Lecture 10

Travel cost method

Ivan Rudik
AEM 4510

Roadmap

- How do we estimate the value of recreational goods?

Background

Should we separate the Great Lakes and Mississippi?

Should we separate the Great Lakes and Mississippi?

Should we separate the Great Lakes and Mississippi?

The Great Lakes

Carpe diem

Some are worried that Asian carp are poised to invade Lake Michigan
Jul 28th 2012 | From the print edition
flike 21
3 Tweet $\{7$
WHEN Eric Gittinger, a biologist, goes to work on the Illinois and Mississippi Rivers, he has to look out. The Asian carp that are swimming up from the South, where they escaped from fish farms decades ago, can leap 10 feet in the air or torpedo themselves twice that distance across the water. Larger fish can weigh 40 lb (18 kg), and Mr Gittinger gets regularly whacked by them.

Yet what most worries people about Asian carp (in fact, several different invasive carp species) is the fact that they are outeating native fish in the rivers, and now seem poised to invade the Great Lakes. This could harm the $\$ 7$ billion sport-fishing industry, and damage the ecosystem of the largest body of fresh water in the world.

In 2002 the Army Corps of Engineers
(ACE) installed a series of electric barriers
37 miles downriver in the Chicago Sanitary and Ship Canal, an artificial channel that links the lakes with the Mississippi and its tributaries. But people fear they may not be working. Recently, multiple traces of Asiancarp DNA have been found in Chicago's Lake Calumet-far beyond the electric fence (see map), and a stone's throw from Lake Michigan.

Should we separate the Great Lakes and Mississippi?

Benefits from barriers accrue to anglers in the Great Lakes, both commercial and recreational

Costs come from cost of building the barriers plus cost of maintaining them, plus costs of reduced shipping (if any), plus any other costs associated with the barriers

How do we figure out the benefits from recreational anglers?

Why do we need travel cost?

Recreational areas have value

Why do we need travel cost?

Recreational areas have value
Their quality also has value

Why do we need travel cost?

Recreational areas have value

Their quality also has value
Not placing a value on recreation is essentially giving it a value of zero

Why do we need travel cost?

Recreational areas have value

Their quality also has value
Not placing a value on recreation is essentially giving it a value of zero
This is likely inappropriate

Why do we need travel cost?

Recreational areas have value

Their quality also has value
Not placing a value on recreation is essentially giving it a value of zero
This is likely inappropriate
If someone dumped toxic waste in Taughannock does that have zero cost?

What is the travel cost method?

The travel cost method uses observable data on recreation visitation to infer the recreational value of environmental amenities

What is the travel cost method?

The travel cost method uses observable data on recreation visitation to infer the recreational value of environmental amenities

The central idea is that the time and travel cost expenses that people incur to visit a site represent the price of access to the site

What is the travel cost method?

The travel cost method uses observable data on recreation visitation to infer the recreational value of environmental amenities

The central idea is that the time and travel cost expenses that people incur to visit a site represent the price of access to the site

This means that people's WTP to visit can be estimated based on the number of visits they make to sites of different prices

What is the travel cost method?

The travel cost method uses observable data on recreation visitation to infer the recreational value of environmental amenities

The central idea is that the time and travel cost expenses that people incur to visit a site represent the price of access to the site

This means that people's WTP to visit can be estimated based on the number of visits they make to sites of different prices

This gives us a demand curve for sites/amenities, so we can value changes in these environmental amenities

Hotelling

After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties

Hotelling

After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties

Would total entrance fee that people pay measure the value?

Hotelling

After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties

Would total entrance fee that people pay measure the value?
No!

Hotelling

After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties

Would total entrance fee that people pay measure the value?

No!

Harold Hotelling proposed the first indirect method for measuring the demand of a non-market good in 1947

Hotelling

Let concentric zones be defined around each park so that the cost of travel to the park from all points in one of these zones is approximately constant. The persons entering the park in a year, or a suitable chosen sample of them, are to be listed according to the zone from which they came. The fact that they come means that the service of the park is at least worth the cost, and this cost can probably be estimated with fair accuracy.

