Introduction to Data Science
Session 7: Web scraping and APls

Simon Munzert
Hertie School |

https://github.com/intro-to-data-science-21

Table of contents

1. Scraping static webpages with R
2. Web scraping: good practice

3. Web APIs: the basics

4. JSON

5. Summary

2 [49

Scraping static webpages with R

Technologies of the world wide web

e To fully unlock the potential of web data for data
science, we draw on certain web technologies.

e Importantly, often a basic understanding of these

technologies is sufficient as the focus is on web

data collection, not web development.
e Specifically, we have to understand

o

How our machine/browser/R communicates
with web servers (— HTTP/S)

How websites are built (— HTML, CSS, basics of
JavaScript)

How content in webpages can be effectively
located (— XPath, CSS selectors)

How dynamic web applications are executed
and tapped (— AJAX, Selenium)

How data by web services is distributed and
processed (— APIs, JSON, XML)

Technologies for

disseminating content . . .
information extraction

Technologies for] [

on the Web
: HTTP L R |
| plain text — Regular expressions :
: HTML i —> | XPath/CSS selectors E
R — ! 4
| AJAX |— Selenium :
i JSON | —> i JSON parsers :
| APIs | — API clients :

__

Credit ADCR

4 [49

https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

Web scraping

What is web scraping?

1. Pulling (unstructured) data from websites (HTMLs)
2. Bringing it into shape (into an analysis-ready
format)

The philosophy of scraping with R

e No point-and-click procedure
Script the entire process from start to finish
Automate
o The downloading of files
o The scraping of information from web sites
o Tapping APIs
o Parsing of web content
o Data tidying, text data processing
Easily scale up scraping procedures
Scheduling of scraping tasks

web crawler web scraplng

crawler .
V|S|t all links
scraper

build Ilst @ V.
@ indexing data
xml sql

store in database

excel

Credit prowebscraping.com

5/ 49

http://prowebscraping.com/web-scraping-vs-web-crawling/

The scraping workflow

Key tools for scraping static webpages

1. You are able to inspect HTML pages in your browser
using the web developer tools.

. . ,® identify information that is nested] '@

2. You are able to parse HTML into R with rvest. in an HTML document — develop XPath query
browser, HTML source code, developer tools backward induction, developer tools, SelectorGadget
3. You are able to speak XPath (or CSS selectors). ‘] - ‘ ‘ lp —
4.You are able to apply XPath expressions with rvest. @ &)
. . download documents / web sites extract information
5. You are able to tidy web data with R/ dplyr / regex. I __ ,
download.file(), write_disk()) L XPath applied with rvest, regular expressions
l l
T h e b i g p i Ctu re @ parse document - @ debug code
L read_html()) L inspection, validation

e Every scraping project is different, but the coding
pipeline is fundamentally similar.

o The (technically) hardest steps are location (XPath,
CSS selectors) and extraction (clean-up), sometimes
the scaling (from one to multiple sources).

6/ 49

Web scraping with rvest

rvest IS a suite of scraping tools. It is part of the tidyverse and has made
scraping with R much more convenient.

There are three key rvest verbs that you need to learn.'

1. read_html(): Read (parsing) an HTML resource. =1

rvest

2. html_elements(): Find elements that match a CSS selector or XPath

(¢}
o
o

expression.

3. html_text2(): Extract the text/value inside the node set.

T There is more in rvest than what we can cover today. Have a glimpse at the overview at tidyverse.org and at this excellent
(unofficial) cheat sheet.

7 | 49

https://rvest.tidyverse.org/
https://github.com/yusuzech/r-web-scraping-cheat-sheet

Web scraping with rvest: example

e We are going to scrape a
information from a
Wikipedia article on
women philosophers
available at
https://en.wikipedia.org/wiki/
List_of_women_philosophers.

e The article provides two
types of lists - one by
period and one sorted
alphabetically. We want
the alphabetical list.

e The information we are
actually interested in -
names - Is stored in
unordered list elements.

Alphabetically {ect)

* 0xNE@-0*»@

wwwwwwwwww

» <h2>..</h2

»<div class=""noprint'>..</div

» <h3>..</h3

» <style data-mw-deduplicate="TemplateStyles:r998391716

/style
v<=div class=""div-col" style="column-width: 30em;
v<ul
v == $0
::marker

a href="/wiki/Felicia Nimue Ackerman" title="Fel:

a Nimue Ackerman'>Felicia Nimue Ackerman</a
" (fl. 2014)"
/11

P .</11

liz.</1i

P .</11

v

8/ 49

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_women_philosophers

Scraping with rvest: example (cont.)

Step 1: Parse the page

R> url_p ¢ read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")

9/ 49

Scraping with rvest: example (cont.)

Step 1: Parse the page
R> url_p ¢ read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")
Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set « html_elements(url_p, xpath = "//h2/span[text()="Alphabetically']//following::1li/a[1]")

9/ 49

Scraping with rvest: example (cont.)

Step 1: Parse the page

R> url_p ¢ read_html("https://en.wikipedia.org/wiki/List_of_women_philosophers")

Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set ¢« html_elements(url_p, xpath = "//h2/span[text()="Alphabetically']//following::1i/al1]")

The XPath expression reads:

//h2: Look for h2 elements anywhere in the document.

