
Introduction to Data Science
Session 11: Automation, scheduling, and packages

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-23

Table of contents

1. Automation and scripting

2. Scheduling

3. R packages

2 / 45

Automation and scripting

3 / 45

Automation

Credit Randall Munroe/xkcd 1319
4 / 45

https://xkcd.com/1319/

Motivation
We spend too much time on repetitive tasks.
We're already automating using scripts that bundle multiple
commands! Next step: The pipeline as a series of scripts and
commands.
Good pipelines are modular. But you don't want to trigger 10
scripts sequentially by hand.
Some tasks are to be repeated on a regular basis (schedule).

When automation makes sense
The input is variable but the process of turning input into output
is highly standardized.
You use a diverse set of software to produce the output.
Others (humans, machines) are supposed to run the analyses.
Time saved by automation >> Time needed to automate.

Different ways of doing it
We will consider automation

using R,
using the Shell and RScript,
using make, and
using dedicated scheduling tools.

Automation

5 / 45

https://itchronicles.com/technology/repetitive-tasks-cost-5-trillion-annually/

Key characteristics
Pipelines make complex projects easier to handle
because they break up a monolithic script into
discrete, manageable chunks.
If properly done, each stage of the pipeline defines
its input and its outputs.
Pipeline modules do not modify their inputs
(idempotence). Rerunning one module produces the
same results as the previous run.

Key advantages
When you modify one stage of the pipeline, you only
have to rerun the downstream, dependent stages.
Division of labor is straightforward.
Modules tend to be a lot easier to debug.

Thinking in pipelines

6 / 45

Wait what
Scripts and data files are vertices
of the graph.
Dependencies between stages are
edges of the graph.
Pipelines are not necessarily DAGS.
Recursive routines are imaginable
(but to be avoided?).
Also, scripts are not necessarily
hierarchical (e.g., multiple different
modeling approaches of the same
data in different scripts).
An automation script gives one
order in which you can successfully
run the pipeline.

A data science pipeline is a graph

7 / 45

In the following, we will work with
this toy pipeline:1

An example pipeline

1Courtesy of Jenny Bryan. 8 / 45

https://github.com/STAT545-UBC/STAT545-UBC-original-website

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,

00-packages.R :

R> # install packages from CRAN
R> p_needed <- c("tidyverse" # tidyverse packages
+)
R> packages <- rownames(installed.packages())
R> p_to_install <- p_needed[!(p_needed %in% packages)]
R> if (length(p_to_install) > 0) {
+ install.packages(p_to_install)
+ }
R> lapply(p_needed, require, character.only = TRUE)

An example pipeline

9 / 45

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download-data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,

01-download-data.R :

R> ## download raw data
R> download.file(url = "http://bit.ly/lotr_raw-tsv",
+ destfile = "lotr_raw.tsv")

An example pipeline

10 / 45

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download-data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,
02-process-data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv , and

02-process-data.R :

R> ## import raw data
R> lotr_dat <- read_tsv("lotr_raw.tsv")
R>
R> ## reorder Film factor levels based on story
R> old_levels <- levels(as.factor(lotr_dat$Film))
R> j_order <- sapply(c("Fellowship", "Towers", "Return"),
+ function(x) grep(x, old_levels))
R> new_levels <- old_levels[j_order]
R>
R> ## process data set
R> lotr_dat <- lotr_dat %>%
+ # apply new factor levels to Film
+ mutate(Film = factor(as.character(Film), new_levels),
+ # revalue Race
+ Race = recode(Race, `Ainur` = "Wizard", `Men` = "Man")) %>%
+ ## <skipping some steps here to avoid slide overflow>
+
+ ## write data to file
+ write_tsv(lotr_dat, "lotr_clean.tsv")

An example pipeline

11 / 45

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download-data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,
02-process-data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv , and
03-plot.R imports the clean
dataset, produces a figure and
exports it as barchart-words-
by-race.png .

