
Introduction to Data Science
Session 7: Web scraping and APIs

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

1. Scraping static webpages with R

2. Web scraping: good practice

3. Web APIs: the basics

4. JSON

5. Summary

2 / 49

Scraping static webpages with R

3 / 49

To fully unlock the potential of web data for data
science, we draw on certain web technologies.
Importantly, often a basic understanding of these
technologies is sufficient as the focus is on web
data collection, not web development.
Specifically, we have to understand

How our machine/browser/R communicates
with web servers (→ HTTP/S)
How websites are built (→ HTML, CSS, basics of
JavaScript)
How content in webpages can be effectively
located (→ XPath, CSS selectors)
How dynamic web applications are executed
and tapped (→ AJAX, Selenium)
How data by web services is distributed and
processed (→ APIs, JSON, XML) Credit ADCR

Technologies of the world wide web

4 / 49

https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

What is web scraping?
1. Pulling (unstructured) data from websites (HTMLs)
2. Bringing it into shape (into an analysis-ready

format)

The philosophy of scraping with R
No point-and-click procedure
Script the entire process from start to finish
Automate

The downloading of files
The scraping of information from web sites
Tapping APIs
Parsing of web content
Data tidying, text data processing

Easily scale up scraping procedures
Scheduling of scraping tasks

Credit prowebscraping.com

Web scraping

5 / 49

http://prowebscraping.com/web-scraping-vs-web-crawling/

Key tools for scraping static webpages
1. You are able to inspect HTML pages in your browser

using the web developer tools.
2. You are able to parse HTML into R with rvest .
3. You are able to speak XPath (or CSS selectors).
4. You are able to apply XPath expressions with rvest .
5. You are able to tidy web data with R/ dplyr / regex .

The big picture
Every scraping project is different, but the coding
pipeline is fundamentally similar.
The (technically) hardest steps are location (XPath,
CSS selectors) and extraction (clean-up), sometimes
the scaling (from one to multiple sources).

The scraping workflow

6 / 49

rvest is a suite of scraping tools. It is part of the tidyverse and has made
scraping with R much more convenient.

There are three key rvest verbs that you need to learn.1

1. read_html() : Read (parsing) an HTML resource.

2. html_elements() : Find elements that match a CSS selector or XPath
expression.

3. html_text2() : Extract the text/value inside the node set.

Web scraping with rvest

1 There is more in rvest than what we can cover today. Have a glimpse at the overview at tidyverse.org and at this excellent
(unofficial) cheat sheet.

7 / 49

https://rvest.tidyverse.org/
https://github.com/yusuzech/r-web-scraping-cheat-sheet

We are going to scrape a
information from a
Wikipedia article on
women philosophers
available at
https://en.wikipedia.org/wiki/
List_of_women_philosophers.
The article provides two
types of lists - one by
period and one sorted
alphabetically. We want
the alphabetical list.
The information we are
actually interested in -
names - is stored in
unordered list elements.

Web scraping with rvest: example

8 / 49

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_women_philosophers

Scraping with rvest: example (cont.)
Step 1: Parse the page

R> url_p <- read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")

9 / 49

Scraping with rvest: example (cont.)
Step 1: Parse the page

R> url_p <- read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")

Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set <- html_elements(url_p, xpath = "//h2/span[text()='Alphabetically']//following::li/a[1]")

9 / 49

Scraping with rvest: example (cont.)
Step 1: Parse the page

R> url_p <- read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")

Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set <- html_elements(url_p, xpath = "//h2/span[text()='Alphabetically']//following::li/a[1]")

The XPath expression reads:

//h2 : Look for h2 elements anywhere in the document.
/span[text()='Alphabetically'] : Within that element look for span elements with the content "Alphabetically" .
//following::li : In the DOM tree following that element (at any level), look for li elements.
/a[1] within these elements look for the first a element you can find.

9 / 49

Scraping with rvest: example (cont.)
Step 3: Extract information and clean it up

R> phil_names <- elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

[1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

10 / 49

Scraping with rvest: example (cont.)
Step 3: Extract information and clean it up

R> phil_names <- elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

[1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

Step 4: Clean up (here: select the subset of links we care about)

R> names_iffer <-
+ seq_along(phil_names) >= seq_along(phil_names)[str_detect(phil_names, "Felicia Nimue Ackerman")] &
+ seq_along(phil_names) <= seq_along(phil_names)[str_detect(phil_names, "Alenka Zupančič")]
R> philosopher_names_clean <- phil_names[names_iffer]
R> length(philosopher_names_clean)

[1] 267

R> philosopher_names_clean[1:5]

[1] "Felicia Nimue Ackerman" "Marilyn McCord Adams" "Aedesia"
[4] "Alia Al-Saji" "Lilli Alanen" 10 / 49

The hassle with XPath
The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.
It will take a couple of scraping projects until you’ll
truly have mastered XPath.

