Introduction to Data Science
Session 11: Automation, scheduling, and packages

Simon Munzert
Hertie School |

https://github.com/intro-to-data-science-23

Table of contents

1. Automation and scripting
2. Scheduling

3. R packages

2 | 45

Automation and scripting

“I SPEND A LOT OF TIME ON THIS TASK.
T SHOULD LWRITE A PROGRAM AUTOMATING IT™™

THEORY:

WRITING~,
CODE

FREE
WORK \WJORK ON- *\AUTbr’IAﬁON TME.

ORIGINAL TRSK
TME

WORK

ANYVIORE

TIME

Credit Randall Munroe/xkcd 1319
4 [45

https://xkcd.com/1319/

Automation

Motivation

e We spend too much time on repetitive tasks.

e We're already automating using scripts that bundle multiple
commands! Next step: The pipeline as a series of scripts and
commands.

e Good pipelines are modular. But you don't want to trigger 10
scripts sequentially by hand.

« Some tasks are to be repeated on a regular basis (schedule).

When automation makes sense

e The input is variable but the process of turning input into output
Is highly standardized.

e You use a diverse set of software to produce the output.

o Others (humans, machines) are supposed to run the analyses.

e Time saved by automation >> Time needed to automate.

Different ways of doing it

We will consider automation

e USINgR,

o using the Shell and RScript,

e using make, and

e using dedicated scheduling tools.

https://itchronicles.com/technology/repetitive-tasks-cost-5-trillion-annually/

Thinking in pipelines

Key characteristics

e Pipelines make complex projects easier to handle
because they break up a monolithic script into
discrete, manageable chunks.

e If properly done, each stage of the pipeline defines
its input and its outputs.

e Pipeline modules do not modify their inputs
(idempotence). Rerunning one module produces the
same results as the previous run.

Key advantages

e When you modify one stage of the pipeline, you only
have to rerun the downstream, dependent stages.

e Division of labor is straightforward.

e Modules tend to be a lot easier to debug.

6/ 45

A data science pipeline is a graph

Wait what
 Scripts and data files are vertices Tt
of the graph.

lotr_mw.tsvl1

e Dependencies between stages are
edges of the graph.
e Pipelines are not necessarily DAGS.

01_filterReorder.R

lotr_clean.tsv

02_aggregatePlot.R

Recursive routines are imaginable
(but to be avoided?).

e Also, scripts are not necessarily
hierarchical (e.g., multiple different ot WordsByFilmRace 5 |
modeling approaches of the same
data in different scripts). siplo vy RacThe Felowstip. O The King o |

e An automation script gives one
order in which you can successfully

fun t h e p | p e ll ne. stripplot_wordsByRace_The_T\aio_Towers.pngbl

barchart_totalWords.pn, gj

barchart_totalWordsFilmDodge .pngT

stripplot_wordsByRace_The_Return_Of_The King.pngDI

7| 45

An example pipeline

In the following, we will work with
this toy pipeline:’

Icourtesy of Jenny Bryan. 8 / 45

https://github.com/STAT545-UBC/STAT545-UBC-original-website

An example pipeline

In the following, we will work with 00-packages.R:
this toy pipeline:
R>
e 00-packages.R loads the R> p_needed « c("tidyverse"
+)

packages necessary for

. R> packages ¢« rownames(installed.packages())
analysis,

R> p_to_install ¢« p_needed[!(p_needed %in% packages)]
R> if (length(p_to_install) > 0) {

+ install.packages(p_to_install)

+ }

R> lapply(p_needed, require, character.only = TRUE)

9/ 45

An example pipeline

In the following, we will work with 01-download-data.R:
this toy pipeline:
R>
e 00-packages.R loads the R> download.file(url = "http://bit.ly/lotr_raw-tsv",
+ destfile = "lotr raw.tsv")

packages necessary for
analysis,

e 0l-download-data.R downloads
a spreadsheet, which is stored

as lotr_raw.tsv,

10 / 45

An example pipeline

In the following, we will work with 02-process-data.R:
this toy pipeline:
R>
e 00-packages.R loads the R> lotr_dat ¢« read tsv("lotr raw.tsv")
packages necessary for EZ
analysis, R> old_levels « levels(as.factor(lotr_dat$Film))
¢ 01-download-data.R downloads R> j_order <« sapply(c("Fellowship", "Towers", "Return"),
a spreadsheet, which is stored + function(x) grep(x, old_levels))
as lotr_raw.tsv, R> new_levels « old_levels[j_order]
e 02-process-data.R imports and EZ
processes the data and exports R> lotr dat <« lotr dat %>%
a clean spreadsheet as +
lotr clean.tsv, and + mutate(Film = factor(as.character(Film), new_levels),
+
+ Race = recode(Race, “Ainur’ = "Wizard", "Men = "Man")) %>%
n
n
o
+ write tsv(lotr_dat, "lotr_clean.tsv")