03-plot.R :

R> ## import clean data
R> lotr_dat <- read_tsv("lotr_clean.tsv") %>%
+ # reorder Race based on words spoken
+ mutate(Race = reorder(Race, Words, sum))
R>
R> ## make a plot
R> p <- ggplot(lotr_dat, aes(x = Race, weight = Words)) + geom_bar()
R> ggsave("barchart-words-by-race.png", p)

An example pipeline

12 / 45

An example pipeline
R> slice_sample(lotr_dat, n = 10)

 # A tibble: 10 × 5
 Film Chapter Character Race Words
 <chr> <chr> <chr> <chr> <dbl>
 1 The Return Of The King 64: The Mouth Of Sauron Aragorn Man 23
 2 The Fellowship Of The Ring 36: The Bridge Of Khazad-dûm Frodo Hobb… 4
 3 The Two Towers 36: Isengard Unleashed Saruman Wiza… 50
 4 The Fellowship Of The Ring 42: The Great River Sam Hobb… 37
 5 The Return Of The King 42: Breaking The Gate Of Go… Gandalf Wiza… 21
 6 The Two Towers 45: The Glittering Caves Legolas Elf 36
 7 The Two Towers 35: Helm's Deep Rohan Wa… Man 22
 8 The Fellowship Of The Ring 33: Moria Aragorn Man 31
 9 The Fellowship Of The Ring 43: Parth Galen Aragorn Man 79
 10 The Return Of The King 24: Courage Is The Best Def… Gothmog Orc 4

13 / 45

An example pipeline
R> p <- ggplot(lotr_dat, aes(x = Race, weight = Words)) +
+ geom_bar() + theme_minimal()

14 / 45

Motivation and usage
The source() function reads and parses R code
from a file or connection.
We can build a pipeline by sourcing scripts
sequentially.
This pipeline is usually stored in a "master" script.
The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.
It is recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).
Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

Automation using pipelines in R

15 / 45

Motivation and usage
The source() function reads and parses R code
from a file or connection.
We can build a pipeline by sourcing scripts
sequentially.
This pipeline is usually stored in a "master" script.
The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.
It is recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).
Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

Example
The master script master.R :

R> ## clean out any previous work
R> outputs <- c("lotr_raw.tsv",
+ "lotr_clean.tsv",
+ list.files(pattern = "*.png$"))
R> file.remove(outputs)
R>
R> ## run scripts
R> source("00-packages.R")
R> source("01-download-data.R")
R> source("02-process-data.R")
R> source("03-plot.R")

Automation using pipelines in R

15 / 45

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .

Automation using the Shell and Rscript

16 / 45

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .

Example
The master script master.sh :

#!/bin/sh
cd /Users/simonmunzert/github/examples/02-automation
set -eux
Rscript 01-download-data.R
Rscript 02-process-data.R
Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

-e : Stop at first error
-u : Undefined variables are an error
-x : Print each command as it is run

For more information on set , see here.

Automation using the Shell and Rscript

16 / 45

http://linuxcommand.org/lc3_man_pages/seth.html

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .
One advantage of this approach is that it can be
easily coupled with other command line tools,
building a polyglot pipeline.

Example
The master script master.sh :

#!/bin/sh
cd /Users/simonmunzert/github/examples/02-automation
set -eux
curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv
Rscript 02-process-data.R
Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

-e : Stop at first error
-u : Undefined variables are an error
-x : Print each command as it is run

For more information on set , see here.

Automation using the Shell and Rscript

17 / 45

http://linuxcommand.org/lc3_man_pages/seth.html

Motivation and usage
Make is an automation tool that allows us to specify and manage build processes.
It is commonly run via the shell.
At the heart of a make operation is the makefile (or Makefile , GNUmakefile), a
script which serves as a recipe for the building process.
A makefile is written following a particular syntax and in a declarative fashion.
Conceptually, the recipe describes which files are built how and using what input.

Advantages of Make
It looks at which files you have and automatically figures out how to create the files
that you have. For complex pipelines this "automation of the automation process"
can be very helpful.
While shell scripts give one order in which you can successfully run the pipeline,
Make will figure out the parts of the pipeline (and their order) that are needed to
build a desired target.

Automation using Make

18 / 45

https://en.wikipedia.org/wiki/Make_%28software%29

Basic syntax
Each batch of lines indicates

a file to be created (the target),
the files it depends on (the
prerequisites), and
set of commands needed to
construct the target from the
dependent files.

