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The modeling workflow
Credit  David Hood
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Why modeling?
Modeling is at the heart of the data science workflow.
We use models to explore, test, infer, predict based on data.
The art and science of statistical modeling is vast.
Today, we will focus on key steps of the workflow which are common in
most modeling endeavors. We won't touch on theoretical/statistical
backgrounds though and ignore workflow issues in particular areas,
such as simulation-based Bayesian inference or cross-validation in ML.

Steps of the workflow
1. Choose a modeling strategy
2. Specify the model (structural

components / parameters)
3. Run/implement the model

(estimation)
4. Evaluate the model output
5. Present the results

The modeling workflow
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Crafting formulas
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Model building

Systematic + stochastic components of models
When we try to model data, we often start by assuming a data-generating process that looks like

In doing so, we decompose a model (or data-generating process) into a random or stochastic part (here: ) and a
systematic/structural/deterministic part (here: ).

(We might go on to impose further assumptions about the stochastic component, e.g., .)

In many cases, we want to learn how certain variables systematically relate to each other. To that end, we specify the
systematic component of a model and then "let the data speak" to estimate parameters associated with elements of
the systematic component.

As an example, we might specify

But how can we express our belief about the model structure in R?

Y = f(x) + ϵ

ϵ

f(x)

ϵ ∼ N(0, σ2)

f(x) = β0 + β1x
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Model building in R

Model formulas in R
In R, there's a standardized way to specify models like this: working with the formula  class.
In many cases you can still think of the model formula as just a string specifying the structural part of your model
(there are exceptions).
But formula  class objects also allow you to do more useful things with formula.
The basic structure of a formula is the tilde symbol (~) and at least one independent (righthand) variable. In most
(but not all) situations, a single dependent (lefthand) variable is also needed. Thus we can construct a formula quite
simply by just typing:

R> y ~ x

Spaces in formulas are not important, but I recommend using them to make the formulas more readable.
Running a model with a formula is straightforward. Note that we don't even have to put the formula in parentheses -
it is automatically interpreted as one formula expression when provided as the first argument:

R> lm(arr_delay ~ distance + origin, data = flights)
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Model formulas in R (cont.)

Storing formulas
A more explicit way is to write the formula as string and then use as.formula()  to turn it into a formula object. This
implies that we can store formulas as an R object and check its class.

R> fmla <- as.formula("arr_delay ~ distance + origin")
R> class(fmla)

   [1] "formula"

Next, we'd pass on the formula  object to the model function, e.g.:

R> lm(fmla, data = flights)

   Call:
   lm(formula = fmla, data = flights)

   Coefficients:
   (Intercept)     distance    originJFK    originLGA  
     13.414049    -0.004045    -2.704255    -4.456169
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Formula syntax: basics
We can use multiple independent variables by simply separating them with the plus (+) symbol:

R> y ~ x1 + x2

If we use a minus (-) symbol, objects in the formula are ignored in an analysis:

R> y ~ x1 - x2

We can also use this to drop the intercept:

R> y ~ x1 - x2 - 1

The .  operator refers to all other variables in the matrix/data frame not yet included in the model. This is useful
when you plan to run a regression on all variables in a matrix/data frame:

R> y ~ .
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Formula syntax: interactions
In a regression modeling context, we often need to specify interaction terms. There are two ways to do this. If we want to
include two variables and their interaction, we use the star/asterisk ( * ) symbol:

R> y ~ x1 * x2

That's equivalent to

R> y ~ x1 + x2 + x1*x2

If you only want their interaction, but not the variables themselves as main effects (which you probably don't want), use
the colon symbol:

R> y ~ x1:x2
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Formula syntax: variable transformations
One trick to formulas is that they don't evaluate their contents. So, for example, if we wanted to include  and  in our
model, we might be tempted to type:

R> y ~ x + x^2

This won't work though. We therefore have to either calculate and store all of the variables we want to include in the
model in advance, or we need to use the I()  "as-is" operator, short for "Inhibit Interpretation/Conversion of Objects". In
a formula function, I()  is used to inhibit the interpretation of operators such as + , - , *  and ^  as formula operators, so
they are used as arithmetical operators. To obtain our desired two-term formula, we type:

R> y ~ x + I(x^2)

Again, the alternative would have been something like:

R> data$x2 <- (data$x)^2
R> y ~ x + x2

x x
2
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Specifying multiple models

When one model is not enough
Often we want to specify not one but multiple different models.
Such models can differ in terms of model family, modelled outcome, covariate/feature set, transformations of input
variables, and data being modelled.

Generating model formulas at scale
If outcomes/features vary across models, so does the model formula.
Regarding formulas as character strings, it's straightforward to generate them in a programmatic fashion.
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Specifying multiple models

When one model is not enough
Often we want to specify not one but multiple different models.
Such models can differ in terms of model family, modelled outcome, covariate/feature set, transformations of input
variables, and data being modelled.

Generating model formulas at scale
If outcomes/features vary across models, so does the model formula.
Regarding formulas as character strings, it's straightforward to generate them in a programmatic fashion.

Example:

R> xvars <- paste0("x", 1:20)
R> fmla <- as.formula(paste("y ~ ", paste(xvars, collapse= "+")))
R> fmla

   y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + 
       x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20

13 / 68



Specifying multiple models (cont.)
Another example of multiple model specification is extreme bounds analysis (EBA).
Here, the idea is to compute all possible estimates given a set of allowed coefficients to answer questions like:

Which determinants are robustly associated with the dependent variable across a large number of possible
regression models?
Is a particular determinant robustly associated with the dependent variable?

