
Introduction to Data Science
Session 6: Web data and technologies

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

1. Web data for data science

2. HTML basics

3. XPath basics

4. CSS basics

5. Regular expressions

6. Summary

2 / 65

Web data for data science

3 / 65

What is web data?

4 / 65

What is web data? (cont.)

5 / 65

So what is web data, really?
Not all data you get from the web is "web data".
Web data is data that is created on, for, or via the
web. By that definition, a survey dataset that you
download from a data repository is not web data.
On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.
Examples of web data:

Online news articles
Social media network structures
Crowdsourced databases (e.g., Wikidata)
Server logs (e.g., viewership statistics)
Data from surveys, experiments, clickworkers
Just any website

What is web data? (cont.)

6 / 65

So what is web data, really?
Not all data you get from the web is "web data".
Web data is data that is created on, for, or via the
web. By that definition, a survey dataset that you
download from a data repository is not web data.
On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.
Examples of web data:

Online news articles
Social media network structures
Crowdsourced databases (e.g., Wikidata)
Server logs (e.g., viewership statistics)
Data from surveys, experiments, clickworkers
Just any website

And why is web data attractive?
Data is abundant online.
Human behavior increasingly takes place online.
Countless services track human behavior.
Getting data from the web is cheap and often quick.
An analysis workflow that involves web data can
often be easily updated.
The vast majority of web data was not created with a
data analysis purpose in mind. This fact is often a
feature, not a bug.

What is web data? (cont.)

6 / 65

To fully unlock the potential of web data for data
science, we draw on certain web technologies.
Importantly, often a basic understanding of these
technologies is sufficient as the focus is on web
data collection, not web development.
Specifically, we have to understand

How our machine/browser/R communicates
with web servers (→ HTTP/S)
How websites are built (→ HTML, CSS, basics of
JavaScript)
How content in webpages can be effectively
located (→ XPath, CSS selectors)
How dynamic web applications are executed
and tapped (→ AJAX, Selenium)
How data by web services is distributed and
processed (→ APIs, JSON, XML) Credit ADCR

Technologies of the world wide web

7 / 65

https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

HTML basics

8 / 65

What is HTML?
HyperText Markup Language
Markup language = plain text + markups
Originally specified by Tim Berners-Lee at CERN in 1989/90
W3C standard for the construction of websites.
The fundamentals of HTML haven't changed much recently. Current
version is HTML 5.2 (published in 2017).

What is it good for?
In the early days, the internet was mainly good for sharing texts. But
plain text is boring. Markup is fun!
HTML lies underneath of what you see in your browser. You don't see it
because your browser interprets and renders it for you.
A basic understanding of HTML helps us locate the information we want
to retrieve.

HTML background

9 / 65

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium

The DOM tree
HTML documents are hierarchically structured. Think
of them as a tree with multiple nodes and branches.
When a webpage (HTML resource) is loaded, the
browser creates a Document Object Model of that
page - the DOM Tree.
Think of it as a representation that considers all
HTML elements as objects than can be accessed.

Parts of the tree
The DOM is constituted of nodes, which are just
data types that can be referred to - such as
"attribute node", "text node", or "element node".
A node set is a set of nodes. This will become
relevant when you learn about XPath, which you can
use to access multiple nodes (e.g., all title nodes).

<!DOCTYPE html>
 <html>
 <head>
 <title id=1>First HTML</title>
 </head>
 <body>
 I am your first HTML file!
 </body>
</html>

HTML tree structure

10 / 65

https://en.wikipedia.org/wiki/Document_Object_Model

Elements
Elements are a combination of start tags, content,
and end tags.
Example: <title>First HTML</title>
An element is everything from (including) the
element's start tag to (including) the element's end
tag, but also other elements that are nested within
that element.
Syntax:

Component Representation

Element title title

Start tag <title>

End tag </title>

Value First HTML

Attributes
Describe elements and are stored in the start tag.
There are specific attributes for specific elements.
Example: <a href="http://www.r-
datacollection.com/">Link to Homepage

Syntax:
Name-value pairs: name="value"
Simple and double quotation marks possible
Several attributes per element possible

Why tags and attributes are important
Tags structure HTML documents.
In the context of web scraping, the structure can be
exploited to locate and extract data from websites.

HTML: elements and attributes

11 / 65

Important tags and attributes

Anchor tag <a>
Links to other pages or resources.
Classical links are always formatted with an anchor tag.
The href attribute determines the target location.
The value is the name of the link.

