delta_i|D_i=0]=E[Y_i^1-Y_i^0|D_i=0]=E[Y_i^1|D_i=0]-E[Y_i^0|D_i=0]$$

This is the average of the individual treatment effects only for the i in the untreated group

Average treatment on the untreated (ATU):

$$E[\delta_i|D_i=0]=E[Y_i^1-Y_i^0|D_i=0]=E[Y_i^1|D_i=0]-E[Y_i^0|D_i=0]$$

This is the average of the individual treatment effects only for the i in the untreated group

It is also unknowable since we never observe $E[Y_i^1|D_i=0]$

Average treatment on the untreated (ATU):

$$E[\delta_i|D_i=0]=E[Y_i^1-Y_i^0|D_i=0]=E[Y_i^1|D_i=0]-E[Y_i^0|D_i=0]$$

This is the average of the individual treatment effects only for the i in the untreated group

It is also unknowable since we never observe $E[Y_i^{\,1}|D_i=0]$

If the treatment effect differs across i then $ATE \neq ATU$

Hands on: understanding treatment effects

We've got our definitions, now lets be a bit more clear as to what we are doing with some empirical examples putting our new R tools to work

We've got our definitions, now lets be a bit more clear as to what we are doing with some empirical examples putting our new R tools to work

Suppose treatment D is whether a state has a conservation policy

We've got our definitions, now lets be a bit more clear as to what we are doing with some empirical examples putting our new R tools to work

Suppose treatment D is whether a state has a conservation policy

The outcome Y is the number of bird species in that state

We've got our definitions, now lets be a bit more clear as to what we are doing with some empirical examples putting our new R tools to work

Suppose treatment D is whether a state has a conservation policy

The outcome *Y* is the number of bird species in that state

We want to understand the causal effect of conservation policy on the number of species

Here's our dataset of both potential outcomes:

```
cons_df # data frame of conservation treatment, outcomes
```

```
## # A tibble: 8 x 4
        Y1 Y0 delta
   state
   <int> <dbl> <dbl> <dbl>
## 1
                    -3
## 2 2 7
                9 –2
## 3
      4 10 1
## 4
## 5
           6
                0
## 6
## 7
## 8
          13
```

Calculate the average treatment effect

ATE = $E[\delta_i]$ which we can compute with dplyr::summarise:

```
cons_df %>%
  dplyr::summarise(mean(delta))

## # A tibble: 1 x 1

## `mean(delta)`

## <dbl>
## 1 4
```

The average treatment effect is 4: a conservation policy increases the number of bird species in a state by 4

Notice that not all states benefit from conservation policies, and it even backfires in one state

The ATE is just the average over all the different treatment effects

```
## # A tibble: 8 x 4
###
             Y1
                   Y0 delta
    state
    <int> <dbl> <dbl> <dbl>
###
## 1
                         -3
## 2
                        -2
## 3
## 4
             10
## 5
              6
                         6
## 6
              9
## 7
             13
## 8
                          9
```

cons df

Suppose we have a perfect policymaker who knows each state's potential outcomes and can perfectly decide whether each state should have a conservation policy

Suppose we have a perfect policymaker who knows each state's potential outcomes and can perfectly decide whether each state should have a conservation policy

The policymaker assigns treatment and then observes the actual outcome according to $Y_i = D_i Y_i^{\, 1} + (1-D_i) Y_i^{\, 0}$

Suppose we have a perfect policymaker who knows each state's potential outcomes and can perfectly decide whether each state should have a conservation policy

The policymaker assigns treatment and then observes the actual outcome according to $Y_i = D_i Y_i^{\, 1} + (1-D_i) Y_i^{\, 0}$

What does the dataset look like for the observed outcomes?

```
observed_df ← cons_df %>%
  mutate(
    Y = ifelse(delta > 0, Y1, Y0),
    D = as.numeric(delta > 0)
    ) %>%
  select(state, Y, D)
observed_df
```

```
## # A tibble: 8 x 3
###
     state
     <int> <dbl> <dbl>
##
## 1
         1
                     0
## 2
## 3
## 4
              10
## 5
                     0
               6
## 6
               9
## 7
         8
              13
## 8
```