Hotelling

> A comparison of the cost of coming from a zone with the number of people who do come from it, together with a count of the population of the zone, enables us to plot one point for each zone on a demand curve for the service of the park. By a judicious process of fitting, it should be possible to get a good enough approximation to this demand curve to provide, through integration, a measure of consumers' surplus..

Hotelling

> A comparison of the cost of coming from a zone with the number of people who do come from it, together with a count of the population of the zone, enables us to plot one point for each zone on a demand curve for the service of the park. By a judicious process of fitting, it should be possible to get a good enough approximation to this demand curve to provide, through integration, a measure of consumers' surplus..

About twelve years after, Trice and Wood (1958) and Clawson (1959) independently implemented the methodology

Theoretical foundation

How can we use observed data to tell us something about willingness to pay?

Theoretical foundation

How can we use observed data to tell us something about willingness to pay?
Consider a single consumer and a single recreation site

Theoretical foundation

How can we use observed data to tell us something about willingness to pay?
Consider a single consumer and a single recreation site
The consumer has:

- Total number of recreation trips: x , to site of quality: q
- Total budget of time: T
- Working time: H
- Non-recreation, non-work time:।
- Hourly wage: w
- Money cost of reaching the site: c
- Expenditures on other market goods: z

Theoretical foundation

This lets us write down the consumer's utility maximization problem:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{w H=c x+z}_{\text {money budget }}, \underbrace{T=H+l+t x}_{\text {time budget }}
$$

Theoretical foundation

This lets us write down the consumer's utility maximization problem:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{w H=c x+z}_{\text {money budget }}, \underbrace{T=H+l+t x}_{\text {time budget }}
$$

Multiply the time budget by w and substitute the money budget in:

Theoretical foundation

This lets us write down the consumer's utility maximization problem:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{w H=c x+z}_{\text {money budget }}, \underbrace{T=H+l+t x}_{\text {time budget }}
$$

Multiply the time budget by w and substitute the money budget in:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{w T=(c+w t) x+z+w l}_{\text {combined money/time budget }}
$$

Where now we have one constraint on the dollar value of time

Theoretical foundation

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{w T=(c+w t) x+z+w l}_{\text {combined money/time budget }}
$$

$w T$ is the consumer's full income, their money value of total time budget
$c+w t$ is the consumer's full price, their total cost to reach the site z is their consumption of other goods
$w l$ is the opportunity cost of non-recreation site leisure

Theoretical foundation

Let $Y=w T$ be the consumer's full income, their money value of total time budget

Theoretical foundation

Let $Y=w T$ be the consumer's full income, their money value of total time budget

Let $p=c+w t$ be the consumer's full price, their total cost to reach the site
Then we can write the problem as:

Theoretical foundation

Let $Y=w T$ be the consumer's full income, their money value of total time budget

Let $p=c+w t$ be the consumer's full price, their total cost to reach the site
Then we can write the problem as:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{Y=z+p x+w l}_{\text {combined budget }}
$$

Theoretical foundation

Let $Y=w T$ be the consumer's full income, their money value of total time budget

Let $p=c+w t$ be the consumer's full price, their total cost to reach the site
Then we can write the problem as:

$$
\max _{x, z, l} U(x, z, l, q) \text { subject to: } \underbrace{Y=z+p x+w l}_{\text {combined budget }}
$$

Solve the constraint for z and substitute into the utility function...

Theoretical foundation

$$
\max _{x, l} U(x, Y-p x-w l, l, q)
$$

Choose trips x and leisure l, this implies an amount of money left over

Theoretical foundation

$$
\max _{x, l} U(x, Y-p x-w l, l, q)
$$

Choose trips x and leisure l, this implies an amount of money left over
This has first-order conditions:

$$
[x] U_{x}-p U_{z}=0 \rightarrow \frac{U_{x}}{U_{z}}=p
$$

Theoretical foundation

$$
\max _{x, l} U(x, Y-p x-w l, l, q)
$$

Choose trips x and leisure l, this implies an amount of money left over
This has first-order conditions:

$$
[x] U_{x}-p U_{z}=0 \rightarrow \frac{U_{x}}{U_{z}}=p
$$

and

$$
[l]-w U_{z}+U_{l}=0 \rightarrow \frac{U_{l}}{U_{z}}=w
$$

Theoretical foundation

$\frac{U_{x}}{U_{z}}=p$ tells us the consumer equates the marginal rate of substitution between recreational trips and consumption to be the full price of the recreational trip

Theoretical foundation

$\frac{U_{x}}{U_{z}}=p$ tells us the consumer equates the marginal rate of substitution between recreational trips and consumption to be the full price of the recreational trip

What does this mean?