/span[text()="Alphabetically']: Within that element look for span elements with the content "Alphabetically".
//following:: 1i: In the DOM tree following that element (at any level), look for 1i elements.

/al1] within these elements look for the first a element you can find.

9/ 49

Scraping with rvest: example (cont.)

Step 3: Extract information and clean it up

R> phil_names <« elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

#H [1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

10 / 49

Scraping with rvest: example (cont.)

Step 3: Extract information and clean it up

R> phil_names <« elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

#H [1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

Step 4: Clean up (here: select the subset of links we care about)

R> names_1iffer <«

+ seq_along(phil_names) > seq_along(phil_names)[str_detect(phil_names, "Felicia Nimue Ackerman")] &
+ seqg_along(phil_names) < seq_along(phil_names)[str_detect(phil_names, "Alenka Zupancic")]

R> philosopher_names_clean ¢« phil_names[names_iffer]

R> length(philosopher_names_clean)

tH [1] 267

R> philosopher_names_clean[1:5]

[1] "Felicia Nimue Ackerman" "Marilyn McCord Adams" "Aedesia"
[4] "Alia Al-Saji" "Lilli Alanen" 10 / 49

Quick-n-dirty static webscraping with SelectorGadget

The hassle with XPath

¢ The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.

It will take a couple of scraping projects until you'll
truly have mastered XPath.

A much-appreciated helper

» SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.

e Itis available here: http://selectorgadget.com/
(there is also a Chrome extension).

e The tool iIs magic and you will love it.

1M/ 49

http://selectorgadget.com/

Quick-n-dirty static webscraping with SelectorGadget

The hassle with XPath

¢ The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.

It will take a couple of scraping projects until you'll
truly have mastered XPath.

A much-appreciated helper

» SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.

e Itis available here: http://selectorgadget.com/
(there is also a Chrome extension).

e The tool iIs magic and you will love it.

What does SelectorGadget do?

e You activate the tool on any webpage you want to
scrape.

e Based on your selection of components, the tool
learns about your desired components and

generates an XPath expression (or CSS selector) for

you.

Under the hood

e Based on your selection(s), the tool looks for simi
elements on the page.

e The underlying algorithm, which draws on Google’

diff-match-patch libraries, focuses on CSS
characteristics, such as tag names and <div> and
 attributes.

lar

S

1M/ 49

http://selectorgadget.com/

SelectorGadget: example

@ New Tab *

| 4 y Q, Search with Google or enter address

L+ Most Visited

e Firefox |
i (G Search with Google or enter address } .

a ebay G@ [> | n o @

Amazon eBay + @google YouTube Facebook Wikipedia Reddit
Sponsored Sponsored

12 | 49

SelectorGadget: example (cont.)

R>
R>
R>
R>
R>
R>
R>
R>

TEEREE H

library(rvest)
url_p ¢« read_html("https://ww.nytimes.com")

xpath « '//*[contains(concat(

, aclass, " "), concat(" ", "erslbwwe", " "))]//*[contains(concat(" ",

headlines ¢« html_elements(url_p, xpath = xpath)
headlines raw ¢« html_text(headlines)
length(headlines_raw)

head(headlines raw)

[1]

[1]
[2]
[3]
[4]
[5]
[6]

29

"Retailers’ Latest Headache: Shutdowns at Their Vietnamese SuppliersRetailers’ Latest Headache: Shutdowns at T
"With virus restrictions waning, it’s becoming clear: Britain’'s gas crisis is a Brexit crisis, too. Here's why
"Business updates: U.S. stock futures signaled a rebound as bond yields fell back."

"Republicans at 0dds Over Infrastructure Bill as Vote ApproachesRepublicans at 0dds Over Infrastructure Bill a
"Liberals Dig In Against Infrastructure Bill as Party Divisions Persist"

"Successful programs from around the world could guide Congress 1n designing a paid family leave plan."

13/ 49

SelectorGadget: when to use and not to use it

Having learned about a semi-automated approach to generating XPath expressions, you might ask:
Why bother with learning XPath at all?
Well...

e SelectorGadget is not perfect. Sometimes, the algorithm will fail.

Starting from a different element sometimes (but not always!) helps.

Often the generated expressions are unnecessarily complex and therefore difficult to debug.

In my experience, SelectorGadget works 50-60% of the times when scraping from static webpages.
You are also prepared for the remaining 40-50%!