A much-appreciated helper
SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.
It is available here: http://selectorgadget.com/
(there is also a Chrome extension).
The tool is magic and you will love it.

Quick-n-dirty static webscraping with SelectorGadget

11 / 49

http://selectorgadget.com/

The hassle with XPath
The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.
It will take a couple of scraping projects until you’ll
truly have mastered XPath.

A much-appreciated helper
SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.
It is available here: http://selectorgadget.com/
(there is also a Chrome extension).
The tool is magic and you will love it.

What does SelectorGadget do?
You activate the tool on any webpage you want to
scrape.
Based on your selection of components, the tool
learns about your desired components and
generates an XPath expression (or CSS selector) for
you.

Under the hood
Based on your selection(s), the tool looks for similar
elements on the page.
The underlying algorithm, which draws on Google’s
diff-match-patch libraries, focuses on CSS
characteristics, such as tag names and <div> and
 attributes.

Quick-n-dirty static webscraping with SelectorGadget

11 / 49

http://selectorgadget.com/

SelectorGadget: example

0:00 / 1:23

12 / 49

SelectorGadget: example (cont.)
R> library(rvest)
R> url_p <- read_html("https://www.nytimes.com")
R> # xpath: paste the expression from Selectorgadget!
R> # note: we use single quotation marks here (' instead of ") to wrap around the expression!
R> xpath <- '//*[contains(concat(" ", @class, " "), concat(" ", "erslblw0", " "))]//*[contains(concat(" ",
R> headlines <- html_elements(url_p, xpath = xpath)
R> headlines_raw <- html_text(headlines)
R> length(headlines_raw)
R> head(headlines_raw)

[1] 29

[1] "Retailers’ Latest Headache: Shutdowns at Their Vietnamese SuppliersRetailers’ Latest Headache: Shutdowns at T
[2] "With virus restrictions waning, it’s becoming clear: Britain’s gas crisis is a Brexit crisis, too. Here’s why
[3] "Business updates: U.S. stock futures signaled a rebound as bond yields fell back."
[4] "Republicans at Odds Over Infrastructure Bill as Vote ApproachesRepublicans at Odds Over Infrastructure Bill a
[5] "Liberals Dig In Against Infrastructure Bill as Party Divisions Persist"
[6] "Successful programs from around the world could guide Congress in designing a paid family leave plan."

13 / 49

SelectorGadget: when to use and not to use it
Having learned about a semi-automated approach to generating XPath expressions, you might ask:

Why bother with learning XPath at all?

Well...

SelectorGadget is not perfect. Sometimes, the algorithm will fail.
Starting from a different element sometimes (but not always!) helps.
Often the generated expressions are unnecessarily complex and therefore difficult to debug.
In my experience, SelectorGadget works 50-60% of the times when scraping from static webpages.
You are also prepared for the remaining 40-50%!

14 / 49

Scraping HTML tables

15 / 49

Function definition

R> html_table(x,
+ header = NA,
+ trim = TRUE,
+ dec = ".",
+ na.strings = "NA",
+ convert = TRUE
+)

Argument Description

x Document (from read_html()) or node set (from html_elements()).

header Use first row as header? If NA , will use first row if it consists of <th> tags.

trim Remove leading and trailing whitespace within each cell?

dec The character used as decimal place marker.

na.strings Character vector of values that will be converted to NA if convert is TRUE .

convert If TRUE , will run type.convert() to interpret texts as int, dbl, or NA .

Scraping HTML tables
HTML tables are everywhere.
They are easy to spot in the wild - just look for <table> tags!
Exactly because scraping tables is an easy and repetitive task, there is a dedicated rvest function for it:
html_table() .

16 / 49

We are going to scrape a small
table from the Wikipedia page
https://en.wikipedia.org/wiki/
List_of_human_spaceflights.
(Note that we're actually using
an old version of the page
(dating back to May 1, 2018),
which is accessible here.
Wikipedia pages change, but
this old revision and associated
link won't.))
The table is not entirely clean:
There are some empty cells, but
also images and links.
The HTML code looks
straightforward though.

