Introduction to Data Science
Session 6: Web data and technologies

Simon Munzert
Hertie School |



https://github.com/intro-to-data-science-21

Table of contents

1. Web data for data science
2. HTML basics

3. XPath basics

4. CSS basics

5. Regular expressions

6. Summary

2/ 65



Web data for data science




What is web data?

British Journal of Political Science (2021), page 1 of 11
doi:10.1017/50007123420000897

British Journal of

Data Descriptor | Open Access \ Published: 02 August 2021 1S r
Political Science

The Upworthy Research Archive, a time series of 32,487

experiments in U.S. media LETTER

J. Nathan Matias &, Kevin Munger, Marianne Aubin Le Quere & Charles Ebersole

The Comparative Legislators Database

Scientific Data 8, Article number: 195 (2021) | Cite this article

Sascha Gobel™* (©) and Simon Munzert?

4164 Accesses | 110 Altmetric | Metrics

!Faculty of Social Sciences, Goethe University Frankfurt am Main, Germany; and *Data Science Lab, Hertie School, Berlin,
Germany

*Corresponding author. E-mail: sascha.goebel@soz.uni-frankfurt.de

Abstract

. . . . N Received 7 June 2020; revised 12 November 2020; accepted 2 December 2020
The pursuit of audience attention online has led organizations to conduct thousands of ( v J v P )

behavioral experiments each year in media, politics, activism, and digital technology. One
Abstract

Knowledge about political representatives’ behavior is crucial for a deeper understanding of politics and
policy-making processes. Yet resources on legislative elites are scattered, often specialized, limited in scope
or not always accessible. This article introduces the Comparative Legislators Database (CLD), which joins
micro-data collection efforts on open-collaboration platforms and other sources, and integrates with
renowned political science datasets. The CLD includes political, sociodemographic, career, online pres-
ence, public attention, and visual information for over 45,000 contemporary and historical politicians

pioneer of A/B tests was Upworthy.com, a U.S. media publisher that conducted a randomized
trial for every article they published. Each experiment tested variations in a headline and
image "package,” recording how many randomly-assigned viewers selected each variation.
While none of these tests were designed to answer scientific questions, scientists can

advance knowledge by meta-analyzing and data-mining the tens of thousands of

experiments Upworthy conducted. This archive records the stimuli and outcome for every A/B
test fielded by Upworthy between January 24, 2013 and April 30, 2015. In total, the archive
includes 32,487 experiments, 150,817 experiment arms, and 538,272,878 participant
assignments. The open access dataset is organized to support exploratory and confirmatory
research, as well as meta-scientific research on ways that scientists make use of the archive.

from ten countries. The authors provide a straightforward and open-source interface to the database
through an R package, offering targeted, fast and analysis-ready access in formats familiar to social scien-
tists and standardized across time and space. The data is verified against human-coded datasets, and its
use for investigating legislator prominence and turnover is illustrated. The CLD contributes to a central
hub for versatile information about legislators and their behavior, supporting individual-level comparative
research over long periods.

4 | 65



What is web data? (cont.

Experimental evidence of massive-scale emotional
contagion through social networks

Adam D. I. Kramer, Jamie E. Guillory, and Jeffrey T. Hancock
+ See all authors and affiliations

PNAS June 17, 2014 111 (24) 8788-8790; first published June 2, 2014; https://doi.org/10.1073/pnas.1320040111

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 25, 2014 (received for review
October 23, 2013)

This article has Corrections. Please see:
Editorial Expression of Concern: Experimental evidence of massivescale emotional
contagion through social networks - July 03, 2014

Correction for Kramer et al., Experimental evidence of massive-scale emotional contagion
through social networks - July 03, 2014

Info & Metrics [3 PDF

Significance

We show, via a massive (N = 689,003) experiment on Facebook, that emotional states can
be transferred to others via emotional contagion, leading people to experience the same
emotions without their awareness. We provide experimental evidence that emotional
contagion occurs without direct interaction between people (exposure to a friend
expressing an emotion is sufficient), and in the complete absence of nonverbal cues.

The consequences of online partisan media

Andrew M. Guess®® '

, Pablo Barbera®'®, Simon Munzert®'®, and JungHwan Yang (& & &h*"

aDepartment of Politics, Princeton University, Princeton, NJ 08544; School of Public and International Affairs, Princeton University, Princeton, NJ 08544;
<Department of Political Science and International Relations, University of Southern California, Los Angeles, CA 90089; “Data Science Lab, Hertie School,
10117 Berlin, Germany; and ¢Department of Communication, University of lllinois at Urbana-Champaign, Urbana, IL 61801

Edited by Christopher Andrew Bail, Duke University, Durham, NC, and accepted by Editorial Board Member Margaret Levi February 17, 2021 (received for

review June 29, 2020)

What role do ideologically extreme media play in the polar-
ization of society? Here we report results from a randomized
longitudinal field experiment embedded in a nationally represen-
tative online panel survey (N = 1,037) in which participants were
incentivized to change their browser default settings and social
media following patterns, boosting the likelihood of encounter-
ing news with either a left-leaning (HuffPost) or right-leaning
(Fox News) slant during the 2018 US midterm election campaign.
Data on =~ 19 million web visits by respondents indicate that
resulting changes in news consumption persisted for at least 8
wk. Greater exposure to partisan news can cause immediate but
short-lived increases in website visits and knowledge of recent
events. After adjusting for multiple comparisons, however, we
find little evidence of a direct impact on opinions or affect. Still,
results from later survey waves suggest that both treatments pro-
duce a lasting and meaningful decrease in trust in the mainstream
media up to 1 y later. Consistent with the minimal-effects tradi-
tion, direct consequences of online partisan media are limited,
although our findings raise questions about the possibility of sub-
tle, cumulative dynamics. The combination of experimentation
and computational social science techniques illustrates a powerful
approach for studying the long-term consequences of exposure to
partisan news.

media | politics | polarization | computational social science

argues that media primarily reinforce existing predispositions
(16). At the same time, more recent research strongly implies
that newspapers and especially cable news can change peo-
ple’s voting behavior, especially those without strong partisan
attachments (17-20). We propose an internet-age synthesis that
views people’s information environments through the lens of
choice architecture (21): frictions, subtle design features, and
default settings that structure people’s online experience. In
this view, small changes (or nudges) could disproportionately
affect information consumption habits that have downstream
consequences.

