
Introduction to Data Science
Session 4: Functions and debugging

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

1. Functions

2. Iteration

3. Strategies for debugging

4. Debugging R

2 / 57

Functions

3 / 57

Tidy programming basics
"Tidy programming" is not a strictly defined practice in the tidyverse. However, there are some common programming
strategies that help you keep your code and workflow tidy. These include:

Pipes (you already learned how to use them ✅)
User-generated functions
Functional programming with purrr

The latter two are extremely helpful - in particular when you are confronted with iterative tasks.

We will now learn the basics of creating your own functions and functional programming with R. There is much more to
learn about these topics, so we will revisit them as the course progresses.

4 / 57

Functional programming
R is a functional programming (FP) language. As Hadley Wickham puts it in Advanced R:

This means that it provides many tools for the creation and manipulation of functions. In particular, R has
what’s known as first-class functions. You can do anything with functions that you can do with vectors: you
can assign them to variables, store them in lists, pass them as arguments to other functions, create them
inside functions, and even return them as the result of a function.

R encourages you to use and build your own functions to solve problems. Often, this implies decomposing a large
problem into small pieces, and solving each of them with independent functions.

There is much more to learn about functions and functional programming. Useful resources include:

The chapter on functions in R for Data Science.
The section on functional programming in Advanced R.
The R packages book. In a way, bundling functions in a package is sometimes the next logical step.

5 / 57

http://adv-r.had.co.nz/Functional-programming.html
https://en.wikipedia.org/wiki/Functional_programming
https://r4ds.had.co.nz/functions.html
https://adv-r.hadley.nz/fp.html
https://r-pkgs.org/

Creating functions

Why creating functions?
That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

Every data science project is unique. There are problems only you have to solve.
For problems that are repetitive, you'll quickly look for options to automate the task.
Functions are a great way to automate.

Examples where creating functions makes sense
1. You want to scrape thousands of websites. This implies multiple steps, from downloading to parsing and cleaning. All

these steps can be achieved with existing functions, but the fine-tuning is specific to the set of websites. You build
one (or a set of) scraping functions that take the websites as input and return a cleaned data frame ready to be
analyzed.

2. You want to estimate not one but multiple models on your dataset. The models vary both in terms of data input and
specification. Again, based on existing modeling functions you tailor your own, allowing you to run all these models
automatically and to parse the results into one clean data frame. 6 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Basic syntax

1 Yes, a function to create functions. 🤯 7 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

We write functions to apply them later. So, we have
to give them a name. Here, we name it " my_func ".
Also, our function (almost) always needs input, plus
we want to specify how exactly the function should
behave. We can use arguments for this, which are
specified as arguments of the function() function.

Basic syntax

1 Yes, a function to create functions. 🤯 8 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Next, we specify anything we want the function to to.
This comes in between curly brackets, {...} .
Importantly, we can recycle arguments by calling
them by their name.

Basic syntax

1 Yes, a function to create functions. 🤯 9 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Finally, we specify what the function should return.
This could be a list, data.frame, vector, sentence - or
anything else really.
Note that R automatically returns the final object
that is written (not: assigned!) in your function by
default. Still, my recommendation is that you get
into the habit of assigning the return object(s)
explicitly with return() .

Basic syntax

1 Yes, a function to create functions. 🤯 10 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Oh, and don't forget to close the curly brackets...

Basic syntax

1 Yes, a function to create functions. 🤯 11 / 57

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius <- function(temp_F) {
+ temp_C <- (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry. 12 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius <- function(temp_F) {
+ temp_C <- (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Our function has an intuitive name.
Also, it takes just one thing as input, which we call
temp_F .

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry. 13 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius <- function(temp_F) {
+ temp_C <- (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

We now take up the argument temp_F , do
something with it, and store the output in a new
object, temp_C .
Importantly, that object only lives within the
function. When the function is run, we cannot access
it from the environment.

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry. 14 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius <- function(temp_F) {
+ temp_C <- (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Finally, the output is returned.

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry. 15 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func <- function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:

R> fahrenheit_to_celsius <- function(temp_F) {
+ temp_C <- (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Now, let's try out the function:

R> fahrenheit_to_celsius(451)

 [1] 232.7778

Pretty hot, isn't it?

Basic syntax

1 Yes, a function to create functions. 🤯 16 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit

Let's make the function a bit more complex, but also
more fun.