1/ 45

An example pipeline

In the following, we will work with 03-plot.R:
this toy pipeline:
R>
e 00-packages.R loads the R> lotr_dat ¢« read _tsv("lotr_clean.tsv") %>%

+

packages necessary for
+ mutate(Race = reorder(Race, Words, sum))

analysis, o
e 0l-download-data.R downloads R>
a spreadsheet, which is stored R> p « ggplot(lotr_dat, aes(x = Race, weight = Words)) + geom_bar()

as lotr_raw.tsv, R> ggsave("barchart-words-by-race.png", p)

e 02-process-data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv, and

e 03-plot.R imports the clean
dataset, produces a figure and
exports it as barchart-words-
by-race.png.

12 | 45

An example pipeline

R> slice_sample(lotr_dat, n = 10)

A tibble: 10 x 5

Film Chapter Character Race Words
<chr> <chr> <chr> <chr> <dbl>

1 The Return Of The King 64: The Mouth Of Sauron Aragorn Man 23
2 The Fellowship Of The Ring 36: The Bridge Of Khazad-dim Frodo Hobb... 4
3 The Two Towers 36: Isengard Unleashed Saruman Wiza.. 50
4 The Fellowship Of The Ring 42: The Great River Sam Hobb... 37
5 The Return Of The King 42: Breaking The Gate Of Go.. Gandalf Wiza.. 21
6 The Two Towers 45: The Glittering Caves Legolas ELf 36
7 The Two Towers 35: Helm's Deep Rohan Wa.. Man 22
8 The Fellowship Of The Ring 33: Moria Aragorn Man 31
9 The Fellowship Of The Ring 43: Parth Galen Aragorn Man 79
10 The Return Of The King 24: Courage Is The Best Def.. Gothmog Orc 4

13 / 45

An example pipeline

= Race, weight = Words)) +

geom_bar() + theme_minimal()
o
s000
2500
=il
or Dt B Wizard Man Hobbit

Race

R> p <« ggplot(lotr_dat, aes(x
+

count

14 | 45

Automation using pipelines in R

Motivation and usage

e The source() function reads and parses R code
from a file or connection.

e We can build a pipeline by sourcing scripts
sequentially.

e This pipeline is usually stored in a "master" script.

e The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.

e Itis recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).

e Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

15 | 45

Automation using pipelines in R

Motivation and usage Example
e The source() function reads and parses R code The master script master.R:
from a file or connection.
e We can build a pipeline by sourcing scripts R>
. R> outputs ¢« c("lotr_raw.tsv",
sequentially. . .
ST . . + lotr_clean.tsv",
 This pipeline is usually stored in a "master" script. N list.files(pattern = "x.png$"))
e The removal of previous work is optional and maybe R> file.remove(outputs)
redundant. Often the data is overwritten by default. R>
. . . R>
e |tis recommended that the individual scripts are) .

. . ‘ R> source("00-packages.R")
(partial) standalones, i.e. that they import all data R> source("01-download-data.R")
they need by default (loading the packages could be R> source("02-process-data.R")
considered an exception). R> source("03-plot.R")

e Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

15 | 45

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

» Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

16 | 45

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

» Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

Example

The master script master.sh:

cd /Users/simonmunzert/github/examples/02-automation
set -eux

Rscript 0l1-download-data.R

Rscript 02-process-data.R

Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

e -e:Stop at first error
e -u:Undefined variables are an error
e —x:Print each command as itis run

For more information on set, see here.
16 / 45

http://linuxcommand.org/lc3_man_pages/seth.html

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

» Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

e One advantage of this approach is that it can be
easily coupled with other command line tools,
building a polyglot pipeline.

Example

The master script master.sh:

cd /Users/simonmunzert/github/examples/02-automation
set -eux

curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv
Rscript 02-process-data.R

Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

e -e:Stop at first error
e -u:Undefined variables are an error
e —x:Print each command as itis run

For more information on set, see here.

17 | 45

http://linuxcommand.org/lc3_man_pages/seth.html

Automation using Make

Motivation and usage

e Make is an automation tool that allows us to specify and manage build processes.
It is commonly run via the shell.