Dependencies propagate.

To create any of the png
figures, we need
lotr_clean.tsv .
If this file changes, the png s
change as well when they're
built.

Example makefile
all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png

lotr_raw.tsv:
 curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv

lotr_clean.tsv: lotr_raw.tsv 02-process-data.R
 Rscript 02-process-data.R

barchart-words-by-race.png: lotr_clean.tsv 03-plot.R
 Rscript 03-plot.R

words-histogram.png: lotr_clean.tsv
 Rscript -e 'library(ggplot2);
 qplot(Words, data = read.delim("$<"), geom = "histogram");
 ggsave("$@")'
 rm Rplots.pdf

clean:
 rm -f lotr_raw.tsv lotr_clean.tsv *.png

Automation using Make (cont.)

19 / 45

Getting Make to run
Using the command line, go
into the directory for your
project.
Create the Makefile file.1

The most basic Make
commands are make all and
make clean which builds (or
deletes) all output as specified
in the script.

Example makefile
all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png

lotr_raw.tsv:
 curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv

lotr_clean.tsv: lotr_raw.tsv 02-process-data.R
 Rscript 02-process-data.R

barchart-words-by-race.png: lotr_clean.tsv 03-plot.R
 Rscript 03-plot.R

words-histogram.png: lotr_clean.tsv
 Rscript -e 'library(ggplot2);
 qplot(Words, data = read.delim("$<"), geom = "histogram");
 ggsave("$@")'
 rm Rplots.pdf

clean:
 rm -f lotr_raw.tsv lotr_clean.tsv *.png

Automation using Make (cont.)

1While the basic syntax is simple (see right), the devil's in the detail. Check out resources listed on the next slide if you want to
learn more. 20 / 45

This is dusty technology. Are there alternatives?
In the context of data science with R, the targets package is an interesting option. It
provides R functionality to define a Make-stype pipeline. Check out the overview and
manual.

Automation using Make - FAQ

Does it work on Windows?
To install an run make on Windows, check out these instructions.

Where can I learn more?
If you consider working with Make, check out the official manual, this helpful tutorial, Karl Broman's excellent minimal
make introduction, or this Stat545 piece.

21 / 45

https://docs.ropensci.org/targets/
https://books.ropensci.org/targets/
https://stat545.com/make-windows.html
https://www.gnu.org/software/make/manual/make.html
https://makefiletutorial.com/
https://kbroman.org/minimal_make/
https://kbroman.org/minimal_make/
https://stat545.com/automation-overview.html

Scheduling

22 / 45

Scheduling

Credit Randall Munroe/xkcd 1205

23 / 45

https://xkcd.com/1205/

Motivation
So far, we have automated data science pipelines.
But the execution of these pipelines still needs to be triggered.
In some cases, it is desirable to also automate the initialization of R
scripts (or any processes for that matter) on a regular basis, e.g. weekly,
daily, on logon, etc.
This makes particular sense when you have moving parts in your
pipeline (most likely: data).

Common scenarios for scheduling
1. You fetch data from the web on a regular basis (e.g., via scraping scripts

or APIs).
2. You generate daily/weekly/monthly reports/tweets based on changing

data.
3. You build an alert control system informing you about anomalies in a

database.

Credit Simone Giertz

Scheduling scripts and processes

24 / 45

https://www.youtube.com/watch?v=Lh2-iJj3dI0

Scheduling options
Schedule tasks on Windows with
Windows Task Scheduler.
Manage them via a GUI (→ Control
Panel) or the command line using
schtasks.exe .
The R package taskscheduleR
provides a programmable R
interface to the WTS.

taskscheduleR example
R> library(taskscheduleR)
R> myscript <- "examples/scrape-wiki.R"
R> ## Run every 5 minutes, starting from 10:40
R> taskscheduler_create(
+ taskname = "WikiScraperR_5min", rscript = myscript,
+ schedule = "MINUTE", starttime = "10:40", modifier = 5)
R>
R> ## Run every week on Saturday and Sunday at 09:10
R> taskscheduler_create(
+ taskname = "WikiScraperR_SatSun", rscript = myscript,
+ schedule = "WEEKLY", starttime = "09:10",
+ days = c('SAT', 'SUN'))
R>
R> ## Delete task
R> taskscheduler_delete("WikiScraperR_SatSun")
R>
R> ## Get a data.frame of all tasks
R> tasks <- taskscheduler_ls()
R> str(tasks)