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

17 / 57

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

18 / 57

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

19 / 57

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

20 / 57

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.
We else() we specify what to do if the if()
condition is not met.

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

21 / 57

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.
We else() we specify what to do if the if()
condition is not met.
Make R more talkative with message() . Future-You
will like it!

R> temp_convert <-
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from == "f") {
+ out <- (temp - 32) * (5/9)
+ } else {
+ out <- temp * (9/5) + 32
+ }
+ if((from == "c" & temp > 30) |
+ (from == "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

22 / 57

Anonymous functions
In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it’s not worth the effort to give
it a name.

Examples:

R> map(char_vec, function(x) paste(x, collapse = "|"))
R> integrate(function(x) sin(x) ^ 2, 0, pi)

23 / 57

Anonymous functions
In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it’s not worth the effort to give
it a name.

As of R 4.1.0 , there's a new shorthand syntax for anonymous functions: \(x) .

Example:

R> (function (x) {paste(x, 'is awesome!')})('Data science') # old syntax

 [1] "Data science is awesome!"

R> (\(x) {paste(x, 'is awesome!')})('Data science') # new syntax

 [1] "Data science is awesome!"

24 / 57

Anonymous functions
In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it’s not worth the effort to give
it a name.

As of R 4.1.0 , there's a new shorthand syntax for anonymous functions: \(x) . This plays along nicely with the (native)
pipe when we want to pass content to the RHS but not to the first argument.

25 / 57

Anonymous functions
In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it’s not worth the effort to give
it a name.

As of R 4.1.0 , there's a new shorthand syntax for anonymous functions: \(x) . This plays along nicely with the (native)
pipe when we want to pass content to the RHS but not to the first argument.

Example:

R> mtcars |> subset(cyl == 4) |> (\(x) lm(mpg ~ disp, data = x))()

26 / 57

Toy example:

R> my_list_generator <- function(y, z) {
+ list(y = y, z = z)
+ }
R>
R> my_list_generator_2 <- function(x, ...) {
+ my_list_generator(...)
+ }
R>
R> str(my_list_generator_2(x = 1, y = 2, z = 3))

 List of 2
 $ y: num 2
 $ z: num 3

Real-life example:

R> map(.x, .f, ...)
R> map(mtcars, mean, na.rm = TRUE)

Arguments:

.x : A list or atomic vector

.f : A function

... : Additional arguments passed on to the
mapped function.

... (Dot-dot-dot)
Functions can have a special argument ... (pronounced dot-dot-dot). In other programming languages, this type of
argument is often called varargs (short for variable arguments), or ellipsis. With it, a function can take any number of
additional arguments. That is potentially very powerful!

A common application is to use ... to pass those additional arguments on to another function.

27 / 57

Not every function you plan to write is unique, nor is every problem you
want to solve functionally.

ChatGPT and other AI-based coding tools can help you a lot in finding
functional solutions you can describe but not verbalize (yet).

I encourage you to use AI for this purpose, but be aware of the necessity to
(a) debug and (b) assign credit where due.

Let's try it out with one of the following prompts:

Write an R function that capitalizes the first letter of each word in a
character vector.
Write an R function that allows me to play one round of black jack.

Writing functions with ChatGPT

28 / 57

Iteration

29 / 57

Iteration

The ubiquity of iteration
Often we have to run the same task over and over again, with minor variations. Examples:

Standardize values of a variable
Recode all numeric variables in a dataset
Running multiple models with varying covariate sets

A benefit of scripting languages in data (as opposed to point-and-click solutions) is that we can easily automate the
process of iteration

Ways to iterate
A simple approach is to copy-and-paste code with minor modifications (→ "duplicate code", → "copy-and-paste
programming"). This is lazy, error-prone, not very efficient, and violates the "Don't repeat yourself" (DRY) principle.
In R, vectorization, that is applying a function to every element of a vector at once, already does a good share of
iteration for us.
for() loops are intuitive and straightforward to build, but sometimes not very efficient.
Finally, we learned about functions. Now, we learn how to unleash their power by applying them to anything we
interact with in R at scale.

30 / 57

https://en.wikipedia.org/wiki/Duplicate_code
https://en.wikipedia.org/wiki/Copy-and-paste_programming
https://en.wikipedia.org/wiki/Copy-and-paste_programming
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://adv-r.hadley.nz/perf-improve.html#vectorise
https://r4ds.had.co.nz/iteration.html

The tidyverse way to iterate
For real functional programming in base R, we can use the *apply()
family of functions (lapply() , sapply() , etc.). See here for an excellent
summary.
In the tidyverse, this functionality comes with the purrr package.
At its core is the map*() family of functions.