To that end, we designed a large, longitudinal online field
experiment that subtly but naturalistically increased people’s
exposure to partisan news websites. Our choice of treatment is
ecologically valid: Despite the importance of social media for
agenda-setting (22) and public expression (23), more Americans
continue to say that they get news from news websites or apps
than social media sites (24). The intervention thus served as a
nudge, boosting the likelihood that subjects encountered news
framed with a partisan slant during their day-to-day web brows-
ing experience, even if inadvertently. The powerful, sustained
nature of the intervention and our ability to track participants
with survey and behavioral data for months provided the oppor-
tunity to test a range of hypotheses about the long-term impact
of online partisan media.

Our preregistered hypotheses were divided into two separate

5/ 65



What is web data? (cont.)

So what is web data, really?

» Not all data you get from the web is "web data"

o Web data is data that is created on, for, or via the
web. By that definition, a survey dataset that you
download from a data repository is not web data.

« On the other hand, survey data collected online (i.e,
web/mobile questionnaires) is web data but we
don't consider it in today's session.

e Examples of web data:

o Online news articles

Social media network structures

Crowdsourced databases (e.g., Wikidata)

Server logs (e.g., viewership statistics)

Data from surveys, experiments, clickworkers

o

o

(¢]

(¢]

(¢]

Just any website

6/ 65



What is web data? (cont.)

So what is web data, really? And why is web data attractive?
e Not all data you get from the web is "web data". e Data is abundant online.
« Web data is data that is created on, for, or via the e Human behavior increasingly takes place online.
web. By that definition, a survey dataset that you e Countless services track human behavior.
download from a data repository is not web data. e Getting data from the web is cheap and often quick.
« On the other hand, survey data collected online (i.e, e An analysis workflow that involves web data can
web/mobile questionnaires) is web data but we often be easily updated.
don't consider it in today's session. e The vast majority of web data was not created with a
e Examples of web data: data analysis purpose in mind. This fact is often a
o Online news articles feature, not a bug.

o

Social media network structures
Crowdsourced databases (e.g., Wikidata)
Server logs (e.g., viewership statistics)

Data from surveys, experiments, clickworkers

o

(¢]

(¢]

(¢]

Just any website

6/ 65



Technologies of the world wide web

e To fully unlock the potential of web data for data
science, we draw on certain web technologies.

e Importantly, often a basic understanding of these

technologies is sufficient as the focus is on web

data collection, not web development.
e Specifically, we have to understand

o

How our machine/browser/R communicates
with web servers (— HTTP/S)

How websites are built (— HTML, CSS, basics of
JavaScript)

How content in webpages can be effectively
located (— XPath, CSS selectors)

How dynamic web applications are executed
and tapped (— AJAX, Selenium)

How data by web services is distributed and
processed (— APIs, JSON, XML)

Technologies for

disseminating content . . .
information extraction

Technologies for ] [

on the Web
: HTTP L R |
| plain text — Regular expressions :
: HTML i —> | XPath/CSS selectors E
R — ! 4
| AJAX |— Selenium :
i JSON | —> i JSON parsers :
| APIs | — API clients :

__________________________________________

Credit ADCR

7 | 65


https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

HTML basics




HTML background

What is HTML?

e HyperText Markup Language

Markup language = plain text + markups

Originally specified by Tim Berners-Lee at CERN in 1989/90

W3C standard for the construction of websites.

The fundamentals of HTML haven't changed much recently. Current
version is HTML 5.2 (published in 2017).

What is it good for?

« In the early days, the internet was mainly good for sharing texts. But HTML
plain text is boring. Markup is fun!

e HTML lies underneath of what you see in your browser. You don't see it
because your browser interprets and renders it for you.

e A basic understanding of HTML helps us locate the information we want
to retrieve.

9/ 65


https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium

HTML tree structure

The DOM tree

e« HTML documents are hierarchically structured. Think
of them as a tree with multiple nodes and branches.

« When a webpage (HTML resource) is loaded, the
browser creates a Document Object Model of that
page - the DOM Tree.

e Think of it as a representation that considers all
HTML elements as objects than can be accessed.

Parts of the tree

e The DOM is constituted of nodes, which are just
data types that can be referred to - such as
"attribute node" "text node" or "element node".

» A node set is a set of nodes. This will become
relevant when you learn about XPath, which you can
use to access multiple nodes (e.g, all title nodes).

<html>
<head>
<title id=1>First HTML</title>
</head>
<body>
I am your first HTML file!
</body>
</html>

([ <html> |

[ <head> ] ( <body> 1
I am your first
HTML-file!

[ <title> |
| First HTML |

10 / 65


https://en.wikipedia.org/wiki/Document_Object_Model

HTML: elements and attributes

Elements

e Elements are a combination of start tags, content,
and end tags.

e Example: <title>First HTML</title>

o An element is everything from (including) the
element's start tag to (including) the element's end
tag, but also other elements that are nested within
that element.

e Syntax:

Component Representation

Flement title title

Start tag <title>
End tag </title>
Value First HTML

Attributes

e Describe elements and are stored in the start tag.
e There are specific attributes for specific elements.
e Example: <a href="http://ww.r-
datacollection.com/">Link to Homepage</a>
e Syntax:
o Name-value pairs: name="value"
o Simple and double quotation marks possible
o Several attributes per element possible

Why tags and attributes are important

e Tags structure HTML documents.
e In the context of web scraping, the structure can be
exploited to locate and extract data from websites.

1/ 65



Important tags and attributes

Anchor tag <a>

e Links to other pages or resources.
e Classical links are always formatted with an anchor tag.

e The href attribute determines the target location.
e The value is the name of the link.

Link to another resource:

<a href="en.wikipedia.org/wiki/List_of_lists_of_lists">Link with absolute path</a>
Reference within a document:

<a id="top">Reference point</a>

Link to a reference within a document:

<a href="#top">Link to reference point</a>

12/ 65



Important tags and attributes

Heading tags <hi>, <h2>, ..., and paragraph tag <p>

e Structure text and paragraphs.
e Heading tags range from level 1to 6.
e Paragraph tag induces a line break.