14 [49

Scraping HTML tables

; Built ¢ Building 4 City 4 Country 4 Roof 4 Floors ¢ Pinnacle ¢ Current status 4
‘ Purchased Equipments (June, 2006) 1870 | Equitable Life Building New York City 043m 142t |8 Destroyed by fire in 1912
| Ttem Description | Price 1889 | Auditorium Building Chicago 082m |269ft |17 106 m | 349ft | Standing
Ttem Num# |Ttem Picture | » 1890 New York World Building New York City 094m 309ft |20 106 m | 349ft | Demolished in 1955
| Sl‘ll]]]]]llg Hﬂ.l'll'“.i.l'lg, Iusta]latiun, etc |E1‘p ense 1894 Philadelphia City Hall Philadelphia 1558 m 511ft |9 167m | 548ft | Standing
1908 Singer Building 187m |612ft 47 Demolished in 1968
IEM Clone Computer. ¥ 40000 1909 | Met Life Tower — T 213m | 700t |50 Standing
1. ’ 1913 Woolworth Building : 241m | 792ft |57 Standing
.:f' Shlppl.ﬂg Handlmg, Installation, ete $ 20 00 1930 40 Wall Street New York City 70 283m | 927 ft | Standing
1930 Chrysler Building 2829m 927ft |77 319m | 1,046 ft | Standing
13E BAM Module for Computer $ S0.00 1931 Empire State Building 381m | 1,250 ft| 102 443 m | 1,454 ft | Standing
2 i i 1972 World Trade Center (North Tower) 417m | 1,368 ft | 110 527.3 m | 1,730 ft | Destroyed in 2001 in the September 11 attacks
’ hinni Handl Tnstallation. etc $ 1400 1974 Willis Tower (formerly Sears Tower) | Chicago 442m | 1,450 ft 108 527m | 1,729 ft | Standing
PPIE ’ ’) 1996 Petronas Towers Kuala Lumpur | B Malaysia 379m | 1,2421t 88 452m | 1,483 ft | Standing
Purchased Equipmentc (Jlll'lE 2005) 2004 Taipei 101 Taipei Bl Taiwan 449m 1,474 1t 101 509 m | 1,671 ft | Standing
’ ’ ! 2010 | Burj Khalifa Dubai = United Arab Emirates | 828 m | 2,717t | 163 820.8m | 2,722 ft | Standing
&
NS
R SIPRN,
K &
DATES POLLSTER GRADE SAMPLE WEIGHT hal Q ADJUSTED
e DEC. 28-30 Gallup 1,500 _J 1.03 | 40% 55% 41% 53%
Rasmussen Reports/Pulse Opinion
* DEC.26-28 Rasearch ports/ P 1,500 LU _ 0.85 | 45% 53% 40% 53%
* DEC.24-28 Ipsos 1,5194 gl 2.01 | 37% 58% 31% 51%
e DEC.23-27 Gallup 1,500 _, 0.58 | 38% 56% 39% 54%
* DEC.24-26 YouGov 1,500) 1.13 | 38% 52% 39% 55%
15/ 49

Scraping HTML tables

e HTML tables are everywhere.

e They are easy to spot in the wild - just look for <table> tags!

e Exactly because scraping tables is an easy and repetitive task, there is a dedicated rvest function for it:
html_table().

Function definition Argument Description
X Document (from read_html()) or node set (from html_elements()).
R> html_table(x,
+ header = NA, header Use first row as header? If NA, will use first row if it consists of <th> tags.
+ trim = TRUE,
+ dec = ".", trim Remove leading and trailing whitespace within each cell?
+ na.strings = "NA", h a) "
. convert = TRUE dec The character used as decimal place marker.
+) na.strings Character vector of values that will be converted to NA If convert IS TRUE.

convert If TRUE, will run type.convert() to interpret texts as int, dbl, or NA.

16 / 49

Scraping HTML tables: example

ps:/en wikipedia.org| X

List of human spaceflights

vvvvvv

e We are going to scrape a small
table from the Wikipedia page

uuuuuuuuu
uuuuuuuuu
55555

‘‘‘‘‘‘‘‘‘

https://en.wikipedia.org/wiki/
List_of_human_spaceflights.

« (Note that we're actually using
an old version of the page
(dating back to May 1, 2018),
which is accessible here.

v <table class="wikitable" style="text-align:right;

Wikipedia pages change, but st/ j
this old revision and associated :E:t;' /t/rtd
link won't.)) s
« The table is not entirely clean: td3Besd
There are some empty cells, but . ffr;;; o
also images and links. E Er : Er

e The HTML code looks [body
straightforward though.

17 | 49

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_human_spaceflights
https://en.wikipedia.org/w/index.php?title=List_of_human_spaceflights&oldid=778165808

Scraping HTML tables: example (cont.)

R> library(rvest)

R> url « "https://en.wikipedia.org/wiki/List_of_human_spaceflights"
R> url_p ¢« read_html(url)

R> tables « html_table(url_p, header = TRUE)

R> spaceflights ¢« tables[[1]]

R> spaceflights

#H # A tibble: 7 x 5

H) "Russia Soviet Union “United States China Total
H <chr> <chr> <chr> <int> <chr>

#H 1 1961-1970 16 25 NA 41

#H 2 1971-1980 30 8 NA 38

#H 3 1981-1990 %25 *38 NA *63

H 4 1991-2000 20 63 NA 83

H 5 2001-2010 24 34 3 61

H 6 2011-2020 24 3 3 30

#H 7 Total *139 *171 6 *x316

18 | 49

Web scraping: good practice

Scraping: the rules of the game

1. You take all the responsibility for your web scraping work.

2. Think about the nature of the data. Does it entail sensitive information? Do not collect personal data without explicit
permission.

3. Take all copyrights of a country’s jurisdiction into account. If you publish data, do not commit copyright fraud.
4. If possible, stay identifiable. Stay polite. Stay friendly. Obey the scraping etiquette.