How purrr works
The idea is always to apply a function to x, where x can be a list, vector,
data.frame, or something more complex.
The output is then returned as output of a pre-defined type (e.g., a list).

Iteration with purrr

31 / 57

https://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

Iteration with purrr: map()
The map*() functions all follow a similar syntax:

We use it to apply a function .f to each piece in .x . Additional arguments to .f can be passed on in

For instance, if we want to identify the object class of every column of a data.frame, we can write:

R> map(starwars, class)

 $name
 [1] "character"

 $height
 [1] "integer"

 $mass
 [1] "numeric"

 $hair_color
 [1] "character"

 $skin_color
 [1] "character"

map(. x, . f, ...)

32 / 57

Iteration with purrr: map() cont.
By default, map() returns a list. But we can also use other map*() functions to give us an atomic vector of an indicated
type (e.g., map_int() to return an integer vector, or map_vec() to return a vector that is the simplest common type).

Going back to the previous example, we can also use map_chr() , which returns a character vector:

R> map_chr(starwars, class)

 name height mass hair_color skin_color eye_color
 "character" "integer" "numeric" "character" "character" "character"
 birth_year sex gender homeworld species films
 "numeric" "character" "character" "character" "character" "list"
 vehicles starships
 "list" "list"

The purrr function set is quite comprehensive. Be sure to check out the cheat sheet and the tutorials. You'll survive
without purrr but you probably don't want to live without it. Together with dplyr it's easily the most powerful package
for data wrangling in the tidyverse. If you master it, it will save you a lot of time and headaches.

33 / 57

https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf
https://jennybc.github.io/purrr-tutorial/index.html

Iteration with purrr: map() cont.

34 / 57

Iteration with purrr: map() cont.

35 / 57

Strategies for debugging

36 / 57

Straight from the Wikipedia
"Debugging is the process of finding and resolving bugs
(defects or problems that prevent correct operation)
within computer programs, software, or systems."

A famous (yet not the first) bug:
The term "bug" was used in an account by computer
pioneer Grace Hopper (see on the right). While she was
working on a Mark II computer at Harvard University, her
associates discovered a moth stuck in a relay and
thereby impeding operation, whereupon she remarked
that they were "debugging" the system. This bug was
carefully removed and taped to the log book (see on the
right).

Above: Grace Hopper, Below: The bug

What's debugging?

37 / 57

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Harvard_Mark_II

The Wikipedia list of software bugs with significant consequences is growing
and you don't want to be on it.

NASA software engineers are famous for producing bug-free code. This was
learned the hard and costly way though. Some highlights from space:

1962: A booster went off course during launch, resulting in the
destruction of NASA Mariner 1 . This was the result of the failure of a
transcriber to notice an overbar in a handwritten specification for the
guidance program, resulting in an incorrect formula the FORTRAN code.
1999: NASA's Mars Climate Orbiter was destroyed, due to software on the
ground generating commands based on parameters in pound-force (lbf)
rather than newtons (N)
2004: NASA's Spirit rover became unresponsive on January 21, 2004, a
few weeks after landing on Mars. Engineers found that too many files
had accumulated in the rover's flash memory (the problem could be
fixed though by deleting unnecessary files, and the Rover lived happily
ever after. Until it froze to death in 2011).

Why debugging matters

38 / 57

https://en.wikipedia.org/wiki/List_of_software_bugs
https://www.bugsplat.com/blog/less-serious/why-nasa-code-doesnt-crash/
https://www.youtube.com/watch?v=CkOOazEJcUc
https://www.youtube.com/watch?v=lcYkOh4nweE
https://www.youtube.com/watch?v=7V54LRRJaGk
https://en.wikipedia.org/wiki/Spirit_(rover

Why debugging matters (cont.)

39 / 57

Source Washington Post
Source Solomon Messing / Twitter

Why debugging matters (cont.)