Scheduling scripts and processes on Windows

25 / 45

https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html

Scheduling options
On macOS you can schedule background
jobs using cron and launchd .

launchd 1 was created by Apple as a
replacement for the popular Linux utility
cron (deprecated but still usable).
The R package cronR provides a
programmable R interface.
cron syntax for more complex scheduling:

cronR example
R> library(cronR)
R> myscript <- "examples/scrape-wiki.R"
R> # Create bash code for crontab to execute R script
R> cmd <- cron_rscript(myscript)
R>
R> ## Run every minute
R> cron_add(command = cmd, frequency = 'minutely',
+ id = 'ScraperR_1min', description = 'Every 1min')
R>
R> ## Run every 15 minutes (using cron syntax)
R> cron_add(cmd, frequency = '*/15 * * * *',
+ id = 'ScraperR_15min', description = 'Every 15 mins')
R>
R> ## Check number of running cronR jobs
R> cron_njobs()
R>
R> ## Delete task
R> cron_rm("WikiScraperR_1min", ask = TRUE)

Scheduling scripts and processes on a Mac

1For more resources on scheduling with launchd , check out this and this. 26 / 45

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Launchd
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html
https://cran.r-project.org/web/packages/cronR/index.html
https://babichmorrowc.github.io/post/launchd-jobs/
https://towardsdatascience.com/a-step-by-step-guide-to-scheduling-tasks-for-your-data-science-project-d7df4531fc41

R packages

27 / 45

The state of the R package ecosystem
As of November 2021, the CRAN package repository
features more than 18,000 packages.
Many, many more are available on GitHub and other
code sharing platforms.
R has a vivid community that continuous to create
and build extensions and maintain the existing
environment. Many of them have much more
training and time to invest in software development.
So, why should we (and with that I mean YOU) write
yet another R package?

Credit daroczig

Writing an R package

28 / 45

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

1. Thinking in functions. R is a functional programming language, and
packages bundle functions. Thinking of projects as packages is
consistent with a functional mindset.

2. Automation and transportability. By turning tasks into functions, you
save repetitive typing, keep frequently-used code together, and let code
travel across projects.

3. Collaboration and transparency. Packages are ideal to make
functionality available to others, but also to let others contribute. As a
side effect, it nudges you to document your functions properly and
gives you the opportunity to let others review and improve your code
easily.

4. Visibility and productization. Publishing code in packages is potentially
giving your project a big boost in visibility. Also, it is more likely to be
perceived as a product than an insular project.

Why create another R package?

29 / 45

1. Choose a package name
2. Set up your package with RStudio (and GitHub)
3. Fill your package with life

Add functions
Write help files
Write a DESCRIPTION
Add internal data

4. Check your package
Write tests
Check on various operating systems
Check for good coding practice

5. Submit to CRAN (or GitHub early in the process)
6. Promotion

Write a vignette
Build a package website

Credit Simo Goshev, Steve Worthington

Creating a package from start to finish

30 / 45

https://iqss.github.io/dss-rbuild/

devtools
The workhorse of package
development in R
Provides functions that
simplify common tasks, such as
package setup, simulating
installs, compiling from source

usethis
Provides workflow utilities for
project development (loaded
by devtools)
Many use_*() functions to
help create package tests, data,
description, etc.

testthat
Provides functions that make it
easy to describe what you
expect a function to do,
including catching errors,
warnings, and messages.

roxygen2
Provides functions to
streamline/automate the
documentation of your
packages and functions

Tools to get you started

31 / 45

The idea is to create a package overviewR that helps you to get an overview – hence, the
name – of your data with particular emphasis on the extent that your distinct units of
observation are covered for the entire time frame of your data set.

The package is real and lives on both CRAN and GitHub. Check out the vignette.

An example walkthrough

In the following we will briefly study the process of creating a package.

The example is taken from Methods Bites, the Blog of the MZES Social Science Data Lab, and developed by Cosima Meyer
and Dennis Hammerschmidt.