Examples:
<p>This text is going to be a paragraph one day and separated from other text by line breaks.</p>

<hi1>heading of level 1 - this will be BIG</h1>

<h6>heading of level 6 - the smallest heading</h6>

13/ 65



Important tags and attributes

Listing tags <ul>, <ol>, and <d1>

e The <ol> tag creates a numeric list.

e The <ul> tag creates an unnumbered list.

e The <d1> tag creates a description list.

e List elements within <ol> and <ul> are indicated with the <1i> tag.

Example:

<ul>
<li>Dogs</1i>
<li>Cats</1i>
<li>Fish</1i>
</ul>

14 | 65



Important tags and attributes

Organizational and styling tags <div> and <span>

« They are used to group content over lines ( <div>, creating a block-level element) or within lines (<span>, creating an
inline-element).

e By grouping or dividing content into blocks, it's easier to identify or apply different styling to them.
e They do not change the layout themselves but work together with CSS (see later!).

Example of CSS definition: In the HTML document:

div.happy { <div class="happy">
color:pink; <p>I am a happy-styled paragraph</p>
font-family:"Comic Sans MS"; </div>
font-size:120%

}

unhappy text with <span class="happy">some
span.happy { happiness</span>

color:pink;

font-family:"Comic Sans MS";

font-size:120%
}

15/ 65



Important tags and attributes

Form tag <form>

e Allows to incorporate HTML forms.
e Client can send information to the server via forms.
e Whenever you type something into a field or click on radio buttons in your browser, you are interacting with forms.

Example:

<form name="submitPW" action="Passed.html" method="get">
password:
<input name="pw" type="text" value="">
<input type="submit" value="SubmitButtonText">

</ form>

16 / 65



Important tags and attributes

Table tags <table>, <tr>, <td>, and <th>

e Standard HTML tables always follow a standard architecture.
« The different tags allow defining the table as a whole, individual rows (including the heading), and cells.
e If the data is hidden in tables, scraping will be straightforward.

Example:

<table>
<tr> <th>Rank</th> <th>Nominal GDP</th> <th>Name</th> </tr>
<tr> <th></th> <th>(per capita, USD)</th> <th></th> </tr>
<tr> <td>1</td> <td>170,373</td> <td>Lichtenstein</td> </tr>
<tr> <td>2</td> <td>167,021</td> <td>Monaco</td> </tr>
<tr> <td>3</td> <td>115,377</td> <td>Luxembourg</td> </tr>
<tr> <td>4</td> <td>98,565</td> <td>Norway</td> </tr>
<tr> <td>5</td> <td>92,682</td> <td>Qatar</td> </tr>

</ table>

17 | 65



More resources on HTML

More HTML

e All in all there are over 100 HTML elements.

e But overall, it's still a fairly tight and easy-to-understand markup
language.

e Knowing more about the rest is probably not necessary to become a
good web scraper, but it helps parsing (in your brain) HTML documents L e G
quicker.

Eric A. Meyer & Estelle Weyl

More resources

e Check out the excellent MDN Web Docs for an overview, which also
point to additional tutorials and references.

XPath am; 5 N
XPointer

e The W3Schools tutorials are also a classic. e il |

The Good Parts

e While you're at it, you might also want to learn about related
technologies such as CSS (used to specify a webpage's
appearance/layout) and JavaScript (used to enrich HTMLs with

additional functionality and options to interact). 18/ 65


https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3schools.com/

Accessing the web using your browser vs. R

Using your browser to access webpages

1. You click on a link, enter a URL, run a Google query, etc.

2. Browser/your machine sends request to server that hosts website.
3. Server returns resource (often an HTML document).

4. Browser interprets HTML and renders it in a nice fashion.

Using R to access webpages

1. You manually specify a resource.

2. R/your machine sends a request to the server that hosts the website.
3. The server returns a resource (e.g., an HTML file).

4. R parses the HTML, but does not render it in a nice fashion.

5. It's up to you to tell R what content to extract.

19 / 65



Interacting with your browser

On web browsers

e Modern browsers are complex pieces of software that take care of multiple operations while you browse the web.

And they're basically all doing a good job." Common operations are to retrieve resources, render and display

information, and provide interface for user-webpage interaction.
e Although our goal is to automate web data retrieval, the browser is an important tool in web scraping workflow.

The use of browsers for web scraping

e Give you an intuitive impression of the architecture of a webpage
e Allow you to inspect the source code

« Let you construct XPath/CSS selector expressions with plugins

¢ Render dynamic web content (JavaScript interpreter)

T Check out this Wikipedia article on the Browser Wars that happened in the 1990s and 2000s (yes, there was Browser War | and
Browser War Il - and for once Germany was not to blame) to relive some of your instructor's pains when he started to look into this
"Internet".

20 / 65


https://en.wikipedia.org/wiki/Browser_wars

Inspecting HTML source code

@ en.wikipedia.org/wiki/List_of_tallest_buildings * @ % R | - O ‘

& Not logged in Talk Contributions Create account Log in

. M . Article  Talk Read View source View history | Search Wikipedia Q
e Goal: retrieving data from a ‘\
- . . wixipepia  List of tallest buildings a
W I k I p e d I a p age O n L I St Of ta [ le St R From Wikipedia, the free encyclopedia
b U i l d i n gS Z::‘:;:Se Not to be confused with list of tallest freestanding structures or list of tallest structures.

e —— This list of tallest buildings includes skyscrapers with continuously occupiable floors and a height of at least 350 m. Non-building structures, such as

Random| anticle towers, are not included in this list (see list of tallest buildings and structures).