In its basic form, EBA just estimates models with all possible combinations of variables and then looks into the
distribution (or range → extreme bounds) of effects across all models.
There are R packages to do this for us (e.g., ExtremeBounds  by Marek Hlavac) but we can also run the basics on our
own.
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Specifying multiple models (cont.)
Another example of multiple model specification is extreme bounds analysis (EBA).
Here, the idea is to compute all possible estimates given a set of allowed coefficients to answer questions like:

Which determinants are robustly associated with the dependent variable across a large number of possible
regression models?
Is a particular determinant robustly associated with the dependent variable?

In its basic form, EBA just estimates models with all possible combinations of variables and then looks into the
distribution (or range → extreme bounds) of effects across all models.
There are R packages to do this for us (e.g., ExtremeBounds  by Marek Hlavac) but we can also run the basics on our
own.

Example
Step 1: Define dependent variable and covariate set

R> depvar <- "arr_delay"
R> covars <- c("dep_delay", "carrier", "origin", "air_time", "distance", "hour")
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Specifying multiple models (cont.)
Step 1a (just for fun): Compute the number of unique combinations of all these covariates

R> combinations <- 
+   map(1:6, function(x) {combn(1:6, x)}) %>% # create all possible combinations (draw 1 to 6 out of 6)
+   map(ncol) %>% # extract number of combinations
+   unlist() %>% # pull out of list structure
+   sum() # compute sum
R> combinations

   [1] 63
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Specifying multiple models (cont.)
Step 2: Build function to run lm models across set of all possible variable combinations

R> combn_models <- function(depvar, covars, data)
+ {
+   combn_list <- list()
+   # generate list of covariate combinations
+   for (i in seq_along(covars)) {
+     combn_list[[i]] <- combn(covars, i, simplify = FALSE)
+   }
+   combn_list <- unlist(combn_list, recursive = FALSE)
+   # function to generate formulas
+   gen_formula <- function(covars, depvar) {
+     form <- as.formula(paste0(depvar, " ~ ", paste0(covars, collapse = "+")))
+     form
+   }
+   # generate formulas
+   formulas_list <- purrr::map(combn_list, gen_formula, depvar = depvar)
+   # run models
+   models_list <- purrr::map(formulas_list, lm, data = data)
+   models_list
+ }
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Specifying multiple models (cont.)
Step 3: Run models (careful, this'll generate a quite heavy list)

R> models_list <- combn_models(depvar = depvar,  covars = covars, data = flights)

How many models did we fit?

R> length(models_list)

   [1] 63

And what did we get? A glimpse at the first list element:

R> models_list[[1]]

   Call:
   .f(formula = .x[[i]], data = ..1)

   Coefficients:
   (Intercept)    dep_delay  
        -5.857        1.026
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Running models
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Model families
Today we'll mostly focus on linear models as an example. However, there is a multitude of families of statistical models
that allow extending linear models. Examples are

Generalized linear models [ stats::glm() ], which extend linear models to include non-continuous responses (e.g.,
binary or categorical data, counts)
Generalized additive models [ mgcv::gam() ], which extend generalized linear models to incorporate arbitrary smooth
functions
Penalized linear models [ glmnet::glmnet() ], which introduce terms that penalize complex models to make models
that generalize better to new datasets

20 / 68



Model families
Today we'll mostly focus on linear models as an example. However, there is a multitude of families of statistical models
that allow extending linear models. Examples are

Generalized linear models [ stats::glm() ], which extend linear models to include non-continuous responses (e.g.,
binary or categorical data, counts)
Generalized additive models [ mgcv::gam() ], which extend generalized linear models to incorporate arbitrary smooth
functions
Penalized linear models [ glmnet::glmnet() ], which introduce terms that penalize complex models to make models
that generalize better to new datasets

Also there is so much more to learn in terms of modeling/machine learning/AI. There are many (MANY!) models for
measurement, (un-)supervised learning, clustering, dimensionality reduction, ... R is uniquely flexible for implementing
these models. To get a quick glance at the universe from afar, check out the CRAN Task Views, a curated online directory
of topics and the R packages relevant for tasks related to these.
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Running models: examples
Luckily, these models all work similarly from a programming experience - once you've mastered how to run linear
models, you will find it easy to implement others. Understanding and applying them wisely is a different matter though.

Logistic regression

R> logit_out <- stats::glm(am ~ cyl + hp + wt, data = mtcars, family = binomial)

Generalized additive model regression

R> gam_out <- mgcv::gam(mpg ~ s(disp) + s(wt), data = mtcars)

Penalized (here: lasso) regression

R> lasso_out <- glmnet(as.matrix(mtcars[-1]), mtcars[,1], standardize = TRUE, alpha  = 1)

Multilevel model with random intercepts

R> library(lme4)
R> ml_out <- lmer(arr_delay ~ distance + origin + (1|carrier) + (1|tailnum), data = flights)
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Big data and the need for models
In the early days of the big data hype, people were
overly enthusiastic about its implications for
modeling (see quote on the right).
This is falling for the inception that we can simply
"let the data speak".
However, the data science workflow is a sequence of
subjective decisions from start to finish, with lots of
researcher degrees of freedom.
Think of all the weakly justified decisions regarding:

data collection / selection
measurement
model choice
model specification
reporting

"Scientists are trained to recognize that correlation is
not causation, that no conclusions should be drawn
simply on the basis of correlation between X and Y. (...)
Once you have a model, you can connect the data sets
with confidence. Data without a model is just noise. (...)
There is now a better way. Petabytes allow us to say:
"Correlation is enough." We can stop looking for models.
We can analyze the data without hypotheses about what
it might show."