Link to another resource:

Link with absolute path

Reference within a document:

Reference point

Link to a reference within a document:

Link to reference point

12 / 65

Important tags and attributes

Heading tags <h1> , <h2> , ..., and paragraph tag <p>
Structure text and paragraphs.
Heading tags range from level 1 to 6.
Paragraph tag induces a line break.

Examples:

<p>This text is going to be a paragraph one day and separated from other text by line breaks.</p>

<h1>heading of level 1 - this will be BIG</h1>
...
<h6>heading of level 6 - the smallest heading</h6>

13 / 65

Important tags and attributes

Listing tags , , and <dl>
The tag creates a numeric list.
The tag creates an unnumbered list.
The <dl> tag creates a description list.
List elements within and are indicated with the tag.

Example:

 Dogs
 Cats
 Fish

14 / 65

Example of CSS definition:

div.happy {
 color:pink;
 font-family:"Comic Sans MS";
 font-size:120%
}
span.happy {
 color:pink;
 font-family:"Comic Sans MS";
 font-size:120%
}

In the HTML document:

<div class="happy">
 <p>I am a happy-styled paragraph</p>
</div>

unhappy text with some
happiness

Important tags and attributes

Organizational and styling tags <div> and
They are used to group content over lines (<div> , creating a block-level element) or within lines (, creating an
inline-element).
By grouping or dividing content into blocks, it's easier to identify or apply different styling to them.
They do not change the layout themselves but work together with CSS (see later!).

15 / 65

Important tags and attributes

Form tag <form>
Allows to incorporate HTML forms.
Client can send information to the server via forms.
Whenever you type something into a field or click on radio buttons in your browser, you are interacting with forms.

Example:

<form name="submitPW" action="Passed.html" method="get">
 password:
 <input name="pw" type="text" value="">
 <input type="submit" value="SubmitButtonText">
</form>

16 / 65

Important tags and attributes

Table tags <table> , <tr> , <td> , and <th>
Standard HTML tables always follow a standard architecture.
The different tags allow defining the table as a whole, individual rows (including the heading), and cells.
If the data is hidden in tables, scraping will be straightforward.

Example:

<table>
 <tr> <th>Rank</th> <th>Nominal GDP</th> <th>Name</th> </tr>
 <tr> <th></th> <th>(per capita, USD)</th> <th></th> </tr>
 <tr> <td>1</td> <td>170,373</td> <td>Lichtenstein</td> </tr>
 <tr> <td>2</td> <td>167,021</td> <td>Monaco</td> </tr>
 <tr> <td>3</td> <td>115,377</td> <td>Luxembourg</td> </tr>
 <tr> <td>4</td> <td>98,565</td> <td>Norway</td> </tr>
 <tr> <td>5</td> <td>92,682</td> <td>Qatar</td> </tr>
</table>

17 / 65

More HTML
All in all there are over 100 HTML elements.
But overall, it's still a fairly tight and easy-to-understand markup
language.
Knowing more about the rest is probably not necessary to become a
good web scraper, but it helps parsing (in your brain) HTML documents
quicker.

More resources
Check out the excellent MDN Web Docs for an overview, which also
point to additional tutorials and references.
The W3Schools tutorials are also a classic.
While you're at it, you might also want to learn about related
technologies such as CSS (used to specify a webpage's
appearance/layout) and JavaScript (used to enrich HTMLs with
additional functionality and options to interact).

More resources on HTML

18 / 65

https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3schools.com/

Using your browser to access webpages
1. You click on a link, enter a URL, run a Google query, etc.
2. Browser/your machine sends request to server that hosts website.
3. Server returns resource (often an HTML document).
4. Browser interprets HTML and renders it in a nice fashion.

Using R to access webpages
1. You manually specify a resource.
2. R/your machine sends a request to the server that hosts the website.
3. The server returns a resource (e.g., an HTML file).
4. R parses the HTML, but does not render it in a nice fashion.
5. It's up to you to tell R what content to extract.

Accessing the web using your browser vs. R

19 / 65

Interacting with your browser

On web browsers
Modern browsers are complex pieces of software that take care of multiple operations while you browse the web.
And they're basically all doing a good job.1 Common operations are to retrieve resources, render and display
information, and provide interface for user-webpage interaction.
Although our goal is to automate web data retrieval, the browser is an important tool in web scraping workflow.