At the heart of a make operation is the makefile (or Makefile, GNUmakefile), a
script which serves as a recipe for the building process.

A makefile is written following a particular syntax and in a declarative fashion.
Conceptually, the recipe describes which files are built how and using what input.

Advantages of Make

« It looks at which files you have and automatically figures out how to create the files G N U Ma ke
that you have. For complex pipelines this "automation of the automation process"

can be very helpful.

e While shell scripts give one order in which you can successfully run the pipeline,
Make will figure out the parts of the pipeline (and their order) that are needed to
build a desired target.

18 | 45

https://en.wikipedia.org/wiki/Make_%28software%29

Automation using Make (cont.)

Basic syntax Example makefile

Each batch of lines indicates all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png

lotr_raw.tsv:

o a file to be created (the target), .
curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv

o the files it depends on (the
prerequisﬁes),and lotr_clean.tsv: lotr_raw.tsv 02-process-data.R

Rscript O2-process-data.R
e set of commands needed to P P

construct the target from the barchart-words-by-race.png: lotr_clean.tsv 03-plot.R
dependent files. Rscript 03-plot.R

words-histogram.png: lotr_clean.tsv
Rscript -e 'library(ggplot2);
gplot(Words, data = read.delim("$<"), geom = "histogram");

Dependencies propagate.

» To create any of the png ggsave("$a")"
figures, we need rm Rplots.pdf
lotr_clean.tsv. clean:
o If this file changes, the pngs rm -f lotr_raw.tsv lotr_clean.tsv *.png

change as well when they're
built. 19 [45

Automation using Make (cont.)

Getting Make to run Example makefile

e Using the command line, go all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png

into the directory for your lotr raw.tsv:

project. curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv
+ Create the Makefile file] lotr_clean.tsv: lotr_raw.tsv 02-process-data.R
» The most basic Make Rscript ©2-process-data.R
commands are make all and
make clean which builds (or
deletes) all output as specified

barchart-words-by-race.png: lotr_clean.tsv 03-plot.R
Rscript 03-plot.R

words-histogram.png: lotr_clean.tsv
Rscript -e 'library(ggplot2);
gplot(Words, data = read.delim("$<"), geom = "histogram");
ggsave("$a")'
rm Rplots.pdf

In the script.

clean:
rm -f lotr_raw.tsv lotr_clean.tsv *.png

"While the basic syntax is simple (see right), the devil's in the detail. Check out resources listed on the next slide if you want to
learn more. 20 | 45

Automation using Make - FAQ

Does it work on Windows?

To install an run make on Windows, check out these instructions.

Where can | learn more?

If you consider working with Make, check out the official manual, this helpful tutorial, Karl Broman's excellent minimal
make introduction, or this Stat545 piece.

This is dusty technology. Are there alternatives?

In the context of data science with R, the targets package Is an interesting option. It — il

provides R functionality to define a Make-stype pipeline. Check out the overview and t/'\t’
argets .
manual.

21/ 45

https://docs.ropensci.org/targets/
https://books.ropensci.org/targets/
https://stat545.com/make-windows.html
https://www.gnu.org/software/make/manual/make.html
https://makefiletutorial.com/
https://kbroman.org/minimal_make/
https://kbroman.org/minimal_make/
https://stat545.com/automation-overview.html

Scheduling

Scheduling

HOW LONG (AN YOU WORK ON MAKING A ROUTINE. TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TiME THAN YOU SAVE?
(RCROSS FIVE YEARS)

HOW OFTEN YO DO THE TROK ———

B0/, Shn DALY \WEEKY MONFLY YEPRLY

2 HOURS

30
MINUTES

4
MINUTES

1
MINUTE

|2 HOURS

2 HOURS

2|
MINUTES

MINUTES

[3]oAvs

|2 HOURS

2 HOURS

[6] oavs

4 Hours

o
H weEks

6 MONTHS

IO MONTHS

Credit Randall Munroe/xkcd 1205

23 | 45

https://xkcd.com/1205/

Scheduling scripts and processes

Motivation

e So far, we have automated data science pipelines.
e But the execution of these pipelines still needs to be triggered.
e In some cases, it is desirable to also automate the initialization of R

scripts (or any processes for that matter) on a regular basis, e.g. weekly,
daily, on logon, etc.

e This makes particular sense when you have moving parts in your
pipeline (most likely: data).

