Introduction to Data Science
Session 8: Model fitting and evaluation

Simon Munzert
Hertie School |



https://github.com/intro-to-data-science-22

Table of contents

1. Crafting formulas

2. Running models

3. Processing estimation output
4. Reporting modeling results

5. Summary

2 /68



The modeling workflow

Credit David Hood
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The modeling workflow

Why modeling? Steps of the workflow

e Modeling is at the heart of the data science workflow. 1. Choose a modeling strategy

e We use models to explore, test, infer, predict based on data. 2. Specify the model (structural

e The art and science of statistical modeling is vast. components / parameters)

« Today, we will focus on key steps of the workflow which are common in 3. Run/implement the model
most modeling endeavors. We won't touch on theoretical/statistical (estimation)
backgrounds though and ignore workflow issues in particular areas, 4. Evaluate the model output
such as simulation-based Bayesian inference or cross-validation in ML. 5. Present the results

Visualise

Import — Tidy — Transform ) ——= Communicate

Understand

Program
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Model building

Systematic + stochastic components of models
 When we try to model data, we often start by assuming a data-generating process that looks like
Y =f(z)+e

 In doing so, we decompose a model (or data-generating process) into a random or stochastic part (here: ¢) and a
systematic/structural/deterministic part (here: f(z)).

« (We might go on to impose further assumptions about the stochastic component, e.g., e ~ N(0,52).)

e In many cases, we want to learn how certain variables systematically relate to each other. To that end, we specify the
systematic component of a model and then "let the data speak" to estimate parameters associated with elements of

the systematic component.
e As an example, we might specify
f(z) = Bo + Bz

e But how can we express our belief about the model structure in R?
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Model building in R

Model formulas in R

e In R, there's a standardized way to specify models like this: working with the formula class.
e In many cases you can still think of the model formula as just a string specifying the structural part of your model

(there are exceptions).

e But formula class objects also allow you to do more useful things with formula.

e The basic structure of a formula is the tilde symbol (~) and at least one independent (righthand) variable. In most
(but not all) situations, a single dependent (lefthand) variable is also needed. Thus we can construct a formula quite

simply by just typing:
R>y ~ X

e Spaces in formulas are not important, but | recommend using them to make the formulas more readable.
e Running a model with a formula is straightforward. Note that we don't even have to put the formula in parentheses -
it is automatically interpreted as one formula expression when provided as the first argument:

R> lm(arr_delay ~ distance + origin, data = flights)
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Model formulas in R (cont.)

Storing formulas

e A more explicit way Is to write the formula as string and then use as.formula() to turn it into a formula object. This
Implies that we can store formulas as an R object and check its class.

R> fmla ¢« as.formula("arr_delay ~ distance + origin")
R> class(fmla)

[1] "formula"

e Next, we'd pass on the formula object to the model function, e.g.:

R> Im(fmla, data = flights)

Call:
Im(formula = fmla, data = flights)

Coefficients:
(Intercept) distance originJFK originLGA
13.414049 -0.004045 -2.704255 -4.456169

9/ 68



Formula syntax: basics

e We can use multiple independent variables by simply separating them with the plus (+) symbol:

R>y ~ x1 + x2

If we use a minus (-) symbol, objects in the formula are ignored in an analysis:

R>y ~ x1 - x2

We can also use this to drop the intercept:

R>y ~ x1 - x2 -1

The . operator refers to all other variables in the matrix/data frame not yet included in the model. This is useful
when you plan to run a regression on all variables in a matrix/data frame:

R>y ~ .
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Formula syntax: interactions

In a regression modeling context, we often need to specify interaction terms. There are two ways to do this. If we want to
include two variables and their interaction, we use the star/asterisk () symbol:

R>y ~ x1 x x2
That's equivalent to
R>y ~ x1 + x2 + x1*x2

If you only want their interaction, but not the variables themselves as main effects (which you probably don't want), use

the colon symbol:

R>y ~ x1:x2

11/ 68



Formula syntax: variable transformations

One trick to formulas is that they don't evaluate their contents. So, for example, if we wanted to include z and 2 in our
model, we might be tempted to type:

R>y ~ x + x"2

This won't work though. We therefore have to either calculate and store all of the variables we want to include in the
model in advance, or we need to use the 1() "as-is" operator, short for "Inhibit Interpretation/Conversion of Objects". In
a formula function, 1() is used to inhibit the interpretation of operators such as +, -, = and * as formula operators, so
they are used as arithmetical operators. To obtain our desired two-term formula, we type:

R>y ~ x + I(x"2)
Again, the alternative would have been something like:

R> data$x2 « (data$x)”2
R>y ~ x + x2
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Specifying multiple models

When one model is not enough

» Often we want to specify not one but multiple different models.
« Such models can differ in terms of model family, modelled outcome, covariate/feature set, transformations of input
variables, and data being modelled.

Generating model formulas at scale

 If outcomes/features vary across models, so does the model formula.
e Regarding formulas as character strings, it's straightforward to generate them in a programmatic fashion.
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Specifying multiple models

When one model is not enough

» Often we want to specify not one but multiple different models.
« Such models can differ in terms of model family, modelled outcome, covariate/feature set, transformations of input
variables, and data being modelled.

Generating model formulas at scale

 If outcomes/features vary across models, so does the model formula.
e Regarding formulas as character strings, it's straightforward to generate them in a programmatic fashion.

Example:

R> xvars ¢« paste@("x", 1:20)
R> fmla < as.formula(paste("y ~ ", paste(xvars, collapse= "+")))
R> fmla

y ~x1 + X2 + X3 + X4 + x5 + x6 + x/7 + x8 + x9 + x10 + x11 +
x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20
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Specifying multiple models (cont.)

Another example of multiple model specification is extreme bounds analysis (EBA).
Here, the idea is to compute all possible estimates given a set of allowed coefficients to answer questions like:
o Which determinants are robustly associated with the dependent variable across a large number of possible
regression models?
o |s a particular determinant robustly associated with the dependent variable?
In its basic form, EBA just estimates models with all possible combinations of variables and then looks into the
distribution (or range — extreme bounds) of effects across all models.
There are R packages to do this for us (e.g.,, ExtremeBounds by Marek Hlavac) but we can also run the basics on our

own.
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Specifying multiple models (cont.)

Another example of multiple model specification is extreme bounds analysis (EBA).
Here, the idea is to compute all possible estimates given a set of allowed coefficients to answer questions like:
o Which determinants are robustly associated with the dependent variable across a large number of possible
regression models?
o |s a particular determinant robustly associated with the dependent variable?
In its basic form, EBA just estimates models with all possible combinations of variables and then looks into the

distribution (or range — extreme bounds) of effects across all models.
There are R packages to do this for us (e.g.,, ExtremeBounds by Marek Hlavac) but we can also run the basics on our
own.

Example

Step 1: Define dependent variable and covariate set

R> depvar « "arr_delay"
R> covars ¢« c("dep_delay", "carrier", "origin", "air_time", "distance", "hour")
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Specifying multiple models (cont.)