Scraping HTML tables: example

17 / 49

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_human_spaceflights
https://en.wikipedia.org/w/index.php?title=List_of_human_spaceflights&oldid=778165808

Scraping HTML tables: example (cont.)
R> library(rvest)
R> url <- "https://en.wikipedia.org/wiki/List_of_human_spaceflights"
R> url_p <- read_html(url)
R> tables <- html_table(url_p, header = TRUE)
R> spaceflights <- tables[[1]]
R> spaceflights

A tibble: 7 × 5
`` `Russia Soviet Union` `United States` China Total
<chr> <chr> <chr> <int> <chr>
1 1961–1970 16 25 NA 41
2 1971–1980 30 8 NA 38
3 1981–1990 *25 *38 NA *63
4 1991–2000 20 63 NA 83
5 2001–2010 24 34 3 61
6 2011–2020 24 3 3 30
7 Total *139 *171 6 *316

18 / 49

Web scraping: good practice

19 / 49

Scraping: the rules of the game

1. You take all the responsibility for your web scraping work.

2. Think about the nature of the data. Does it entail sensitive information? Do not collect personal data without explicit
permission.

3. Take all copyrights of a country’s jurisdiction into account. If you publish data, do not commit copyright fraud.

4. If possible, stay identifiable. Stay polite. Stay friendly. Obey the scraping etiquette.

5. If in doubt, ask the author/creator/provider of data for permission—if your interest is entirely scientific, chances
aren’t bad that you get data.

20 / 49

What's robots.txt?
"Robots exclusion standard", informal protocol to
prohibit web robots from crawling content
Located in the root directory of a website (e.g.,
google.com/robots.txt)
Documents which bot is allowed to crawl which
resources (and which not)
Not a technical barrier, but a sign that asks for
compliance

What's robots.txt?
Not an official W3C standard
Rules listed bot by bot
General rule listed under User-agent: * (most
interesting entry for R-based crawlers)
Directories folders listed separately

Example

User-agent: Googlebot
Disallow: /pics/
Disallow: /private/

Universal ban

User-agent: *
Disallow: /

Allow declaration

User-agent: *
Disallow: /pics/
Allow: /pics/public/

Crawl delay (in seconds)

User-agent: *
Crawl-delay: 2

Consult robots.txt

21 / 49

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.google.com/robots.txt

Stay modest when accessing lots of
data

Content on the web is publicly available.
But accessing the data causes server traffic.
Stay polite by querying resources as sparsely as
possible.

Two easy-to-implement practices
1. Do not bombard the server with requests - and if

you have to, do so at modest pace.
2. Store web data on your local drive first, then parse.

Looping over a list of URLs
R> for (i in 1:length(list_of_urls)) {
+ if (!file.exists(paste0(folder, file_names[i])))
+ download.file(list_of_urls[i],
+ destfile = paste0(folder, file_na
+)
+ Sys.sleep(runif(1, 1, 2))
+ }
+ }

!file.exists() checks whether a file does not exist
in the specified location.
download.file() downloads the file to a folder. The
destination file (location + name) has to be
specified.
Sys.sleep() suspends the execution of R code for a
given time interval (in seconds).

Downloading HTML files

22 / 49

Don't be a phantom
Downloading massive amounts of data may arouse
attention from server administrators.
Assuming that you've got nothing to hide, you
should stay identifiable beyond your IP address.

Two easy-to-implement practices
1. Get in touch with website administrators / data

owners.
2. Use HTTP header fields From and User-Agent to

provide information about yourself (by passing
these to add_headers() from the httr library).

Staying identifiable in practice
R> url <- "http://a-totally-random-website.com"
R> rvest_session <- session(url,
+ add_headers(From = "my@email.com",
+ `UserAgent` =
+ R.Version()$version.string
+)
+)
R> headlines <- rvest_session %>%
+ html_elements(xpath = "p//a") %>%
+ html_text()

rvest 's session() creates a session object that
responds to HTTP and HTML methods.
Here, we provide our email address and the current
R version as User-Agent information.
This will pop up in the server logs: The webpage
administrator has the chance to easily get in touch
with you.

Staying identifiable

23 / 49

Scraping etiquette (cont.)