5. If in doubt, ask the author/creator/provider of data for permission—if your interest is entirely scientific, chances
aren’t bad that you get data.

20 / 49

Consult robots.txt

What's robots.txt?

e "Robots exclusion standard", informal protocol to

prohibit web robots from crawling content

« Located in the root directory of a website (e.g.,
google.com/robots.txt)

e Documents which bot is allowed to crawl which
resources (and which not)

e Not a technical barrier, but a sign that asks for
compliance

What's robots.txt?

e Not an official W3C standard

e Rules listed bot by bot

e General rule listed under user-agent: * (most
interesting entry for R-based crawlers)

e Directories folders listed separately

Example

User-agent: Googlebot
Disallow: /pics/
Disallow: /private/

Universal ban

User-agent: =
Disallow: /

Allow declaration

User-agent: =*
Disallow: /pics/
Allow: /pics/public/

Crawl delay (in seconds)

User-agent: =
Crawl-delay: 2

21/ 49

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.google.com/robots.txt

Downloading HTML files

Stay modest when accessing lots of
data

e Content on the web is publicly available.

e But accessing the data causes server traffic.

 Stay polite by querying resources as sparsely as
possible.

Two easy-to-implement practices

1. Do not bombard the server with requests - and if
you have to, do so at modest pace.

2. Store web data on your local drive first, then parse.

Looping over a list of URLs

R> for (i in 1:length(list_of _urls)) {

+ if (!file.exists(paste0(folder, file_names[i])))
+ download.file(list_of urls[i],

+ destfile = pasteO(folder, file_n
+)

+ Sys.sleep(runif(1, 1, 2))

+ }

+ }

e Ifile.exists() checks whether a file does not exist
in the specified location.

e download.file() downloads the file to a folder. The
destination file (location + name) has to be
specified.

e Sys.sleep() suspends the execution of R code for a
given time interval (in seconds).

22 | 49

Staying identifiable

Don't be a phantom

e Downloading massive amounts of data may arouse

attention from server administrators.
e Assuming that you've got nothing to hide, you
should stay identifiable beyond your IP address.

Two easy-to-implement practices

1. Get in touch with website administrators / data
owners.

2. Use HTTP header fields From and User-Agent to
provide information about yourself (by passing
these to add_headers() from the nttr library).

Staying identifiable in practice

R> url « "http://a-totally-random-website.com"
R> rvest session ¢« session(url,

+

+

+

+

+

add_headers(From = "my@email.com",
"UserAgent ™ =
R.Version()$version.string
)
)

R> headlines ¢ rvest _session %>%

+

+

html_elements(xpath = "p//a") %>%
html_text()

e rvest's session() creates a session object that
responds to HTTP and HTML methods.

e Here, we provide our email address and the current
R version as User-Agent information.

e This will pop up in the server logs: The webpage
administrator has the chance to easily get in touch

with you. 23 [49

Scraping etiquette (cont.)

World Wide Web

l

s A ()
T 1adr Ll Did you identify useful data on the | Get familiar with API output and
M - Weh? ’ build your own wrapper
\ J no \, /
lyes
e N \ r \
Is there an API which offers an yes Is there an R package or project that yes .)
interface to a relevant database? provides a wrapper? D
\ J J \ J
lno
's ~ N s ~
Do you assume a database to exist yes Is there someone who grants you yes Retrieve the data from your personal
behind the data? access to the database? contact and save a lot of time
\ J J \\ J
lno
r 2 no r ~
Does robots.trt permit bot action on yes L e) Scraping dos and don'ts
. . — s there a robots.txt? ¢
files you are interested in? ® Stay identifiable with User-agent
\ J
and From header fields, i.e. do
- l"o not masquerade behind proxies or
s T s N\ i i b _l'k g t
g i |1 oo (eIt Of nes whieh plicily no Start scraping and consider all of the e
*| deny the use OJ.f. the'webpage you have |— aspects on the right =2 | © Reduce ‘tmfﬁc: scrape as fgw
L in mind?) as possible, use gzip if avail-
L oidc 0 bk ekioh able, choose lightweight formats,
R f;ossible o yes monitor changes before scraping
) Last-Modified header field
nevertheless start scraping, take into | ¢ ()
account the ‘Scraping dos and don’ts’ ® Do not bombard the server with un-
on the right. necessary requests

24 | 49

Web APIs: the basics

What are web APISs?

Definition

e A web Application Programming Interface lets
you/your program query a provider for specific data.

e Think of web APIs as "data search engines": You
pose a request, the APl answers with a bulk of data.

« Many popular web services provide APIs (Google,
Twitter, Wikipedia, ...).

« Often, APIs provide data in JSON, XML (can be any
format though).

Credit Brian Cooksey

26 | 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/

What are web APISs?

Definition

e A web Application Programming Interface lets

you/your program query a provider for specific data.

e Think of web APIs as "data search engines": You
pose a request, the APl answers with a bulk of data.

« Many popular web services provide APIs (Google,
Twitter, Wikipedia, ...).

« Often, APIs provide data in JSON, XML (can be any
format though).

