Introduction to Data Science
Session 4: Functions and debugging

Simon Munzert
Hertie School |

https://github.com/intro-to-data-science-21

Table of contents

1. Functions
2. Iteration
3. Strategies for debugging

4. Debugging R

2 [57

Functions

Tidy programming basics

"Tidy programming" is not a strictly defined practice in the tidyverse. However, there are some common programming
strategies that help you keep your code and workflow tidy. These include:

 Pipes (you already learned how to use them)
e User-generated functions
e Functional programming with purrr

The latter two are extremely helpful - in particular when you are confronted with iterative tasks.

We will now learn the basics of creating your own functions and functional programming with R. There is much more to
learn about these topics, so we will revisit them as the course progresses.

4 | 57

Functional programming

R is a functional programming (FP) language. As Hadley Wickham puts it in Advanced R:

This means that it provides many tools for the creation and manipulation of functions. In particular, R has
what's known as first-class functions. You can do anything with functions that you can do with vectors: you

can assign them to variables, store them in lists, pass them as arguments to other functions, create them
inside functions, and even return them as the result of a function.

R encourages you to use and build your own functions to solve problems. Often, this implies decomposing a large
problem into small pieces, and solving each of them with independent functions.

There is much more to learn about functions and functional programming. Useful resources include:

e The chapter on functions in R for Data Science.
e The section on functional programming in Advanced R.

e The R packages book. In a way, bundling functions in a package is sometimes the next logical step.

5/ 57

http://adv-r.had.co.nz/Functional-programming.html
https://en.wikipedia.org/wiki/Functional_programming
https://r4ds.had.co.nz/functions.html
https://adv-r.hadley.nz/fp.html
https://r-pkgs.org/

Creating functions

Why creating functions?

That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

e Every data science project is unique. There are problems only you have to solve.
e For problems that are repetitive, you'll quickly look for options to automate the task.
e Functions are a great way to automate.

Examples where creating functions makes sense

1. You want to scrape thousands of websites. This implies multiple steps, from downloading to parsing and cleaning. All
these steps can be achieved with existing functions, but the fine-tuning is specific to the set of websites. You build
one (or a set of) scraping functions that take the websites as input and return a cleaned data frame ready to be
analyzed.

2. You want to estimate not one but multiple models on your dataset. The models vary both in terms of data input and
specification. Again, based on existing modeling functions you tailor your own, allowing you to run all these models

automatically and to parse the results into one clean data frame. 6/ 57

Basic syntax

Writing your own function in R is easy with the
function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+)

Tves, a function to create functions. & 7/ 57

Basic syntax

Writing your own function in R is easy with the
function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+ }

o We write functions to apply them later. So, we have
to give them a name. Here, we name it "my_func "

o Also, our function (almost) always needs input, plus
we want to specify how exactly the function should
behave. We can use arguments for this, which are
specified as arguments of the function() function.

Tves, a function to create functions. & 8 /57

Basic syntax

Writing your own function in R is easy with the
function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+ }

e Next, we specify anything we want the function to to.

e This comes in between curly brackets, {...}.
e Importantly, we can recycle arguments by calling
them by their name.

1 Yes, a function to create functions. &

9 /57

Basic syntax

Writing your own function in R is easy with the
function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+)

 Finally, we specify what the function should return.

e This could be a list, data.frame, vector, sentence - or
anything else really.

e Note that R automatically returns the final object
that is written (not: assigned!) in your function by
default. Still, my recommendation is that you get
into the habit of assigning the return object(s)
explicitly with return().

1 3 ; e
Yes, a function to create functions. & 10 / 57

Basic syntax

Writing your own function in R is easy with the
function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+ 1}

e Oh, and don't forget to close the curly brackets...