Chris Anderson, "The End of Theory: The Data Deluge
makes the Scientific Method Obsolete (2008, Wired)"

Decisions in the modeling workflow
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Big data and the need for models
In the early days of the big data hype, people were
overly enthusiastic about its implications for
modeling (see quote on the right).
This is falling for the inception that we can simply
"let the data speak".
However, the data science workflow is a sequence of
subjective decisions from start to finish, with lots of
researcher degrees of freedom.
Think of all the weakly justified decisions regarding:

data collection / selection
measurement
model choice
model specification
reporting

Question: How do researchers usually deal with this?

"Scientists are trained to recognize that correlation is
not causation, that no conclusions should be drawn
simply on the basis of correlation between X and Y. (...)
Once you have a model, you can connect the data sets
with confidence. Data without a model is just noise. (...)
There is now a better way. Petabytes allow us to say:
"Correlation is enough." We can stop looking for models.
We can analyze the data without hypotheses about what
it might show."

Chris Anderson, "The End of Theory: The Data Deluge
makes the Scientific Method Obsolete (2008, Wired)"

Decisions in the modeling workflow
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Credit  Chen 2010, The Effect of Electoral Geography on
Pork Barreling in Bicameral Legislatures

Credit  Park et al. 2009, Being immersed in social
networking environment: Facebook groups, uses and

gratifications, and social outcomes

Nested models
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Another idea: run not an arbitrary (small) set of
models but as many (plausible ones) as possible to
get an idea how much conclusions change
depending on arbitrary data wrangling and
modeling choices (the "model distribution").
There are various related procedures and labels
used in different subfields to promote this idea,
including:

Multiverse analysis (Steegen et al. 2016)
Specification curves (Simonsohn et al. 2020)
Computational multimodel analysis (Young and
Holsteen 2015)

Also check out critical perspective on "Mülltiverse
Analysis" (Julia Rohrer). The bottom line: Mindless
multiversing doesn't give more robustness or
insight.

Exploring the model space
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Specification curve analysis (SCA) facilitates the
visual identification of the source of variation in
results across multiple specifications.
The key feature, the specification curve, provides all
gathered estimates sorted by effect size and
highlighted by significance.
SCA is carried out in three main steps:

1. Define the set of reasonable specifications to
estimate;

2. Estimate all specifications and report the
results in a descriptive specification curve; and

3. Conduct joint statistical tests using an
inferential specification curve.

As of now there are two R packages that offer high-
level functions for specification: specr  (see here)
and Multiverse  (see here).

Specification curves
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Specification curves (cont.)
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When estimating a model, we usually
estimate parameters (or simulate
distributions thereof). There is, however, more
that we can take away from the estimation,
including:

summary(model_out)

Call:
lm(formula = arr_delay ~ distance + origin, data = flights)

Residuals:
    Min      1Q  Median      3Q     Max 
 -89.04  -24.00  -11.83    7.26 1281.45 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13.4140488  0.1748144   76.73   <2e-16 ***
distance    -0.0040451  0.0001097  -36.87   <2e-16 ***
originJFK   -2.7042552  0.1887083  -14.33   <2e-16 ***
originLGA   -4.4561694  0.1935123  -23.03   <2e-16 ***
---
Sig. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)
Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493 
F-statistic: 603.7 on 3 and 327342 DF,  p-value: < 2.2e-16

Why model processing?
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When estimating a model, we usually
estimate parameters (or simulate
distributions thereof). There is, however, more
that we can take away from the estimation,
including:

Estimated coefficients and associated
standard errors, T-statistics, p-values,
confidence intervals

summary(model_out)

Call:
lm(formula = arr_delay ~ distance + origin, data = flights)

Residuals:
    Min      1Q  Median      3Q     Max 
 -89.04  -24.00  -11.83    7.26 1281.45 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.4140488  0.1748144   76.73   <2e-16 ***
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Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)
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When estimating a model, we usually
estimate parameters (or simulate
distributions thereof). There is, however, more
that we can take away from the estimation,
including:

Estimated coefficients and associated
standard errors, T-statistics, p-values,
confidence intervals
Model summaries, including goods of fit
measures, information on model
convergence, number of observations
used

summary(model_out)

Call:
lm(formula = arr_delay ~ distance + origin, data = flights)

Residuals:
    Min      1Q  Median      3Q     Max 
 -89.04  -24.00  -11.83    7.26 1281.45 
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---
Sig. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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When estimating a model, we usually
estimate parameters (or simulate
distributions thereof). There is, however, more
that we can take away from the estimation,
including:

Estimated coefficients and associated
standard errors, T-statistics, p-values,
confidence intervals
Model summaries, including goods of fit
measures, information on model
convergence, number of observations
used
Observation-level information that
arises from the estimated model, such as
fitted/predicted values, residuals,
estimates of influence

summary(model_out)

Call:
lm(formula = arr_delay ~ distance + origin, data = flights)

Residuals:
    Min      1Q  Median      3Q     Max
-89.04  -24.00  -11.83    7.26 1281.45

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 13.4140488  0.1748144   76.73   <2e-16 ***
distance    -0.0040451  0.0001097  -36.87   <2e-16 ***
originJFK   -2.7042552  0.1887083  -14.33   <2e-16 ***
originLGA   -4.4561694  0.1935123  -23.03   <2e-16 ***
---
Sig. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 44.51 on 327342 degrees of freedom
(9430 observations deleted due to missingness)
Multiple R-squared: 0.005503, Adjusted R-squared: 0.005493 
F-statistic: 603.7 on 3 and 327342 DF,  p-value: < 2.2e-16
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Fitting a model returns an
object of a certain model class
(here: lm ).
Printing that object returns a
quite minimalist set of
information - just the input
formula and coefficients.