Credit Brian Cooksey

Key concepts

Server: A computer that runs an APl and can be
talked to.

Client: A program that exchanges data with a server
through an API.

Protocol: The rule set underlying how computers
talk to each other (e.g. HTTP).

Method: The "verbs" that clients use to talk with a
server (in HTTP speak: GET, PosT, and others).
Endpoint: URLs that can be specified in a particular
way to query the API database.

Request: What the client asks of the server (see
Methods above).

Response: The server's response. This includes a
Status Code (e.g. "200" "404"), a Header (meta-
information about the reponse), and a Body (the
actual content that we're interested in). 26 | 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/

What do APIs do?

Key perks from a web scraping
perspective

e APIs provide instance access to clean data.

e They free us from building manual scrapers.

e They make it easier for a computer to interact with
data on server.

e APl usage implies mutual agreement about data
collection.

27 | 49

What do APIs do?

Key perks from a web scraping
perspective

APIs provide instance access to clean data.

They free us from building manual scrapers.

They make it easier for a computer to interact with
data on server.

APl usage implies mutual agreement about data
collection.

Restaurant analogy’

Restaurant Web API
You, the client Your program/computer
The restaurant API provider
The waiter AP]
The menu APl documentation
Your order Specified APl endpoint (request)
The kitchen API database
The food API response
The bill API pricing

T Kitchen example inspired by Jason Johl

27 | 49

https://blogs.mulesoft.com/learn-apis/api-led-connectivity/what-are-apis-how-do-apis-work/

Why do organizations have APIs?

Scalability and regulation of access

e Imagine if everyone decided to retrieve data from a server in an unstructured way. y
The amount of energy that this would consume would be very high.

e Also, access to data would be largely unregulated.
e With APIs, organizations can provide a regulated and organized way for clients to
retrieve a large amount of data, without overwhelming or crashing their server, or

violating their Terms of Use.

More reasons

& Spotify
(3 [. .

e Monetization: Data can be turned into a sellable product. @

 Innovation: Clients have access to data and develop their own products and YRGS

solutions.
« Expansion: APIs can help companies move to different markets or partner with ° YOUTUbe

other companies.

28 [49

Example: Working with the IP API

The IP API An example JSON response

e The IP API at https://ip-api.com/ takes IP addresses
and provides geolocation data (latitude, longitude,
but also country state, city, etc.) in return.
e This is useful if you want to, e.g., map IP address
data (although this is not perfectly accurate).
e The APl is free to use and requires no registration.

(There's also a pro service for commercial use Lomtinen s rerer

th O U h) “countryCode": "DE",
gn. eregionts “3E",
"regionName": "Land Berlin", 7o

“city": "Berlin",

APl Demo

Search any IP address/domain

“district": ""

. “zip®: “10117",

IP Geolocation API et 52,520, Berin
"lon": 13.3849,

"timezone": "Europe/Berlin",

Fast, accurate, reliable ottaetns 500,

“currency": "EUR",

Free for non-commercial use, no API key required { D "isp": "Vodafone Kabel Deutschland",
Q "org": "Vodafone Kabel Deutschland GmbH",
Easy to integrate, available in JSON, XML, CSV, Newline, ¢ “as": "AS3209 Vodafone GmbH",
PHP ' 9 “asname": "VODANET",
Q ‘ "mobile": false,

Serving more than 1 billion requests per day, trusted by “proxy": false,

thousands of businesses %v& “hosting": false

API DOCUMENTATION

29 | 49

https://ip-api.com/
https://en.wikipedia.org/wiki/Internet_geolocation

Example: Documentation

Overview JSON endpoint

OverVieW The API base path is

http://ip—api.com/json/{query}
This documentation is intended for developers who want to write applications that can query IP-API.

We serve our data in multiple formats via a Simple URL-based interface over HTTP. which enables you to use {query} can be a single IPv4/IPv6 address or a domain name. If you don't supply a query the current IP address will be used.

our data directly from a user's browser or from your server. Parameters

Query parameters (such as custom fields and JSONP callback) are appended as GET request parameters, for example:
http://ip—api.com/json/?fields=61439
Geolocation API

fields response fields optional
Response formats

lang response language optional
JSON
XL callback wrap inside (JSONP) optional
csv There is no APl key required.
Newline
PHP Quick test

You can edit this query and experiment with the options

http://ip-api.com/json/24.48.0.1
Batch API ﬂ / o

Query multiple IP addresses in one HTTP request.

SEND

Batch JSON

30 / 49

Example: Calling the APl with R

First, we specify the endpoint. We use the JSON endpoint
and start with an empty query field.

R> endpoint « "http://ip-api.com/json"
Next, we call the APl with httr's GET() method.

R> endpoint « "http://ip-api.com/json"
R> response ¢« httr::GET(endpoint)
R> response

Response [http://ip-api.com/json]

HH Date: 2022-10-31 10:18

Ht Status: 200

#H# Content-Type: application/json; charset=utf-8
#H Size: 400 B

31/ 49

Example: Calling the APl with R

First, we specify the endpoint. We use the JSON endpoint
and start with an empty query field.

R> endpoint « "http://ip-api.com/json"
Next, we call the APl with httr's GET() method.