Common scenarios for scheduling

1. You fetch data from the web on a regular basis (e.g., via scraping scripts
or APIs).

2. You generate daily/weekly/monthly reports/tweets based on changing
data.

3. You build an alert control system informing you about anomalies in a
database.

Credit Simone Giertz

24 [45

https://www.youtube.com/watch?v=Lh2-iJj3dI0

Scheduling scripts and processes on Windows

Scheduling options

e Schedule tasks on Windows with
Windows Task Scheduler.

e Manage them via a GUI (— Control
Panel) or the command line using
schtasks.exe.

e The R package taskscheduleR
provides a programmable R
interface to the WTS.

~
[overview of Task Scheduler -]

taskscheduleR example

R>
R>
R>
R>
"

"

R>
R>
R>
+

"

"

R>
R>
R>
R>
R>
R>
R>

library(taskscheduleR)
myscript <« "examples/scrape-wiki.R"

taskscheduler create(
taskname "WikiScraperR_5min", rscript = myscript,
"MINUTE", starttime = "10:40", modifier = 5)

schedule

taskscheduler create(

taskname "WikiScraperR_SatSun", rscript
schedule "WEEKLY", starttime = "09:10",
days = c('SAT', 'SUN'))

myscript,

taskscheduler_delete("WikiScraperR_SatSun")

tasks ¢« taskscheduler 1s()

str(tasks)
25 [45

https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html

Scheduling scripts and processes on a Mac

Scheduling options cronR example
e On macOS you can schedule background R> library(cronR)
jobs using cron and launchd. R> myscript < "examples/scrape-wiki.R"

R>
R> cmd « cron_rscript(myscript)

launchd ' was created by Apple as a

replacement for the popular Linux utility R>
cron (deprecated but still usable). R>
e The R package cronR provkjes 3 R> cron_add(éommand = cmd, fr?quency = .mlhutely , |
_ + id = 'ScraperR_1min', description = 'Every 1min')
programmable R interface. =
e cron syntax for more complex scheduling: R>
R> cron_add(cmd, frequency = '*/15 * * x %',
-I 2 3 4 5 /PATH/TU/F".E + id = 'ScraperR_15min', description = 'Every 15 mins',
= 1 8 § 8 R>
% E ;'. § ;.. Timing Syntax Example R>
o M < N s *** This will run once a day at .
g “ % N E g?“OTI':iswil\l\runonSunjazev:r':ﬁour R> Cron—nJObS()
5 g %l:(());iomgglswmrunonceeveryhourbetween R>
R>

R> cron_rm("WikiScraperR_1min", ask = TRUE)

TFor more resources on scheduling with launchd, check out this and this. 26 /| 45

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Launchd
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html
https://cran.r-project.org/web/packages/cronR/index.html
https://babichmorrowc.github.io/post/launchd-jobs/
https://towardsdatascience.com/a-step-by-step-guide-to-scheduling-tasks-for-your-data-science-project-d7df4531fc41

R packages

Writing an R package

The state of the R package ecosystem

As of November 2021, the CRAN package repository
features more than 18,000 packages.

Many, many more are available on GitHub and other
code sharing platforms.

R has a vivid community that continuous to create
and build extensions and maintain the existing
environment. Many of them have much more

training and time to invest in software development.

So, why should we (and with that | mean YOU) write
yet another R package?

nnnnn

sssss

00000

ooooo

00000

ooooo

ooooo

00000

Number of R packages ever published on CRAN

Credit daroczig

28 | 45

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

Why create another R package?

1. Thinking in functions. R is a functional programming language, and
packages bundle functions. Thinking of projects as packages is
consistent with a functional mindset.

2. Automation and transportability. By turning tasks into functions, you
save repetitive typing, keep frequently-used code together, and let code
travel across projects.

3. Collaboration and transparency. Packages are ideal to make
functionality available to others, but also to let others contribute. As a
side effect, it nudges you to document your functions properly and

gives you the opportunity to let others review and improve your code —
easily. ; L

4. Visibility and productization. Publishing code in packages is potentially °
giving your project a big boost in visibility. Also, it is more likely to be GItHUb

perceived as a product than an insular project.