The use of browsers for web scraping
Give you an intuitive impression of the architecture of a webpage
Allow you to inspect the source code
Let you construct XPath/CSS selector expressions with plugins
Render dynamic web content (JavaScript interpreter)

1 Check out this Wikipedia article on the Browser Wars that happened in the 1990s and 2000s (yes, there was Browser War I and
Browser War II - and for once Germany was not to blame) to relive some of your instructor's pains when he started to look into this
"internet".

20 / 65

https://en.wikipedia.org/wiki/Browser_wars

Goal: retrieving data from a
Wikipedia page on List of tallest
buildings
Right-click on page (anywhere)
Select View Page Source
HTML (CSS, JavaScript) code can
be ugly
But looking more closely, we
find the displayed information

Inspecting HTML source code

0:00 / 1:12

21 / 65

https://en.wikipedia.org/wiki/List_of_tallest_buildings
https://en.wikipedia.org/wiki/List_of_tallest_buildings

Goal: retrieving data from a
Wikipedia page on List of tallest
buildings
Right-click on the element of
interest
Select Inspect
The Web Developer Tools
window pops up
Corresponding part in the HTML
tree is highlighted
Interaction with the tree
possible!

Inspecting the live HTML source code with the DOM
explorer

0:00 / 0:58

22 / 65

https://en.wikipedia.org/wiki/List_of_tallest_buildings
https://en.wikipedia.org/wiki/List_of_tallest_buildings

When to inspect the complete page source
Check whether data is in static source code (the search function helps!)
For small HTML files: understand structure

When to use the DOM explorer
Almost always
Particularly useful to construct XPath/CSS selector expressions
To monitor dynamic changes in the DOM tree

A note on browser differences
Inspecting the source code (as shown on the following slides) works
more or less identically in Chrome and Firefox.
In Safari, go to → Preferences , then → Advanced and select Show
Develop menu in menu bar . This unlocks the Show Page Source and
Inspect options and the Web Developer Tools.

Credit watershedcreative.com

When to do what with your browser

23 / 65

http://watershedcreative.com/naked/html-tree.html

XPath basics

24 / 65

Accessing the DOM tree with R

Different perspectives on HTML
HTML documents are human-readable.
HTML tags structure the document, comprising the DOM.
Web user perspective: The browser interprets the code and renders the page.
Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

25 / 65

Accessing the DOM tree with R

Different perspectives on HTML
HTML documents are human-readable.
HTML tags structure the document, comprising the DOM.
Web user perspective: The browser interprets the code and renders the page.
Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

HTML parsing
Our goal is to get HTML into R while retaining the tree structure. That's similar to getting a spreadsheet into R and
retaining the rectangular structure.
HTML is human-readable, so we could also import HTML files as plain text via readLines() . That's a bad option
though - the document's structure would not be retained.
The xml2 package allows us to parse XML-style documents. HTML is a "flavor" of XML, so it works for us.
The rvest package, which we will mainly use for scraping, wraps the xml2 package, so we rarely have to load it
manually.
There is one high-level function to remember: read_html() . It represents the HTML in a list-style fashion.

25 / 65

Accessing the DOM tree with R (cont.)

Getting HTML into R
Parsing a website is straightforward:

R> library(rvest)
R> parsed_doc <- read_html("https://google.com")
R> parsed_doc

{html_document}
<html itemscope="" itemtype="http://schema.org/WebPage" lang="de">
[1] <head>\n<meta content="text/html; charset=UTF-8" http-equiv="Content-Type ...
[2] <body bgcolor="#fff">\n<script nonce="fe3VLTlA97vq3sXVoznX1Q">(function() ...

There are various functions to inspect the parsed document. They aren't really helpful - better use the browser instead if
you want to dive into the HTML.

R> xml2::html_structure(parsed_doc)
R> xml2::as_list(parsed_doc)

26 / 65

What's XPath?

Definition
Short for XML Path Language, another W3C standard.
A query language for XML-based documents (including HTML).
With XPath we can access node sets (e.g., elements, attributes) and extract content.

Why XPath for web scraping?
Source code of webpages (HTML) structures both layout and content.
Not only content, but context matters!
XPath enables us to extract content based on its location in the document (and potentially other features).
With XPath, we can tell R to do things like:

1. Give me all elements in the document!
2. Look for all <table> elements in the document and give me the third one!
3. Extract all content in <p> elements that is labelled with class=newscontent !