R> model_out <- lm(arr_delay ~ distance + origin, data = flights)
R> class(model_out)

   [1] "lm"

R> model_out

   Call:
   lm(formula = arr_delay ~ distance + origin, data = flights)

   Coefficients:
   (Intercept)     distance    originJFK    originLGA  
     13.414049    -0.004045    -2.704255    -4.456169

Processing estimation output in R
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Fitting a model returns an
object of a certain model class
(here: lm ).
Printing that object returns a
quite minimalist set of
information - just the input
formula and coefficients.
The anatomy of the object is
considerably more complex. It
comes as a list of various
components, including the
coefficients, residuals, fitted
values, and original model
input.

R> names(model_out)

    [1] "coefficients"  "residuals"     "effects"       "rank"         
    [5] "fitted.values" "assign"        "qr"            "df.residual"  
    [9] "na.action"     "contrasts"     "xlevels"       "call"         
   [13] "terms"         "model"

Processing estimation output in R
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Fitting a model returns an
object of a certain model class
(here: lm ).
Printing that object returns a
quite minimalist set of
information - just the input
formula and coefficients.
The anatomy of the object is
considerably more complex. It
comes as a list of various
components, including the
coefficients, residuals, fitted
values, and original model
input.
There's no way to print this list
on the slide in full - it's just too
long.

R> str(model_out)

   List of 14
    $ coefficients : Named num [1:4] 13.41405 -0.00405 -2.70426 -4.45617
     ..- attr(*, "names")= chr [1:4] "(Intercept)" "distance" "originJFK" "o
    $ residuals    : Named num [1:327346] 3.25 16.77 26.7 -22.33 -30.88 ...
     ..- attr(*, "names")= chr [1:327346] "1" "2" "3" "4" ...
    $ effects      : Named num [1:327346] -3945.1 1579.9 204.2 1025 -30.8 ...
     ..- attr(*, "names")= chr [1:327346] "(Intercept)" "distance" "originJF
    $ rank         : int 4
    $ fitted.values: Named num [1:327346] 7.75 3.23 6.3 4.33 5.88 ...
     ..- attr(*, "names")= chr [1:327346] "1" "2" "3" "4" ...
    $ assign       : int [1:4] 0 1 2 2
    $ qr           :List of 5
     ..$ qr   : num [1:327346, 1:4] -5.72e+02 1.75e-03 1.75e-03 1.75e-03 1.7
     .. ..- attr(*, "dimnames")=List of 2
     .. .. ..$ : chr [1:327346] "1" "2" "3" "4" ...
     .. .. ..$ : chr [1:4] "(Intercept)" "distance" "originJFK" "originLGA"
     .. ..- attr(*, "assign")= int [1:4] 0 1 2 2
     .. ..- attr(*, "contrasts")=List of 1
     .. .. ..$ origin: chr "contr.treatment"
     ..$ qraux: num [1:4] 1 1 1 1
     ..$ pivot: int [1:4] 1 2 3 4

Processing estimation output in R
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However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

coef()  to extract the
coefficients

R> coef(model_out)

    (Intercept)     distance    originJFK    originLGA 
   13.414048769 -0.004045067 -2.704255237 -4.456169356

Processing estimation output in R
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However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

coef()  to extract the
coefficients
fitted.values()  to extract
the outcome values
predicted by the model

R> coef(model_out)

    (Intercept)     distance    originJFK    originLGA 
   13.414048769 -0.004045067 -2.704255237 -4.456169356

R> fitted.values(model_out)[1:5]

          1        2        3        4        5 
   7.750955 3.230064 6.304715 4.334768 5.875538

Processing estimation output in R
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However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

coef()  to extract the
coefficients
fitted.values()  to extract
the outcome values
predicted by the model
residuals()  to extract the
residuals

R> coef(model_out)

    (Intercept)     distance    originJFK    originLGA 
   13.414048769 -0.004045067 -2.704255237 -4.456169356

R> fitted.values(model_out)[1:5]

          1        2        3        4        5 
   7.750955 3.230064 6.304715 4.334768 5.875538

R> residuals(model_out)[1:5]

            1          2          3          4          5 
     3.249045  16.769936  26.695285 -22.334768 -30.875538

Processing estimation output in R
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However, there are some high-
level functions we can apply to
do something useful with the
model object, including:

coef()  to extract the
coefficients
fitted.values()  to extract
the outcome values
predicted by the model
residuals()  to extract the
residuals
model.matrix()  to extract
the matrix of original input
variables (predictors)

R> coef(model_out)

    (Intercept)     distance    originJFK    originLGA 
   13.414048769 -0.004045067 -2.704255237 -4.456169356