The Comprehensive R
Archive Network

29 [45

Creating a package from start to finish

1. Choose a package name
2. Set up your package with RStudio (and GitHub)
3. Fill your package with life

o Add functions

o Write help files

o Write @ DESCRIPTION

o Add internal data
4. Check your package

o Write tests

o Check on various operating systems

o Check for good coding practice
5. Submit to CRAN (or GitHub early in the process)
6. Promotion

o Write a vignette

o Build a package website

Install Helper Packages

> library(devtools)
> library(usethis)
> library(roxygen2)
> library(testthat)

\

Create Package Structure

> usethis: create_package(“path/to/name”)

\

Populate Package Contents

= Package
- & DESCRIPTION > devtools:use_package()
R/ > devtools: load_all()
0 tests/ > usethis:: use_testthat() devtools: test()
(3 man/ > devtools: document()
O vignettes/ > usethis: use_vignette()
O data/ > usethis: use_data()

B NAMESPACE @export @import

v

Release Package

> devtools:: build()

Credit Simo Goshey, Steve Worthington

30 / 45

https://iqss.github.io/dss-rbuild/

Tools to get you started

devtools usethis

e Provides workflow utilities for
project development (loaded

e The workhorse of package

development in R
devtools

usethis

by devtools) —
simplify common tasks, such as e Many use_x() functions to
package setup, simulating help create package tests, data,
installs, compiling from source description, etc.

e Provides functions that

testthat

e Provides functions that make it
easy to describe what you
expect a function to do,

roxygen2

e Provides functions to
streamline/automate the
documentation of your

roxygen2

including catching errors,
warnings, and messages.

packages and functions

31/ 45

An example walkthrough

In the following we will briefly study the process of creating a package.

The example is taken from Methods Bites, the Blog of the MZES Social Science Data Lab, and developed by Cosima Meyer
and Dennis Hammerschmidt.

The idea is to create a package overviewr that helps you to get an overview — hence, the
name - of your data with particular emphasis on the extent that your distinct units of
observation are covered for the entire time frame of your data set.

The package is real and lives on both CRAN and GitHub. Check out the vignette.

32/ 45

https://cosimameyer.github.io/overviewR/
https://cran.r-project.org/web/packages/overviewR/index.html
https://github.com/cosimameyer/overviewR
https://cran.r-project.org/web/packages/overviewR/vignettes/overviewR_vignette.html
https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#section1
https://www.mzes.uni-mannheim.de/socialsciencedatalab/
https://cosimameyer.rbind.io/
http://dennis-hammerschmidt.rbind.io/

Step 1: Idea and name

ldea Example

e |'ll leave you alone with that one. R> library(available)

e .. but you might want to check out the over R>
18k existing ones that live on CRAN. R> available::suggest("Easily extract information about sample")

easilyr
Name
R>
« Package names can only be letters and R> available::available("overviewR", browse = FALSE)
numbers and must start with a letter. .
) — overviewR
e The package available helps you — both Name valid: v
with getting inspiration for a name and with Available on CRAN: =
checking whether your name is available. Available on Bioconductor: v

Available on GitHub: x

Abbreviations: http://ww.abbreviations.com/overview
Wikipedia: https://en.wikipedia.org/wiki/overview
Wiktionary: https://en.wiktionary.org/wiki/overview
Sentiment:??7?

33/ 45

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html

Step 2: Set up your package

Option 1: via RStudio and GitHub Example

e Use RStudio's Project Wizard and click on
File > New Project... > New Directory >
R Package.

e Check the box Create a git tosetup a
local git.

Option 2: usethis

e Use usethis::create_package(), which will
set up a template package directory in the
specified folder.

e You have to take care of version control
yourself (recommendation: initiate project
on GitHub first).

R> create_package("overviewR", open = FALSE)

v Creating 'overviewR/'
v Setting active project to '/Users/simonmunzert/github/intro-to-
v Creating 'R/
v Writing 'DESCRIPTION'
Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed):
* First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-
Description: What the package does (one paragraph).
License: “use_mit license()”, “use_gpl3 license() or friends to
pick a license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2
v Writing 'NAMESPACE'

. : : 34 [45
v Writing 'overviewR.Rproj'

Step 2: Set up your package (cont.)

Basic components Example
1. The DESCRIPTION file Package: overviewR
o stores metadata about the package Title: What the Package Does (One Line, Title Case)
: . Version: 0.0.0.9000
o lists dependencies if any
_ AuthorsaR:
o is pre-generated by roxygen2 person(given = "First",
family = "Last",
role = c("aut", "cre"),
email = "first.lastaexample.com",

comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: “use_mit _license()”, “use_gpl3 license() or friends to
license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: /.1.2

35/ 45

Step 2: Set up your package (cont.)