Step 1a (just for fun): Compute the number of unique combinations of all these covariates

R> combinations ¢

+ map(1:6, function(x) {combn(1:6, x)}) %>%
+ map(ncol) %>%

+ unlist() %>%

+  sum()

R> combinations

[1] 63
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Specifying multiple models (cont.)

Step 2: Build function to run Im models across set of all possible variable combinations

R> combn_models ¢« function(depvar, covars, data)

v o
+ combn_list ¢« list()

o

+ for (i im seq_along(covars)) {

+ combn_1list[[1]] ¢« combn(covars, i, simplify = FALSE)

+ 1

+ combn_list ¢« unlist(combn_1list, recursive = FALSE)

H

+ gen_formula ¢ function(covars, depvar) {

+ form < as.formula(paste@(depvar, " ~ ", paste@(covars, collapse = "+")))
+ form

+ 1}

.

+ formulas_list ¢ purrr::map(combn_list, gen_formula, depvar = depvar)

o

+ models_list ¢« purrr::map(formulas_list, 1m, data = data)

+ models list

+ }
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Specifying multiple models (cont.)

Step 3: Run models (careful, this'll generate a quite heavy list)
R> models_list ¢« combn_models(depvar = depvar, covars = covars, data = flights)
How many models did we fit?

R> length(models_list)
[1] 63

And what did we get? A glimpse at the first list element:

R> models list[[1]]

Call:

.f(formula = .x[[1]], data = ..1)
Coefficients:

(Intercept) dep_delay

-5.857 1.026
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Model families

Today we'll mostly focus on linear models as an example. However, there is a multitude of families of statistical models
that allow extending linear models. Examples are

« Generalized linear models [ stats :: glm() ], which extend linear models to include non-continuous responses (e.g,,
binary or categorical data, counts)

« Generalized additive models [ mgcv :: gam() |, which extend generalized linear models to incorporate arbitrary smooth
functions

 Penalized linear models [ glmnet :: glmnet() ], which introduce terms that penalize complex models to make models
that generalize better to new datasets
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Model families

Today we'll mostly focus on linear models as an example. However, there is a multitude of families of statistical models
that allow extending linear models. Examples are

« Generalized linear models [ stats :: glm() ], which extend linear models to include non-continuous responses (e.g,,

binary or categorical data, counts)
« Generalized additive models [ mgcv :: gam() |, which extend generalized linear models to incorporate arbitrary smooth

functions
 Penalized linear models [ glmnet :: glmnet() ], which introduce terms that penalize complex models to make models

that generalize better to new datasets

Also there is so much more to learn in terms of modeling/machine learning/Al. There are many (MANY!) models for
measurement, (un-)supervised learning, clustering, dimensionality reduction, ... R is uniquely flexible for implementing
these models. To get a quick glance at the universe from afar, check out the CRAN Task Views, a curated online directory
of topics and the R packages relevant for tasks related to these.
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Running models: examples

Luckily, these models all work similarly from a programming experience - once you've mastered how to run linear
models, you will find it easy to Implement others. Understanding and applying them wisely is a different matter though.

Logistic regression

mtcars, family = binomial)

R> logit _out ¢ stats::glm(am ~ cyl + hp + wt, data

Generalized additive model regression

R> gam_out ¢ mgcv::gam(mpg ~ s(disp) + s(wt), data = mtcars)
Penalized (here: lasso) regression
R> lasso_out ¢ glmnet(as.matrix(mtcars[-1]), mtcars[,1], standardize = TRUE, alpha = 1)

Multilevel model with random intercepts

R> library(1lmes)
R> ml_out ¢« lmer(arr_delay ~ distance + origin + (1|carrier) + (1|tailnum), data = flights)
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Decisions in the modeling workflow

Big data and the need for models

e In the early days of the big data hype, people were
overly enthusiastic about its implications for
modeling (see quote on the right).

e This is falling for the inception that we can simply
"let the data speak".

e However, the data science workflow Is a sequence of
subjective decisions from start to finish, with lots of
researcher degrees of freedom.

e Think of all the weakly justified decisions regarding:

o data collection / selection
o measurement

o model choice

o model specification

o reporting

"Scientists are trained to recognize that correlation is
not causation, that no conclusions should be drawn
simply on the basis of correlation between X and V. (...)
Once you have a model, you can connect the data sets
with confidence. Data without a model is just noise. (...)
There is now a better way. Petabytes allow us to say:
"Correlation is enough." We can stop looking for models.
We can analyze the data without hypotheses about what
it might show."

Chris Anderson, "The End of Theory: The Data Deluge
makes the Scientific Method Obsolete (2008, Wired)"
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Decisions in the modeling workflow

Big data and the need for models

e In the early days of the big data hype, people were
overly enthusiastic about its implications for
modeling (see quote on the right).

e This is falling for the inception that we can simply
"let the data speak".

e However, the data science workflow Is a sequence of
subjective decisions from start to finish, with lots of
researcher degrees of freedom.

e Think of all the weakly justified decisions regarding:

o data collection / selection
o measurement

o model choice

o model specification

o reporting

Question: How do researchers usually deal with this?

"Scientists are trained to recognize that correlation is
not causation, that no conclusions should be drawn
simply on the basis of correlation between X and V. (...)
Once you have a model, you can connect the data sets
with confidence. Data without a model is just noise. (...)
There is now a better way. Petabytes allow us to say:
"Correlation is enough." We can stop looking for models.
We can analyze the data without hypotheses about what
it might show."

Chris Anderson, "The End of Theory: The Data Deluge
makes the Scientific Method Obsolete (2008, Wired)"
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Nested models

TaBLE3 Change in Pork Earmark Spending by Zip Code from Pre- to Post-Redistricting Years

Dependent Variable: Change in Logged
Earmark Spending per Capita, per Year

Model (1) Model (2) Model (3) Model (4) Model (5)
Proposition 1(c): —1.23* —1.50** —1.50** —1.46** —1.61**
A District Diversity Index (0.55) (0.55) (0.55) (0.55) (0.57)
(Dpost — Dere)
Per Capita Income ($1,000s) —0.0072** —0.0063* —0.0057* —0.0056* —0.0056
(0.0027) (0.0028) (0.0029) (0.0029) (0.0029)
Poverty Rate —0.73 —0.78 —0.74 —0.73 —0.66
(0.42) (0.42) (0.42) (0.42) (0.43)
Racial Minority 0.36** 0.34** 0.46* 0.52%* 0.49**
(0.12) (0.12) (0.19) (0.18) (0.19)
Population Density 0.0073 0.21 0.54 0.66 0.62
(1,000,000s/Sq. Mi.) (1.38) (1.38) (1.44) (1.43) (1.43)
Democrat (Pre-Redistricting) to — 0.39*** 0.40*** 0.40%** 0.49***
Republican (Post-Redistricting) (0.099) (0.10) (0.099) (0.11)
Senator
Republican (Pre-Redistricting) to — —0.24 —0.25 —0.25 —0.27
Democrat (Post-Redistricting) (0.18) (0.18) (0.18) (0.18)
Senator
2000 Gore Vote Share — — —0.30 — —
(0.36)
12000 Gore Vote Share —0.50! — — — —0.57 —0.41
(0.44) (0.44)
Post-Redistricting Senator is More — — — — —0.039
Junior (0.079)
Post-Redistricting Senator is More — — — — —0.17
Senior (0.087)
Constant 0.078 0.046 0.16 0.047 0.090
(0.098) (0.099) (0.18) (0.099) (0.11)
N 1,599 1,599 1,599 1,599 1,599

***p < .001; **p < .01; *p < .05; (two-tailed); standard errors in parentheses.
The dependent variable is measured as log(Y5%" / Population, + 1) — log( Y52/ Population,, + 1), where Y5 represents per-year pork

spending in zip code Z during 2003-2004, and YZ** is the same measurement for years 1998-2002.