L4 R | g h t_ C l | C k on p age (a n yW h e re) Atlit Wit Contents [hide]

Contact us
Donate 1 History

[ ) S l t 1 2 Ranking criteria and alternatives
e e C V 1 e W P a g e S O u r C e Cogubi 3 Tallest buildings in the world
2D 4 Alternative measurements

o HTML (CSS, JavaScript) code can 41 oo pad et

4.2 Height to occupied floor

Recent changes
Upload file 5 Buildings under construction

b e u g ly 6 List by continent L3
Tools

7 See also
What links here 8 Notes

e But looking more closely, we

Special pages °
Permanent link 10 External links

find the displayed information o |

et Rem History The 828-metre (2,717 f) tall Buij
Printiexport Main article: History of the world's tallest buildings Khalifa in Dubai has been the tallest
o ) v o _ » - building since 2010.!' The Burj Khalifa
Download as PDF Historically, the world's tallest man-made structure was the Great Pyramid of Giza in Egypt, which held the position for over 3,800 years!®! until the has been classified as Megatall
Pri *able vers'vn canstruction of Lincoln Cathedral in 1311. The Strasbourg Cathedral in France, completed in 1439, was the world's tallest building until 1874.
In;other projects The first skyscraper was pioneered in Chicago with the 138 ft (42.1 m) Home Insurance Building in 1885. The '”"'I —————
T S— United States would hold the position of the world's tallest building throughout the 20th century until 1998, when ) |

21/ 65


https://en.wikipedia.org/wiki/List_of_tallest_buildings
https://en.wikipedia.org/wiki/List_of_tallest_buildings

Inspecting the live HTML source code with the DOM

) Goal: retrIeVI ng data from a <« ¢ o @& en.wikipedia.org/wiki/List_of_tallest_buildings : P » % O] » -0 » ‘ }5
Wikipedia page on List of tallest
buildings Wixreora | List of tallest buildings a

‘The Free Encyclopedia

Article  Talk Read View source View history | Search Wikipedia Q

From Wikipedia, the free encyclopedia

1 R I g h t_ C |~ I C k O n th e e I-e m e n t Of Main page Not to be confused with list of tallest freestanding structures or list of tallest structures.

Contents
C::r::l :Vems This list of tallest buildings includes skyscrapers with continuously occupiable floors and a height of at least 350 m. Non-building structures, such as

I n te re St Random article towers, are not included in this list (see list of tallest buildings and structures).

About Wikipedia

Contact us Contents [hide]

e Select Inspect 1 oy

2 Ranking criteria and alternatives
3 Tallest buildings in the world
Help -
[ ) T h e We b D eVe lO p e r TO O lS et 4 Alternative measurements
4.1 Height to pinnacle (highest point)
. e 4.2 Height to occupied floor
Wl n OW p O pS U p Upload file 5 Buildings under construction

6 List by continent

Contribute

Community portal

oS 7 See also

e Corresponding part in the HTML

Related changes
Special pages

t re e i S h i g h l i g h te d Permanent link 10 External links

Page information

9 References

Cite this page

A A Wikidata item History : —
The 828-metre (2,717 ft) tall Burj
° | n te ra Ct I O n W I t h t h e t re e - Main article: History of the world's tallest buildings Khalifa in Dubai has been the tallest
Pritiexpor building since 2010.1") The Burj Khalif
: . " . N . . 18] . uilding since . e Burj Khalifa
. Download as PDF Historically, the world's tallest man-made structure was the Great Pyramid of Giza in Egypt, which held the position for over 3,800 years'' until the has been classified as Megatall2
p O SS | b le l Prii *able versiun corctruction of Lincoln Cathedral in 1311, The Strasbourg Cathedral in France, completed in 1439, was the world's tallest building until 1874,

In other projects om |

The first skyscraper was pioneered in Chicago with the 138 ft (42.1 m) Home Insurance Building in 1885. The
United States would hold the position of the world's tallest building throughout the 20th century until 1998, when LLLH I

[ —

22 | 65


https://en.wikipedia.org/wiki/List_of_tallest_buildings
https://en.wikipedia.org/wiki/List_of_tallest_buildings

When to do what with your browser

When to inspect the complete page source

o Check whether data is in static source code (the search function helps!)
e For small HTML files: understand structure

When to use the DOM explorer

e Almost always
o Particularly useful to construct XPath/CSS selector expressions
e To monitor dynamic changes in the DOM tree

A note on browser differences

« Inspecting the source code (as shown on the following slides) works
more or less identically in Chrome and Firefox.

e In Safari, g0 to — Preferences, then — Advanced and select Show
Develop menu in menu bar. This unlocks the Show Page Source and
Inspect options and the Web Developer Tools.

<strong>

<strong> <strong= .
<em> <liz
<abbr>

<title>

Credit watershedcreative.com

23/ 65


http://watershedcreative.com/naked/html-tree.html

XPath basics




Accessing the DOM tree with R

Different perspectives on HTML

e HTML documents are human-readable.

e HTML tags structure the document, comprising the DOM.

« Web user perspective: The browser interprets the code and renders the page.

« Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

25/ 65



Accessing the DOM tree with R

Different perspectives on HTML

e HTML documents are human-readable.

e HTML tags structure the document, comprising the DOM.

« Web user perspective: The browser interprets the code and renders the page.

« Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

HTML parsing

e Our goal is to get HTML into R while retaining the tree structure. That's similar to getting a spreadsheet into R and
retaining the rectangular structure.

e« HTML is human-readable, so we could also import HTML files as plain text via readLines(). That's a bad option
though - the document's structure would not be retained.

e The xml2 package allows us to parse XML-style documents. HTML is a "flavor" of XML, so it works for us.

e The rvest package, which we will mainly use for scraping, wraps the xm12 package, so we rarely have to load it

manually.
e There is one high-level function to remember: read_html() . It represents the HTML in a list-style fashion.

25/ 65



Accessing the DOM tree with R (cont.)

Getting HTML into R

Parsing a website Is straightforward:

R> library(rvest)
R> parsed_doc ¢« read_html("https://google.com")
R> parsed_doc

## {html_document}

#Ht <html itemscope="" itemtype="http://schema.org/WebPage" lang="de">

#H [1] <head>\n<meta content="text/html; charset=UTF-8" http-equiv="Content-Type
## [2] <body bgcolor="#fff">\n<script nonce="fe3VLT1LA97vqg3sXVoznx1Q">(function()

There are various functions to inspect the parsed document. They aren't really helpful - better use the browser instead if
you want to dive into the HTML.