Basic components Example
1. The DESCRIPTION file Type: Package
o stores metadata about the package Package: overviewR

Title: Easily Extracting Information About Your Data

o lists dependencies if any Version: ©.8.2
1 o Y.

o is pre-generated by roxygen2 e
o It will later look like this person("Cosima", "Meyer", email = "XX@XX.com", role = c("cre'
person("Dennis", "Hammerschmidt", email = "XX@XX.com", role =

Description: Makes 1t easy to display descriptive information on
a data set. Getting an easy overview of a data set by displ:c
visualizing sample information in different tables (e.g., tin
scope conditions). The package also provides publishable Te>
present the sample information.

License: GPL-3

URL: https:
BugReports: https:
Depends:

R (> 3.5.0)
Imports:

dplyr (> 1.0.0)
Suggests: 36 / 45

Step 2: Set up your package (cont.)

Basic components

1. The DESCRIPTION file

(¢]

(¢]

stores metadata about the package
lists dependencies if any

Is pre-generated by roxygen2

it will later look like this

and displayed online like this

Example

overviewR: Easily Extracting Information About Your Data

Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by
displaying and visualizing sample information in different tables (e.g., time and scope conditions). The
package also provides publishable 'LaTeX' code to present the sample information.

Version: 0.0.7

Depends: R(=350)

Imports: dplyr (= 1.0.0), ggplot2 (= 3.3.2), tibble (= 3.0.1)
Suggests: covr, devtools, knitr, pkgdown, rmarkdown, spelling, testthat
Published: 2020-11-23

Author: Cosima Meyer [cre, aut], Dennis Hammerschmidt [aut]
Maintainer: Cosima Meyer <cosima.meyer at gmail.com>
BugReports: https:/github.com/cosimameyer/overviewR/issues
License: GPL-3

URL: https://github.com/cosimameyer/overviewR
NeedsCompilation: no

Language: en-US

Materials: README NEWS

CRAN checks: overviewR results

37 | 45

Step 2: Set up your package (cont.)

Basic

1. The

(¢]

(¢]

components

DESCRIPTION file

stores metadata about the package
lists dependencies if any

Is pre-generated by roxygen2

it will later look like this

and displayed online like this
NAMESPACE file

will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes

will be populated automatically using

devtools :: document()

Example

Generated by roxygen2: do not edit by hand

export(overview_crossplot)
export(overview_crosstab)
export(overview_heat)
export(overview na)
export(overview_overlap)
export(overview_plot)
export(overview_print)
export(overview_tab)
importFrom(dplyr, "%>%")
importFrom(ggplot2,ggplot)
importFrom(ggrepel,geom_text_repel)
importFrom(ggvenn, ggvenn)
importFrom(stats,reorder)
importFrom(tibble, "rownames_to_column")

38 / 45

Step 2: Set up your package (cont.)

Basic components

1. The DESCRIPTION file
o stores metadata about the package
o lists dependencies if any
o is pre-generated by roxygen2
o it will later look like this
o and displayed online like this
2. The NAMESPACE file
o will later contain information on
exported and imported functions.
o helps you manage (and avoid) function
clashes
o will be populated automatically using
devtools::document()
3. The R folder
o this is where all the functions you will
Create go 39 / 45

Step 3: Fill your package with life

Adding functions Example
The folder R contains all your functions and atitle
each function is saved in a new R file where the o
function name and the file name are the same. RSN
In the preamble of this file, we can add
aparam
information on the function. This information Aparam
will be used to render the help files. aparam
areturn
aexamples
@export
@importFrom

40 [45

Step 3: Fill your package with life (cont.)

Adding functions Example

The folder R contains all your functions and
each function is saved in a new R file where the

overview_tab {overviewR} R Documentation

. overview_tab
function name and the file name are the same. -

Description
In the preamble of this file, we can add Provides an overview table for the time and scope conditions of a data set
information on the function. This information Usage
will be used to render the help files. overview_tab(dat, id, time)

Arguments

When you execute devtools::document(), R

dat A data set object

automatically generates the respective help file id Scope (e.g. country codes or individual IDs)
In man as well as the new NAMESPACE file. time Time (e.g., time periods given by years, months, ...)
Value

A data frame object that contains a summary of a sample that can later be converted to a TeX output using
overview print

Examples

data(toydata)
output_table <- overview_tab(dat = toydata, id = ccode, time = year)

41 [45

Step 6: Install your package!

Installing a local package

We are now ready to load a developmental
version of the package. This works with
devtools::install(), which will also try to
install dependencies of the package from CRAN,
If they're not already installed.