Given the observed data, what if we tried to estimate the ATE by comparing mean outcomes of treated $(D_i=1)$ vs untreated units $(D_i=0)$

Given the observed data, what if we tried to estimate the ATE by comparing mean outcomes of treated $(D_i=1)$ vs untreated units $(D_i=0)$

This is the simple difference in mean outcomes (SDO):

$$egin{align} SDO &= E[Y^1|D=1] - E[Y^0|D=0] \ &= rac{1}{N_T} \sum_{i=1}^{N_T} (y_i|d_i=1) - rac{1}{N_U} \sum_{i=1}^{N_U} (y_i|d_i=0) \ \end{array}$$

where N_T is the number of treated units and N_U is the number of untreated units

We can compute the SDO using dplyr:: summarise in conjunction with dplyr:: group_by on treatment status D:

```
observed_df %>%
  dplyr::group_by(D) %>%
  dplyr::summarise(meanY = mean(Y))

## # A tibble: 2 x 2

## D meanY

## <dbl> <dbl>
```

The SDO is 9 - 7.67 = 1.33 < 4!

0 7.67

1 9

1

2

We know the ATE is 4, why is the SDO giving us a much smaller estimate of the effect of the conservation policy?

We know the ATE is 4, why is the SDO giving us a much smaller estimate of the effect of the conservation policy?

Because the SDO is actually composed of three pieces, only one of which is the ATE:¹

$$SDO = ATE +$$

We know the ATE is 4, why is the SDO giving us a much smaller estimate of the effect of the conservation policy?

Because the SDO is actually composed of three pieces, only one of which is the ATE:¹

We know the ATE is 4, why is the SDO giving us a much smaller estimate of the effect of the conservation policy?

Because the SDO is actually composed of three pieces, only one of which is the ATE:¹

SDO = ATE + Selection Bias + Heterogeneous Treatment Effect Bias

We know the ATE is 4, why is the SDO giving us a much smaller estimate of the effect of the conservation policy?

Because the SDO is actually composed of three pieces, only one of which is the ATE:¹

SDO = ATE + Selection Bias + Heterogeneous Treatment Effect Bias

What are these mathematically and intuitively?

$$\underbrace{E[Y^1|D=1] - E[Y^0|D=0]}_{\text{SDO}} = \underbrace{\frac{1}{N_T} \sum_{i=1}^{N_T} (y_i|d_i=1) + \frac{1}{N_U} \sum_{i=1}^{N_U} (y_i|d_i=0)}_{\text{SDO}}$$

$$= \underbrace{E[Y^1] - E[Y^0]}_{\text{ATE}}$$

$$+ \underbrace{E[Y^0|D=1] - E[Y^0|D=0]}_{\text{Selection bias}}$$

$$+ \underbrace{(1-\pi)(ATT-ATU)}_{\text{Het. Treat. Eff. Bias}}$$

where π is the share of treated units

The LHS we know sums to 1.33 so the RHS must as well

The LHS we know sums to 1.33 so the RHS must as well

The first term is the ATE, what we actually want to estimate

The LHS we know sums to 1.33 so the RHS must as well

The first term is the ATE, what we actually want to estimate

We know ATE = 4 so the last two terms are why SDO < ATE

The LHS we know sums to 1.33 so the RHS must as well

The first term is the ATE, what we actually want to estimate

We know ATE = 4 so the last two terms are why SDO < ATE

Let's work through these two in more detail

The second term is **selection bias**:

$$E[Y^0|D=1] - E[Y^0|D=0]$$

It is the inherent differences between the two groups if they did not *actually* get the conservation policy

The second term is **selection bias**:

$$E[Y^0|D=1] - E[Y^0|D=0]$$

It is the inherent differences between the two groups if they did not *actually* get the conservation policy

how are the two groups different at baseline?

The second term is **selection bias**:

$$E[Y^0|D=1] - E[Y^0|D=0]$$

It is the inherent differences between the two groups if they did not *actually* get the conservation policy

how are the two groups different at baseline?