24 / 49

Web APIs: the basics

25 / 49

Definition
A web Application Programming Interface lets
you/your program query a provider for specific data.
Think of web APIs as "data search engines": You
pose a request, the API answers with a bulk of data.
Many popular web services provide APIs (Google,
Twitter, Wikipedia, ...).
Often, APIs provide data in JSON, XML (can be any
format though).

Credit Brian Cooksey

What are web APIs?

26 / 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/

Definition
A web Application Programming Interface lets
you/your program query a provider for specific data.
Think of web APIs as "data search engines": You
pose a request, the API answers with a bulk of data.
Many popular web services provide APIs (Google,
Twitter, Wikipedia, ...).
Often, APIs provide data in JSON, XML (can be any
format though).

Credit Brian Cooksey

Key concepts
Server: A computer that runs an API and can be
talked to.
Client: A program that exchanges data with a server
through an API.
Protocol: The rule set underlying how computers
talk to each other (e.g. HTTP).
Method: The "verbs" that clients use to talk with a
server (in HTTP speak: GET , POST , and others).
Endpoint: URLs that can be specified in a particular
way to query the API database.
Request: What the client asks of the server (see
Methods above).
Response: The server's response. This includes a
Status Code (e.g. "200", "404"), a Header (meta-
information about the reponse), and a Body (the
actual content that we're interested in).

What are web APIs?

26 / 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/

Key perks from a web scraping
perspective

APIs provide instance access to clean data.
They free us from building manual scrapers.
They make it easier for a computer to interact with
data on server.
API usage implies mutual agreement about data
collection.

What do APIs do?

27 / 49

Key perks from a web scraping
perspective

APIs provide instance access to clean data.
They free us from building manual scrapers.
They make it easier for a computer to interact with
data on server.
API usage implies mutual agreement about data
collection.

Restaurant analogy1

Restaurant Web API

You, the client Your program/computer

The restaurant API provider

The waiter API

The menu API documentation

Your order Specified API endpoint (request)

The kitchen API database

The food API response

The bill API pricing

What do APIs do?

1 Kitchen example inspired by Jason Johl

27 / 49

https://blogs.mulesoft.com/learn-apis/api-led-connectivity/what-are-apis-how-do-apis-work/

Scalability and regulation of access
Imagine if everyone decided to retrieve data from a server in an unstructured way.
The amount of energy that this would consume would be very high.
Also, access to data would be largely unregulated.
With APIs, organizations can provide a regulated and organized way for clients to
retrieve a large amount of data, without overwhelming or crashing their server, or
violating their Terms of Use.

More reasons
Monetization: Data can be turned into a sellable product.
Innovation: Clients have access to data and develop their own products and
solutions.
Expansion: APIs can help companies move to different markets or partner with
other companies.

Why do organizations have APIs?

28 / 49

The IP API
The IP API at https://ip-api.com/ takes IP addresses
and provides geolocation data (latitude, longitude,
but also country state, city, etc.) in return.
This is useful if you want to, e.g., map IP address
data (although this is not perfectly accurate).
The API is free to use and requires no registration.
(There's also a pro service for commercial use
though.)

An example JSON response

Example: Working with the IP API

29 / 49

https://ip-api.com/
https://en.wikipedia.org/wiki/Internet_geolocation

Overview JSON endpoint

Example: Documentation

30 / 49

First, we specify the endpoint. We use the JSON endpoint
and start with an empty query field.

R> endpoint <- "http://ip-api.com/json"

Next, we call the API with httr 's GET() method.

R> endpoint <- "http://ip-api.com/json"
R> response <- httr::GET(endpoint)
R> response

Response [http://ip-api.com/json]
Date: 2022-10-31 10:18
Status: 200
Content-Type: application/json; charset=utf-8
Size: 400 B

Example: Calling the API with R

31 / 49

First, we specify the endpoint. We use the JSON endpoint
and start with an empty query field.

R> endpoint <- "http://ip-api.com/json"

Next, we call the API with httr 's GET() method.

R> endpoint <- "http://ip-api.com/json"
R> response <- httr::GET(endpoint)
R> response

Response [http://ip-api.com/json]
Date: 2022-10-31 10:18
Status: 200
Content-Type: application/json; charset=utf-8
Size: 400 B

Hooray, we successfully called the API and got JSON data
in return! We inspect the content with httr 's content()
function.