Ccredit Chen 2010, The Effect of Electoral Geography on
Pork Barreling in Bicameral Legislatures

TABLE 3. HIERARCHICAL REGRESSION ANALYSIS OF PREDICTORS OF CIVIC PARTICIPATION

Predictor variables

Gender (1, female; 0, male)
Hometown (1, Texas; 0, elsewhere)
Ethnicity
Black (1, yes; 0, no)
Latino (1, yes; 0, no)
White (1, yes; 0, no)
Year in school (1, freshman; 6, doctoral)
Parents’ education (1, less than high school; 5, graduate)
Life satisfaction
Social trust
Needs for using Groups
Socializing
Entertainment
Self-status seeking
Information
RZ
R? change

1 < 0.05; *p < 0.01; **p < 0.001.

Regression 1

0.06%**
_0 .0 ok

—0.04
0.02
0.01

—0.21*
0.02%*

0.04
0.04

Regression 2

0.05%+*
—0.03*

—0.04
0.02

—0.00

70.21 ok
0.02%*
027+
023 A

0.08
0.05

Regression 3

0.05**
—0.03*

—0.05
0.01
0.00

—0.21*
0.02**
0.25%**
0.20%#*

—-0.01

—-0.10
0.01
0.]4***
0.16
0.08

Credit Park et al. 2009, Being immersed in social
networking environment: Facebook groups, uses and

gratifications, and social outcomes
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Exploring the model space

« Another idea: run not an arbitrary (small) set of
models but as many (plausible ones) as possible to
get an idea how much conclusions change
depending on arbitrary data wrangling and
modeling choices (the "model distribution").
There are various related procedures and labels
used in different subfields to promote this ideg,
including:

o Multiverse analysis (Steegen et al. 2016)

o Specification curves (Simonsohn et al. 2020)

o Computational multimodel analysis (Young and

Holsteen 2015)

Also check out critical perspective on "Mulltiverse
Analysis" (Julia Rohrer). The bottom line: Mindless
multiversing doesn't give more robustness or
insight.

Qs

PSYCHOLOGICAL SCIENCE

Perspectives on Psychological Science
2016, Vol. 11(5) 702-712

Increasing Transparency Through a © The Auhor® 2016
Reprints and permissions:

Multiverse Analysis sagepub.com/journalspenmissions nav
DOI: 10.1177/1745691616658637
pps.sagepub.com

©®SAGE

Sara Steegen’, Francis Tuerlinckx!, Andrew Gelman?, and
Wolf Vanpaemel®

KU Leuven, University of Leuven and 2Columbia University

Abstract

Empirical research inevitably includes constructing a data set by processing raw data into a form ready for statistical
analysis. Data processing often involves choices among several reasonable options for excluding, transforming, and
coding data. We suggest that instead of performing only one analysis, researchers could perform a multiverse analysis,
which involves performing all analyses across the whole set of alternatively processed data sets corresponding to
a large set of reasonable scenarios. Using an example focusing on the effect of fertility on religiosity and political
attitudes, we show that analyzing a single data set can be misleading and propose a multiverse analysis as an alternative
practice. A multiverse analysis offers an idea of how much the conclusions change because of arbitrary choices in data
construction and gives pointers as to which choices are most consequential in the fragility of the result.

Sociological Methods & Research
1-38

Model Uncertainty R@ The Audthor(s)‘ 2015
and Robustness: segsconloumbteron v
A Computational sm.sagepub.com

P ©SAGE

Framework for
Multimodel Analysis

Cristobal Young' and Katherine Holsteen?

Abstract

Model uncertainty is pervasive in social science. A key question is how robust
empirical results are to sensible changes in model specification. We present a
new approach and applied statistical software for computational multimodel
analysis. Our approach proceeds in two steps: First, we estimate the modeling
distribution of estimates across all combinations of possible controls as well as
specified functional form issues, variable definitions, standard error calculations,
and estimation commands. This allows analysts to present their core, preferred
estimate in the context of a distribution of plausible estimates. Second, we
develop a model influence analysis showing how each model ingredient affects
the coefficient of interest. This shows which model assumptions, if any, are
critical to obtaining an empirical result. We demonstrate the architecture and
interpretation of multimodel analysis using data on the union wage premium,
gender dynamics in mortgage lending, and tax flight migration among U.S. states.
These illustrate how initial results can be strongly robust to alternative model
specifications or remarkably dependent on a knife-edge specification.
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Specification curves

 Specification curve analysis (SCA) facilitates the
. . . . . . nature i RESOURCE
visual identification of the source of variation in human behaviour bitpes/oiorg/10:1038/s41562-020-09122

results across multiple specifications. B ctes oy
» The key feature, the specification curve, provides all Specification curve analysis
gathel’ed eStimateS SO rted by effeCt Size and Uri Simonsohn ©'™, Joseph P. Simmons? and Leif D. Nelson ©3

i 1 1 i Empirical results hinge on analytical decisions that are defensible, arbitrary and motivated. These decisions probably introduce
h I g h I‘ I g h te d by S I g n | ﬁ Ca n Ce : bias (towards the narrative put forward by the authors), and they certainly involve variability not reflected by standard errors.
To address this source of noise and bias, we introduce specification curve analysis, which consists of three steps: (1) identify-

° S C A | S C a r r| e d O u t | N t h re e m a | N Ste p S ing the set of theoretically justified, statistically valid and non-redundant specifications; (2) displaying the results graphically,

allowing readers to identify consequential specifications decisions; and (3) conducting joint inference across all specifications.
We illustrate the use of this technique by applying it to three findings from two different papers, one investigating discrimina-

1. Define the set of reasonable specifications to Specifcation curve analyais reveats that one finding 1 robust, one s weak and one s notrabust atall,
estimate;

2. Estimate all specifications and report the : Pupco oo rmoathor B Tworseamhovihsmarvws € Toreseachrs i dsiiarvws
results in a descriptive specification curve; and

3. Conduct joint statistical tests using an

Researchers 1 and 2

Non-redundant sets

A\

L . - -3
/" Selectively reported | Selectively reported

\\\ __Non-redundant ,// Non-redundant

/Selectively reported® \ /
{ | /@

\ )
\Selectively reported by 2/ /
N ® g4

/Selectively reported by\?\\

“\._Non-redundant_

Inferential specification curve.