R> fitted.values(model_out)[1:5]

          1        2        3        4        5 
   7.750955 3.230064 6.304715 4.334768 5.875538

R> residuals(model_out)[1:5]

            1          2          3          4          5 
     3.249045  16.769936  26.695285 -22.334768 -30.875538

R> model.matrix(model_out) %>% head(4)

     (Intercept) distance originJFK originLGA
   1           1     1400         0         0
   2           1     1416         0         1
   3           1     1089         1         0
   4           1     1576         1         0

Processing estimation output in R

40 / 68



To learn more about the
estimated model, we can apply
the summary()  function.
The summary  method is specific
to the model class it is applied
to (here: " lm  "). To learn more,
you'd have to call, e.g., ?
summary.lm  or ?summary.glm .

R> summary(model_out)

   Call:
   lm(formula = arr_delay ~ distance + origin, data = flights)

   Residuals:
       Min      1Q  Median      3Q     Max 
    -89.04  -24.00  -11.83    7.26 1281.45 

   Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
   (Intercept) 13.4140488  0.1748144   76.73   <2e-16 ***
   distance    -0.0040451  0.0001097  -36.87   <2e-16 ***
   originJFK   -2.7042552  0.1887083  -14.33   <2e-16 ***
   originLGA   -4.4561694  0.1935123  -23.03   <2e-16 ***
   ---
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

   Residual standard error: 44.51 on 327342 degrees of freedom
     (9430 observations deleted due to missingness)
   Multiple R-squared:  0.005503,    Adjusted R-squared:  0.005493 
   F-statistic: 603.7 on 3 and 327342 DF,  p-value: < 2.2e-16

Processing estimation output in R
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To learn more about the
estimated model, we can apply
the summary()  function.
The summary  method is specific
to the model class it is applied
to (here: " lm  "). To learn more,
you'd have to call, e.g., ?
summary.lm  or ?summary.glm .
The function creates more than
a printed summary in the
console. It returns an object of
class summary.lm , which can be
further dissected.

R> class(summary(model_out))

   [1] "summary.lm"

Processing estimation output in R
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To learn more about the
estimated model, we can apply
the summary()  function.
The summary  method is specific
to the model class it is applied
to (here: " lm  "). To learn more,
you'd have to call, e.g., ?
summary.lm  or ?summary.glm .
The function creates more than
a printed summary in the
console. It returns an object of
class summary.lm , which can be
further dissected.
Again, there's no way to print
this list on the slide in full - it's
just too long.

R> str(summary(model_out))

   List of 12
    $ call         : language lm(formula = arr_delay ~ distance + origin, da
    $ terms        :Classes 'terms', 'formula'  language arr_delay ~ distanc
     .. ..- attr(*, "variables")= language list(arr_delay, distance, origin
     .. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
     .. .. ..- attr(*, "dimnames")=List of 2
     .. .. .. ..$ : chr [1:3] "arr_delay" "distance" "origin"
     .. .. .. ..$ : chr [1:2] "distance" "origin"
     .. ..- attr(*, "term.labels")= chr [1:2] "distance" "origin"
     .. ..- attr(*, "order")= int [1:2] 1 1
     .. ..- attr(*, "intercept")= int 1
     .. ..- attr(*, "response")= int 1
     .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
     .. ..- attr(*, "predvars")= language list(arr_delay, distance, origin)
     .. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "cha
     .. .. ..- attr(*, "names")= chr [1:3] "arr_delay" "distance" "origin"
    $ residuals    : Named num [1:327346] 3.25 16.77 26.7 -22.33 -30.88 ...
     ..- attr(*, "names")= chr [1:327346] "1" "2" "3" "4" ...
    $ coefficients : num [1:4, 1:4] 13.41405 -0.00405 -2.70426 -4.45617 0.17
     ..- attr(*, "dimnames")=List of 2
     .. ..$ : chr [1:4] "(Intercept)" "distance" "originJFK" "originLGA"

Processing estimation output in R
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The problem
"While model inputs usually require tidy inputs, such
attention to detail doesn’t carry over to model outputs.
Outputs such as predictions and estimated coefficients
aren’t always tidy. This makes it more difficult to
combine results from multiple models. For example, in R,
the default representation of model coefficients is not
tidy because it does not have an explicit variable that
records the variable name for each estimate, they are
instead recorded as row names. (...) This knocks you out
of the flow of analysis and makes it harder to combine
the results from multiple models. I’m not currently aware
of any packages that resolve this problem."

Hadley Wickham, "Tidy Data"

The solution?
See next slide!

Dissecting model objects
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broom  is a suite of tools that summarizes key information about models. It
takes the messy output of built-in functions in R, such as lm  or t.test , and
turns them into tidy tibbles()  (think: dataframes). The output is not ready
for publication but an important intermediary step that makes post-
processing of estimation results more convenient. It is part of the tidyverse
and tidymodels.

There are three key broom  verbs that you need to learn.1

1. tidy() : Summarizes information about model components.

2. glance() : Reports information about the entire model.

3. augment() : Adds information about observations to a dataset.