Theoretical foundation

$\frac{U_{x}}{U_{z}}=p$ tells us the consumer equates the marginal rate of substitution between recreational trips and consumption to be the full price of the recreational trip

What does this mean?
The value of the marginal recreational trip to the consumer, in dollar terms, is revealed by the full price p

Theoretical foundation

$$
U_{x}-p U_{z}=0 \quad-w U_{z}+U_{l}=0
$$

The above FOCs are two equations, the consumer had two choices (x, I) so we had two unknowns

Theoretical foundation

$$
U_{x}-p U_{z}=0 \quad-w U_{z}+U_{l}=0
$$

The above FOCs are two equations, the consumer had two choices (x, l) so we had two unknowns

If we know the functional form of U we can use the FOCs to solve for x (and I) as a function of the parameters ($\mathrm{p}, \mathrm{Y}, \mathrm{q}$):

$$
x=f(p, Y, q)
$$

Theoretical foundation

$$
U_{x}-p U_{z}=0 \quad-w U_{z}+U_{l}=0
$$

The above FOCs are two equations, the consumer had two choices (x, l) so we had two unknowns

If we know the functional form of U we can use the FOCs to solve for x (and I) as a function of the parameters ($\mathrm{p}, \mathrm{Y}, \mathrm{q}$):

$$
x=f(p, Y, q)
$$

This is simply the consumer's demand curves for recreation as a function of the full price p , full budget Y , and quality q

Theoretical foundation

$$
x=f(p, Y, q)
$$

If we observe consumers going to sites of different full prices $p_{1}, p_{2}, \ldots, p_{n}$, we are moving up and down their recreation demand curve

Theoretical foundation

$$
x=f(p, Y, q)
$$

If we observe consumers going to sites of different full prices $p_{1}, p_{2}, \ldots, p_{n}$, we are moving up and down their recreation demand curve

This lets us trace out the demand curve

Theoretical foundation

$$
x=f(p, Y, q)
$$

If we observe consumers going to sites of different full prices $p_{1}, p_{2}, \ldots, p_{n}$, we are moving up and down their recreation demand curve

This lets us trace out the demand curve

Changing Y or q shifts the demand curve in or out: these are income and quasiprice effects

Theoretical foundation

$$
x=f(p, Y, q)
$$

If we observe consumers going to sites of different full prices $p_{1}, p_{2}, \ldots, p_{n}$, we are moving up and down their recreation demand curve

This lets us trace out the demand curve

Changing Y or q shifts the demand curve in or out: these are income and quasiprice effects

Once we have it, we can compute surplus!

Zonal (single-site) model

Here's the most basic travel cost model to start

Zonal (single-site) model

Here's the most basic travel cost model to start

- Construct distance zones (i) as concentric circles emanating from the recreation site
- Travel costs from all points within each zone to the site are sufficiently close in magnitude to justify neglecting the differences

Zonal (single-site) model

Here's the most basic travel cost model to start

- Construct distance zones (i) as concentric circles emanating from the recreation site
- Travel costs from all points within each zone to the site are sufficiently close in magnitude to justify neglecting the differences
- From a sample of visitors $\left(v_{i}\right)$ at the recreation site, determine zones of origin and their populations $\left(n_{i}\right)$

Zonal (single-site) model

Here's the most basic travel cost model to start

- Construct distance zones (i) as concentric circles emanating from the recreation site
- Travel costs from all points within each zone to the site are sufficiently close in magnitude to justify neglecting the differences
- From a sample of visitors $\left(v_{i}\right)$ at the recreation site, determine zones of origin and their populations $\left(n_{i}\right)$
- Calculate the per capita visitation rates for each zone of origin $\left(t_{i}=\left(v_{i} / n_{i}\right)\right)$