R> xml2::html_structure(parsed _doc)
R> xml2::as_list(parsed_doc)

26 | 65



What's XPath?

Definition

e Short for XML Path Language, another W3C standard.
o A query language for XML-based documents (including HTML).
« With XPath we can access node sets (e.g., elements, attributes) and extract content.

Why XPath for web scraping?

« Source code of webpages (HTML) structures both layout and content.
e Not only content, but context matters!
« XPath enables us to extract content based on its location in the document (and potentially other features).
o With XPath, we can tell R to do things like:
1. Give me all <1i> elements in the document!
2. Look for all <table> elements in the document and give me the third one!
3. Extract all content in <p> elements that is labelled with class=newscontent!

27 | 65



Example: source code

<html>

<head>

<title>Collected R wisdoms</title>

</head>

<body>

<div id="R Inventor" lang="english" date="June/2003">
<h1>Robert Gentleman</h1l>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p><b>Source: </b>Statistical Computing 2003, Reisensburg</p>

</div>

<div lang="english" date="October/2011">
<h1>Rolf Turner</hil>
<p><i>'R is wonderful, but it cannot work magic'</i>
<br><emph>answering a request for automatic generation of 'data from a known mean and 95% CI'</emph></p>
<p><b>Source: </b><a href="https://stat.ethz.ch/mailman/listinfo/r-help">R-help</a></p>

</div>

<address>
<a href="http://ww.rdatacollectionbook.com"><i>The book homepage</i></a>

</address>

</body>

/gl 28 / 65



Example: DOM tree

<html>
|

<head> <body> <address>

<title> <a>
value: Col- href: htitps...
lected... -~
( . )
<i>
href: hitips...

<div> |
id: R-Inventor lang: english
lang: english date: Octo-
date: June/2003 ber/2011

| |
I s o R e - )

value: Robert value: Statis- value: Robert
Gentleman tical... Turner

<b> 1 ( <emph> W

| | |
( <i> ] | <b> )( <a> W
value: value: R is... value: an- value: value: R-help
Source... swering... Source... href: http...

| <i>

we...

T

value: What J

29 | 65



Applying XPath on HTML in R

e Load package rvest
e Parse HTML document with read _html()

R> library(rvest)
R> parsed _doc <« read_html("materials/fortunes.html")
R> parsed_doc

## {html_document}

#H <html>

## [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8
#H [2] <body>\n<div id="R Inventor" lang="english" date="June/2003">\n <hi1>Robe

e Query document using html_elements()
e rvest can process XPath queries as well as CSS selectors.
e Today, we'll focus on XPath:

R> html_elements(parsed_doc, xpath = "//div[last()]/p/i")

## {xml _nodeset (1)}
# [1] <i>'R is wonderful, but it cannot work magic'</i>

30 / 65



Grammar of XPath

Basic rules

1. We access nodes/elements by writing down the hierarchical structure in the DOM that locates the element set of
Interest.

2. A sequence of nodes is separated by /.
3. The easiest localization of a element is given by the absolute path (but often not the most efficient one!).

4. Apply XPath on DOM in R using html_elements() .

R> html_elements(parsed_doc, xpath = "//div[last()]/p/i")

## {xml _nodeset (1)}
## [1] <i>'R is wonderful, but it cannot work magic'</i>

31/ 65



Grammar of XPath

Absolute vs. relative paths

Absolute paths start at the root element and follow the whole way down to the target element (with simple slashes, /).

R> html_elements(parsed_doc, xpath = "/html/body/div/p/i")

t#H {xml _nodeset (2)}
# [1] <i>'What we have is nice, but we need something very different'</i>
# [2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths skip nodes (with double slashes, //).

R> html_elements(parsed_doc, xpath = "//body//p/i")

## {xml_nodeset (2)}
#H [1] <i>'What we have is nice, but we need something very different'</i>
# [2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths are often preferrable. They are faster to write and more comprehensive. On the other hand, they are less
targeted and therefore potentially less robust, and running them takes more computing time, as the entire tree has to be
evaluated. But that's usually not relevant for reasonably small documents. 32/ 65



Grammar of XPath

The wildcard operator

Meta symbol =
Matches any element

Works only for one arbitrary element
Far less important than, e.g., wildcards in content-based queries (regex!)

R> html_elements(parsed_doc, xpath = "/html/body/div/*/i")
## {xml _nodeset (2)}
## [1] <i>'What we have is nice, but we need something very different'</i>

# [2] <i>'R is wonderful, but it cannot work magic'</i>

R>
R> html_elements(parsed_doc, xpath = "/html/body/*/i")

t## {xml_nodeset (0)}

33/ 65



Grammar of XPath

Navigational operators "."and ".."

o "." accesses elements on the same level ("self axis"), which is useful when working with predicates (see later?).
".." accesses elements at a higher hierarchical level.

R> html_elements(parsed_doc, xpath = "//title/..")

## {xml _nodeset (1)}
## [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8

R> html_elements(parsed_doc, xpath = "//div[starts-with(./@id, 'R')]1")

## {xml _nodeset (1)}
## [1] <div id="R Inventor" lang="english" date="June/2003">\n <hl1>Robert Gentl

34 [ 65



In XPath

Element (node) relations ("axes")

Family relations between elements ey
e The tools learned so far are sometimes not ?
sufficient to access specific elements without ) ,/a;t;z’bute
accessing other, undesired elements as well. ® ®
e Relationship statuses are useful to establish arent | / a //x”?mmespace
unambiguity. N
 Can be combined with other elements of the M W
grammar
e Basic syntax: elementl/relation:: element2 %
e We describe relation of element2 to elementi self
e element2 IS to be extracted - we always extract the
element at the end! .child ®
descendant . .
descendant-or-self

35/ 65



Element (node) relations in XPath

Axis name Description
ancestor All ancestors (parent, grandparent etc.) of the current element
ancestor-or-self All ancestors of the current element and the current element itself
attribute All attributes of the current element
child All children of the current element
descendant All descendants (children, grandchildren etc.) of the current element
descendant-or-self All descendants of the current element and the current element itself
following Everything in the document after the closing tag of the current element
following-sibling All siblings after the current element
parent The parent of the current element
preceding All elements that appear before the current element, except ancestors/attribute elements
preceding-sibling All siblings before the current element
self The current element

36 / 65




Element (node) relations in XPath

Example: access the <div> elements that are ancestors to an <a> element:

R> html_elements(parsed_doc, xpath = "//a/ancestor::div")

t#H {xml _nodeset (1)}
## [1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi1>\n <p><i

Another example: Select all <h1> nodes that precede a <p> node:

R> html_elements(parsed_doc, xpath = "//p/preceding-sibling::h1")

## {xml _nodeset (2)}
# [1] <h1>Robert Gentleman</h1l>
## [2] <h1>Rolf Turner</hil>

37/ 65



Predicates

What are predicates?