R> response_parsed <- httr::content(response)
R> response_parsed

$status
[1] "success"

$country
[1] "Germany"

$countryCode
[1] "DE"

$region
[1] "BE"

$regionName
[1] "Land Berlin"

$

Example: Calling the API with R

31 / 49

This looks like an R list, which is useful. httr::content()
automatically parsed the JSON file into an R list, which is
useful. We could have also kept the raw (here: text)
content with httr::content(as = "text") .

For more convenience (and flexibility), we can also use
the powerful jsonlite package and its parser:

R> response_parsed <- jsonlite::fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Germany"

$countryCode
[1] "DE"

$region
[1] "BE"

Example: Calling the API with R cont.

32 / 49

This looks like an R list, which is useful. httr::content()
automatically parsed the JSON file into an R list, which is
useful. We could have also kept the raw (here: text)
content with httr::content(as = "text") .

For more convenience (and flexibility), we can also use
the powerful jsonlite package and its parser:

R> response_parsed <- jsonlite::fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Germany"

$countryCode
[1] "DE"

$region
[1] "BE"

Given that the data structure is low-dimensional, we can
easily map it onto a data frame:

R> as.data.frame(response_parsed)

status country countryCode
1 success Germany DE
region regionName city
1 BE Land Berlin Berlin
zip lat lon
1 10965 52.4875 13.3992
timezone
1 Europe/Berlin

1 Verein zur Foerderung eines Deutschen Forschungsnetze
org
1 Hertie School of Governance gGmbH, Berlin

1 AS680 Verein zur Foerderung eines Deutschen Forschung
query
1 195.37.184.82

Example: Calling the API with R cont.

32 / 49

We can easily modify the call to retrieve more data:

R> endpoint <- "http://ip-api.com/json/91.198.174.1"
R> response_parsed <- jsonlite::fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Netherlands"

$countryCode
[1] "NL"

$region
[1] "NH"

$regionName
[1] "North Holland"

$city
[1] "Amsterdam"

Example: Calling the API with R cont.

33 / 49

We can easily modify the call to retrieve more data:

R> endpoint <- "http://ip-api.com/json/91.198.174.1"
R> response_parsed <- jsonlite::fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Netherlands"

$countryCode
[1] "NL"

$region
[1] "NH"

$regionName
[1] "North Holland"

$city
[1] "Amsterdam"

The API also allows for batch processing. This gives you
the ability to query multiple IP addresses in one HTTP
request, which is significantly faster than submitting
individual queries. To that end, the batch of IP addresses
or domains must be sent using a POST request:

R> endpoint <- "http://ip-api.com/batch"
R> response <- httr::POST(url = endpoint, body =
+ '["208.80.152.201", "91.198.174.192"]', encode
R> httr::content(response, as = "text") %>%
+ jsonlite::fromJSON() %>%
+ as.data.frame()

status country countryCode region regionNam
1 success United States US IL Illino
2 success Netherlands NL NH North Hollan
lat lon timezone
1 41.8781 -87.62980 America/Chicago Wikimedia Foundat
2 52.3676 4.90414 Europe/Amsterdam Wikimedia Europe
org
1 Wikimedia Foundation Inc AS14907 Wikimedia Foundat
2 Wikimedia Foundation, Inc. AS14907 Wikimedia Foundat

Example: Calling the API with R cont.

33 / 49

Is there a pre-built API client for R?
1. Yes. Great. Use it if it provides the functionality you

need (if not, see option 2).
2. No. Build your own API client.

Accessing APIs with R

34 / 49

Is there a pre-built API client for R?
1. Yes. Great. Use it if it provides the functionality you

need (if not, see option 2).
2. No. Build your own API client.

API clients
Provide an interface to APIs
Hide the API back-end
Let you stay in your programming environment
Good news: In most cases, this will be the world you
live in
Please always cite package authors when you use
their work. Run citation("<package name>") to see
how.

Building a client from scratch
Dive into the API documentation
Write your own functions to specify endpoint calls
and turn API output into R data structures
Build infrastructure for API authentication if
necessary

Accessing APIs with R

34 / 49

API clients: example
The ipapi package by Bob Rudis provides high-level access to the IP API. You just have to install it and can then work
with the geolocate() function provided by the package to call the API.