Zonal (single-site) model

- Construct a travel cost measure $\left(t c_{i}\right)$ that reflects the round-trip costs of travel from the zone of origin to the recreation site (time and gas), + an entry fee (fee) which may be zero and does not vary across zones

Zonal (single-site) model

- Construct a travel cost measure $\left(t c_{i}\right)$ that reflects the round-trip costs of travel from the zone of origin to the recreation site (time and gas), + an entry fee (fee) which may be zero and does not vary across zones
- Collect relevant socioeconomic data $\left(s_{i}\right)$ such as income and education for each distance zone

Zonal (single-site) model

- Construct a travel cost measure $\left(t c_{i}\right)$ that reflects the round-trip costs of travel from the zone of origin to the recreation site (time and gas), + an entry fee (fee) which may be zero and does not vary across zones
- Collect relevant socioeconomic data $\left(s_{i}\right)$ such as income and education for each distance zone
- Use statistical methods to estimate the trip demand curve: the relationship between per-capita visitation rates, cost per visit, [and travel costs to other sites $\left(t c_{s i}\right)$] controlling for socioeconomic differences

Zonal (single-site) model

- Construct a travel cost measure $\left(t c_{i}\right)$ that reflects the round-trip costs of travel from the zone of origin to the recreation site (time and gas), + an entry fee (fee) which may be zero and does not vary across zones
- Collect relevant socioeconomic data $\left(s_{i}\right)$ such as income and education for each distance zone
- Use statistical methods to estimate the trip demand curve: the relationship between per-capita visitation rates, cost per visit, [and travel costs to other sites ($t c_{s i}$)] controlling for socioeconomic differences
- $t_{i}=g\left(t c_{i}+f e e ; t c_{s i}, s_{i}\right)+\varepsilon_{i}$ where g can be linear

Zonal (single-site) model

Here's a simple example of a set of zones 1-5:

Zonal (single-site) model

Suppose we have the following data:

If we plot cost by visits per person, we have a measure of the demand curve...

Zonal (single-site) model

This is a very simple example where it happens to be an exactly straight line, most likely the data won't be this perfect

The line is simply:

$$
t_{i}=\beta_{0}+\beta_{1} t c_{i}
$$

where β_{0} is the intercept and β_{1} is the slope

Zonal (single-site) model

The data will most likely look like this, but even this is probably too clean

It ignores things like income, other sites, other household characteristics

For now, we'd continue by fitting a line through the points
(OLS/regression)

Zonal (single-site) model

Based on the estimate model coefficients, construct the (inverse) demand curve

Zonal (single-site) model

Based on the estimate model coefficients, construct the (inverse) demand curve

For each zone: predict total visitation given various fees

Zonal (single-site) model

Based on the estimate model coefficients, construct the (inverse) demand curve

For each zone: predict total visitation given various fees
Entry fee on the y-axis (price), and the number of predicted total visits on the x-axis (quantity)

Zonal (single-site) model

Based on the estimate model coefficients, construct the (inverse) demand curve

For each zone: predict total visitation given various fees
Entry fee on the y-axis (price), and the number of predicted total visits on the x-axis (quantity)

The demand curve is different for different zone because different social economic variables

Zonal (single-site) model

Based on the estimate model coefficients, construct the (inverse) demand curve

For each zone: predict total visitation given various fees
Entry fee on the y-axis (price), and the number of predicted total visits on the x-axis (quantity)

The demand curve is different for different zone because different social economic variables

The (use) value of the park/site to each zone is given by the area underneath the corresponding demand curve

Issues with the single-site model

What are some potential issues and concerns with this approach?

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)
What are the right zones to choose?

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)
What are the right zones to choose?
What is the right functional form for demand?

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)
What are the right zones to choose?
What is the right functional form for demand?
How do we measure the opportunity cost of time?

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)
What are the right zones to choose?
What is the right functional form for demand?
How do we measure the opportunity cost of time?
How do we treat multi-purpose trips?

Issues with the single-site model

What are some potential issues and concerns with this approach?
It ignores non-use value (automatically zero for non-users)
What are the right zones to choose?
What is the right functional form for demand?
How do we measure the opportunity cost of time?
How do we treat multi-purpose trips?
How do we value particular site attributes? Can't disentangle them at a single site

Multi-site model

To value particular site attributes we need to have multiple sites (with different attributes!)