Predicates are conditions based on an element's features ( true/false).
Think of them as ways to filter nodesets.
They are applicable to a variety of features: name, value attribute.

Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

t#H# {xml_nodeset (2)}
## [1] <p><i>'What we have is nice, but we need something very different'</i></p>
## [2] <p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering

38/ 65



Predicates

What are predicates?

 Predicates are conditions based on an element's features ( true/false ).
e Think of them as ways to filter nodesets.

e They are applicable to a variety of features: name, value attribute.

e Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

t#H# {xml_nodeset (2)}
## [1] <p><i>'What we have is nice, but we need something very different'</i></p>
## [2] <p><i>'R is wonderful, but it cannot work magic'</i> <br><emph>answering

Can you find out what the following expressions do?

"//div/p[last()-11")
"//div[lcount(./@*)>2]1")
"//x[string-length(text())>50]")

R> html_elements(parsed_doc, xpath
R> html_elements(parsed_doc, xpath
R> html_elements(parsed_doc, xpath

38/ 65



Predicates (cont.)

Select all <div> nodes that contain an attribute named ’october/2011’, using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[adate='October/2011"']")

t#H {xml _nodeset (1)}
## [1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi1>\n <p><i

Rudimentary string matching is also possible using string functions like contains(), starts-with(), or ends-with().

39 / 65



Predicates (cont.)

Select all <div> nodes that contain an attribute named ’october/2011’, using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[adate='October/2011"']")

t#H {xml _nodeset (1)}
## [1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi1>\n <p><i

Rudimentary string matching is also possible using string functions like contains(), starts-with(), or ends-with().

Can you tell what the following calls do?

R> html_elements(parsed_doc, xpath "//div[starts-with(./@id, 'R')]1")

"//div[substring-after(./@date, '/')="'2003"'1//i")

R> html_elements(parsed_doc, xpath

39 / 65



Content extraction

« Until now, we used XPath expressions to extract complete nodes or nodesets (that is, elements with tags).
e However, in most cases we're interested in extracting the content only.
e To that end, we can use extractor functions that are applied on the output of XPath query calls.

Function Argument Return value
html_text() Element value
html_text2() Element value (with a bit more cleanup)
html_attr() name Element attribute
html_attrs() (All) element attributes
html_name() trim Element name
html_children() Element children

40 | 65



Content extraction (cont.)

Extracting element values/content:

"//title") %>% html_text2()

R> html_elements(parsed_doc, xpath
# [1] "Collected R wisdoms"

Extracting attributes:

"//div[1]") %>% html_attrs()

R> html_elements(parsed_doc, xpath

# [[1]]
H 1d lang date
#H "R Inventor" "english" "June/2003"

Extracting attribute values:

R> html_elements(parsed_doc, xpath = "//div") %>% html_attr("lang")

# [1] "english" "english"

41 [ 65



More XPath?

Training resources

e XPath is a little language of its own. As always with languages, mastery comes with practice.
e A good environment for practice is the XPath expression testbed at whitebeam.org.

e Also check out this cheat sheet.

XPath creator tools

e Now, do you really have to construct XPath expressions by your own? No! At least not always.

« SelectorGadget: http://selectorgadget.com is a browser plugin that constructs XPath statements via a point-and-
click approach. The generated expressions are not always efficient and effective though (more on this later).

o Web developer tools - the internal browser functionality to study the DOM, among other things, also lets you extract
XPath statements for selected nodes. These are specific to unique nodes/elements though, and therefore less
helpful to extract node sets. (But they come in handy when we want to script live navigation, e.g. for Selenium.)

42 | 65


http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
https://devhints.io/xpath
http://selectorgadget.com/

CSS basics




What 1s CSS?

Background

o Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.

e By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML

1. External CSS. Inside <head> with a reference to the
external file inside the <link> element.

2. Internal CSS. Inside <head> and stored in <style>
elements.

3. Inline CSS. Inside <body> using the style attribute
of elements.

4t | 65



What 1s CSS?

Background

o Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.

e By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML

1. External CSS. Inside <head> with a reference to the
external file inside the <link> element.

2. Internal CSS. Inside <head> and stored in <style>
elements.

3. Inline CSS. Inside <body> using the style attribute
of elements.

External CSS

<head>

<link rel="stylesheet" href="mystyle.css">
</ head>

Internal CSS

<head>
<style>
hl {
color: red;
margin-left: 20px;
}
</style>
</ head>

Inline CSS

<p style="color: blue;">This is a paragraph.</p>

4t | 65



CSS selectors

Selectors

e CSS selectors find/select the HTML elements that
should be styled.

e There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

o CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels" as
In <p id="paral">. The respective CSS selector
would be #paral.

o CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large">. Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large. 45 [ 65



CSS selectors

Selectors Writing CSS selectors

o CSS selectors find/select the HTML elements that e Just as XPath, CSS selectors are a little language of
should be styled. their own.

e There are various categories of selectors. In addition e | won't teach you more about it, but you might
to generic element selectors (which selected just nevertheless want to learn it.
based on the element name, such as <p>), we often e Check out the CSS diner tutorial at
care about: https://flukeout.github.io/. It's one of the best

o CSS id selectors, which use the id attribute of tutorials of anything out there.

an HTML element. Think of them as "labels" as
In <p id="paral">. The respective CSS selector
would be #paral.

o CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large">. Note that these can refer to

O & https/fflukeout.github.io b

more than one class (here: center and large).
The respective CSS selector would be

p.center.large. ) 45 [ 65


https://flukeout.github.io/

Regular expressions




What are regular expressions?