The problem is we don't observe $E[Y^0|D=1]$: what the treated group (D=1) would have looked like without treatment (Y^0)

The second term is **selection bias**:

$$E[Y^0|D=1] - E[Y^0|D=0]$$

It is the inherent differences between the two groups if they did not *actually* get the conservation policy

how are the two groups different at baseline?

The problem is we don't observe $E[Y^0|D=1]$: what the treated group (D=1) would have looked like without treatment (Y^0)

Calculate this with the cons_df data frame with both potential outcomes

```
cons_df %>%
  mutate(
    D = as.numeric(delta > 0)
    ) %>%
  group_by(D) %>%
  summarise(mean(Y0)) # Difference in potential control outcomes across the two groups
```

Selection bias is thus 1.6 - 7.67 = -6.07

The third term is the bias from heterogeneous treatment effects across groups:

$$(1-\pi)$$
 \times $(ATT-ATU)$ Share w/o policy Diff. in treat. effect

It is the difference in the effect of the conservation policy across the two groups multiplied by the share that did not get a conservation policy

$$(1-\pi)$$
 \times $(ATT-ATU)$ Share w/o policy Diff. in treat. effect

What's the intuition for this?

$$(1-\pi)$$
 \times $(ATT-ATU)$ Share w/o policy Diff. in treat. effect

What's the intuition for this?

How much more of an effect did the policy have on the units that
 happened to get treatment versus the effect the policy would have had on
 the units that happened to be in the control group

$$(1-\pi)$$
 \times $(ATT-ATU)$ Share w/o policy Diff. in treat. effect

What's the intuition for this?

- How much more of an effect did the policy have on the units that
 happened to get treatment versus the effect the policy would have had on
 the units that happened to be in the control group
- Scale the size of this difference by fraction of control units

$$(1-\pi)$$
 \times $(ATT-ATU)$ Share w/o policy Diff. in treat. effect

What's the intuition for this?

- How much more of an effect did the policy have on the units that
 happened to get treatment versus the effect the policy would have had on
 the units that happened to be in the control group
- Scale the size of this difference by fraction of control units

Calculate this with the cons_df data frame with both potential outcomes

```
cons_df %>%
  mutate(
    D = as.numeric(delta > 0)
    ) %>%
  group_by(D) %>%
  summarise(mean(delta), n()) # Difference in potential control and treatment outcomes across the
```

Heterogeneous treatment effect bias is thus: (1 - 5/(5+3))*(7.4 - (-1.67)) = 3.40

```
cons_df %>%
  mutate(
    D = as.numeric(delta > 0)
    ) %>%
  group_by(D) %>%
  summarise(mean(delta), n()) # Difference in potential control and treatment outcomes across the
```

Heterogeneous treatment effect bias is thus: (1 - 5/(5+3))*(7.4 - (-1.67)) = 3.40

In total we have: SDO(1.33) = ATE(4) + SB(-6.07) + HTEB(3.40)

Recap: treatment effect estimates

Taking a simple difference in means of outcomes between treatment and control groups does contain what we want

Recap: treatment effect estimates

Taking a simple difference in means of outcomes between treatment and control groups does contain what we want

Unfortunately it is **confounded** by two forms of bias:

Recap: treatment effect estimates

Taking a simple difference in means of outcomes between treatment and control groups does contain what we want

Unfortunately it is **confounded** by two forms of bias:

1. Selection bias: The units in the treatment group different from the control group in the absence of treatment

Recap: treatment effect estimates

Taking a simple difference in means of outcomes between treatment and control groups does contain what we want

Unfortunately it is **confounded** by two forms of bias:

- 1. Selection bias: The units in the treatment group different from the control group in the absence of treatment
- 2. Heterogeneous treatment effect bias: The units in the treatment group respond to treatment differently than units in the control group

What are some examples of these forms of bias?

What are some examples of these forms of bias?

Selection bias:

What are some examples of these forms of bias?

Selection bias: If we select certain groups into treatment, for example, if we pass conservation policy in states with little biodiversity

 This may lead to a negative bias on conservation policy impacts, even with a positive ATE

What are some examples of these forms of bias?