Multi-site model

To value particular site attributes we need to have multiple sites (with different attributes!)

We can answer questions like:

Multi-site model

To value particular site attributes we need to have multiple sites (with different attributes!)

We can answer questions like:
What is the benefit of a fish restocking program?

- Need to know the value of fish catch rate for visitors

Multi-site model

To value particular site attributes we need to have multiple sites (with different attributes!)

We can answer questions like:
What is the benefit of a fish restocking program?

- Need to know the value of fish catch rate for visitors

What is the benefit of water clarity?

Multi-site model

To value particular site attributes we need to have multiple sites (with different attributes!)

We can answer questions like:
What is the benefit of a fish restocking program?

- Need to know the value of fish catch rate for visitors

What is the benefit of water clarity?
What is the benefit of tree replanting?

Multi-site model

Suppose we have a dataset with a large number of individuals and sites

Multi-site model

Suppose we have a dataset with a large number of individuals and sites
Individuals are given by $i=1, \ldots, N$ and sites are given by $j=1, \ldots, J$

Multi-site model

Suppose we have a dataset with a large number of individuals and sites
Individuals are given by $i=1, \ldots, N$ and sites are given by $j=1, \ldots, J$
We observe the number of times each individual visited each site

Multi-site model

Suppose we have a dataset with a large number of individuals and sites Individuals are given by $i=1, \ldots, N$ and sites are given by $j=1, \ldots, J$

We observe the number of times each individual visited each site
The multi-site model works as follows

Multi-site model

Step 1: Do the single-site estimation for each site:

$$
t_{i j}=\beta_{0 j}+\beta_{1 j} t c_{i j}+\beta_{2 j} t c_{s i j}+\beta_{3 j} s_{i}+\varepsilon_{i j}
$$

Multi-site model

Step 1: Do the single-site estimation for each site:

$$
t_{i j}=\beta_{0 j}+\beta_{1 j} t c_{i j}+\beta_{2 j} t c_{s i j}+\beta_{3 j} s_{i}+\varepsilon_{i j}
$$

Step 2: Recover all the β s from each step 1 regression so that we have a set of $J \beta_{0 j}$ sfor $j=1 \ldots, J, \beta_{1 j}$ sfor $j=1 \ldots, J$, etc

Multi-site model

Step 1: Do the single-site estimation for each site:

$$
t_{i j}=\beta_{0 j}+\beta_{1 j} t c_{i j}+\beta_{2 j} t c_{s i j}+\beta_{3 j} s_{i}+\varepsilon_{i j}
$$

Step 2: Recover all the β s from each step 1 regression so that we have a set of $J \beta_{0 j}$ sfor $j=1 \ldots, J, \beta_{1 j}$ sfor $j=1 \ldots, J$, etc

These β stell us the slope ($\beta_{1 j}$) and intercept ($\beta_{0 j}, \beta_{2 j}, \beta_{3 j}$)

Multi-site model

Step 1: Do the single-site estimation for each site:

$$
t_{i j}=\beta_{0 j}+\beta_{1 j} t c_{i j}+\beta_{2 j} t c_{s i j}+\beta_{3 j} s_{i}+\varepsilon_{i j}
$$

Step 2: Recover all the β s from each step 1 regression so that we have a set of $J \beta_{0 j}$ sfor $j=1 \ldots, J, \beta_{1 j}$ sfor $j=1 \ldots, J$, etc

These β stell us the slope ($\beta_{1 j}$) and intercept ($\beta_{0 j}, \beta_{2 j}, \beta_{3 j}$)
$\beta_{2 j}, \beta_{3 j}$ capture how the cost of substitute sites and household characteristics matter: they shift demand up and down

Multi-site model

Step 3: Take each set of J coefficient estimates and use them as the dependent variable in a regression on site attributes z :

$$
\begin{aligned}
& \hat{\beta}_{0 j}=\alpha_{00}+\alpha_{01} z_{j}+\epsilon_{0 j} \\
& \hat{\beta}_{1 j}=\alpha_{10}+\alpha_{11} z_{j}+\epsilon_{1 j} \\
& \hat{\beta}_{2 j}=\alpha_{20}+\alpha_{21} z_{j}+\epsilon_{2 j} \\
& \hat{\beta}_{3 j}=\alpha_{30}+\alpha_{31} z_{j}+\epsilon_{3 j}
\end{aligned}
$$