All possible specifications All possible specifications All possible specifications

e As of now there are two R packages that offer high-
level functions for specification: specr (see here) Fesatche would conde a0 raport, b Diferent eseaehers e havesmila iews on h st of valid aecHications b epor e afret

subsets of them. ¢, Different researchers may also disagree on the set of specifications they consider valid.
and Multiverse (see here).
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Specification curves (cont.

e Original specification + P<0.05 « NS - 15

~ 10
-5

syeep eAx3

Controlling for year

Post 1979 (1/0) x damages
Year x damages

None

Femininity of name: main effect or interaction with intensity
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Drop none . P e ememes mases .

Specification (n)

Fig. 2 | Descriptive specification curve. Each dot in the top panel (green area) depicts the marginal effect, estimated at sample means, of a hurricane
having a female rather than male name; the dots vertically aligned below (white area) indicate the analytical decisions behind those estimates. A total of
1,728 specifications were estimated; to facilitate visual inspection, the figure depicts the 50 highest and lowest point estimates and a random subset of
200 additional ones, but the inferential statistics for specification curve analysis include all 1,728 specifications. NS, not significant.
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Why model processing?

When estimating a model, we usually summary(model out)

estimate parameters (or simulate call-

dlSUIbUtIOI’]S thereOf) There |S, however, more lm(formu'[_a = al’-r_de'[_ay ~ distance + Origin' data = -F'nghts)
that we can take away from the estimation, _

includi Residuals:

INCLUding: Min 1Q Median 3Q Ma x

-89.04 -24.00 -11.83 7.26 1281.45

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 13.4140488 0.1748144 76.73 <2e-16 **%
distance -0.0040451 0.0001097 -36.87 <2e-16 **%
originJFK -2.7042552 0.1887083 -14.33 <2e-16 *x**%
originlLGA -4.4561694 0.1935123 -23.03 <2e-16 ***%

Sig. codes: 0 '"**' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' " 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)

Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493
F-statistic: 603.7 on 3 and 327342 DF, p-value: < 2.2e-16
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Why model processing?

When estimating a model, we usually summary(model out)

estimate parameters (or simulate T

dlSUIbUtIOI’]S thereOf) There |S, however, maore 'Lm(formu'[_a = a]_"r_de'[_ay ~ distance + Origin' data = -F'nghts)
that we can take away from the estimation, _

includi Residuals:

Juetbigling: Min 1Q Median 3Q Ma x

. . . -89.04 -24.00 -11.83 7.26 1281.45
« Estimated coefficients and associated

standard errors, T-statistics, p-values, Coefficients:

) Estimate Std. Error t value Pr(>|t])
confidence intervals

(Intercept) 13.4140488 0.1748144 76.73 <2e-16 **%
distance -0.0040451 0.0001097 -36.87 <2e-16 **x
originJFK -2.7042552 0.1887083 -14.33 <2e-16 **%
originlLGA -4.4561694 0.1935123 -23.03 <2e-16 **%

Sig. codes: 0 '"**' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' " 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)

Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493
F-statistic: 603.7 on 3 and 327342 DF, p-value: < 2.2e-16
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Why model processing?

When estimating a model, we usually summary(model out)

estimate parameters (or simulate T

dlSUIbUtIOI’]S thereOf) There |S, however, maore 'Lm(formu'[_a = a]_"r_de'[_ay ~ distance + Origin' data = -F'nghts)
that we can take away from the estimation, _

includi Residuals:

Juetbigling: Min 1Q Median 3Q Ma x

. . . -89.04 -24.00 -11.83 7.26 1281.45
« Estimated coefficients and associated

standard errors, T-statistics, p-values, Coefficlents:

) Estimate Std. Error t value Pr(>|t])
confidence intervals

(Intercept) 13.4140488 0.1748144 76.73 <2e-16 **x

 Model summaries, including goods of fit distance  -0.0040451 0.0001097 -36.87 <2e-16 %%
measures, information on model originJFK  -2.7042552 0.1887083 -14.33 <2e-16 w#**
convergence,nunﬁber(JFobservannS originLGA -4.4561694 0.1935123 -23.03 <2e-16 **x
used L

Sig. codes: O '¥*' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)

Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493
F-statistic: 603.7 on 3 and 327342 DF, p-value: < 2.2e-16
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Why model processing?

When estimating a model, we usually
estimate parameters (or simulate
distributions thereof). There is, however, more
that we can take away from the estimation,
including:

« Estimated coefficients and associated
standard errors, T-statistics, p-values,
confidence intervals

« Model summaries, including goods of fit
measures, information on model
convergence, number of observations
used

« Observation-level information that
arises from the estimated model, such as
fitted/predicted values, residuals,
estimates of influence

summary(model_out)

Call:
Im(formula =

Residuals:

Min 1Q Median
-89.04 -24.00 -11.83
Coefficients:

(Intercept) 13.
distance -0.
originJFK -2

originlLGA -4,

Sig. codes: ©

Estimate Std.

4140488
0040451

. 7042552

4561694

**%

' 0.001 '

arr_delay ~ distance +

origi

3Q Max
7.26 1281.45

Error t value
0.1748144 76.73
0.00016097 -36.87
0.1887083 -14.33
©.1935123 -23.03

**' 0.01 '*x'

n, data =

Pr(>[tl)
<2e-16
<2e-16
<2e-16
<2e-16

0.05 ".'

flights)

*%%
*K%
*%%x

*%%x

0.1 " "1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)
Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493

F-statistic: 603.7 on 3 and 327342 DF,

p-value: < 2.2e-16
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Processing estimation output in R

e Fitting a model returns an R> model out ¢« lm(arr_delay ~ distance + origin, data = flights)
object of a certain model class R> class(model_out)
(here: 1m). (1] "l
e Printing that object returns a
quite minimalist set of R> model out
information - just the input
formula and coefficients. Call:

Im(formula = arr_delay ~ distance + origin, data = flights)

Coefficients:
(Intercept) distance originJFK originLGA
13.414049 -0.004045 -2.704255 -4.456169
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Processing estimation output in R

e Fitting @ model returns an R> names(model_out)
object of a certain model class
] [1] "coefficients" "residuals" "effects" "rank"
(here: 1m). . . .
o . [5] "fitted.values" "assign" "qr" "df.residual”
« Printing that object returns a (9] "na.action” " contrasts” "levels" "eall”
quite minimalist set of [13] "terms" "model"

information - just the input
formula and coefficients.