32 / 45

https://cosimameyer.github.io/overviewR/
https://cran.r-project.org/web/packages/overviewR/index.html
https://github.com/cosimameyer/overviewR
https://cran.r-project.org/web/packages/overviewR/vignettes/overviewR_vignette.html
https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#section1
https://www.mzes.uni-mannheim.de/socialsciencedatalab/
https://cosimameyer.rbind.io/
http://dennis-hammerschmidt.rbind.io/

Idea
I'll leave you alone with that one.
... but you might want to check out the over
18k existing ones that live on CRAN.

Name
Package names can only be letters and
numbers and must start with a letter.
The package available helps you — both
with getting inspiration for a name and with
checking whether your name is available.

Example
R> library(available)
R> # Check for potential names
R> available::suggest("Easily extract information about sample")

 easilyr

R> # Check whether it's available
R> available::available("overviewR", browse = FALSE)

 ── overviewR ──
 Name valid: ✔
 Available on CRAN: ✖
 Available on Bioconductor: ✔
 Available on GitHub: ✖
 Abbreviations: http://www.abbreviations.com/overview
 Wikipedia: https://en.wikipedia.org/wiki/overview
 Wiktionary: https://en.wiktionary.org/wiki/overview
 Sentiment:???

Step 1: Idea and name

33 / 45

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html

Option 1: via RStudio and GitHub
Use RStudio's Project Wizard and click on
File > New Project... > New Directory >
R Package .
Check the box Create a git to set up a
local git.

Option 2: usethis
Use usethis::create_package() , which will
set up a template package directory in the
specified folder.
You have to take care of version control
yourself (recommendation: initiate project
on GitHub first).

Example
R> create_package("overviewR", open = FALSE)

✓ Creating 'overviewR/'
✓ Setting active project to '/Users/simonmunzert/github/intro-to-
✓ Creating 'R/'
✓ Writing 'DESCRIPTION'
Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed):
 * First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to
 pick a license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2
✓ Writing 'NAMESPACE'
✓ Writing 'overviewR.Rproj'

Step 2: Set up your package

34 / 45

Basic components
1. The DESCRIPTION file

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2

Example
Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:
 person(given = "First",
 family = "Last",
 role = c("aut", "cre"),
 email = "first.last@example.com",
 comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to
 license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2

Step 2: Set up your package (cont.)

35 / 45

Basic components
1. The DESCRIPTION file

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this

Example
Type: Package
Package: overviewR
Title: Easily Extracting Information About Your Data
Version: 0.0.2
Authors@R: c(
 person("Cosima", "Meyer", email = "XX@XX.com", role = c("cre"
 person("Dennis", "Hammerschmidt", email = "XX@XX.com", role =
Description: Makes it easy to display descriptive information on
 a data set. Getting an easy overview of a data set by displa
 visualizing sample information in different tables (e.g., tim
 scope conditions). The package also provides publishable TeX
 present the sample information.
License: GPL-3
URL: https://github.com/cosimameyer/overviewR
BugReports: https://github.com/cosimameyer/overviewR/issues
Depends:
 R (>= 3.5.0)
Imports:
 dplyr (>= 1.0.0)
Suggests:

Step 2: Set up your package (cont.)

36 / 45

Basic components
1. The DESCRIPTION file

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

Example

Step 2: Set up your package (cont.)

37 / 45

Basic components
1. The DESCRIPTION file

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

2. The NAMESPACE file
will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes
will be populated automatically using
devtools::document()

Example
Generated by roxygen2: do not edit by hand

export(overview_crossplot)
export(overview_crosstab)
export(overview_heat)
export(overview_na)
export(overview_overlap)
export(overview_plot)
export(overview_print)
export(overview_tab)
importFrom(dplyr,"%>%")
importFrom(ggplot2,ggplot)
importFrom(ggrepel,geom_text_repel)
importFrom(ggvenn,ggvenn)
importFrom(stats,reorder)
importFrom(tibble,"rownames_to_column")

Step 2: Set up your package (cont.)