The $\alpha_{\times 1}$ coefficients tell us how the demand curve shifts ($\alpha_{00}, \alpha_{02}, \alpha_{03}$) or rotates $\left(\alpha_{01}\right)$ as we change site attribute z

Valuing attributes with a multi-site model

If we improve the quality of a site from z_{1} to z_{2}, demand for that site shifts up

The gain in CS, holding the cost fixed, is given by the blue area

Once we estimate demand curves, we can see how welfare changes
when we alter quality characteristics!

Multi-site example

```
trip_data
```

\#\#		house_num	site	trips	income	travel_cost	travel_cost_other	water_clarity
\#\#		<int>	<int>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
\#\#	1	1	1	4	40450.	38.9	16.4	0.506
\#\#	2	2	1	5	60304.	29.8	37.5	0.506
\#\#	3	3	1	5	66681.	42.2	67.2	0.506
\#\#	4	4	1	5	52886.	11.0	51.3	0.506
\#\#	5	5	1	5	69282.	15.7	7.72	0.506
\#\#	6	6	1	5	36948.	4.30	48.0	0.506
\#\#	7	7	1	6	60866.	5.31	91.0	0.506
\#\#	8	8	1	5	35557.	65.0	161.	0.506
\#\#	9	9	1	5	64880.	14.5	24.3	0.506
\#\#	10	10	1	4	38491.	13.6	26.5	0.506
	\#	with 2,590	0 more	rows				

First stage estimation

\#\#		intercept	own_price	cross_price	income	
\#\#		<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
\#\#	1	2.99	-0.0161	0.0106	0.0000321	1
\#\#	2	2.45	-0.0117	0.0101	0.0000397	2
\#\#	3	2.37	-0.0197	0.0111	0.0000450	3
\#\#	4	2.33	-0.0187	0.0119	0.0000438	4
\#\#	5	2.05	-0.0143	0.0139	0.0000450	5
\#\#	6	-0.236	-0.00668	0.00972	0.0000321	6
\#\#	7	2.67	-0.0210	0.0118	0.0000395	7
\#\#	8	-0.346	-0.00395	0.00987	0.0000324	8
\#\#	9	2.98	-0.0133	0.0107	0.0000315	9
\#\#	10	-0.103	-0.00943	0.0105	0.0000302	10
	\#	... with 16 m	more rows			

Second stage

```
## Joining, by = "site"
## # A tibble: 4 x 3
## term estimate coeff
## <chr> <dbl> <chr>
## 1 water_clarity 48.0 intercept
## 2 water_clarity -0.171 own_price
## 3 water_clarity 0.0241 cross_price
## 4 water_clarity 0.000165 income
```

The estimates column tells us how a change in water clarity (from 0 to 100\%), shifts or rotates our demand curve

Clearer water \rightarrow more demand, more responsive to price, attracts higherincome people more

Real world data: central park

Standard travel cost method is costly

Real world data: central park

Standard travel cost method is costly
Need to survey households

Real world data: central park

Standard travel cost method is costly
Need to survey households
This takes time and money

Real world data: central park

Standard travel cost method is costly
Need to survey households
This takes time and money
What alternatives do we have?

Mobility data from cell phones

Cell phones track where people live, go, etc

Mobility data from cell phones

Cell phones track where people live, go, etc
We can use these data to do the travel cost method

Mobility data from cell phones

Cell phones track where people live, go, etc
We can use these data to do the travel cost method
Same data used by NYT, WaPo, etc for COVID analysis of restaurants, etc

Mobility data from cell phones

Cell phones track where people live, go, etc
We can use these data to do the travel cost method
Same data used by NYT, WaPo, etc for COVID analysis of restaurants, etc
Here we will be looking at visits to central park