27 / 65

Example: source code
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
 <head>
 <title>Collected R wisdoms</title>
 </head>
 <body>
 <div id="R Inventor" lang="english" date="June/2003">
 <h1>Robert Gentleman</h1>
 <p><i>'What we have is nice, but we need something very different'</i></p>
 <p>Source: Statistical Computing 2003, Reisensburg</p>
 </div>
 <div lang="english" date="October/2011">
 <h1>Rolf Turner</h1>
 <p><i>'R is wonderful, but it cannot work magic'</i>

<emph>answering a request for automatic generation of 'data from a known mean and 95% CI'</emph></p>
 <p>Source: R-help</p>
 </div>
 <address>
 <i>The book homepage</i>
 </address>
 </body>
</html> 28 / 65

Example: DOM tree

29 / 65

Applying XPath on HTML in R
Load package rvest
Parse HTML document with read_html()

R> library(rvest)
R> parsed_doc <- read_html("materials/fortunes.html")
R> parsed_doc

{html_document}
<html>
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body>\n<div id="R Inventor" lang="english" date="June/2003">\n <h1>Robe ...

Query document using html_elements()
rvest can process XPath queries as well as CSS selectors.
Today, we'll focus on XPath:

R> html_elements(parsed_doc, xpath = "//div[last()]/p/i")

{xml_nodeset (1)}
[1] <i>'R is wonderful, but it cannot work magic'</i>

30 / 65

Grammar of XPath

Basic rules
1. We access nodes/elements by writing down the hierarchical structure in the DOM that locates the element set of

interest.
2. A sequence of nodes is separated by / .
3. The easiest localization of a element is given by the absolute path (but often not the most efficient one!).
4. Apply XPath on DOM in R using html_elements() .

R> html_elements(parsed_doc, xpath = "//div[last()]/p/i")

{xml_nodeset (1)}
[1] <i>'R is wonderful, but it cannot work magic'</i>

31 / 65

Grammar of XPath

Absolute vs. relative paths
Absolute paths start at the root element and follow the whole way down to the target element (with simple slashes, /).

R> html_elements(parsed_doc, xpath = "/html/body/div/p/i")

{xml_nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths skip nodes (with double slashes, //).

R> html_elements(parsed_doc, xpath = "//body//p/i")

{xml_nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths are often preferrable. They are faster to write and more comprehensive. On the other hand, they are less
targeted and therefore potentially less robust, and running them takes more computing time, as the entire tree has to be
evaluated. But that's usually not relevant for reasonably small documents. 32 / 65

Grammar of XPath

The wildcard operator
Meta symbol *
Matches any element
Works only for one arbitrary element
Far less important than, e.g., wildcards in content-based queries (regex!)

R> html_elements(parsed_doc, xpath = "/html/body/div/*/i")

{xml_nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

R> # the following does not work:
R> html_elements(parsed_doc, xpath = "/html/body/*/i")

{xml_nodeset (0)}

33 / 65

Grammar of XPath

Navigational operators "."and ".."
"." accesses elements on the same level ("self axis"), which is useful when working with predicates (see later!).
".." accesses elements at a higher hierarchical level.

R> html_elements(parsed_doc, xpath = "//title/..")

{xml_nodeset (1)}
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...

R> html_elements(parsed_doc, xpath = "//div[starts-with(./@id, 'R')]")

{xml_nodeset (1)}
[1] <div id="R Inventor" lang="english" date="June/2003">\n <h1>Robert Gentl ...

34 / 65

Family relations between elements
The tools learned so far are sometimes not
sufficient to access specific elements without
accessing other, undesired elements as well.
Relationship statuses are useful to establish
unambiguity.
Can be combined with other elements of the
grammar
Basic syntax: element1/relation::element2
We describe relation of element2 to element1
element2 is to be extracted - we always extract the
element at the end!