e The anatomy of the object is
considerably more complex. It
comes as a list of various
components, including the
coefficients, residuals, fitted
values, and original model
Input.
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Processing estimation output in R

e Fitting @ model returns an R> str(model out)
object of a certain model class
List of 14
(here: m). ..
o . $ coefficients : Named num [1:4] 13.41405 -0.00405 -2.70426 -4.45617
e Printing that object returns a o atiE(s. Tnemes®)e @i [1:6] (intercant)® Cdhstance® CondcinIEe o
quite minimalist set of $ residuals : Named num [1:327346] 3.25 16.77 26.7 -22.33 -30.88
information_justtheinput 00 = attr(*, "names" )= chr [1:327346] "1" "2" "3" "4"
Sarmulla and coetE e s $ effects : Named num [1:327346] -3945.1 1579.9 294.2 1025 —3Q.§
_ . ..— attr(*, "names")= chr [1:327346] "(Intercept)" "distance" "originJ
e The anatomy of the object is $ rank . int 4
considerably more complex. It $ fitted.values: Named num [1:327346] 7.75 3.23 6.3 4.33 5.88
comes as a list of various .- attr(x, "names")= chr [1:327346] "1" "2" "3" "4"
. ; assign :int [1:4] 0 1 2 2
components, including the $ = , [1:4]
_ _ $ qr :List of 5
coefficients, residuals, fitted .$qr : num [1:327346, 1:4] -5.72e+02 1.75e-03 1.756-03 1.75¢-03 1.
values, and original model . .- attr(*, "dimnames")=List of 2
input. v oo b :ochr [1:327346] "1™ "2" "3" "4"

..$ : chr [1:4] "(Intercept)" "distance" "originJFK" "originLGA"
attr(*, "assign")= int [1:4] 0 1 2 2
attr(*, "contrasts")=List of 1
long. .. . ..$ origin: chr "contr.treatment"

..$ qraux: num [1:4] 1 11 1

..$ pivot: int [1:4] 1 2 3 4

e There's no way to print this list
on the slide in full - it's just too

36/ 68



Processing estimation output in R

e However, there are some high- R> coef(model out)
level functions we can apply to
: : Intercept distance originJFK originlLGA
do something useful with the ( Pt) . . 184
13.414048769 -0.004045067 -2.704255237 -4.456169356

model object, including:
o coef() to extract the
coefficients
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Processing estimation output in R

e However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

o coef() to extract the
coefficients

o fitted.values() to extract
the outcome values
predicted by the model

R> coef(model out)

(Intercept) distance originJFK originlLGA
13.414048769 -0.004045067 -2.704255237 -4.456169356

R> fitted.values(model out)[1:5]

1 2 3 4 5
7.750955 3.230064 6.304715 4.334768 5.875538
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Processing estimation output in R

e However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

o coef() to extract the
coefficients

o fitted.values() to extract
the outcome values
predicted by the model

o residuals() to extract the
residuals

R> coef(model out)

(Intercept) distance originJFK originlLGA
13.414048769 -0.004045067 -2.704255237 -4.456169356

R> fitted.values(model out)[1:5]

1 2 3 4 5
7.750955 3.230064 6.304715 4.334768 5.875538

R> residuals(model out)[1:5]

1 2 3 4 5
3.249045 16.769936 26.695285 -22.334768 -30.875538

39 / 68



Processing estimation output in R

e However, there are some high- R> coef(model out)

level functions we can apply to
(Intercept) distance originJFK originlLGA

do something useful with the
13.414048769 -0.004045067 -2.704255237 -4.456169356

model object, including:
o coef() to extract the R> fitted.values(model out)[1:5]
coefficients

o fitted.values() to extract 1 2 = & >

7.750955 3.230064 6.304715 4.334768 5.875538
the outcome values

predicted by the model R> residuals(model out)[1:5]
o residuals() to extract the
residuals ! 2 3 b >
3.249045 16.769936 26.695285 -22.334768 -30.875538
o model.matrix() to extract
the matrix of original input R> model.matrix(model _out) %>% head(4)

variables (predictors)
(Intercept) distance originJFK originlLGA

1 1 1400 0 0
2 1 1416 0 1
3 1 1089 1 0
4 1 1576 1 0
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Processing estimation output in R

e To learn more about the R> summary(model_out)
estimated model, we can apply
the summary() function. call:
e The summary method is specific Im(formula = arr_delay ~ distance + origin, data = flights)
to the model class it is applied Residuals:
to (here: "1m "). To learn more, Min 1Q Median 3Q Ma x
you'd have'U)ca[Leagq ? -89.04 -24.00 -11.83 7.26 1281.45
summary.lm Or ?summary.glm. Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 13.4140488 0.1748144 76.73 <2e-16 ***%
distance -0.0040451 0.0001097 -36.87 <2e-16 *x**
originJFK -2.7042552 0.1887083 -14.33 <2e-16 *x*%
originlLGA -4.4561694 0.1935123 -23.03 <2e-16 *x*%

Signif. codes: 0 'x**' 0.001 '¥x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)
Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493

F-statistic: 603.7 on 3 and 327342 DF, p-value: < 2.2e-16
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Processing estimation output in R

e To learn more about the R> class(summary(model out))
estimated model, we can apply

the summary() function. L)) S0 L

e The summary method is specific
to the model class it is applied
to (here: "1m "). To learn more,
you'd have to call, e.g,, 2
summary.lm Or ?summary.glm.

e The function creates more than
a printed summary in the
console. It returns an object of
class summary.lm, which can be

further dissected.
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Processing estimation output in R

e To learn more about the R> str(summary(model out))
estimated model, we can apply

- List of 12
the summary() function. . ..
] ] $ call : language Im(formula = arr_delay ~ distance + origin, d;

e The summary method is specific $ terms :Classes 'terms', 'formula' language arr_delay ~ distan

to the model class it is applied .. .- attr(*, "variables")= language list(arr_delay, distance, origin

to (here: "1m ”). To learn more, 0o o0 = attr(*, "factors")= int [1:3, 1:2] 61 0 0 0 1

you'd have to call, eg, ? ..— attr(*, "dimnames")=List of 2. -

ve we oo .$ : chr [1:3] "arr_delay" "distance" "origin"

summary.lm OF ?summary.gim. ee v o« % : chr [1:2] "distance" "origin"
e The function creates more than .. .- attr(*, "term.labels")= chr [1:2] "distance" "origin"

a prlnted Summary |n the oo 00 = attr(*, "Order"): int [12] 11

..— attr(x, "intercept")= int 1

console. It returns an object of \ N
..— attr(x, "response")= int 1

class summary.lm, which can be

.. .- attr(s%, ".Environment") <environment: R_GlobalEnv>
further dissected. .. ..- attr(*, "predvars")= language list(arr_delay, distance, origin)
« Again, there's no way to print .. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "ch:
i (et @ e <lfde il = fis oo o attr(x, "names")= chr [1:3] "arr_delay" "distance" "origin"
] $ residuals : Named num [1:327346] 3.25 16.77 26.7 -22.33 -30.88
Just too long. .- attr(*, "names")= chr [1:327346] "1" "2" "3" "4"

$ coefficients : num [1:4, 1:4] 13.41405 -0.00405 -2.70426 -4.45617 0.1
..- attr(*, "dimnames")=List of 2 43/ 68
..$ : chr [1:4] "(Intercept)" "distance" "originJFK" "originLGA"



Dissecting model objects

The problem

"While model inputs usually require tidy inputs, such
attention to detail doesn't carry over to model outputs.
Outputs such as predictions and estimated coefficients
aren't always tidy. This makes it more difficult to
combine results from multiple models. For example, in R,
the default representation of model coefficients is not
tidy because it does not have an explicit variable that
records the variable name for each estimate, they are
instead recorded as row names. (...) This knocks you out
of the flow of analysis and makes it harder to combine
the results from multiple models. I'm not currently aware
of any packages that resolve this problem."