Mobility data from cell phones

Real world data: central park

The data tells us for each census block group (CBG) (600-3000 person

 locations):- visits per month to a particular location in central park by all cell phones in the CBG
- how far the CBG is from the central park location (time and distance)
- The median income of the CBG
- The median age of the CBG

```
## # A tibble: 22,972 x 13
\#\# \(13400300320032018 \quad 8\) Harlem Meer
\#\# \(23400300320032018 \quad 8\) Harlem Meer
\#\# \(33400300320032018 \quad 8\) Harlem Meer
```

\#\# visitor_cbgs year month location_name latitude longitude scaled_visits visits trav

latitude	longitude scaled_visits	visits trav	
<dbl>	<dbl>	<dbl>	<dbl>
40.8	-74.0	34.8	4
40.8	-74.0	69.5	8
40.8	-74.0	34.8	$4 \oplus / 48$

Visits by where people live

Travel cost estimation with cell data

We don't have the exact cost of households going to central park, but we have variables that are a good proxy


```
## NOTE: 237 observations removed because of infinite values (RHS: 237).
central_park_demand
```

```
## # A tibble: 2 x 2
```


\# A tibble: 2 x 2

term estimate

term estimate

<chr> <dbl>

<chr> <dbl>

1 (Intercept) 2.10

1 (Intercept) 2.10

2 log(travel_distance_km) -0.0593

```
## 2 log(travel_distance_km) -0.0593
```

What do the estimates mean?

Visualizing the relationship

The elasticity and omitted variables

Other things probably affect how far someone lives from central park and how often they visit central park

The elasticity and omitted variables

Other things probably affect how far someone lives from central park and how often they visit central park

Ideas?

The elasticity and omitted variables

Other things probably affect how far someone lives from central park and how often they visit central park

Ideas?
New regression controlling for these factors:

$$
\begin{gathered}
\log (v i s i t s)=\beta_{0}+\beta_{1} \log (\text { travel_distance_km })+ \\
\beta_{2} \log (\text { median_income })+\beta_{3} \log (\text { median_age })
\end{gathered}
$$

The elasticity and omitted variables

```
## NOTE: 2,036 observations removed because of NA and infinite values (RHS: 2,036).
## # A tibble: 4 x 2
## term estimate
## <chr> <dbl>
## 1 (Intercept) 0.578
## 2 log(travel_distance_km) -0.0252 versus -0.593
## 3 log(median_income) 0.0858
## 4 log(median_age) 0.134
```

The elasticity dropped by two-thirds!

The elasticity and omitted variables

```
## NOTE: 2,036 observations removed because of NA and infinite values (RHS: 2,036).
## # A tibble: 4 x 2
## term estimate
## <chr> <dbl>
## 1 (Intercept) 0.578
## 2 log(travel_distance_km) -0.0252 versus -0.593
## 3 log(median_income) 0.0858
## 4 log(median_age) 0.134
```

The elasticity dropped by two-thirds!
Why?

The elasticity and omitted variables

Rich people go to central park more than poorer people
Older people go to central park more than younger people
Where do richer older people tend to live?

The elasticity and omitted variables

$$
\log \left(t r a v e l _d i s t a n c e _k m\right)=\beta_{0}+\beta_{1} l o g\left(m e d i a n _i n c o m e\right)
$$

\#\# \# A tibble: 2×5					
\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	7.65	0.0942	81.2	0
\#\# 2	log(median_income)	-0.520	0.00831	-62.6	0

$$
\log \left(t r a v e l _d i s t a n c e _k m\right)=\beta_{0}+\beta_{1} l o g\left(m e d i a n _a g e\right)
$$

\#\# \# A tibble: 2×5					
\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	5.95	0.0913	65.1	0
\#\# 2 log(median_age)	-1.15	0.0250	-46.2	0	

Richer and older people live closer to central park

The elasticity and omitted variables

Why does this matter?

The elasticity and omitted variables

Why does this matter?
Rich people can afford to live in Manhattan and they also like parks a lot

The elasticity and omitted variables

Why does this matter?
Rich people can afford to live in Manhattan and they also like parks a lot
Ignoring this makes it seem like the average person visits a lot less if they live further away

The elasticity and omitted variables

Why does this matter?
Rich people can afford to live in Manhattan and they also like parks a lot
Ignoring this makes it seem like the average person visits a lot less if they live further away

But it is just the fact that poorer households tend to live in the outer boroughs of New York and likely cannot afford as many trips as richer households