Element (node) relations ("axes") in XPath

35 / 65

Element (node) relations in XPath

Axis name Description

ancestor All ancestors (parent, grandparent etc.) of the current element

ancestor-or-self All ancestors of the current element and the current element itself

attribute All attributes of the current element

child All children of the current element

descendant All descendants (children, grandchildren etc.) of the current element

descendant-or-self All descendants of the current element and the current element itself

following Everything in the document after the closing tag of the current element

following-sibling All siblings after the current element

parent The parent of the current element

preceding All elements that appear before the current element, except ancestors/attribute elements

preceding-sibling All siblings before the current element

self The current element 36 / 65

Element (node) relations in XPath
Example: access the <div> elements that are ancestors to an <a> element:

R> html_elements(parsed_doc, xpath = "//a/ancestor::div")

{xml_nodeset (1)}
[1] <div lang="english" date="October/2011">\n <h1>Rolf Turner</h1>\n <p><i ...

Another example: Select all <h1> nodes that precede a <p> node:

R> html_elements(parsed_doc, xpath = "//p/preceding-sibling::h1")

{xml_nodeset (2)}
[1] <h1>Robert Gentleman</h1>
[2] <h1>Rolf Turner</h1>

37 / 65

Predicates

What are predicates?
Predicates are conditions based on an element's features (true/false).
Think of them as ways to filter nodesets.
They are applicable to a variety of features: name, value attribute.
Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

{xml_nodeset (2)}
[1] <p><i>'What we have is nice, but we need something very different'</i></p>
[2] <p><i>'R is wonderful, but it cannot work magic'</i>
<emph>answering ...

38 / 65

Predicates

What are predicates?
Predicates are conditions based on an element's features (true/false).
Think of them as ways to filter nodesets.
They are applicable to a variety of features: name, value attribute.
Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

{xml_nodeset (2)}
[1] <p><i>'What we have is nice, but we need something very different'</i></p>
[2] <p><i>'R is wonderful, but it cannot work magic'</i>
<emph>answering ...

Can you find out what the following expressions do?

R> html_elements(parsed_doc, xpath = "//div/p[last()-1]")
R> html_elements(parsed_doc, xpath = "//div[count(./@*)>2]")
R> html_elements(parsed_doc, xpath = "//*[string-length(text())>50]")

38 / 65

Predicates (cont.)
Select all <div> nodes that contain an attribute named ’October/2011’ , using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[@date='October/2011']")

{xml_nodeset (1)}
[1] <div lang="english" date="October/2011">\n <h1>Rolf Turner</h1>\n <p><i ...

Rudimentary string matching is also possible using string functions like contains() , starts-with() , or ends-with() .

39 / 65

Predicates (cont.)
Select all <div> nodes that contain an attribute named ’October/2011’ , using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[@date='October/2011']")

{xml_nodeset (1)}
[1] <div lang="english" date="October/2011">\n <h1>Rolf Turner</h1>\n <p><i ...

Rudimentary string matching is also possible using string functions like contains() , starts-with() , or ends-with() .

Can you tell what the following calls do?

R> html_elements(parsed_doc, xpath = "//div[starts-with(./@id, 'R')]")
R> html_elements(parsed_doc, xpath = "//div[substring-after(./@date, '/')='2003']//i")

39 / 65

Content extraction
Until now, we used XPath expressions to extract complete nodes or nodesets (that is, elements with tags).
However, in most cases we're interested in extracting the content only.
To that end, we can use extractor functions that are applied on the output of XPath query calls.

Function Argument Return value

html_text() Element value

html_text2() Element value (with a bit more cleanup)

html_attr() name Element attribute

html_attrs() (All) element attributes

html_name() trim Element name

html_children() Element children

40 / 65

Content extraction (cont.)
Extracting element values/content:

R> html_elements(parsed_doc, xpath = "//title") %>% html_text2()

[1] "Collected R wisdoms"

Extracting attributes:

R> html_elements(parsed_doc, xpath = "//div[1]") %>% html_attrs()

[[1]]
id lang date
"R Inventor" "english" "June/2003"

Extracting attribute values:

R> html_elements(parsed_doc, xpath = "//div") %>% html_attr("lang")

[1] "english" "english"

41 / 65

More XPath?

Training resources
XPath is a little language of its own. As always with languages, mastery comes with practice.
A good environment for practice is the XPath expression testbed at whitebeam.org.
Also check out this cheat sheet.

XPath creator tools
Now, do you really have to construct XPath expressions by your own? No! At least not always.
SelectorGadget: http://selectorgadget.com is a browser plugin that constructs XPath statements via a point-and-
click approach. The generated expressions are not always efficient and effective though (more on this later).
Web developer tools - the internal browser functionality to study the DOM, among other things, also lets you extract
XPath statements for selected nodes. These are specific to unique nodes/elements though, and therefore less
helpful to extract node sets. (But they come in handy when we want to script live navigation, e.g. for Selenium.)