R> endpoint « "http://ip-api.com/json"
R> response ¢« httr::GET(endpoint)
R> response

Response [http://ip-api.com/json]

Date: 2022-10-31 10:18

Status: 200

Content-Type: application/json; charset=utf-8
Size: 400 B

T EHEE

Hooray, we successfully called the APl and got JSON data
In return! We inspect the content with httr's content()
function.

R> response_parsed <« httr::content(response)
R> response_parsed

$status
[1] "success"

$country
[1] "Germany"

$countryCode
[1] nDEu

$region
[1] "BE"

$regionName

[1] "Land Berlin"
31/ 49

TR EEEEER R R R RN

Example: Calling the API with R cont.

This looks like an R list, which is useful. httr:: content()
automatically parsed the JSON file into an R list, which is
useful. We could have also kept the raw (here: text)
content with httr::content(as = "text").

For more convenience (and flexibility), we can also use
the powerful jsonlite package and its parser:

R> response_parsed < jsonlite:: fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Germany"

$countryCode
[1] IlDElI

$region 32/ 49
11 "pg"

T EHEEHEAEETHEEE

Example: Calling the API with R cont.

This looks like an R list, which is useful. httr:: content() Given that the data structure is low-dimensional, we can
automatically parsed the JSON file into an R list, which is easily map it onto a data frame:

useful. We could have also kept the raw (here: text)

content with httr::content(as = "text"). R> as.data.frame(response_parsed)

For more convenience (and flexibility), we can also use ## status country countryCode
the powerful jsonlite package and its parser: i & SlieEes ey >
P Jsontite P s P ’ #H region regionName city
H 1 BE Land Berlin Berlin
R> response_parsed < jsonlite:: fromJSON(endpoint) i zip lat lon
R> response_parsed #H 1 10965 52.4875 13.3992
Ht timezone
#Ht $status ## 1 Europe/Berlin
[1] "success" L
H #H 1 Vereln zur Foerderung eines Deutschen Forschungsnetz
$country e org
[1] "Germany" ## 1 Hertie School of Governance gGmbH, Berlin
HH HH
$countryCode # 1 AS680 Vereln zur Foerderung eines Deutschen Forschun
[1] "DE" H query
H #H 1 195.37.184.82
$region 32/ 49
H

11 "pg"

Example: Calling the API with R cont.

We can easily modify the call to retrieve more data:

R> endpoint « "http://ip-api.com/json/91.198.174.1"
R> response_parsed < jsonlite:: fromJSON(endpoint)
R> response_parsed

$status
[1] "success"

$country
[1] "Netherlands"

$countryCode
[1] IlNLlI

$region
[1] IINHII

$regionName
[1] "North Holland"

$city 33/ 49
17 "Am<sterdam"

P HAE T E R EE R EEHAEREE

Example: Calling the API with R cont.

We can easily modify the call to retrieve more data: The API also allows for batch processing. This gives you
the ability to query multiple IP addresses in one HTTP
R> endpoint « "http://ip-api.com/json/91.198.174.1" request, which is significantly faster than submitting

R> response_parsed < jsonlite:: fromJSON(endpoint)

individual queries. To that end, the batch of IP addresses
R> response_parsed

or domains must be sent using a POST request:

#H $status

[1] "success" R> endpoint « "http://ip-api.com/batch"

H R> response ¢ httr::POST(url = endpoint, body =

$country + '["208.80.152.201", "91.198.174.192"]', encode

[1] "Netherlands" R> httr::content(response, as = "text") %>%

Ht + jsonlite:: fromJSON() %>%

$countryCode + as.data.frame()

#H [1] "NL"

H H status country countryCode region regionNa
$region #H 1 success United States us IL Illino
[1] "NH" # 2 success Netherlands NL NH North Holla
H H lat lon timezone

#t $regionName #H 1 41.8781 -87.62980 America/Chicago Wikimedia Foundat
[1] "North Holland" #H 2 52.3676 4.90414 Europe/Amsterdam Wikimedia Europe
H H org

$city T Wikimedia Foundation Inc AS14907 Wikimedia fpungat
[11 "Amsterdam" #H 2 Wikimedia EFoundation. Tnc. AS14907 Wikimedia Foiindat

Accessing APIs with R

Is there a pre-built API client for R?

1. Yes. Great. Use it if it provides the functionality you
need (if not, see option 2).
2. No. Build your own API client.

34 [49

Accessing APIs with R

Is there a pre-built API client for R? API clients
1. Yes. Great. Use it if it provides the functionality you e Provide an interface to APIs
need (if not, see option 2). « Hide the API back-end
2. No. Build your own API client. e Let you stay in your programming environment
e Good news: In most cases, this will be the world you

live In

» Please always cite package authors when you use
their work. Run citation("<package name>") to see
how.

Building a client from scratch

e Dive into the API documentation

« Write your own functions to specify endpoint calls
and turn API output into R data structures

e Build infrastructure for APl authentication if

necessary 34 | 49

API clients: example

The ipapi package by Bob Rudis provides high-level access to the IP API. You just have to install it and can then work
with the geolocate() function provided by the package to call the API.