Processing estimation output with broom

1 For a more detailed and comprehensive introduction, see the official documentation at https://broom.tidymodels.org/.
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Tidy model objects with tidy()
broom 's tidy()  function extracts the coefficient block (the model component) together with inferential statistics:

R> broom::tidy(model_out, conf.int = TRUE, conf.level = 0.95)

   # A tibble: 4 × 7
     term        estimate std.error statistic   p.value conf.low conf.high
     <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
   1 (Intercept) 13.4      0.175         76.7 0         13.1      13.8    
   2 distance    -0.00405  0.000110     -36.9 5.53e-297 -0.00426  -0.00383
   3 originJFK   -2.70     0.189        -14.3 1.46e- 46 -3.07     -2.33   
   4 originLGA   -4.46     0.194        -23.0 3.04e-117 -4.84     -4.08
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Tidy model objects with tidy()
broom 's tidy()  function extracts the coefficient block (the model component) together with inferential statistics:

R> broom::tidy(model_out, conf.int = TRUE, conf.level = 0.95)

   # A tibble: 4 × 7
     term        estimate std.error statistic   p.value conf.low conf.high
     <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
   1 (Intercept) 13.4      0.175         76.7 0         13.1      13.8    
   2 distance    -0.00405  0.000110     -36.9 5.53e-297 -0.00426  -0.00383
   3 originJFK   -2.70     0.189        -14.3 1.46e- 46 -3.07     -2.33   
   4 originLGA   -4.46     0.194        -23.0 3.04e-117 -4.84     -4.08

Here, we also extract the upper and lower bounds on the 95% confidence intervals for the estimates. What makes the
function so convenient is the fact that the output comes as a tidy tibble  with useful variable names.

What exactly is extracted depends on the model type. You can learn more about the tidying function by typing ?tidy.
[model class] , e.g.: ?tidy.lm .
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Summarize model statistics with glance()
broom 's glance()  function extracts summary statistics of the model and provides them in a single-row tibble :

R> broom::glance(model_out)

   # A tibble: 1 × 12
     r.squared adj.r.squared sigma statistic p.value    df    logLik     AIC    BIC
         <dbl>         <dbl> <dbl>     <dbl>   <dbl> <dbl>     <dbl>   <dbl>  <dbl>
   1   0.00550       0.00549  44.5      604.       0     3 -1706997.  3.41e6 3.41e6
   # ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
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Augment data with model information with augment()
broom 's augment()  function adds model information about each observation in a dataset, including, e.g.:

predicted values (in the .fitted  column)
residuals ( .resid )
standard errors of fitted values ( .se.fit ; optional)

R> broom::augment(model_out, se_fit = TRUE) %>% head(3)

   # A tibble: 3 × 11
     .rownames arr_delay distance origin .fitted .se.fit .resid       .hat .sigma
     <chr>         <dbl>    <dbl> <chr>    <dbl>   <dbl>  <dbl>      <dbl>  <dbl>
   1 1                11     1400 EWR       7.75   0.135   3.25 0.00000922   44.5
   2 2                20     1416 LGA       3.23   0.156  16.8  0.0000123    44.5
   3 3                33     1089 JFK       6.30   0.136  26.7  0.00000938   44.5
   # ℹ 2 more variables: .cooksd <dbl>, .std.resid <dbl>
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Augment data with model information with augment()
broom 's augment()  function adds model information about each observation in a dataset, including, e.g.:

predicted values (in the .fitted  column)
residuals ( .resid )
standard errors of fitted values ( .se.fit ; optional)

R> broom::augment(model_out, se_fit = TRUE) %>% head(3)

   # A tibble: 3 × 11
     .rownames arr_delay distance origin .fitted .se.fit .resid       .hat .sigma
     <chr>         <dbl>    <dbl> <chr>    <dbl>   <dbl>  <dbl>      <dbl>  <dbl>
   1 1                11     1400 EWR       7.75   0.135   3.25 0.00000922   44.5
   2 2                20     1416 LGA       3.23   0.156  16.8  0.0000123    44.5
   3 3                33     1089 JFK       6.30   0.136  26.7  0.00000938   44.5
   # ℹ 2 more variables: .cooksd <dbl>, .std.resid <dbl>

It is also possible to pass on data that was not used during model fitting using the newdata  argument. This requires that
at least all predictor variable columns used to fit the model are present. Providing new data can be useful if one is
interested to generate predictions for a test set.
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Unlocking the power of broom with multiple models
The true power of broom unfolds in settings where you want to combine results from multiple analyses (using subgroups
of data, different models, bootstrap replicates of the original data frame, permutations, imputations, ...).
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Does this ring a bell? Well, let's go back to our covariate selection sensitivity analysis. Recall that in Steps 1 to 3, we had
specified and run 63 models. Let's evaluate the results now. First, extract the results in a tidy fashion:
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Unlocking the power of broom with multiple models
The true power of broom unfolds in settings where you want to combine results from multiple analyses (using subgroups
of data, different models, bootstrap replicates of the original data frame, permutations, imputations, ...).