40 / 57

https://www.washingtonpost.com/technology/2021/09/10/facebook-error-data-social-scientists/
https://twitter.com/solomonmg/status/1436742352039669760

1. Google

2. Reset

3. Debug

4. Deter

A general strategy for debugging

41 / 57

According to this analysis, the most common error types in R are:1

1. Could not find function errors, usually caused by typos or not
loading a required package.

2. Error in if errors, caused by non-logical data or missing values
passed to R's if conditional statement.

3. Error in eval errors, caused by references to objects that don't
exist.

4. Cannot open errors, caused by attempts to read a file that doesn't
exist or can't be accessed.

5. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

6. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist

7. Package errors caused by being unable to install, compile or load
a package.

Whenever you see an error message,
start by googling it. Improve your
chances of a good match by removing
any variable names or values that are
specific to your problem. Also, look for
Stack Overflow posts and list of
answers.

Google

1Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 42 / 57

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md
https://lmgtfy.app/?q=Error+in+interpretative_method+%3A+%20+%20could+not+find+function+%22interpretative_method%22&iie=1
https://stackoverflow.com/questions/tagged/r

If at first you don't succeed, try exactly the same
thing again.
Have you tried turning it off and on again?
Do you use rm(list = ls()) ? Don't. Packages
remain loaded, options and environment variables
set, ... all possible sources of error!
A fresh start clears the workspace, resets options,
environment variables, and the path.
While we're at it, check out James Wade's advice
"How I set up RStudio for Efficient Coding"
(YouTube).

Reset

43 / 57

https://www.youtube.com/watch?v=p-r-AWR3-Es
https://www.youtube.com/watch?v=p-r-AWR3-Es

Debug

Make the error repeatable.
Execute the code many times as you consider and reject hypotheses. To make that iteration as quick possible, it’s
worth some upfront investment to make the problem both easy and fast to reproduce.
Work with reproducible and minimal examples by removing innocuous code and simplifying data.
Consider automated testing. Add some nearby tests to ensure that existing good behaviour is preserved.

Track the error down.
Execute code step by step and inspect intermediate outputs.
Adopt the scientific method: Generate hypotheses, design experiments to test them, and record your results.

Once found, fix the error and test it.
Ensure you haven’t introduced any new bugs in the process.
Make sure to carefully record the correct output, and check against the inputs that previously failed.
Reset and run again to make sure everything still works.

44 / 57

Defensive programming
Pay attention. Do results make sense? Do they look different from
previous results? Why?
Know what you're doing, and what you're expecting.

Avoid functions that return different types of output
depending on their input, e.g., [] and sapply() .
Be strict about what you accept (e.g., only scalars).
Avoid functions that use non-standard evaluation (e.g.,
with())

Fail fast.
As soon as something wrong is discovered, signal an error.
Add tests (e.g., with the testthat package).
Practice good condition/exception handling, e.g., with try()
and tryCatch() .
Write error messages for humans.

Transparency
Collaborate! Pair programming is an
established software development
technique that increases code robustness. It
also works from remote.
Be transparent! Let others access your code
and comment on it.

Deter

45 / 57

https://en.wikipedia.org/wiki/Pair_programming
https://ivelasq.rbind.io/blog/vscode-live-share/

Debugging R

46 / 57

What you get

Error : .onLoad failed in loadNamespace() for 'rJava', details:

call: dyn.load(file, DLLpath = DLLpath, ...)

error: unable to load shared object '/Users/janedoe/Library/R/3.6/library/rJava/libs/rJava.so':

libjvm.so: cannot open shared object file: No such file or directory

Error: loading failed

Execution halted

ERROR: loading failed

* removing '/Users/janedoe/Library/R/3.6/library/rJava/'

Warning in install.packages :

installation of package 'rJava' had non-zero exit status

Credit Jenny Bryan

47 / 57

https://github.com/jennybc/debugging

What you see

Error : blah failed blah blah() blah 'blah', blah:

call: blah.blah(blah, blah = blah, ...)

error: unable to blah blah blah '/blah/blah/blah/blah/blah/blah/blah/blah/blah.so':

blah.so: cannot open blah blah blah: No blah blah blah blah

Error: blah failed

blah blah

ERROR: blah failed

* removing '/blah/blah/blah/blah/blah/blah/blah/'

Warning in blah.blah :

blah of blah 'blah' blah blah-blah blah blah

Credit Jenny Bryan

48 / 57

https://github.com/jennybc/debugging

Strategies to debug your R code
Sometimes the mistake in your code is hard to diagnose, and googling doesn't help. Here are a couple of strategies to
debug your code:

Use traceback() to determine where a given error is occurring.

Output diagnostic information in code with print() , cat() or message() statements.

Use browser() to open an interactive debugger before the error

Use debug() to automatically open a debugger at the start of a function call.