Tves, a function to create functions. & 11/ 57

Basic syntax

Writing your own function in R is easy with the Let's try it out with a simple example function - one that
function() function’. The basic syntax is as follows: converts temperatures from Fahrenheit to Celsius:2

R> my_func ¢« function(ARGUMENTS) { R> fahrenheit_to_celsius <« function(temp F) {

- OPERATIONS + temp_C « (temp_F - 32) % (5/9)

+ return(VALUE) + return(temp C)

+ 1} + }

Tves, a function to create functions. & 2 Courtesy of Software Carpentry. 12 /57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Basic syntax

Writing your own function in R is easy with the

function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+ }

1 Yes, a function to create functions. &

Let's try it out with a simple example function - one that

converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius <« function(temp F) {
+ temp_C « (temp_F - 32) % (5/9)
+ return(temp C)

+ 3

e Our function has an intuitive name.
e Also, it takes just one thing as input, which we call
temp_F.

2 Courtesy of Software Carpentry. 13/ 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Basic syntax

Writing your own function in R is easy with the Let's try it out with a simple example function - one that
function() function’. The basic syntax is as follows: converts temperatures from Fahrenheit to Celsius:2

R> my_func ¢« function(ARGUMENTS) { R> fahrenheit_to_celsius <« function(temp F) {

- OPERATIONS + temp_C « (temp_ F - 32) * (5/9)

+ return(VALUE) + return(temp C)

+ 1} + }

e We now take up the argument temp_F, do
something with it, and store the output in a new
object, temp_C.

e Importantly, that object only lives within the
function. When the function is run, we cannot access
it from the environment.

Tves, a function to create functions. & 2 Courtesy of Software Carpentry. 14 | 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Basic syntax

Writing your own function in R is easy with the Let's try it out with a simple example function - one that
function() function’. The basic syntax is as follows: converts temperatures from Fahrenheit to Celsius:2

R> my_func ¢« function(ARGUMENTS) { R> fahrenheit_to_celsius <« function(temp F) {

- OPERATIONS + temp_C « (temp_F - 32) % (5/9)

+ return(VALUE) + return(temp C)

+ 1} + }

e Finally, the output is returned.

Tves, a function to create functions. & 2 Courtesy of Software Carpentry. 15 / 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Basic syntax

Writing your own function in R is easy with the

function() function’. The basic syntax is as follows:

R> my_func ¢« function(ARGUMENTS) {

+ OPERATIONS
+ return(VALUE)
+ }

1 Yes, a function to create functions. &

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:

R> fahrenheit to_celsius ¢« function(temp F) {
+ temp_C « (temp_F - 32) % (5/9)

+ return(temp_C)

+ }

Now, let's try out the function:

R> fahrenheit to celsius(451)
[1] 232.7778

Pretty hot, isn't it?

16 | 57

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

R> temp_convert <«

+ 4+ + + + + + + + + + + + + + + 4+ 4+

function(temp, from = "f") {
if (!'(from %in% c("f", "c"))){
stop("No valid input
temperature specified.")

}
if (from = "f") {
out « (temp - 32) * (5/9)
} else {
out ¢« temp * (9/5) + 32
}
if((from = "c" & temp > 30) |
(from = "f" & out > 30)) {
message("That's damn hot!")
lelse{
message("That's not so hot.")
}

return(out)

17 | 57

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

e By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
Input, temp, IS provided.

R> temp_convert <«

+ function(temp, from = "f") {

+ if (! (from %in% c("f", "c"))){
+ stop("No valid input

+ temperature specified.")
+)

+ if (from = "f") {

+ out « (temp - 32) * (5/9)

+ } else {

+ out ¢« temp * (9/5) + 32

+)

+ if((from = "c" & temp > 30) |
o (from = "f" & out > 30)) {
+ message("That's damn hot!")

+ }telse{

+ message("That's not so hot.")
+ 1

+ return(out)

+ }

18 | 57

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

e By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
Input, temp, IS provided.

e if() {...} allows usto make conditional
statements. Here, we test for the validity of the input
for argument from.

R> temp_convert <«

+ function(temp, from = "f") {

+ if (! (from %in% c("f", "c"))){
+ stop("No valid input

+ temperature specified.")
+ 1}

+ if (from = "f") {

+ out « (temp - 32) * (5/9)

+ } else {

+ out ¢« temp * (9/5) + 32

+ 1}

+ if((from = "c" & temp > 30) |
o (from = "f" & out > 30)) {
+ message("That's damn hot!")