R> # devtools::install_github("hrbrmstr/ipapi") # uncomment to install if necessary
R> library(ipapi)
R> ip_df <- geolocate(c("", "10.0.1.1", "72.33.67.89", "www.spiegel.de"), .progress=TRUE)
R> ip_df

status country countryCode region regionName city zip
1: success Germany DE BE Land Berlin Berlin 10965
2: fail <NA> <NA> <NA> <NA> <NA> <NA>
3: success United States US WI Wisconsin Madison 53706
4: success Germany DE HE Hesse Frankfurt am Main 60314
lat lon timezone
1: 52.4875 13.3992 Europe/Berlin
2: NA NA <NA>
3: 43.0713 -89.4063 America/Chicago
4: 50.1103 8.7147 Europe/Berlin
isp
1: Verein zur Foerderung eines Deutschen Forschungsnetzes e.V.
2: <NA>
3: University of Wisconsin Madison
4: Link11 GmbH

35 / 49

https://github.com/hrbrmstr/ipapi

Restricted API access

Why API access can be restricted
The service provider wants to know who uses their API.
Hosting APIs is costly. API usage limits can help control costs.
The API hoster has a commercial interest: You pay for access (sometimes for advanced features or massive queries
only).

Access tokens
Access tokens serve as keys to an API.
They usually come in form of a randomly generated string, such as dk5nSj485jJZP3847kjU .
Obtaining a token requires registration; sometimes payment. Sometimes disclosure of your intentions.
Once you have the token, you pass it along with your regular API call using a key parameter.

36 / 49

The New York Times provides several APIs for developers
at https://developer.nytimes.com/. In order to use them,
we have to register as a developer (for free) and register
our app. Then, we can use that key to call one of the
APIs.

Restricted API access: example

37 / 49

https://developer.nytimes.com/

Restricted API access: example cont.
First, we load the key that we stored separately as a string (here: nytimes_apikey stored in rkeys.RDa).

R> load("/Users/simonmunzert/rkeys.RDa")

Next we specify the API endpoint using the API key:

R> endpoint <- "https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?"
R> url <- paste0(endpoint, "api-key=", nytimes_apikey)

Finally, we call the API and inspect the results:

R> nytimes_most_popular <- jsonlite::fromJSON(url)
R> nytimes_most_popular$results$title[1:3]

[1] "Elon Musk, in a Tweet, Shares Link From Site Known to Publish False News"
[2] "Who Is the Man Accused of Attacking Nancy Pelosi’s Husband?"
[3] "Elon Musk Is Said to Have Ordered Job Cuts Across Twitter"

38 / 49

Restricted API access: some advice
NEVER hard-code your personal API key (or any personal information for that matter) in R scripts that you plant to stare.

Instead, use one of the following options:

1. Store your API keys in a separate file that you store somewhere else and only import for the purpose of using them
(see previous example).

2. Store your API keys in environment variables.

For the second option, you can use Sys.setenv() and Sys.getenv() as in:

R> ## Set new environment variable called MY_API_KEY. Current session only. Don't store code in script.
R> Sys.setenv(MY_API_KEY="abcdefghijklmnopqrstuvwxyz0123456789")
R>
R> ## Assign the environment variable to an R object and pass it on where needed.
R> my_api_key = Sys.getenv("MY_API_KEY")

The downside of this approach is that this environment variable will not persist across sessions. To make it persistent
(on your system), you should modify the .Renvion file. Check out these instructions to learn how that works.

39 / 49

https://raw.githack.com/uo-ec607/lectures/master/07-web-apis/07-web-apis.html#Aside:_Safely_store_and_use_API_keys_as_environment_variables

Recap: tapping APIs with R
1. Figure out whether an API is available that serves your needs.

2. Figure out whether an up-to-date and fully functional R client for API is available. Make yourself familiar with the API
Terms of Use and client functionality, then use it.

3. If no client is available, build your own.

a. Dive into the documentation.

b. Use httr package to construct requests.

c. Use jsonlite package to parse the JSON response (or other parsers such as xml2 , depending on API output).

d. Address API error handling, user agent, authentication, pagination issues. (See here for more info.)

e. Write useful high-level functions that wrap your API calls and parsing operations.

f. Consider publishing your R API client as a package.

40 / 49

https://httr.r-lib.org/articles/api-packages.html

JSON

41 / 49

Quick facts
JavaScript Object Notation
Popular data exchange format for web services /
APIs
"the fat-free alternative to XML"
JSON ≠ Java, but a subset of JavaScript
However, very flexible and not dependent upon any
programming language
Import of JSON data into R is relatively
straightforward with the jsonlite package

What's JSON?