Selection bias: If we select certain groups into treatment, for example, if we pass conservation policy in states with little biodiversity

 This may lead to a negative bias on conservation policy impacts, even with a positive ATE

HTEB:

What are some examples of these forms of bias?

Selection bias: If we select certain groups into treatment, for example, if we pass conservation policy in states with little biodiversity

 This may lead to a negative bias on conservation policy impacts, even with a positive ATE

HTEB: If we select units into treatment based on expected response, for example, if we pass policy in states where birds are **very** sensitive to conservation

• This may lead to an overestimate of the size of the treatment effect

A huge chunk of economics is trying circumvent these forms of bias¹

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

A huge chunk of economics is trying circumvent these forms of bias¹

The rest of class is largely dedicated to:

1. Understanding what tools we have to correctly estimate the ATE

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

A huge chunk of economics is trying circumvent these forms of bias¹

The rest of class is largely dedicated to:

- 1. Understanding what tools we have to correctly estimate the ATE
- 2. Understanding what assumptions are required for these tools to be valid

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

A huge chunk of economics is trying circumvent these forms of bias¹

The rest of class is largely dedicated to:

- 1. Understanding what tools we have to correctly estimate the ATE
- 2. Understanding what assumptions are required for these tools to be valid
- 3. Understanding when these ATE estimates are valid

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

A huge chunk of economics is trying circumvent these forms of bias¹

The rest of class is largely dedicated to:

- 1. Understanding what tools we have to correctly estimate the ATE
- 2. Understanding what assumptions are required for these tools to be valid
- 3. Understanding when these ATE estimates are valid
- 4. Seeing how this all works (hands on) in modern environmental economics

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

A huge chunk of economics is trying circumvent these forms of bias¹

The rest of class is largely dedicated to:

- 1. Understanding what tools we have to correctly estimate the ATE
- 2. Understanding what assumptions are required for these tools to be valid
- 3. Understanding when these ATE estimates are valid
- 4. Seeing how this all works (hands on) in modern environmental economics

This should be a less-technical complement to Brian's class

¹We're more heavily concerned with selection bias than HTEB. There are also other biases to worry about that we will get to later.

Recovering the ATE

There are many different ways to recover the ATE

Recovering the ATE

There are many different ways to recover the ATE

We will cover some subset of:

- 1. Randomized control trials
- 2. Regression discontinuity
- 3. Difference-in-differences
- 4. Cross-sectional regressions
- 5. Two way fixed effects

Recovering the ATE

There are many different ways to recover the ATE

We will cover some subset of:

- 1. Randomized control trials
- 2. Regression discontinuity
- 3. Difference-in-differences
- 4. Cross-sectional regressions
- 5. Two way fixed effects

All of these approaches have pluses and minuses

What is the fundamental problem leading to selection bias and HTEB?

What is the fundamental problem leading to selection bias and HTEB?

Both stem from treatment being correlated with characteristics of the observational units

What is the fundamental problem leading to selection bias and HTEB?

Both stem from treatment being correlated with characteristics of the observational units

Selection bias is because treatment is correlated with unit characteristics in the absence of treatment

What is the fundamental problem leading to selection bias and HTEB?

Both stem from treatment being correlated with characteristics of the observational units

Selection bias is because treatment is correlated with unit characteristics in the absence of treatment

HTEB is because treatment is correlated with the size of units' responses to treatment

What's a simple way to deal with this?

What's a simple way to deal with this?

RANDOMIZATION

What's a simple way to deal with this?

RANDOMIZATION

If we randomize treatment across observational units then SDO = ATE

What's a simple way to deal with this?

RANDOMIZATION

If we randomize treatment across observational units then SDO = ATE

Randomization drives selection bias and HTEB to zero

What's a simple way to deal with this?