Does this ring a bell? Well, let's go back to our covariate selection sensitivity analysis. Recall that in Steps 1 to 3, we had
specified and run 63 models. Let's evaluate the results now. First, extract the results in a tidy fashion:

Step 4 (continuing the analysis from above): Extract results from all models

R> models_broom <- map(models_list, broom::tidy)
R> models_broom[[1]] # inspect one list entry

   # A tibble: 2 × 5
     term        estimate std.error statistic   p.value
     <chr>          <dbl>     <dbl>     <dbl>     <dbl>
   1 (Intercept)    -5.86   0.198       -29.6 5.79e-185
   2 dep_delay       1.03   0.00484     212.  0

Next, let's merge them all into one data frame:

R> models_broom_df <- map_dfr(models_broom, rbind)
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Unlocking the power of broom with multiple models
Step 5: Summarize the estimates for subset of key predictors

R> models_broom_df %>% 
+   filter(!str_detect(term, "Intercept|carrier")) %>%
+   ggplot(aes(estimate)) + 
+   geom_histogram(binwidth = .1, color = "red") + 
+   geom_vline(xintercept = 0, linetype="dashed") + 
+   facet_grid(cols = vars(term), scales = "free_y") + 
+   theme_minimal()
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Why good reporting is as important as
good modeling

Hardly anybody will read your code. Most
stakeholders will not even be able to understand
what you've done.
Not all components of your model are equally
relevant.
Good communication of your model can save a lot
of time a space.

Making reporting part of the workflow
Our vision of the data science workflow is to
automate as much as possible in order to have time
for the really important decisions.
Since reporting results is usually at the end of the
workflow, this step is affected by any change in the
previous steps. Any manual work here hurts twice.
Reporting and publishing results should be seen as
part of the workflow. Even if we don't work with
RMarkdown to write our reports, we want avoid
copy-and-paste work into other software.

Reporting modeling results
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modelsummary  is a suite of tools to create table and plot summaries of
models and data. It supports hundreds of model types out-of-the-box and
the output can be saved to a wide variety of formats, including HTML, PDF,
Text/Markdown, LaTeX, MS Word, JPG, and PNG.

There are three key modelsummary  verbs that you need to learn.1

1. modelsummary() : Create regression tables with side-by-side models.

2. modelplot() : Create coefficient plots of model results.

3. datasummary_*() : Create data summaries such as cross-tabs or balance
tables.

Summarizing models (and data) with modelsummary

1 There is more in modelsummary  than what we can cover today. Have a glimpse at Vincent Arel-Bundock's page.
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modelsummary()  takes one or
several models as input.
Multiple models are provided
as (optionally named) list.
The extraction of information
(estimates, standard errors,
model summaries etc.) is taken
care of by the function.
On this slide you see how
modelsummary()  generates
content ready to be rendered as
HTML table. With the output
argument, we can also ask the
function to creat .tex , .rmd ,
.txt , .png , and .jpg .
Although the defaults are good,
be sure to refine the table
before publishing it.

R> modelsummary(list(model1_out, model2_out, model3_out))

 (1)   (2)   (3)

(Intercept) −5.899 10.829 −3.213

(0.033) (0.136) (0.056)

dep_delay 1.019 1.018

(0.001) (0.001)

distance −0.004 −0.003

(0.000) (0.000)

Num.Obs. 327346 327346 327346

R2 0.837 0.004 0.839

R2 Adj. 0.837 0.004 0.839

AIC 2822272.7 3414551.8 2818708.3

BIC 2822304.8 3414583.9 2818751.1

Creating regression tables with modelsummary()
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Here's one example for
that.
With estimate  we define
a glue  string to display
estimates alongside
confidence intervals.
We suppress uncertainty
statistics with statistic .
We omit any goodness-
of-fit stats with gof_omit
and a regular expression.
We provide a title .

R> # estimate three toy models
R> model1_out <- lm(arr_delay ~ dep_delay, data = flights)
R> model2_out <- lm(arr_delay ~ distance, data = flights)
R> model3_out <- lm(arr_delay ~ dep_delay + distance, data = flights)
R> models <- list(model1_out, model2_out, model3_out)
R> 
R> # create table
R> modelsummary(models, 
+              estimate = "{estimate} [{conf.low}, {conf.high}]",
+              statistic = NULL,
+              gof_omit = ".+",
+              title = "Linear regression of flight delay at arrival (in mins)")

Linear regression of flight delay at arrival (in mins)

 (1)   (2)   (3)

(Intercept) −5.899 [−5.964, −5.835] 10.829 [10.564, 11.095] −3.213 [−3.322, −3.104]

dep_delay 1.019 [1.018, 1.021] 1.018 [1.017, 1.020]

distance −0.004 [−0.004, −0.004] −0.003 [−0.003, −0.002]

Modifying regression tables
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The modelsummary()  function is extremely versatile. The defaults are good,
but it will pay off to invest some time to learn the details, which are
documented here.

In addition, it supports other table-making packages to further customize
the appearance of tables. The details are documented here.

But I don't want to force anything on you. As always in R, there are several
other excellent packages that help to create tables, including:

gtsummary  by Daniel Sjoberg
textreg  by Philip Leifeld
stargazer  by Marek Hlavac
sjPlot  by Daniel Lüdecke

In any case, do invest some time in learning the function's options and in
actually producing readable and informative tables before publishing them.
(1-3 hours per table are fine!)

R> modelsummary(
+   models,
+   output = "default",
+   fmt = 3,
+   estimate = "estimate",
+   statistic = "std.error",
+   vcov = NULL,
+   conf_level = 0.95,
+   stars = FALSE,
+   coef_map = NULL,
+   coef_omit = NULL,
+   coef_rename = NULL,
+   gof_map = NULL,
+   gof_omit = NULL,
+   group = term ~ model,
+   group_map = NULL,
+   add_rows = NULL,
+   align = NULL,
+   notes = NULL,
+   title = NULL,
+   escape = TRUE,
+   ...
+ )

Modifying regression tables (cont.)
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modelsummary() tables: more examples
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The limits of tables
Tables of coefficients work ok when models are
linear and additive.
They are good to communicate "precise"
information.1

They are, however, less informative for
non-linear relationships between  and  ( ,

, etc.),
interaction effects,
models for categorical data.