Hadley Wickham, "Tidy Data"

The solution?

See next slide!
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https://www.jstatsoft.org/article/view/v059i10

Processing estimation output with broom

broom IS a suite of tools that summarizes key information about models. It
takes the messy output of built-in functions in R, such as 1m or t.test, and
turns them into tidy tibbles() (think: dataframes). The output is not ready
for publication but an important intermediary step that makes post-
processing of estimation results more convenient. It is part of the tidyverse
and tidymodels.

There are three key broom verbs that you need to learn.

1. tidy(): Summarizes information about model components.
2. glance(): Reports information about the entire model.

3. augment(): Adds information about observations to a dataset.

1 For a more detailed and comprehensive introduction, see the official documentation at https://broom.tidymodels.org/.
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Tidy model objects with tidy()

broom's tidy() function extracts the coefficient block (the model component) together with inferential statistics:

R> broom:: tidy(model _out, conf.int = TRUE, conf.level = 0.95)

# A tibble: 4 x 7

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 13.4 0.175 76.7 0 13.1 13.8
2 distance -0.00405 0.000110 -36.9 5.53e-297 -0.00426 -0.00383
3 originJFK -2.70 0.189 -14.3 1.46e- 46 -3.07 -2.33
4 originlLGA -4.46 0.194 -23.0 3.04e-117 -4.84 -4.08
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Tidy model objects with tidy()

broom's tidy() function extracts the coefficient block (the model component) together with inferential statistics:

R> broom:: tidy(model _out, conf.int = TRUE, conf.level = 0.95)

# A tibble: 4 x 7

term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 13.4 0.175 76.7 0 13.1 13.8
2 distance -0.00405 0.000110 -36.9 5.53e-297 -0.00426 -0.00383
3 originJFK -2.70 0.189 -14.3 1.46e- 46 -3.07 -2.33
4 originlLGA -4.46 0.194 -23.0 3.04e-117 -4.84 -4.08

Here, we also extract the upper and lower bounds on the 95% confidence intervals for the estimates. What makes the
function so convenient is the fact that the output comes as a tidy tibble with useful variable names.

What exactly is extracted depends on the model type. You can learn more about the tidying function by typing 2tidy.
[model class], €.8.. ?tidy.1lm.
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Summarize model statistics with glance()

broom's glance() function extracts summary statistics of the model and provides them in a single-row tibble:

R> broom:: glance(model_out)

# A tibble: 1 x 12

r.squared adj.r.squared sigma statistic p.value df loglLik AIC BIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00550 0.00549 44.5 604, 0 3 -1706997. 3.41e6 3.41e6

# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
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Augment data with model information with augment()

broom's augment() function adds model information about each observation in a dataset, including, e.g.:

o predicted values (in the .fitted column)
o residuals ( .resid)
« standard errors of fitted values ( .se.fit; optional)

R> broom::augment(model _out, se_fit = TRUE) %>% head(3)

# A tibble: 3 x 11

.rownames arr_delay distance origin .fitted .se.fit .resid .hat .sigma

<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
11 11 1400 EWR 7.75 0.135 3.25 0.00000922 44,5
2 2 20 1416 LGA 3.23 0.156 16.8 0.0000123 44,5
33 33 1089 JEK 6.30 0.136 26.7 0.00000938 44,5
# i 2 more variables: .cooksd <dbl>, .std.resid <dbl>
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Augment data with model information with augment()

broom's augment() function adds model information about each observation in a dataset, including, e.g.:

o predicted values (in the .fitted column)
o residuals ( .resid)
« standard errors of fitted values ( .se.fit; optional)

R> broom::augment(model _out, se_fit = TRUE) %>% head(3)

# A tibble: 3 x 11

.rownames arr_delay distance origin .fitted .se.fit .resid .hat .sigma

<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
11 11 1400 EWR 7.75 0.135 3.25 0.00000922 44,5
2 2 20 1416 LGA 3.23 0.156 16.8 0.0000123 44,5
33 33 1089 JEK 6.30 0.136 26.7 0.00000938 44,5
# i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

It is also possible to pass on data that was not used during model fitting using the newdata argument. This requires that
at least all predictor variable columns used to fit the model are present. Providing new data can be useful if one is
Interested to generate predictions for a test set.
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Unlocking the power of broom with multiple models

The true power of broom unfolds in settings where you want to combine results from multiple analyses (using subgroups
of data, different models, bootstrap replicates of the original data frame, permutations, imputations, ...).
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Unlocking the power of broom with multiple models

The true power of broom unfolds in settings where you want to combine results from multiple analyses (using subgroups
of data, different models, bootstrap replicates of the original data frame, permutations, imputations, ...).

Does this ring a bell? Well, let's go back to our covariate selection sensitivity analysis. Recall that in Steps 1to 3, we had
specified and run 63 models. Let's evaluate the results now. First, extract the results in a tidy fashion:
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Unlocking the power of broom with multiple models

The true power of broom unfolds in settings where you want to combine results from multiple analyses (using subgroups
of data, different models, bootstrap replicates of the original data frame, permutations, imputations, ...).

Does this ring a bell? Well, let's go back to our covariate selection sensitivity analysis. Recall that in Steps 1to 3, we had
specified and run 63 models. Let's evaluate the results now. First, extract the results in a tidy fashion:

Step 4 (continuing the analysis from above): Extract results from all models

R> models_broom ¢« map(models_list, broom::tidy)
R> models broom[[1]]

# A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -5.86 0.198 -29.6 5.79e-185
2 dep_delay 1.03 0.00484 212. 0

Next, let's merge them all into one data frame:

R> models_broom_df ¢« map_dfr(models_broom, rbind)
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Unlocking the power of broom with multiple models

Step 5: Summarize the estimates for subset of key predictors

R> models _broom _df %>%

+ filter(!str_detect(term, "Intercept|carrier")) %>%
+ ggplot(aes(estimate)) +
+ geom_histogram(binwidth = .1, color = "red") +
+ geom_vline(xintercept = 0, linetype="dashed") +
+  facet_grid(cols = vars(term), scales = "free y") +
+  theme_minimal()
air_time dep_delay distance hour origindFK originLGA
1 1 1 | | |
30 | | | I I I
I I I I I I
T 20 I I I I I I
E; I I I I
O I I I I
10 I I I
! ' : _-.l.l_l.LL:.l.l_
0 1 t -.-.l.d.‘.-_k_l_
4 -2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2 4 -2 0 2

estimate
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Reporting modeling results

Why good reporting is as important as Making reporting part of the workflow

good modeling « Our vision of the data science workflow is to
automate as much as possible in order to have time
for the really important decisions.

e Since reporting results is usually at the end of the
workflow, this step is affected by any change in the
previous steps. Any manual work here hurts twice.

e Reporting and publishing results should be seen as
part of the workflow. Even if we don't work with
RMarkdown to write our reports, we want avoid
copy-and-paste work into other software.

e Hardly anybody will read your code. Most
stakeholders will not even be able to understand
what you've done.

e Not all components of your model are equally
relevant.

e Good communication of your model can save a lot
of time a space.