42 / 49

Example
[
 {
 "name" : "van Pelt, Lucy",
 "sex" : "female",
 "age" : 32
 },
 {
 "name" : "Peppermint, Patty",
 "sex" : "female",
 "age" : null
 },
 {
 "name" : "Brown, Charlie",
 "sex" : "male",
 "age" : 27
 }
]

43 / 49

Types of brackets
1. Curly brackets, { and } , embrace objects. Objects

work similar to elements in XML/HTML and can
contain other objects, key-value pairs or arrays.

2. Square brackets, [and] , embrace arrays. An array
is an ordered sequence of objects or values.

Data structure
JSON can map complex data structures (objects nested
within objects etc.), which can make it difficult to convert
JSON into flattened R data structures (e.g., a data frame).

Also, there is no ultimate JSON-to-R converting function.

Luckily, JSON files returned by web services are usually
not very complex. And jsonlite simplifies matters a lot.

Key-value pairs
Keys are put in quotation marks; values only if they
contain string data.

"name" : "van Pelt, Lucy"
"age" : 32

Keys and values are separated by a colon.

"age" : 32

Key-value pairs are separated by commas.

{"name" : "van Pelt, Lucy", "age" : 32}

Values within arrays are separated by commas.

["van Pelt, Lucy", "Peppermint, Patty"]

Basic syntax

44 / 49

Parsing JSON with R
There are different packages available for JSON
parsing with R.
Choose jsonlite by Jeroen Ooms: It's well
maintained and provides convincing mapping rules.

Key functions
There are two key functions in jsonlite :

fromJSON() : converts input from JSON data into R
objects following a set of conventions.
toJSON() : converts input from R objects into JSON
data

Get started with the package following this vignette.

Conversion rules of jsonlite
R> library(jsonlite)
R> x <- '[1, 2, true, false]'
R> fromJSON(x)

[1] 1 2 1 0

R> x <- '["foo", true, false]'
R> fromJSON(x)

[1] "foo" "TRUE" "FALSE"

R> x <- '[1, "foo", null, false]'
R> fromJSON(x)

[1] "1" "foo" NA "FALSE"

JSON and R

45 / 49

https://cran.r-project.org/web/packages/jsonlite/index.html
https://arxiv.org/abs/1403.2805
https://cran.r-project.org/web/packages/jsonlite/vignettes/json-aaquickstart.html

Summary

46 / 49

More on web scraping
Until now, the toy scraping examples were limited to single HTML pages. However, often we want to scrape data from
multiple pages. You might think of newspaper articles, Wikipedia pages, shopping items and the like. In such scenarios,
automating the scraping process becomes really powerful. Also, principles of polite scraping are more relevant then.

In other cases, you might be confronted with

forms,
authentication,
dynamic (JavaScript-enriched) content, or want to
automatically navigate through pages interactively.

There's only so much we can cover in one session. Check out more material online here and there to learn about
solutions to some of these problems.

47 / 49

https://github.com/hertie-data-science-lab/ds-workshop-webscraping
https://github.com/yusuzech/r-web-scraping-cheat-sheet

More on web APIs
Collecting data from the web using APIs provided by the data owner represents the gold standard of web data retrieval.
It allows for pure data collection without "HTML layout waste", standardized data access, de facto agreement on data
collection by the data owner, and robustness and scalability of data collection.

On the other hand, the rise of API architectures is not without issues. It requires knowledge of the architecture and
creates dependencies on API suppliers. While APIs have the potential to make data access more democratic, they can
also add to the siloing of information.

If you want to learn more about APIs in depth, check out this introduction to APIs. Or, check out this hands-on intro video
to APIs in R by Leo Glowacki.

There are many resources that give an overview of existing public APIs, including ProgrammableWeb and this List of
public APIs on GitHub. Another useful resource is APIs for social scientists - a collaborative review.

Finally, if you plan to write an R client for a web API, check out this guide.

48 / 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/
https://www.youtube.com/watch?v=kZU240u9H3E&t=2248s
https://www.youtube.com/watch?v=kZU240u9H3E&t=2248s
https://www.programmableweb.com/apis/directory
https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis
https://bookdown.org/paul/apis_for_social_scientists/
https://httr.r-lib.org/articles/api-packages.html

Coming up

Assignment
Assignment 3 is about to go online. Check it out and start scraping the web (politely).

Next lecture
Model fitting and evaluation. Now that we know how to retrieve data, let's learn how to model and learn from them.

49 / 49