42 / 65

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
https://devhints.io/xpath
http://selectorgadget.com/

CSS basics

43 / 65

Background
Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.
By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML
1. External CSS. Inside <head> with a reference to the

external file inside the <link> element.
2. Internal CSS. Inside <head> and stored in <style>

elements.
3. Inline CSS. Inside <body> using the style attribute

of elements.

What is CSS?

44 / 65

Background
Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.
By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML
1. External CSS. Inside <head> with a reference to the

external file inside the <link> element.
2. Internal CSS. Inside <head> and stored in <style>

elements.
3. Inline CSS. Inside <body> using the style attribute

of elements.

External CSS

<head>
 <link rel="stylesheet" href="mystyle.css">
</head>

Internal CSS

<head>
 <style>
 h1 {
 color: red;
 margin-left: 20px;
 }
 </style>
</head>

Inline CSS

<p style="color: blue;">This is a paragraph.</p>

What is CSS?

44 / 65

Selectors
CSS selectors find/select the HTML elements that
should be styled.
There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels", as
in <p id="para1"> . The respective CSS selector
would be #para1 .
CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large"> . Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large .

CSS selectors

45 / 65

Selectors
CSS selectors find/select the HTML elements that
should be styled.
There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels", as
in <p id="para1"> . The respective CSS selector
would be #para1 .
CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large"> . Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large .

Writing CSS selectors
Just as XPath, CSS selectors are a little language of
their own.
I won't teach you more about it, but you might
nevertheless want to learn it.
Check out the CSS diner tutorial at
https://flukeout.github.io/. It's one of the best
tutorials of anything out there.

CSS selectors

45 / 65

https://flukeout.github.io/

Regular expressions

46 / 65

Definition
Regular expressions a.k.a. regex or RegExp is a tool - a
little language of it's own really - that lets you describe
patterns in text/strings.

Funnily, a regular expression itself is a sequence of
characters, some with special, some with literal meaning.

Regular expressions are widely applicable and
implemented in many programming languages, including
R, as well as search engines, search and replace dialogs,
etc.

What are regular expressions?

47 / 65

Definition
Regular expressions a.k.a. regex or RegExp is a tool - a
little language of it's own really - that lets you describe
patterns in text/strings.

Funnily, a regular expression itself is a sequence of
characters, some with special, some with literal meaning.

Regular expressions are widely applicable and
implemented in many programming languages, including
R, as well as search engines, search and replace dialogs,
etc.

Why is this useful for web scraping?
Information on the web can often be described by
patterns (think email addresses, numbers, cells in HTML
tables, ...).

If the data of interest follow specific patterns, we can
match and extract them - regardless of page layout and
HTML overhead.

Whenever the information of interest is (stored in) text,
regular expressions are useful for extraction and tidying
purposes.

What are regular expressions?

47 / 65

Regular expressions: example
Below you see a string that contains unstructured phone book entries. The goal is to clean it up and extract the entries.
The problem is that the text is really messy, and to find a pattern that helps us describe names on the one hand and
phone numbers on the other is difficult. But: regular expressions FTW!

R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

48 / 65

Regular expressions: example
Below you see a string that contains unstructured phone book entries. The goal is to clean it up and extract the entries.
The problem is that the text is really messy, and to find a pattern that helps us describe names on the one hand and
phone numbers on the other is difficult. But: regular expressions FTW!

R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

We're loading the stringr package that provides us with tidyverse functionality to operate with string data and apply
regular expressions. Then, we construct a regular expression each for the names and the phone numbers (this is the
tricky part!). Finally, we apply the regular expressions on the raw vector to extract the information of interest.

48 / 65

Regular expressions: example
R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

49 / 65

Regular expressions: example
R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)
R> names_vec <- unlist(str_extract_all(phone_vec, "[[:alpha:].,]{2,}"))
R> names_vec

[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

49 / 65

Regular expressions: example
R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)
R> names_vec <- unlist(str_extract_all(phone_vec, "[[:alpha:].,]{2,}"))
R> names_vec

[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

R> numbers_vec <- unlist(str_extract_all(phone_vec,
+ "\\(?([:digit:]{3})?\\)?(-|)?[:digit:]{3}(-|)?[:digit:]{4}"))
R> numbers_vec

[1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
[5] "636-555-3226" "5553642"