Use trace() to make temporary code modifications inside a function that you don't have easy access to.

49 / 57

Motivation and usage
When an error occurs with an unidentifiable error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.
The traceback() function prints the sequence of
calls that led to an uncaught error.
The traceback() output reads from bottom to top.
Note that errors caught via try() or tryCatch() do
not generate a traceback!
If you’re calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber .

Example
In the call sequence below, the execution of g() triggers
an error:

R> f <- function(x) x + 1
R> g <- function(x) f(x)
R> g("a")

#> Error in x + 1 : non-numeric argument to binary op

Doing the traceback reveals that the function call f(x) is
what lead to the error:

R> traceback()

#> 2: f(x) at #1
#> 1: g("a")

Locating errors with traceback()

50 / 57

Motivation and usage
Sometimes, you need more information than the
precise location of an error in a function to fix it.
The interactive debugger lets you pause the run of a
function and interactively explore its state.
Two options to enter the interactive debugger:

1. Through RStudio's "Rerun with Debug" tool,
shown to the right of an error message.

2. You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

In either case, you’ll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You’ll
know when you’re in the interactive debugger
because you get a special prompt, Browse[1]> .

Example
R> h <- function(x) x + 3
R> g <- function(b) {
+ browser()
+ h(b)
+ }
R> g(10)

Some useful things to do are:

1. Use ls() to determine what objects are available in
the current environment.

2. Use str() , print() etc. to examine the objects.
3. Use n to evaluate the next statement.
4. Use s : like n but also step into function calls.
5. Use where to print a stack trace (→ traceback).
6. Use c to exit debugger and continue execution.
7. Use Q to exit debugger and return to the R prompt.

Interactive debugging with browser()

51 / 57

Motivation
Sometimes the error is outside your code in a
package you're using, you might still want to be able
to debug.
Two options:

1. Get a local version of the package code and
debug as if it were your own.

2. Use functions which which allow you to start a
browser in existing functions, including
recover() and debug() .

Debugging other peoples' code

52 / 57

Motivation
recover() serves as an
alternative error handler which
you activate by calling
options(error = recover) .
You can then select from a list
of current calls to browse.
options(error = NULL) turns
off this debugging mode again.
A simpler alternative is
options(error = browser) , but
this only allows you to browse
the call where the error
occurred.

Example
Activate debugging mode; then execute (flawed) function:

R> options(error = recover)
R> lm(mpg ~ wt, data = "mtcars")

Error in model.frame.default(formula = mpg ~ wt, data = "mtcars", drop
 'data' must be a data.frame, environment, or list

Enter a frame number, or 0 to exit

1: lm(mpg ~ wt, data = "mtcars")
2: eval(mf, parent.frame())
3: eval(mf, parent.frame())

Selection:

Deactivate debugging mode:

R> options(error = NULL)

Debugging other peoples' code (cont.)

53 / 57

Motivation
debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.
Some functions in another package are easier to
find than others. There are

exported functions which are available outside
of a package and
internal functions which are only available
within a package.

To find (and debug) exported functions, use the ::
syntax, as in ggplot2::ggplot .
To find un-exported functions, use the ::: syntax,
as in ggplot2:::check_required_aesthetics .

Example
Activate debugging mode for lm() function; then
execute function:

R> debug(stats::lm)
R> lm(mpg ~ weight, data = "mtcars")

Interactive debugging mode for lm() is entered; use
the common browser() functionality to navigate:

debugging in: lm(mpg ~ weight, data = mtcars)
debug: {
 ret.x <- x
 ...
Browse[2]>

Deactivate debugging mode:

R> undebug(stats::lm)

Debugging other peoples' code (cont.)

54 / 57

Debugging in RStudio

55 / 57

Further reading
12-minute video on debugging in R
Jenny Bryan's talk on debugging at rstudio::conf 2020
Jenny Bryan and Jim Hester's "What They Forgot to
Teach You About R", Chapter 11: Debugging R code
Jonathan McPherson's Debugging with RStudio

More on debugging R

56 / 57

https://vimeo.com/99375765
https://github.com/jennybc/debugging
https://rstats.wtf/debugging-r
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio

Next steps

Assignment
Assignment 2 is online! You have a bit more than a week to work on it - final upload deadline is Oct 4.

Next lecture
Relational databases and SQL. Buckle up and bring coffee, because it'll get both exciting and tedious at the same time.

57 / 57