RANDOMIZATION

If we randomize treatment across observational units then SDO = ATE

Randomization drives selection bias and HTEB to zero

Let's see why

Randomization means that treatment will be **independent** of the potential outcomes

Randomization means that treatment will be **independent** of the potential outcomes

$$Y^1,Y^0\perp D$$

Randomization means that treatment will be **independent** of the potential outcomes

$$Y^1,Y^0\perp D$$

In our example we know independence is violated because we assigned the conservation policy to states that had $Y^1>Y^0$

Randomization means that treatment will be **independent** of the potential outcomes

$$Y^1,Y^0\perp D$$

In our example we know independence is violated because we assigned the conservation policy to states that had $Y^1>Y^0$

What if we randomized conservation policy?

Randomization of treatment / policy means that:

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

Randomization of treatment / policy means that:

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

If we randomized treatment across units, then on average, the difference in potential outcomes across groups should be zero

Randomization of treatment / policy means that:

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

If we randomized treatment across units, then on average, the difference in potential outcomes across groups should be zero

This means that:

$$E[Y^1|D=1]=E[Y^1|D=0] \qquad E[Y^0|D=1]=E[Y^0|D=0]$$

Randomization of treatment / policy means that:

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

If we randomized treatment across units, then on average, the difference in potential outcomes across groups should be zero

This means that:

$$E[Y^1|D=1]=E[Y^1|D=0] \qquad E[Y^0|D=1]=E[Y^0|D=0]$$

The second equation $E[Y^0|D=1]-E[Y^0|D=0]=0$ directly gives us that selection bias is zero with the SDO

What does randomization do to HTEB?

What does randomization do to HTEB?

$$egin{aligned} ATT-ATU\ &=(E[Y^1|D=1]-E[Y^0|D=1])-(E[Y^1|D=0]-E[Y^0|D=0])\ &=(E[Y^1|D=1]-E[Y^1|D=0])-(E[Y^0|D=1]-E[Y^0|D=0])\ &=(0)-(0)=0 \end{aligned}$$

Randomization

What does randomization do to HTEB?

$$ATT - ATU$$

$$= (E[Y^{1}|D = 1] - E[Y^{0}|D = 1]) - (E[Y^{1}|D = 0] - E[Y^{0}|D = 0])$$

$$= (E[Y^{1}|D = 1] - E[Y^{1}|D = 0]) - (E[Y^{0}|D = 1] - E[Y^{0}|D = 0])$$

$$= (0) - (0) = 0$$

HTEB goes to zero!

Randomization means that SDO = ATE:

$$rac{1}{N_T} \sum_{i=1}^{N_T} (y_i | d_i = 1) - rac{1}{N_C} \sum_{i=1}^{N_C} (y_i | d_i = 0) = \underbrace{E[Y^1] - E[Y^0]}_{ ext{ATE}}$$

Randomization means that SDO = ATE:

$$rac{1}{N_T} \sum_{i=1}^{N_T} (y_i | d_i = 1) - rac{1}{N_C} \sum_{i=1}^{N_C} (y_i | d_i = 0) = \underbrace{E[Y^1] - E[Y^0]}_{ ext{ATE}}$$

All we need to estimate the average treatment effect of a policy is:

Randomization means that SDO = ATE:

$$rac{1}{N_T} \sum_{i=1}^{N_T} (y_i | d_i = 1) - rac{1}{N_C} \sum_{i=1}^{N_C} (y_i | d_i = 0) = \underbrace{E[Y^1] - E[Y^0]}_{ ext{ATE}}$$

All we need to estimate the average treatment effect of a policy is:

1. Data on treatment assignment

Randomization means that SDO = ATE:

$$rac{1}{N_T} \sum_{i=1}^{N_T} (y_i | d_i = 1) - rac{1}{N_C} \sum_{i=1}^{N_C} (y_i | d_i = 0) = \underbrace{E[Y^1] - E[Y^0]}_{ ext{ATE}}$$

All we need to estimate the average treatment effect of a policy is:

- 1. Data on treatment assignment
- 2. Data on observable outcomes

Randomization means that SDO = ATE:

$$rac{1}{N_T} \sum_{i=1}^{N_T} (y_i | d_i = 1) - rac{1}{N_C} \sum_{i=1}^{N_C} (y_i | d_i = 0) = \underbrace{E[Y^1] - E[Y^0]}_{ ext{ATE}}$$