Visualise

Import — Tidy — Transform ) —— Communicate

Understand
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Summarizing models (and data) with modelsummary

modelsummary IS a suite of tools to create table and plot summaries of
models and data. It supports hundreds of model types out-of-the-box and
the output can be saved to a wide variety of formats, including HTML, PDF,

Text/Markdown, LaTeX, MS Word, JPG, and PNG.

modelsummary

There are three key modelsummary verbs that you need to learn.’

1. modelsummary(): Create regression tables with side-by-side models.

2. modelplot(): Create coefficient plots of model results.

3. datasummary_x(): Create data summaries such as cross-tabs or balance

tables.

" There is more in modelsummary than what we can cover today. Have a glimpse at Vincent Arel-Bundock's page.
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https://vincentarelbundock.github.io/modelsummary/

Creating regression tables with modelsummary()

e modelsummary() takes one or R> modelsummary(list(modell_out, model2 out, model3 out))
several models as input.
Multiple models are provided (1) (2) (3)
=65 (etiome iy Ermee) (55 (Intercept)  -5.899 10.829 3213

e The extraction of information
(estimates, standard errors, (0.033) (0136) (0.056)
model summaries etc.) is taken dep_delay 1019 1018
care of by the function.

(0.001) (0.007)

e On this slide you see how
modelsummary() generates distance -0.004 -0.003
content ready to be rendered as
HTML table. With the output
argument, we can also ask the
function to creat .tex, .rmd, R2 0.837 0.004 0.839
.txt, .png,and .jpg.

e Although the defaults are good,
be sure to refine the table AlC 2822272.7 3414551.8 2818708.3

(0.000) (0.000)

Num.Obs. 327346 327346 327346

R2 Adj. 0.837 0.004 0.839

before publishing it. BIC 2822304.8 34145839 28187511 55/ 68



Modifying regression tables

e Here's one example for R>
that. R> modell_out ¢« lm(arr_delay ~ dep_delay, data = flights)
R> model2 out ¢« lm(arr_delay ~ distance, data = flights)

e With estimate we define _ ,
R> model3 out ¢« lm(arr_delay ~ dep_delay + distance, data = flights)

a glue string to display R> models ¢ list(modell out, model2 out, model3_out)
estimates alongside R>
confidence intervals. R>

R> modelsummary(models,
+ estimate = "{estimate} [{conf.low}, {conf.high}]",
+ statistic = NULL,
« We omit any goodness- + gof_omit = ".+",
of-fit stats with gof_omit + title = "Linear regression of flight delay at arrival (in mins)")

and a regular expression,
e We provide a title.

o We suppress uncertainty
statistics with statistic.

Linear regression of flight delay at arrival (in mins)
(1) (2) (3)
(Intercept) -5.899 [-5.964, -5.835] 10.829 [10.564, 11.095]  -3.213 [-3.322, -3.104]

dep_delay  1.019 [1.018, 1.021] 1.018 [1.017, 1.020]
distance ~0.004 [-0.004, -0.004] -0.003 [-0.003, -0.002]
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https://glue.tidyverse.org/reference/glue.html

Modifying regression tables (cont.)

The modelsummary() function is extremely versatile. The defaults are good,
but it will pay off to invest some time to learn the details, which are
documented here.

In addition, it supports other table-making packages to further customize
the appearance of tables. The details are documented here.

But | don't want to force anything on you. As always in R, there are several
other excellent packages that help to create tables, including:

e gtsummary by Daniel Sjoberg
e textreg by Philip Leifeld

e stargazer by Marek Hlavac
e sjPlot by Daniel Ludecke

In any case, do invest some time in learning the function's options and in
actually producing readable and informative tables before publishing them.
(1-3 hours per table are fine!)

R> modelsummary(

models,

output = "default",

fmt = 3,

estimate = "estimate",
statistic = "std.error",
vcov = NULL,

conf_level = 0.95,
stars = FALSE,
coef_map = NULL,
coef_omit = NULL,
coef _rename = NULL,
gof_map = NULL,
gof_omit = NULL,
group = term ~ model,
group_map = NULL,
add_rows = NULL,

align = NULL,
notes = NULL,
title = NULL,

escape = TRUE,
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https://vincentarelbundock.github.io/modelsummary/articles/modelsummary.html
https://vincentarelbundock.github.io/modelsummary/articles/appearance.html
http://www.danieldsjoberg.com/gtsummary/
https://cran.r-project.org/web/packages/texreg/index.html
https://cran.r-project.org/web/packages/stargazer/index.html
https://strengejacke.github.io/sjPlot/

modelsummary() tables: more examples

modelsummary package for R

Donations Crimes (persons) Crimes (property)
oLS1 Poisson 1 oLS 2 Poisson 2 OLS 3 Table 1: modelsummary package for R
Literacy (%) -39.121 0.003*** 3.680 -0.000%*** -68.507*** Donations Crimes (person) Crimes (property)
(37.052) (0.000) (46.552) (0.000) (18.029) OLS1 Poisson 1 OLS 2 Poisson 2 OLS 3
Literacy (%) -39.121 0.003*** 3.680 -0.000%** -68.507***
Priests/capita’ 15.257 77.148%* -16.376 (37.052) (0.000) (46.552) (0.000) (18.029)
Priests/capita 15.257 77.148** -16.376
(25.735) (32.334) (12.522) (25.735) (32.334) (12.522)
Patents/capita 0.011%** 0.001%**
Patents/capita 0.077%** 0.007*** (0.000) (0.000)
Constant T948.667F*F*  8.241*** 16259.384*** 9 .876%** 11243.544***
(0.000) (0.000) (2078.276)  (0.006) (2611.140) (0.003) (1011.240)
Num.Obs. 86 86 86 86 86
Constant 7948.667%** 8.2471*** 16259.384*** Q9 876*** 11243.544%* R2 0.020 0.065 0.152
Adj.R2 -0.003 0.043 0.132
(2078.276) (0.006) (2611.140)  (0.003) (1011.240) AIC 1740.8 274160.8 1780.0 257564.4 1616.9
BIC 1750.6 274168.2 1789.9 257571.7 1626.7
Num.Obs. 86 86 86 86 86 Log.Lik. -866.392 -137077.401 -886.021 -128779.186 -804.441
*p < 0.1, ** p < 0.05, *** p < 0.01
R2 0.020 0.065 0.152 First custom note to contain text.
Second custom note with different content.
Adj.R2 -0.003 0.043 0.132
AlC 1740.8 274160.8 1780.0 257564.4 1616.9
BIC 1750.6 274168.2 1789.9 257571.7 1626.7
Log.Lik. -866.392 -137077.401 -886.021 -128779.186 -804.441

TVery important variable.
*p<0.1,*p<0.05**p<0.01

The most important parameter is printed in red.
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Tables vs. plots to communicate model results

The limits of tables The promise of plots
e Tables of coefficients work ok when models are e Coefficient plots can make it more straightforward to
linear and additive. focus on two key features of estimated parameters:
e They are good to communicate "precise" effect size and uncertainty.
information.’ e What's more, they make comparisons across effects
« They are, however, less informative for and models much easier. We humans are visual
o non-linear relationships between z and y ( =2, animals.
log(z), etc.), e Other plots can go a long way to display other
o interaction effects, Implications of models that are not visible from a
o models for categorical data. tabular output, e.g., predicted probability plots,

marginal effects plots, ...