+ }telse{

+ message("That's not so hot.")
+)

+ return(out)

+ }

19 | 57

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

e By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
Input, temp, IS provided.

e if() {...} allows usto make conditional
statements. Here, we test for the validity of the input
for argument from.

e |f the condition is not met, the function breaks and
prints a message.

R> temp_convert <«

+ + + 4+ + + + 4+ + + + + + + + + 4+ o+

function(temp, from = "f") {
if (!'(from %in% c("f", "c"))){
stop("No valid input
temperature specified.")

}
if (from = "f") {
out « (temp - 32) * (5/9)
} else {
out ¢« temp * (9/5) + 32
}
if((from = "c" & temp > 30) |
(from = "f" & out > 30)) {
message("That's damn hot!")
lelse{
message("That's not so hot.")
}

return(out)

20 / 57

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
Input, temp, IS provided.

if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from.

If the condition is not met, the function breaks and
prints a message.

We else() we specify what to do if the if()
condition is not met.

R> temp_convert <«

+ + + 4+ + + + 4+ + + + 4+ + + + + 4+ o+

function(temp, from = "f") {
if (!'(from %in% c("f", "c"))){
stop("No valid input
temperature specified.")

}
if (from = "f") {
out « (temp - 32) * (5/9)
} else {
out ¢« temp * (9/5) + 32
}
if((from = "c" & temp > 30) |
(from = "f" & out > 30)) {
message("That's damn hot!")
lelse{
message("That's not so hot.")
}

return(out)

21/ 57

Functions: default argument values, if(), else()

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
Input, temp, IS provided.

if() {...} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from.

If the condition is not met, the function breaks and
prints a message.

We else() we specify what to do if the if()
condition is not met.

Make R more talkative with message() . Future-You
will like it!

R> temp_convert <«

+ + + 4+ + + + 4+ + + + 4+ + + + + 4+ o+

function(temp, from = "f") {
if (!'(from %in% c("f", "c"))){
stop("No valid input
temperature specified.")

}
if (from = "f") {
out « (temp - 32) * (5/9)
} else {
out ¢« temp * (9/5) + 32
}
if((from = "c" & temp > 30) |
(from = "f" & out > 30)) {
message("That's damn hot!")
lelse{
message("That's not so hot.")
}

return(out)

22 | 57

Anonymous functions

In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it's not worth the effort to give
it a name.

Examples:

R> map(char_vec, function(x) paste(x, collapse = "|"))
R> integrate(function(x) sin(x) "~ 2, 0, pi)

23 | 57

Anonymous functions

In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it's not worth the effort to give
it a name.

As of R 4.1.0, there's a new shorthand syntax for anonymous functions: \(x).
Example:
R> (function (x) {paste(x, 'is awesome!')})('Data science')
[1] "Data science is awesome!"
R> (\(x) {paste(x, 'is awesome!')})('Data science')

[1] "Data science 1is awesome!"

24 | 57

Anonymous functions

In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the
function a name, you get an anonymous function. You use an anonymous function when it's not worth the effort to give
it a name.

As of R 4.1.0, there's a new shorthand syntax for anonymous functions: \(x) . This plays along nicely with the (native)
pipe when we want to pass content to the RHS but not to the first argument.

25/ 57

Anonymous functions

In R, functions are objects in their own right. They aren’t automatically bound to a name. If you choose not to give the

function a name, you get an anonymous function. You use an anonymous function when it's not worth the effort to give
it a name.

As of R 4.1.0, there's a new shorthand syntax for anonymous functions: \(x) . This plays along nicely with the (native)
pipe when we want to pass content to the RHS but not to the first argument.

Example:

R> mtcars D> subset(cyl = 4) > (\(x) lm(mpg ~ disp, data = x))()

26 [57

B (Dot-dot-dot)

Functions can have a special argument ... (pronounced dot-dot-dot). In other programming languages, this type of
argument is often called varargs (short for variable arguments), or ellipsis. With it, a function can take any number of
additional arguments. That is potentially very powerful!