All we need to estimate the average treatment effect of a policy is:

- 1. Data on treatment assignment
- 2. Data on observable outcomes
- 3. The independence assumption: $Y^1, Y^0 \perp D$

Let's see how this works in practice by re-constructing our dataset and then randomizing treatment

Let's see how this works in practice by re-constructing our dataset and then randomizing treatment

```
set.seed(12345)
ate ← 4 # average treatment effect
n obs ← 100 # number of observations
cons rand df \leftarrow tibble(
  state = seq(1, n obs), # state identifier
 Y0 = floor(runif(n_obs)*10)) %>% # control/untreated potential outcome
 mutate(
    D = as.numeric(runif(n()) > 0.5), # randomized treatment
   Y1 = Y0 + ate + round(rnorm(n())), # generate treatment potential outcome
   Y = D*Y1 + (1-D)*Y0 \# generate observed outcome
  ) %>%
  select(
    state, D, Y # keep only observable variables
```

cons_rand_df # data frame of randomized treatment, observable outcome

```
## # A tibble: 100 x 3
###
     state
     <int> <dbl> <dbl>
###
## 1
## 2
               1 11
##
               1 11
## 4
               1 11
##
## 6
###
##
                    11
##
## 10
         10
## # ... with 90 more rows
```

Now take the SDO:

The SDO is 8.82 - 4.42 = 4.40, a very close estimate of the ATE!

Now take the SDO:

The SDO is 8.82 - 4.42 = 4.40, a very close estimate of the ATE!

As <code>n_obs</code> $ightarrow \infty$, we will have that SDO
ightarrow ATE

Randomization: what it does and doesn't do

What does independence imply?

Randomization: what it does and doesn't do

What does independence imply?

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

The two groups have the same potential outcomes, on average

Randomization: what it does and doesn't do

What does independence imply?

$$E[Y^1|D=1]-E[Y^1|D=0]=0 \qquad E[Y^0|D=1]-E[Y^0|D=0]=0$$

The two groups have the same potential outcomes, on average

What does independence **not** imply? That:

$$E[Y^1|D=1]-E[Y^0|D=0]=0 \qquad E[Y^1|D=1]-E[Y^0|D=1]=0$$

It does not imply that the observed outcomes are the same across the two groups, nor does it imply that the two potential outcomes of a single group are the same

Is independence is a reasonable assumption in observational data?

Is independence is a reasonable assumption in observational data?

Observational data are just data that we collect from the real world

 e.g. observed state policy choices and outcomes, observed pollution levels and outcomes

Is independence is a reasonable assumption in observational data?

Observational data are just data that we collect from the real world

 e.g. observed state policy choices and outcomes, observed pollution levels and outcomes

Independence is unlikely to hold in these scenarios

Is independence is a reasonable assumption in observational data?

Observational data are just data that we collect from the real world

 e.g. observed state policy choices and outcomes, observed pollution levels and outcomes

Independence is unlikely to hold in these scenarios

So what can we do?

Often we will instead rely on **conditional independence**:

$$(Y^1,Y^0\perp D)|X$$

Often we will instead rely on **conditional independence**:

$$(Y^1,Y^0\perp D)|X|$$

After controlling for some other variables X, the potential outcomes are independent of treatment $(Y^1, Y^0 \perp D)$

Often we will instead rely on conditional independence:

$$(Y^1,Y^0\perp D)|X|$$

After controlling for some other variables X, the potential outcomes are independent of treatment $(Y^1, Y^0 \perp D)$

This is much weaker than (unconditional) independence: we only need independence to hold for units that share the same X values, not for all units

Often we will instead rely on conditional independence:

$$(Y^1,Y^0\perp D)|X|$$

After controlling for some other variables X, the potential outcomes are independent of treatment $(Y^1, Y^0 \perp D)$

This is much weaker than (unconditional) independence: we only need independence to hold for units that share the same X values, not for all units

Many of the estimation tools used in economics rely on (variants of) the conditional independence assumption