49 / 65

Regular expressions: example
R> phone_vec <-
+ "555-1239Moe Szyslak(636) 555-0113Burns, C. Montgomery
+ 555-6542Rev. Timothy Lovejoy555 8904Ned Flanders636-555-3226
+ Simpson,Homer5553642Dr. Julius Hibbert"

R> library(stringr)
R> names_vec <- unlist(str_extract_all(phone_vec, "[[:alpha:].,]{2,}"))
R> names_vec

[1] "Moe Szyslak" "Burns, C. Montgomery" "Rev. Timothy Lovejoy"
[4] "Ned Flanders" "Simpson,Homer" "Dr. Julius Hibbert"

R> numbers_vec <- unlist(str_extract_all(phone_vec,
+ "\\(?([:digit:]{3})?\\)?(-|)?[:digit:]{3}(-|)?[:digit:]{4}"))
R> numbers_vec

[1] "555-1239" "(636) 555-0113" "555-6542" "555 8904"
[5] "636-555-3226" "5553642"

Wait, wait?! 🤯

49 / 65

🎶 Regex superheroooo 🎶

50 / 65

Regular expressions in R
Here's an example string we're going to work with:

R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

51 / 65

Regular expressions in R
Here's an example string we're going to work with:

R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

We are going to use the str_extract() and the str_extract_all() functions from the stringr package to apply regular
expressions to strings. The generic syntax is:

str_extract(string, pattern)

str_extract_all(string, pattern)

Here's the difference: str_extract() returns the first match, str_extract_all() returns all matches.

51 / 65

Strings match themselves
R> str_extract(example.obj, "small")

[1] "small"

R> str_extract(example.obj, "banana")

[1] NA

Basic regex syntax
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

52 / 65

Strings match themselves
R> str_extract(example.obj, "small")

[1] "small"

R> str_extract(example.obj, "banana")

[1] NA

Multiple matches are returned as a list
R> multi_vec <- c("text", "manipulation", "basics")
R> str_extract_all(multi_vec, "a")

[[1]]
character(0)

[[2]]
[1] "a" "a"

[[3]]
[1] "a"

Basic regex syntax
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

52 / 65

Character matching is case sensitive
R> str_extract(example.obj, "small")

[1] "small"

R> str_extract(example.obj, "SMALL")

[1] NA

R> str_extract(example.obj,
+ regex("SMALL", ignore_case = TRUE))

[1] "small"

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

53 / 65

Character matching is case sensitive
R> str_extract(example.obj, "small")

[1] "small"

R> str_extract(example.obj, "SMALL")

[1] NA

R> str_extract(example.obj,
+ regex("SMALL", ignore_case = TRUE))

[1] "small"

We can match arbitrary combinations
of characters
R> str_extract(example.obj, "mall sent")

[1] "mall sent"

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

53 / 65

Matching the beginning of a string
R> str_extract(example.obj, "^1")

[1] "1"

R> str_extract(example.obj, "^2")

[1] NA

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

54 / 65

Matching the beginning of a string
R> str_extract(example.obj, "^1")

[1] "1"

R> str_extract(example.obj, "^2")

[1] NA

Matching the end of a string
R> str_extract(example.obj, "sentence$")

[1] NA

R> str_extract(example.obj, "sentence.$")

[1] "sentence."

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

54 / 65

Express an "or" with the pipe operator
R> unlist(str_extract_all(example.obj, "tiny|sentence

[1] "sentence" "tiny" "sentence"

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

55 / 65

Express an "or" with the pipe operator
R> unlist(str_extract_all(example.obj, "tiny|sentence

[1] "sentence" "tiny" "sentence"

The dot: the ultimate wildcard
R> str_extract(example.obj, "sm.ll")

[1] "small"

Basic regex syntax cont.
R> example.obj <- "1. A small sentence. - 2. Another tiny sentence."

55 / 65

Meta-characters

Matching of meta-characters
Some symbols have a special meaning in the regex syntax: . , | , (,) , [,] , { , } , ^ , $, * , + , ? , and - .
If we want to match them literally, we have to use an escape sequence: \symbol
As \ is a meta character itself, we have to escape it with \ , so we always write \\ . 🤯
Alternatively, use fixed("symbols") to let the parser interpret a chain of symbols literally.

R> unlist(str_extract_all(example.obj, "\\."))

[1] "." "." "." "."