Definition

Regular expressions a.k.a. regex or RegExp is a tool - a
little language of it's own really - that lets you describe
patterns in text/strings.

Funnily, a regular expression itself is a sequence of
characters, some with special, some with literal meaning.

Regular expressions are widely applicable and
Implemented in many programming languages, including
R, as well as search engines, search and replace dialogs,
etc.

this is a character

e

~
this is a string

47 | 65



What are regular expressions?

Definition

Regular expressions a.k.a. regex or RegExp is a tool - a
little language of it's own really - that lets you describe
patterns in text/strings.

Funnily, a regular expression itself is a sequence of
characters, some with special, some with literal meaning.

Regular expressions are widely applicable and
Implemented in many programming languages, including
R, as well as search engines, search and replace dialogs,
etc.

this is a character

e

~
this is a string

Why is this useful for web scraping?

Information on the web can often be described by
patterns (think email addresses, numbers, cells in HTML
tables, ...).

If the data of interest follow specific patterns, we can
match and extract them - regardless of page layout and
HTML overhead.

Whenever the information of interest is (stored in) text,
regular expressions are useful for extraction and tidying
purposes.

47 | 65



Regular expressions: example

Below you see a string that contains unstructured phone book entries. The goal is to clean it up and extract the entries.
The problem is that the text is really messy, and to find a pattern that helps us describe names on the one hand and
phone numbers on the other is difficult. But: regular expressions FTW!

R> phone_vec <«
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226

+ Simpson,Homer5553642Dr. Julius Hibbert"

48 | 65



Regular expressions: example

Below you see a string that contains unstructured phone book entries. The goal is to clean it up and extract the entries.
The problem is that the text is really messy, and to find a pattern that helps us describe names on the one hand and
phone numbers on the other is difficult. But: regular expressions FTW!

R> phone_vec <«
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226

+ Simpson,Homer5553642Dr. Julius Hibbert"

We're loading the stringr package that provides us with tidyverse functionality to operate with string data and apply
regular expressions. Then, we construct a regular expression each for the names and the phone numbers (this is the
tricky part!). Finally, we apply the regular expressions on the raw vector to extract the information of interest.

48 | 65



Regular expressions: example

R> phone_vec <«

+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery

+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

49 [ 65



Regular expressions: example

R> phone_vec <«

+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery

+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)

R> names_vec ¢« unlist(str_extract_all(phone_vec, "[[:alpha:]., 1{2,}"))
R> names_vec

# [1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
# [4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

49 [ 65



Regular expressions: example

R> phone_vec <«

+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery

+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)

R> names_vec ¢« unlist(str_extract_all(phone_vec, "[[:alpha:]., 1{2,}"))
R> names_vec

# [1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
# [4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

R> numbers_vec ¢« unlist(str_extract_all(phone_vec,
+ "\\(?([:digit: 1{3})?\\)?2(-| )?[:digit:]{3}(-| )?[:digit:]{4}"))

R> numbers_vec

# [1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
#t [5] "636-555-3226" "5553642"

49 [ 65



Regular expressions: example

R> phone_vec <«

+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery

+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)
R> names_vec ¢« unlist(str_extract_all(phone_vec, "[[:alpha:]., 1{2,}"))
R> names_vec

#H [1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
# [4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

R> numbers_vec ¢« unlist(str_extract_all(phone_vec,
+ "\\(?([:digit: 1{3})?\\)?2(-| )?[:digit:]{3}(-| )?[:digit:]{4}"))

R> numbers_vec

# [1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
#t [5] "636-555-3226" "5553642"

Wait, wait?! &

49 [ 65



.- Regex superheroooo - -

OH NO! THE KILLER || BUT T FIND THEM WE'D HAVE TO SEARCH
THROUGH 200 MB OF EMAILS LOOKING FOR

WHENEVER T LEARN A | | MUST HAVE FOLLOWED
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

NEW SKILL I CoNCoCT
ELABORATE. FANTASY I /
f% _ %i-——- 75 HOPELESS

SCENARI0S WHERE (T
' T Know R
e || (e

5 Jas

,}'“\ 4/;

wl g U

50 / 65




Regular expressions in R

Here's an example string we're going to work with:

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

51/ 65



Regular expressions in R

Here's an example string we're going to work with:
R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

We are going to use the str_extract() and the str_extract_all() functions from the stringr package to apply regular

expressions to strings. The generic syntax Is:

e str_extract(string, pattern)

e str_extract_all(string, pattern)

Here's the difference: str_extract() returns the first match, str_extract_all() returns all matches.

51/ 65



Basic regex syntax

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Strings match themselves

R> str_extract(example.obj, "small")
## [1] "small"
R> str_extract(example.obj, "banana")

#H [1] NA

52/ 65



Basic regex syntax

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."
Strings match themselves Multiple matches are returned as a list
R> str_extract(example.obj, "small") R> multi_vec « c("text", "manipulation", "basics")

R> str_extract_all(multi_vec, "a")
# [1] "small"

# [[1]]

R> str_extract(example.obj, "banana") ## character(0)
HH

# [1] NA # [[2]]
# [1] "a" "a"
HH
#H [[3]]
# o[1] "a"

52/ 65



Basic regex syntax cont.

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Character matching is case sensitive

R> str_extract(example.obj, "small")
t#t [1] "small"

R> str_extract(example.obj, "SMALL")
#H [1] NA

R> str_extract(example.obj,
+ regex("SMALL", ignore_case = TRUE))

#H [1] "small"

53/ 65



Basic regex syntax cont.

R> example.obj « "1. A small sentence. - 2. Another tiny sentence."
Character matching is case sensitive We can match arbitrary combinations
R> str_extract(example.obj, "small") of characters

m [1] "small” R> str_extract(example.obj, "mall sent")

R> str_extract(example.obj, "SMALL") # [1] "mall sent”

#H [1] NA

R> str_extract(example.obj,
+ regex("SMALL", ignore_case = TRUE))

#H [1] "small"

53/ 65



Basic regex syntax cont.