You need to run this from the parent working
directory that contains the package folder.

We're now ready to call functions from the
package.

Example

R> install("overviewR")

v checking for file ‘/Users/simonmunzert/github/intro-to-data-sc
— preparing ‘overviewR':
v checking DESCRIPTION meta-information ...
— checking for LF line-endings in source and make files and shel
— checking for empty or unneeded directories

Omitted ‘LazyData’ from DESCRIPTION
— building ‘overviewR_0.0.0.9000.tar.gz’

Running /Library/Frameworks/R.framework/Resources/bin/R CMD INST/
/var/folders/38/fqbc3hzd0rl123h350bh27_540000gp/T//RtmpAuLIL4/ o\
-—1nstall-tests

installing to library ‘/Library/Frameworks/R.framework/Versionsy
installing *sourcex package ‘overviewR’' ...

testing if installed package can be loaded from temporary locati
testing if installed package can be loaded from final location
testing if installed package keeps a record of temporary install

DONE (overviewR)
42 [45

Steps 3-6

We skipped a couple of important (and some optional) steps now, including:

e Build and check a package, clean up — devtools:: check()

e |terative loading and testing — devtools::load_all()

e Adding unit tests — usethis::use_testthat()

o Import functions from other packages (CRAN package dependency) — usethis::use_package()
e Git version control and collaboration — usethis::use_github()

e Add a proper public description — usethis::use_readme_rmd()

e Build PDF manual — devtools::build manual()

e Add vignettes — usethis::use_vignette()

e Add a licence — usethis::use_gpl license(), usethis::use_mit_license(), ..
« Convertinto a single bundled file (binary or zipped) — devtools ::build()

e Submit to CRAN — devtools::release()

e Build website for your package — pkgdown :: build_site()

Be sure to check out the motivating example and more resources (next slide).

43 | 45

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#subsection4-3

Writing R packages - FAQ

Is learning this worth the time?

Yes.

Where can | learn more?

Glad that you're asking! There's tons of materials out
there. Apart from the used tutorial and the R packages
book, have a look at the devtools cheatsheet and
another overview over at RStudio. Knowing how to turn a
package into a website within minutes is fascinating, too.

When do we need a package, and
when is a GitHub repo simply enough?

Do you think of your work as a project or a product? If
it's the latter, maybe a package is right for you. (But... a
research paper is also a product, right? &

Package Development: : CHEAT SHEET

Package Structure

Setup (Il DESCRIPTION)

The [DESCRIPTION file describes your work, sets up how your
b

Package: nypackage
Title: Title of Package
0.1.0

: 1 Tersta .
ink pocae () Youmusthave aDESCRPTION fle AT ey, g et =
Addthe packages thatyours reles n ith cscrintions Wher the packase doss fone paragraph)
& Package & CEEETT sescriptian: What che pacios Paragrapt
[DESCRIPTION S) Import packages that your package
Addsapackagetothe Impartsor Suggestsfleld mathevate otk vl el
GOR/ LeE & b when it installs your package.
O tests/ cco mr 2 apiyr (>= 0.4.0), 5
© man/ Nosmpataed, WTlcaseoplists P leoepiesogon | 9003 (2 023 St s ey
O vignettes/ oo ek s Wit nd o o o wi Y
© data/
& NAMESPACE ;.
Write Code (O R/) Test (D tests/)
- A y OR, Uses

« bundle -3 single compressed file (torg2)
« binary -2 single compressed fil optimized for aspecific 05

belowto move between these states.

z z
£ s s » E OB
IR REE
install.packages() A B
st sy s GoN———
? i
RCMD install °
®
devtools:install()
devtools:build() °
et o) s
devtools:toad._all) . -0
Build & Reload (RStudio) ° o0
ibrary() >

®
W Ondi by mero
devtools:use_bulld_ignore(fie’)
Addsfile to_Rbuildignore, a listoffilesthat will not be included
when package i built

Studio

[createanewpackage project with
devtools:create(path/tojname")
<

[Addatests directory
(& mporttesthatwih devios-use_sesehat), which

&

WORKFLOW
1. Edityour code.
2. Load your code with one of
devtools:load_all()
Re-loads all saved fles in IR/ into memory.
ctryfcmd + Shift-+ L (keyboard shortcu
‘Saves all open files then calls load_all.
3. Experimentin the console.
4.Repeat.
+ Use consistent style with -pkgs.had.co.nz/r htmlstyle
+ Clickon a function and press F2to open s definition
+ Search for a function with Ctrl + .