A common application is to use ... to pass those additional arguments on to another function.
Toy example: Real-life example:
R> my_list generator ¢« function(y, z) { R> map(.x, .f, o)
+ list(y =y, z = z) R> map(mtcars, mean, na.rm = TRUE)
+ }
. Arguments:
R> my_list _generator_2 <« function(x, ...) {
MR st eenerator(hss) e .x:Alist or atomic vector
5 .
s e .f:Afunction
R> str(my_list _generator 2(x = 1, y = 2, z = 3)) e ... :Additional arguments passed on to the
mapped function.
List of 2
$ y: num 2

: num 3
) 7 . 27 | 57

Writing functions with ChatGPT

Not every function you plan to write is unique, nor is every problem you
want to solve functionally.

ChatGPT and other Al-based coding tools can help you a lot in finding
functional solutions you can describe but not verbalize (yet).

| encourage you to use Al for this purpose, but be aware of the necessity to
(a) debug and (b) assign credit where due.

Let's try it out with one of the following prompts:

e Write an R function that capitalizes the first letter of each word in a
character vector.
e Write an R function that allows me to play one round of black jack.

&)} ChatGPT

28 | 57

Iteration

Iteration

The ubiquity of iteration

e Often we have to run the same task over and over again, with minor variations. Examples:
o Standardize values of a variable

o Recode all numeric variables in a dataset
o Running multiple models with varying covariate sets

« A benefit of scripting languages in data (as opposed to point-and-click solutions) is that we can easily automate the
process of iteration

Ways to iterate

« Asimple approach is to copy-and-paste code with minor modifications (— "duplicate code" — "copy-and-paste
programming"). This is lazy, error-prone, not very efficient, and violates the "Don't repeat yourself" (DRY) principle.

e In R, vectorization, that is applying a function to every element of a vector at once, already does a good share of
iteration for us.

e for() loops are intuitive and straightforward to build, but sometimes not very efficient.

e Finally, we learned about functions. Now, we learn how to unleash their power by applying them to anything we
Interact with in R at scale.

30 / 57

https://en.wikipedia.org/wiki/Duplicate_code
https://en.wikipedia.org/wiki/Copy-and-paste_programming
https://en.wikipedia.org/wiki/Copy-and-paste_programming
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://adv-r.hadley.nz/perf-improve.html#vectorise
https://r4ds.had.co.nz/iteration.html

Iteration with purrr

The tidyverse way to iterate

e For real functional programming in base R, we can use the xapply()
family of functions (tapply(), sapply(), etc.). See here for an excellent

summary.
e In the tidyverse, this functionality comes with the purrr package.

e At its core is the mapx() family of functions.

How purrr works

e The idea is always to apply a function to x, where x can be a list, vector,

data.frame, or something more complex.
o The output is then returned as output of a pre-defined type (e.g,, a list).

31/ 57

https://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

Iteration with purrr: map()

The map%() functions all follow a similar syntax:

map(. z,. f,...)
We use it to apply a function .f to each piece in .x.Additional arguments to .f can be passed on in

For instance, if we want to identify the object class of every column of a data.frame, we can write:

R> map(starwars, class)

$name
[1] "character"

$height
[1] "integer"

$mass
[1] "numeric"

$hair _color
[1] "character"

$skin _color

32 /57
[1] "character"

lteration with purrr: map() cont.

By default, map() returns a list. But we can also use other map*() functions to give us an atomic vector of an indicated
type (e.g, map_int() to return an integer vector, or map_vec() to return a vector that is the simplest common type).

Going back to the previous example, we can also use map_chr(), which returns a character vector:

R> map_chr(starwars, class)

name height mass hair_color skin_color eye_color
"character" "integer" "numeric" "character" "character" "character"
birth_year sex gender homeworld species films
"numeric" "character" "character" "character" "character" "list"
vehicles starships
"list" "list"

The purrr function set is quite comprehensive. Be sure to check out the cheat sheet and the tutorials. You'll survive
without purrr butyou probably don't want to live without it. Together with dplyr it's easily the most powerful package
for data wrangling in the tidyverse. If you master it, it will save you a lot of time and headaches.