R> unlist(str_extract_all(example.obj, fixed(".")))

[1] "." "." "." "."

56 / 65

Character classes

Square brackets [] define character classes
Character classes help define special wild cards.
The idea is that any of the characters within the brackets can be matched.

R> str_extract(example.obj, "sm[abc]ll")

[1] "small"

The hyphen defines a range of characters.

R> str_extract(example.obj, "sm[a-p]ll")

[1] "small"

57 / 65

Character classes cont.
Some character classes are pre-defined. They are very convenient to efficiently describe specific string patterns.

Specification Meaning

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9

[:lower:] Lower-case characters: a-z

[:upper:] Upper-case characters: A-Z

[:alpha:] Alphabetic characters: a-z and A-Z

[:alnum:] Digits and alphabetic characters

[:punct:] Punctuation characters: . , , , ; , etc.

[:graph:] Graphical characters: [:alnum:] and [:punct:]

[:blank:] Blank characters: Space and tab

[:space:] Space characters: Space, tab, newline, and others

[:print:] Printable characters: [:alnum:] , [:punct:] and [:space:]

58 / 65

Character classes in action
Pre-defined character classes are useful because they are efficient and let us

combine different kinds of characters
facilitate reading of an expression
include special characters, e.g., ß, ö, æ, ...
can be extended

R> unlist(str_extract_all(example.obj, "[[:punct:]ABC]"))

[1] "." "A" "." "-" "." "A" "."

R> unlist(str_extract_all(example.obj, "[^[:alnum:]]"))

[1] "." " " " " " " "." " " "-" " " "." " " " " " " "."

59 / 65

Meta symbols in character classes
Within a character class, most meta-characters lose their special meaning. There are exceptions though:

^ becomes "not": [^abc] matches any character other than "a", "b", or "c".
- becomes a range specifier: [a-d] matches any character from a to d. However, - at the beginning or the end of a
character class matches the hyphen.

R> unlist(str_extract_all(example.obj, "[1-2]"))

[1] "1" "2"

R> unlist(str_extract_all(example.obj, "[12-]"))

[1] "1" "-" "2"

60 / 65

Quantifiers
Quantifiers are meta-characters that allow you to specify how often a certain string pattern should be allowed to appear.

Quantifier Meaning

? The preceding item is optional and will be matched at most once

* The preceding item will be matched zero or more times

+ The preceding item will be matched one or more times

{n} The preceding item is matched exactly n times

{n,} The preceding item is matched n or more times

{n,m} The preceding item is matched between n and m times

R> str_extract(example.obj, "s[[:alpha:]]{3}l")

[1] "small"

R> str_extract(example.obj, "A.+sentence")

[1] "A small sentence. - 2. Another tiny sentence" 61 / 65

Greedy quantification
The use of .+ results in "greedy" matching, i.e. the parser tries to match as many characters as possible. This is not
always desired. However, the meta-character ? helps avoid greedy quantification. More generally, it re-interprets the
quantifiers * , + , ? or {m,n} to match as few times as possible.

R> str_extract(example.obj, "A.+sentence")

[1] "A small sentence. - 2. Another tiny sentence"

R> str_extract(example.obj, "A.+?sentence")

[1] "A small sentence"

62 / 65

Backreferencing
Sometimes it's useful to induce some "memory" into regex, as in: "Find something that matches a certain pattern, and
then again a repeated match of previously matched pattern.

The first pattern is defined with round brackets, as in (pattern) . We then refer to the it using \1 (or with \2 for the
second pattern, etc.).

Example: Match the first letter, then anything until you find the first letter again (not greedy).

R> str_extract(example.obj, "([[:alpha:]]).+?\\1")

[1] "A small sentence. - 2. A"

63 / 65

Backreferencing cont.
Goal: Match a word that does not include "a" until the word appears the second time.

Solution:

R> str_extract(example.obj, "([[:punct:]][b-z]+[[:punct:]]).+?\\1")

[1] " sentence. - 2. Another tiny sentence."

How it works:

Match all letters without a, therefore: [b-z]
Match complete words with beginning/end: [[:punct:]]
Define first word pattern* (...)
Match anything between occurrences of both words: .+?
Refer to original word \\1

64 / 65

Coming up

Assignment
No assignment due, but web technologies will be featured in the next assignment.

Next lecture
We'll get serious about scraping data from the web and tapping APIs.

65 / 65