R>
R> library(ipapi)
R> ip_df ¢« geolocate(c("", "10.0.1.1", "72.33.67.89", "www.spiegel.de"), .progress=TRUE)

R> ip_df

H status country countryCode region regionName city z1ip
#H 1: success Germany DE BE Land Berlin Berlin 10965
H 2 fail <NA> <NA> <NA> <NA> <NA> <NA>
#Ht 3: success United States us WI Wisconsin Madison 53706
4@ success Germany DE HE Hesse Frankfurt am Main 60314
H lat lon timezone

#H 1: 52.4875 13.3992 Europe/Berlin

H 2: NA NA <NA>

3: 43.0713 -89.4063 America/Chicago

#H 4: 50.1103 8.7147 Europe/Berlin

Ht 1sp

1: Verein zur Foerderung eines Deutschen Forschungsnetzes e.V.

H o2 <NA>

H 3¢ University of Wisconsin Madison 35 / 49
HAL /e 1 = ~l11 el

https://github.com/hrbrmstr/ipapi

Restricted API access

Why API access can be restricted

e The service provider wants to know who uses their API.
e Hosting APIs Is costly. APl usage limits can help control costs.

e The API hoster has a commercial interest: You pay for access (sometimes for advanced features or massive queries
only).

Access tokens

e Access tokens serve as keys to an API.

e They usually come in form of a randomly generated string, such as dk5nSj485j3ZP3847kjU .

« Obtaining a token requires registration; sometimes payment. Sometimes disclosure of your intentions.
e Once you have the token, you pass it along with your regular API call using a key parameter.

36 / 49

Restricted API access: example

The New York Times provides several APIs for developers
at https://developer.nytimes.com/. In order to use them, .
¢y Developers Home APl Covi-19Data Get Started B

we have to register as a developer (for free) and register RDataCollection
our app. Then, we can use that key to call one of the Overview

Description
A P I S Package to do article search
App ID
{@} Developers Home APls Covid-l9Data Get Started -
APls API Keys Key Secret Status. Created Expires. Actions
[} Show secret |] v Active Feb 1,2019, 12:18 PM never Revoke
. . *
Archive API Article Search API Books API Most Popular API APls Name Descrigtion S Pt
Get all NYT article metadata for a Search for New York Times articles. Get NYT Best Sellers Lists and Popular articles on NYTimes.com.
given month. lookup book reviews. Archive API Get all NYT article metadata for a given month. = Enable
Article Search API Search for New York Times articles. Enabled Disable
Books API Get NYT Best Sellers Lists and lookup book reviews. - Enable
Most Popular API Popular articles on NYTimes.com. v Enabled Disable
[‘ Movie Reviews API Search for movie reviews. = Enable
RSS Feeds NYT RSS section feeds. — Enable
Movie Reviews API RSS Feeds Semantic API Times Tags API
Search for movie reviews. NYT RSS section feeds. Get semantic terms (people, places, NYT controlled vocabulary.

organizations, and locations).

37 [49

https://developer.nytimes.com/

Restricted API access: example cont.

First, we load the key that we stored separately as a string (here: nytimes_apikey Stored in rkeys.RDa).
R> load("/Users/simonmunzert/rkeys.RDa")

Next we specify the APl endpoint using the API key:

R> endpoint « "https://api.nytimes.com/svc/mostpopular/v2/viewed/1.json?"
R> url <« paste0(endpoint, "api-key=", nytimes_apikey)

Finally, we call the APl and inspect the results:

R> nytimes_most _popular <« jsonlite:: fromJSON(url)
R> nytimes _most_popular$results$title[1:3]

t#Ht [1] "Elon Musk, in a Tweet, Shares Link From Site Known to Publish False News"

[2] "wWho Is the Man Accused of Attacking Nancy Pelosi’s Husband?"
[3] "Elon Musk Is Said to Have Ordered Job Cuts Across Twitter"

38 / 49

Restricted APl access: some advice

NEVER hard-code your personal APl key (or any personal information for that matter) in R scripts that you plant to stare.
Instead, use one of the following options:

1. Store your API keys in a separate file that you store somewhere else and only import for the purpose of using them
(see previous example).
2. Store your APl keys in environment variables.

For the second option, you can use Sys.setenv() and Sys.getenv() as in:

R>

R> Sys.setenv(MY_API_KEY="abcdefghijklmnopqrstuvwxyz0123456789")
R>

R>

R> my_api_key = Sys.getenv("MY_API KEY")

The downside of this approach is that this environment variable will not persist across sessions. To make it persistent
(on your system), you should modify the .Renvion file. Check out these instructions to learn how that works.

39 [49

https://raw.githack.com/uo-ec607/lectures/master/07-web-apis/07-web-apis.html#Aside:_Safely_store_and_use_API_keys_as_environment_variables

Recap: tapping APIs with R

1. Figure out whether an API is available that serves your needs.

2. Figure out whether an up-to-date and fully functional R client for API is available. Make yourself familiar with the API
Terms of Use and client functionality, then use it.

3. If no client is available, build your own.
a. Dive into the documentation.
b. Use httr package to construct requests.
c. Use jsonlite package to parse the JSON response (or other parsers such as xm12, depending on API output).
d. Address API error handling, user agent, authentication, pagination issues. (See here for more info.)
e. Write useful high-level functions that wrap your API calls and parsing operations.

f. Consider publishing your R API client as a package.