Visit r-pkgs.had.co.nz to

learn much more about
wiiting and publishing.
packages for R

& o

[Saveyourtests s Rfies intessftestthat/
WoRKFLowW

L Modityyour codeor tsts.
2 Testyourcode with aneof

deviools:test)
RunsalltestsinCItests/ | test_that ("Math works", {
expect_equal

Example Test

context("Artthnetic’)

arjcmd- shifts T Sreceati L 2 3
Keyboardshortcu) Frs O
3.Repeatuntilalltestspass | ¥
o
ey ——
Co et Thn
poyoiv R ————
e e
o —
o et
o) g tomarindas?
o
) e

Document (O man/)

CImany contains the documentation for your functions, the help
pages in your package.

ROXYGEN2

[Useroxgen comm

besEERe
4

documentation inline in your R files with a
shorthand syntax. devtools implements o

Include helpful examplesforeachfunction
4

WORKFLOW

1.Add roxygen comments in your R files
o

+ Add roxygen documentation as comment ines.
that begin with #”.

object documented.
+ Place a roxygen @ tag (right) afer #”to supply a specific

deviao

<:document()

+ Untagged ines will be used to generate a tile, description,

s
them i man/. Builds NAMESPACE.
cerlfcmd + Shift+ D (Keyboard Shorteut]
3.Open help pages with 7 to preview documentation
4. Repeat

Rd FORMATTING TAGS.

\emphfialic text) \emailname@@foo com}
\stronglbold text) \nreffurdisplay)
\codelfunction(args)) \urfurl
\phglpackage)

Nink{=destlicisplay}
\dontrunfeode] \inkSdclass{clase}
\donishon{code} \codef\ink{unction}}
\deqn(a +b (block)} \abular(er)
\eanfa +b inine)) Teft\tab centered \ab right er

celliabcell \@bell \er
}

Teach (D vignettes/)

aparan y A

e sun of \code(x} and \codely}.

‘COMMON ROXYGEN TAGS.

@aliases @inheritParams @seealso
@concepts @keywords. @format
@describeln ~ @param @source data
@examples @rdname @include
@export @retum @slot P
@family @section @field R

O vige

[CreateaDvignetes/ directory and a template vignette with
devtools:use_vignette()
‘Adds template vignette as vignettes/my-vignette.Rmd.
(W Append YAML headers toyourignettes (ke right)
[V Witethe bocly of yourvignettes in R Markdown
(tmarkiown,ritudio.com)

Studio

sgnette Title
ignette A

© Sys.Date()”"

output: markdoun: :htal_vignette

vignette: >
“\VignetteIndexEntry{Vignette Title)
A\Vignettegnginefknitr: : rmarkdown}
\usepackage [ut 8] { inputenc}

 detons 151+ Updatd- 201501

Add Data (D data/) [RIRree g

‘The O data/ directory allows you to
include data with your package
g
(W savedata as Rdatafles (suggested)
[store data in one of data/, RiSysdata.rd, instjextdata

(7 Aiways use LazyData true inyour DESCRIPTION .

devtools-use_data()
Addsa data objectto data/
(R/Sysdata.rda finternal = TRUE)
devtools-use_data_raw()
Adds an R Scriptused toclean dataset to data-raw.
Includes data-raw/ on Rbuldignore

Storedatain
+ dataf to make data available to package users.
+ Risysdata.rda to keep data internal for use by your
functions.
+ inst/extdata to make raw data available for loading and
parsing examples. Access this data with system.file()

Organize (I NAMESPACE)

The I8 NAMESPACE filehelps you make your package sel-
Contained: twon'iterfere with othe packages,and other
packages won'tinterere withit

Export unctions for users by placing @export in their

Bt
Import objectsfrom other packages with

[package:iobject recommended) or @import,
@importFrom, @importClassesFrom,
@importMethodsFrom (not aliays recommended)

WORKFLOW
1. Modify your code or tests
2.Document your package (devtools: document()
3. Check NAMESPACE
4. Repeat until NAMESPACE s correct

'SUBMIT YOUR PACKAGE

 devons 151 - Updated 201501

Ly | 45

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/
https://r-pkgs.org/
https://r-pkgs.org/
https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-the-RStudio-IDE
https://pkgdown.r-lib.org/dev/
https://pkgdown.r-lib.org/dev/

Next steps

Quiz

One more quiz to go!

Next lecture

One more session to go. We're going to talk about communication and monitoring.

45 | 45