T But sometimes give more precision than warranted. As a rule of thumb, never report more than three decimal points. In most
cases, 0-2 is enough. Your estimates are less precise than that anyway.
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Fig. 3 | Effect of message and incentive treatments on uptake, knowledge, attitudes and behaviour. Each plot shows standardized ITT estimates
with 95% Cls from fully saturated ordinary least squares regression models fit using the pre-registered LASSO covariate selection procedure. The
video message sample comprises n=2,044, 1,356 and 1,337 respondents for estimation of the pooled, pro-social and self-interest treatment effects,
respectively. The incentive sample comprises n=1,015, 513, 516 and 494 respondents for estimation of the pooled, €1, €2 and €5 treatment effects,
respectively.
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https://www.nature.com/articles/s41562-020-01044-x
https://journals.sagepub.com/doi/10.1177/0010414015612388

Creating coefficient plots with modelplot()

modelplot() takes one or R> modelplot(model out)
several models as input.

Multiple models are provided

as (optionally named) list.

e Again, the extraction of

information (estimates,

standard errors, model

originLGA -

summaries etc.) is taken care of e i

by the function.
e The graphs produced by

modelplot() are simple ! *

ggplot2 objects. They can be

post-processed (and exported)

accordingly. (tercept) -
e Although the defaults are good,

be sure to refine the plot before s 0 5 0

Cosfficient estimates and 95% confidence intervals
publishing it.
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Modifying coefficient plots

e Here's one example for
that.

e We provide intuitive
variable names with
coef_map.

« We drop the intercept
with coef omit.

 We make more layout
adaptations with ggplot2
functions that make the
plot better readable.

R> cm < c("distance"

+

+

"Distance",
"Origin: LGA",
"Origin: JFK")

"originLGA"
"originJFK"

R> modelplot(model out,

+ + + 4+ + o+ o+

coef_omit
coef_map = cm) +
x1im(-5, .25) +
geom_vline(xintercept = 0, linetype="dashed") +
labs(title = "Linear regression of flight delay at arrival (in mins)",
caption = "Data source: nycflightsl3 package") +
theme minimal()

"Interc",

Linear regression of flight delay at arrival (in mins)

Origin: JFK —— E
Origin: LGA — :
1

Distance ‘

5 4 -3 2 -1 (IJ

Coefficient estimates and 95% confidence intervals
Data source: nycflights13 package
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Working with interpretable effect sizes

Take care when plotting effect sizes

e One of the major perks of coefficient plots is the
comparability of effects across coefficients.

e This can be, however, also one of the major
problems of these kinds of plots.

e |In order for them to make visual sense, the
underlying covariates have to be inherently
comparable. By showing slopes, the plot shows the
effect of a unit change in each covariate on the
outcome, but unit changes may not be comparable
across variables.

e Also check out the documentation of the

effectsize package for a more thorough discussion

of the problem (and how to tackle it).

Addressing the issue

e There are several ways to address the problem,

including:
o Rescale variables to show intuitive unit changes
in X (e.g., Tkm instead of 1m)
o Rescale to full scale (minimum to maximum)
changes in X
o Standardize variables to show standard
deviation changes in X
Note that any rescaling operation also affects how
you interpret the coefficients (and we're only talking
about the linear case!). Sometimes it also makes
sense to standardize the response variable. In that
case, the coefficients can be interpreted as the
change in the response in standard deviations for a
1 unit change in the predictor (whatever that is).
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https://easystats.github.io/effectsize/

Working with interpretable effect sizes (cont.)

Rescaling (1 unit = 1000 miles) Standardization (1 unit = 1 s.d. on the covariate)
R> R>
R> flights$distancelkmiles ¢« flights$distance/1000 R> flights$distance_std <« standardize(flights$dista
R> model out_kmiles « 1lm(arr_delay ~ R> model out_std <« 1lm(arr_delay ~
+ distancelkmiles + origin, data = flights) + distance_std + origin, data = flights)
R> R>
R> R>
R> modelplot(model _out_kmiles) R> modelplot(model _out_std)
Linear regression of flight delay at arrival (in mins) Linear regression of flight delay at arrival (in mins)
Origin: JFK —— : Origin: JFK —— :
Crigin: LGA —— E Crrigin: LGA —— E
Distance {1k miles) —— : Distance (standardized) —— :
-5 -4 -3 -2 -1 clb -5 -4 -3 -2 -1 -:l}
Coefficient estimates and 95% confidence intervals Coefficient estimates and 95% confidence intervals
Data source: nycflights13 package Data source: nycflights13 package
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More reporting with plots

e There is much, much more that can be done with Fitted vs. true values, Im(ar_delay ~ distance + origin)
plots and model reporting (stay tuned for the
session on visualization!).
e Always be aware about what a model gives you and
which relationships you want to explore or highlight.
e As another example, see the fitted vs. true plots on
the right. The upper scatter plot compares fitted (x-
axis) vs. true (y-axis) values from our standard Fiegvaes wnm
model. It illustrates a really poor fit. Fitted vs. true values, Im(arr_delay ~ dep_delay + distance + origin)
« The lower scatter plot compares fitted-vs-true for a
slight modification of our standard model in which
we also take dep_delay into account as predictor.

Apparently, its a very powerful one.

400

200

Avrrival delay (in mins)

- n [
=] =} =]
o =] o

Arrival delay (in mins)

o

0 100 200 300 400
Fitted values

Data source: nycflights13 package
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Summary
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Summary

Some final bits of advice that didn't fit on the main slides:

1. Before you actually run models, describe the data. That's not only for you. Every report should begin with a
visualization of the phenomena of interest, plotting the rawest data available that is also legible in a graph.

2. Plot early, and plot often! Visualization is not only a great tool for communication, but also for exploration and
statistical analysis (more on that later).

3. Fit many models. At least if you don't commit to one particular subset (— preregistration). Think in terms of series of
models, starting with the utterly simple and continuing through to the hopelessly complex.

4. Table results with care. Please don't just report which effects were significant and which were non-significant. Please
don’t report just p-values. Please don't just report the estimated effects of the significant effects. Report all
estimates that you also discuss.

5. Invest more time in refining plots than you planned to. Good figures aren't only plots. Think of informative headers
and notes. Ideally, your figures are self-contained.
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Assignment

No assignment this time - but don't forget about the quiz!

Next lecture

Visualization. il
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