The promise of plots
Coefficient plots can make it more straightforward to
focus on two key features of estimated parameters:
effect size and uncertainty.
What's more, they make comparisons across effects
and models much easier. We humans are visual
animals.
Other plots can go a long way to display other
implications of models that are not visible from a
tabular output, e.g., predicted probability plots,
marginal effects plots, ...

Tables vs. plots to communicate model results

x y x2

log(x)

1 But sometimes give more precision than warranted. As a rule of thumb, never report more than three decimal points. In most
cases, 0-2 is enough. Your estimates are less precise than that anyway.
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Credit  Munzert et al. 2020
Credit  Helbling and Traunmüller 2016

Coefficient plots in the wild
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modelplot()  takes one or
several models as input.
Multiple models are provided
as (optionally named) list.
Again, the extraction of
information (estimates,
standard errors, model
summaries etc.) is taken care of
by the function.
The graphs produced by
modelplot()  are simple
ggplot2  objects. They can be
post-processed (and exported)
accordingly.
Although the defaults are good,
be sure to refine the plot before
publishing it.

R> modelplot(model_out)

Creating coefficient plots with modelplot()
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Here's one example for
that.
We provide intuitive
variable names with
coef_map .
We drop the intercept
with coef_omit .
We make more layout
adaptations with ggplot2
functions that make the
plot better readable.

R> cm <- c("distance" = "Distance", 
+         "originLGA" = "Origin: LGA", 
+         "originJFK" = "Origin: JFK")
R> modelplot(model_out, 
+           coef_omit = "Interc", 
+           coef_map = cm) + 
+   xlim(-5, .25) + 
+   geom_vline(xintercept = 0, linetype="dashed") + 
+   labs(title = "Linear regression of flight delay at arrival (in mins)",
+        caption = "Data source: nycflights13 package") + 
+   theme_minimal()

Modifying coefficient plots
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Take care when plotting effect sizes
One of the major perks of coefficient plots is the
comparability of effects across coefficients.
This can be, however, also one of the major
problems of these kinds of plots.
In order for them to make visual sense, the
underlying covariates have to be inherently
comparable. By showing slopes, the plot shows the
effect of a unit change in each covariate on the
outcome, but unit changes may not be comparable
across variables.
Also check out the documentation of the
effectsize  package for a more thorough discussion
of the problem (and how to tackle it).

Addressing the issue
There are several ways to address the problem,
including:

Rescale variables to show intuitive unit changes
in X (e.g., 1km instead of 1m)
Rescale to full scale (minimum to maximum)
changes in X
Standardize variables to show standard
deviation changes in X

Note that any rescaling operation also affects how
you interpret the coefficients (and we're only talking
about the linear case!). Sometimes it also makes
sense to standardize the response variable. In that
case, the coefficients can be interpreted as the
change in the response in standard deviations for a
1 unit change in the predictor (whatever that is).

Working with interpretable effect sizes
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Rescaling (1 unit = 1000 miles)

R> # rescale continuous variable
R> flights$distance1kmiles <- flights$distance/1000
R> model_out_kmiles <- lm(arr_delay ~ 
+        distance1kmiles + origin, data = flights)
R> 
R> # plot model (detailed fine-tuning not shown)
R> modelplot(model_out_kmiles)

Standardization (1 unit = 1 s.d. on the covariate)

R> # rescale continuous variable
R> flights$distance_std <- standardize(flights$dista
R> model_out_std <- lm(arr_delay ~ 
+        distance_std + origin, data = flights)
R> 
R> # plot model (detailed fine-tuning not shown)
R> modelplot(model_out_std)

Working with interpretable effect sizes (cont.)
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There is much, much more that can be done with
plots and model reporting (stay tuned for the
session on visualization!).
Always be aware about what a model gives you and
which relationships you want to explore or highlight.
As another example, see the fitted vs. true plots on
the right. The upper scatter plot compares fitted (x-
axis) vs. true (y-axis) values from our standard
model. It illustrates a really poor fit.
The lower scatter plot compares fitted-vs-true for a
slight modification of our standard model in which
we also take dep_delay  into account as predictor.
Apparently, its a very powerful one.

More reporting with plots
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Summary
Some final bits of advice that didn't fit on the main slides:

1. Before you actually run models, describe the data. That's not only for you. Every report should begin with a
visualization of the phenomena of interest, plotting the rawest data available that is also legible in a graph.

2. Plot early, and plot often! Visualization is not only a great tool for communication, but also for exploration and
statistical analysis (more on that later).

3. Fit many models. At least if you don't commit to one particular subset (→ preregistration). Think in terms of series of
models, starting with the utterly simple and continuing through to the hopelessly complex.

4. Table results with care. Please don’t just report which effects were significant and which were non-significant. Please
don’t report just p-values. Please don’t just report the estimated effects of the significant effects. Report all
estimates that you also discuss.

5. Invest more time in refining plots than you planned to. Good figures aren't only plots. Think of informative headers
and notes. Ideally, your figures are self-contained.
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Coming up

Assignment
No assignment this time - but don't forget about the quiz!

Next lecture
Visualization. 📊
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