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Matching the beginning of a string

R> str_extract(example.obj, ""1")
#:# [1] Illll
R> str_extract(example.obj, ""2")

#H [1] NA

54 | 65



Basic regex syntax cont.

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Matching the beginning of a string Matching the end of a string

R> str_extract(example.obj, ""1") R> str_extract(example.obj, "sentence$")

= o[1] "1 ## [1] NA

R> str_extract(example.obj, ""2") R> str_extract(example.obj, "sentence.$")

#H [1] NA ## [1] "sentence."

54 | 65



Basic regex syntax cont.

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Express an "or" with the pipe operator

R> unlist(str_extract_all(example.obj, "tiny|sentenc

## [1] "sentence" "tiny" "sentence"

55/ 65



Basic regex syntax cont.

R> example.obj ¢« "1. A small sentence. - 2. Another tiny sentence."

Express an "or" with the pipe operator The dot: the ultimate wildcard
R> unlist(str_extract_all(example.obj, "tiny|sentenc R> str_extract(example.obj, "sm.ll")

## [1] "sentence" "tiny" "sentence" #H [1] "small"

55/ 65



Meta-characters

Matching of meta-characters

e Some symbols have a special meaning in the regex syntax: ., I, (, ), [, 1,4{, 3}, *, $, ~, +, 2,and -.
e If we want to match them literally, we have to use an escape sequence: \symbol

e As \ is a meta character itself, we have to escape it with \, so we always write \\. &

e Alternatively, use fixed("symbols") to let the parser interpret a chain of symbols literally.

R> unlist(str_extract_all(example.obj, "\\."))
#:# [ 1 ] n n n n n n n n

R> unlist(str_extract_all(example.obj, fixed(".")))

(1] "L

56 / 65



Character classes

Square brackets []1 define character classes

e Character classes help define special wild cards.
e The idea is that any of the characters within the brackets can be matched.

R> str_extract(example.obj, "sm[abc]ll")
# [1] "small"

e The hyphen defines a range of characters.

R> str_extract(example.obj, "sm[a-p]ll")

# [1] "small"

57 | 65



Character classes cont.

Some character classes are pre-defined. They are very convenient to efficiently describe specific string patterns.

Specification Meaning

[:digit:] Digits:0123456789

[:lower:] Lower-case characters: a-z

[:upper:] Upper-case characters: A-Z

[:alpha:] Alphabetic characters: a-z and A-Z

[:alnum:] Digits and alphabetic characters

[:punct:] Punctuation characters: ., ,, ;, etc.

[:graph:] Graphical characters: [:alnum:] and [:punct:]
[:blank:] Blank characters: Space and tab

[ :space:] Space characters: Space, tab, newline, and others

[:print:] Printable characters: [:alnum:], [:punct:] and [:space:]

58 / 65



Character classes in action

Pre-defined character classes are useful because they are efficient and let us

« combine different kinds of characters

« facilitate reading of an expression

e include special characters, eg, B, 0, &, ...
e can be extended

R> unlist(str_extract_all(example.obj, "[[:punct:]JABC]"))
# [ 1 ] n . n n A n n . n n _ n n . n n A n n n
R> unlist(str_extract_all(example.obj, "["[:alnum:]11"))

0 [1] "Lv ot omot o moomwwnwwwww

59 / 65



Meta symbols in character classes

Within a character class, most meta-characters lose their special meaning. There are exceptions though:

e " becomes "not": ["abc] matches any character other than "a" "b" or "c".
e - becomes arange specifier: [a-d] matches any character from a to d. However, - at the beginning or the end of a
character class matches the hyphen.

R> unlist(str_extract_all(example.obj, "[1-2]1"))
#:# [1] Illll ||2||
R> unlist(str_extract_all(example.obj, "[12-1"))

o [1] "1 v-r v

60 / 65



Quantifiers

Quantifiers are meta-characters that allow you to specify how often a certain string pattern should be allowed to appear.

Quantifier Meaning

? The preceding item is optional and will be matched at most once
* The preceding item will be matched zero or more times

+ The preceding item will be matched one or more times

{n} The preceding item is matched exactly n times

{n,} The preceding item is matched n or more times

{n,m} The preceding item is matched between n and m times

R> str_extract(example.obj, "s[[:alpha:]]{3}1")
## [1] "small"
R> str_extract(example.obj, "A.+sentence")

# [1] "A small sentence. - 2. Another tiny sentence" 61/ 65



Greedy quantification

The use of .+ results in "greedy" matching, i.e. the parser tries to match as many characters as possible. This is not
always desired. However, the meta-character ? helps avoid greedy quantification. More generally, it re-interprets the
quantifiers =, +, 2 or {m,n} to match as few times as possible.

R> str_extract(example.obj, "A.+sentence")
## [1] "A small sentence. - 2. Another tiny sentence"
R> str_extract(example.obj, "A.+?sentence")

#H# [1] "A small sentence"

62 / 65



Backreferencing

Sometimes it's useful to induce some "memory" into regex, as in: "Find something that matches a certain pattern, and
then again a repeated match of previously matched pattern.

The first pattern is defined with round brackets, as in (pattern). We then refer to the it using \1 (or with \2 for the
second pattern, etc.).

Example: Match the first letter, then anything until you find the first letter again (not greedy).

R> str_extract(example.obj, "([[:alpha:]]).+2\\1")

#H [1] "A small sentence. - 2. A"

63 / 65



Backreferencing cont.

Goal: Match a word that does not include "a" until the word appears the second time.

Solution:

R> str_extract(example.obj, "([ [:punct:]][b-z]+[ [:punct:]]).+2\\1")
# [1] " sentence. - 2. Another tiny sentence."

How it works:

Match all letters without a, therefore: [b-z]

Match complete words with beginning/end: [ [:punct:]]
Define first word pattern™ (... )

Match anything between occurrences of both words: .+7?
Refer to original word \\1

64 | 65



Coming up

Assignment

No assignment due, but web technologies will be featured in the next assignment.

Next lecture

We'll get serious about scraping data from the web and tapping APIs.

65 / 65