38 / 45

Basic components
1. The DESCRIPTION file

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

2. The NAMESPACE file
will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes
will be populated automatically using
devtools::document()

3. The R folder
this is where all the functions you will
create go

Step 2: Set up your package (cont.)

39 / 45

Adding functions
The folder R contains all your functions and
each function is saved in a new R file where the
function name and the file name are the same.

In the preamble of this file, we can add
information on the function. This information
will be used to render the help files.

Example
#' @title overview_tab
#'
#' @description Provides an overview table for the time and scope
#' a data set
#'
#' @param dat A data set object
#' @param id Scope (e.g., country codes or individual IDs)
#' @param time Time (e.g., time periods are given by years, month
#'
#' @return A data frame object that contains a summary of a sampl
#' can later be converted to a TeX output using \code{overvie
#' @examples
#' data(toydata)
#' output_table <- overview_tab(dat = toydata, id = ccode, time =
#' @export
#' @importFrom dplyr "%>%"

Step 3: Fill your package with life

40 / 45

Adding functions
The folder R contains all your functions and
each function is saved in a new R file where the
function name and the file name are the same.

In the preamble of this file, we can add
information on the function. This information
will be used to render the help files.

When you execute devtools::document() , R
automatically generates the respective help file
in man as well as the new NAMESPACE file.

Example

Step 3: Fill your package with life (cont.)

41 / 45

Installing a local package
We are now ready to load a developmental
version of the package. This works with
devtools::install() , which will also try to
install dependencies of the package from CRAN,
if they're not already installed.

You need to run this from the parent working
directory that contains the package folder.

We're now ready to call functions from the
package.

Example
R> install("overviewR")

✓ checking for file ‘/Users/simonmunzert/github/intro-to-data-sc
─ preparing ‘overviewR’:
✓ checking DESCRIPTION meta-information ...
─ checking for LF line-endings in source and make files and shel
─ checking for empty or unneeded directories
 Omitted ‘LazyData’ from DESCRIPTION
─ building ‘overviewR_0.0.0.9000.tar.gz’

Running /Library/Frameworks/R.framework/Resources/bin/R CMD INSTA
 /var/folders/38/fqbc3hzd0rl23h350bh27_540000gp/T//RtmpAuLJL4/ov
 --install-tests
 installing to library ‘/Library/Frameworks/R.framework/Versions/
 installing *source* package ‘overviewR’ ...
 testing if installed package can be loaded from temporary locati
 testing if installed package can be loaded from final location
 testing if installed package keeps a record of temporary install
 DONE (overviewR)

Step 6: Install your package!

42 / 45

Steps 3-6

We skipped a couple of important (and some optional) steps now, including:

Build and check a package, clean up → devtools::check()
Iterative loading and testing → devtools::load_all()
Adding unit tests → usethis::use_testthat()
Import functions from other packages (CRAN package dependency) → usethis::use_package()
Git version control and collaboration → usethis::use_github()
Add a proper public description → usethis::use_readme_rmd()
Build PDF manual → devtools::build_manual()
Add vignettes → usethis::use_vignette()
Add a licence → usethis::use_gpl_license() , usethis::use_mit_license() , ...
Convert into a single bundled file (binary or zipped) → devtools::build()
Submit to CRAN → devtools::release()
Build website for your package → pkgdown::build_site()

Be sure to check out the motivating example and more resources (next slide).

43 / 45

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#subsection4-3

Is learning this worth the time?
Yes.

Where can I learn more?
Glad that you're asking! There's tons of materials out
there. Apart from the used tutorial and the R packages
book, have a look at the devtools cheatsheet and
another overview over at RStudio. Knowing how to turn a
package into a website within minutes is fascinating, too.

When do we need a package, and
when is a GitHub repo simply enough?
Do you think of your work as a project or a product? If
it's the latter, maybe a package is right for you. (But... a
research paper is also a product, right? 🤯)

Writing R packages - FAQ

44 / 45

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/
https://r-pkgs.org/
https://r-pkgs.org/
https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-the-RStudio-IDE
https://pkgdown.r-lib.org/dev/
https://pkgdown.r-lib.org/dev/

Next steps

Quiz
One more quiz to go!

Next lecture
One more session to go. We're going to talk about communication and monitoring.

45 / 45