40 | 49

https://httr.r-lib.org/articles/api-packages.html

JSON

41 | 49

What's JSON?

Quick facts

JavaScript Object Notation

Popular data exchange format for web services /
APIs

"the fat-free alternative to XML"

JSON # Java, but a subset of JavaScript

However, very flexible and not dependent upon any
programming language

Import of JSON data into R is relatively
straightforward with the jsonlite package

~ JSON Statham

42 | 49

Example

[
{
"name" : "van Pelt, Lucy",
"sex" : "female",
"age" : 32
kg
{
“name" : "Peppermint, Patty",
"sex" : "female",
"age" : null
Iy
{
"name" : "Brown, Charlie",
"sex" : "male",
“age" : 27
3
]

43 [49

Basic syntax

Types of brackets

1. Curly brackets, { and }, embrace objects. Objects
work similar to elements in XML/HTML and can
contain other objects, key-value pairs or arrays.

2. Square brackets, [and 1, embrace arrays. An array
Is an ordered sequence of objects or values.

Data structure

JSON can map complex data structures (objects nested
within objects etc.), which can make it difficult to convert
JSON into flattened R data structures (e.g., a data frame).

Also, there is no ultimate JSON-to-R converting function.

Luckily, JSON files returned by web services are usually
not very complex. And jsonlite simplifies matters a lot.

Key-value pairs

Keys are put in quotation marks; values only if they
contain string data.

"name" : "van Pelt, Lucy"
"age" : 32

Keys and values are separated by a colon.
"age" : 32

Key-value pairs are separated by commas.
{"name" : "van Pelt, Lucy", "age" : 32}

Values within arrays are separated by commas.

["van Pelt, Lucy", "Peppermint, Patty"]
/ °P / 44 | 49

JSON and R

Parsing JSON with R

e There are different packages available for JSON
parsing with R.

e Choose jsonlite by Jeroen Ooms: It's well

maintained and provides convincing mapping rules.

Key functions

There are two key functions in jsonlite:

e fromJSON(): converts input from JSON data into R
objects following a set of conventions.

e toJSON(): converts input from R objects into JSON
data

Get started with the package following this vignette.

Conversion rules of jsonlite

R> library(jsonlite)

R> x « '[1, 2, true, false]'
R> fromJSON(x)
#w [1] 1210

R> x « '["foo", true, false]'
R> fromJSON(x)

[1] "foo" "TRUE" "FALSE"

R> X e ||:1’ n_f_‘oou
R> fromJSON(x)

, null, false]'

#o[1] "1" "foo" NA "FALSE"

45 [49

https://cran.r-project.org/web/packages/jsonlite/index.html
https://arxiv.org/abs/1403.2805
https://cran.r-project.org/web/packages/jsonlite/vignettes/json-aaquickstart.html

Summary

46 [49

More on web scraping

Until now, the toy scraping examples were limited to single HTML pages. However, often we want to scrape data from
multiple pages. You might think of newspaper articles, Wikipedia pages, shopping items and the like. In such scenarios,
automating the scraping process becomes really powerful. Also, principles of polite scraping are more relevant then.

In other cases, you might be confronted with

forms,

authentication,

dynamic (JavaScript-enriched) content, or want to
automatically navigate through pages interactively.

There's only so much we can cover in one session. Check out more material online here and there to learn about
solutions to some of these problems.

47 | 49

https://github.com/hertie-data-science-lab/ds-workshop-webscraping
https://github.com/yusuzech/r-web-scraping-cheat-sheet

More on web APIs

Collecting data from the web using APIs provided by the data owner represents the gold standard of web data retrieval.
It allows for pure data collection without "HTML layout waste", standardized data access, de facto agreement on data
collection by the data owner, and robustness and scalability of data collection.

On the other hand, the rise of API architectures is not without issues. It requires knowledge of the architecture and
creates dependencies on APl suppliers. While APIs have the potential to make data access more democratic, they can
also add to the siloing of information.

If you want to learn more about APIs in depth, check out this introduction to APIs. Or, check out this hands-on intro video
to APIs in R by Leo Glowacki.

There are many resources that give an overview of existing public APIs, including ProgrammableWeb and this List of
public APIs on GitHub. Another useful resource is APIs for social scientists - a collaborative review.

Finally, if you plan to write an R client for a web API, check out this guide.

48 | 49

https://zapier.com/learn/apis/chapter-1-introduction-to-apis/
https://www.youtube.com/watch?v=kZU240u9H3E&t=2248s
https://www.youtube.com/watch?v=kZU240u9H3E&t=2248s
https://www.programmableweb.com/apis/directory
https://github.com/public-apis/public-apis
https://github.com/public-apis/public-apis
https://bookdown.org/paul/apis_for_social_scientists/
https://httr.r-lib.org/articles/api-packages.html

Coming up

Assignment

Assignment 3 is about to go online. Check it out and start scraping the web (politely).

Next lecture

Model fitting and evaluation. Now that we know how to retrieve data, let's learn how to model and learn from them.

49 [49