33 /57

https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf
https://jennybc.github.io/purrr-tutorial/index.html

lteration with purrr: map

Apply functions with purrr

Map Functions
ONELIST

map(.x, .f, ...) Apply a function to each element
of a list or vector, and return a list.

x <-list(a=1:10, b =11:20,c = 21.30)
[1=-list(x=c("a","b"), y=c('c","d")

map(l1, sort, decreasing = TRUE)

map(@, fun,..)

map_dbl(.x, .f,...)
- Return a double vector.
m map_dbl(x, mean)

map_int(.x, f,...)
g Return an integer vector.
map_int(x, length)

map_chr(l1, paste, collapse ="")

map_lgl(.x, .f,...)
- Return a logical vector,
map_lglix, is.integer)

map_vec(x, .f,..)
Return a vector that is of the
simplest common type.

] map_vec(|1, paste, collapse = ")

map_chr(.x, .f,...)
@ - Return a character vector.
walk(.x, .f, ...) Trigger side

effects, return invisibly.
walk(x, print)

Function Shortcuts
Use \(x) with fuﬁcﬁorﬁsrlri ke map() that have
single arguments.

map(l, \(x) x +2)
becomes

== posit

B Use\(x, y) with functions lil;e Vl;n;pi()rthat have
two arguments.

TWO LISTS

map2(.x,.y, f, ...) Apply a function to pairs of
elernents from two lists or vectors, return a list.
y<-list(1, 2, 3); 7 <- list(4, 5, 6); [2 <- list(x="a" y = "7")
map2(x, y,\(x, y) x"y)

mapZ.@@
map2_dbl(.x, .y, .f, ...) Return
- a double vector.
m map2_dblly, z,~.x/ y)

map2_int(.x,.y, f,...) Return
- an integer vector.
map2_intfy, z, "+")
&) P; Y
map2_chr(x, .y, f,...) Return

a character vector.
g map2_chrl1, 12, paste,
a collapse=","sep="")

map2_lgl(.x, \y, .f, ...) Return
. a logical vector,
m mapz lgl(12, 11, "%in%")

map2_vec(.x, .f, ...}

Return a vector that is of the
simplest common type.
map2_\ vec(ll 12, paste
collapse ="', sep=

walk2(.x, .y, .f, ...) Trigger
side effects, return invisibly.
walk2(objs, paths save)

imap(.x, .f, ...) is shorthand for map2(.x,
names(.x), .f) or map2(.x, seq_along(.x), .f)
depending on whether .x is named or not.

cont.

CHEATSHEET f

MANY LISTS

pmapl(.l, .f,...) Apply a function to groups of
elements from a list of lists or vectors, return a list.
pmap(

list(x, v, 2),

)funct\on(ﬂrst second, third) first * (second + third)

pmap_dbl(.l, f ...}
Return a double vector.
pmap_dbl(listly, z), ~ x /)

pmap_int(.L, f ...)
Return an integer vector.
pmap_int(listly, z), "+")

pmap_chr(l, f ...)
Return a character vector.
pmap_(chr(l\st(\l LZ) aste,
collapse="',sep = E

pmap_lgl(.l, f,...)
Return a loglcal vect
pmap_lglllist(I2, 1), %m%)

pmap_vec(.l, f,...)

Return a vector that is of the
simplest common type.
pmap_vec(list(l1, [2), paste,
collapse="),sep= ;3

pwalk(.l, .f, ...) Trigger side
effects, return imn%gb
pwalk(list{objs, paths), save)

Use \(x, , 2) etc with functions like pmap() that Use \(x, y) with functions like imap(). x will get

have many arguments. the list value and .y will get the index, or name if
i ilable.
map2(l, p, \(x, y) x +y) pmap(list(x, y, z), \(x, y, z) x +y [z) aval
f;eéomés ’b’ecc:me; ’ imap(list("a", "b", "c"), \(x, y) paste0(y, ": ", x))
outputs for each item

CC BY SA Posit Software, PBC « info@posit.co «

Use a string or an integer with any map function to index list elements by name or position. map(l, "name") becomes

posit.co + Learn more at purrr.tidyverse.org » HTML cheatsheets at pos.it/cheatsheets . purrr 1.0.1 « Updated: 2023-07

34 [57

lteration with purrr: map

Modify

M) (2 M) modify(.x, .f, ...) Apply a

bl bl function to each element. Also
<l < modify2(), and imodify().
¢S W8 modifyx,~+2)

am)>(am) modify_at(.x, .at, f,...) Applya
b] | function to selected elements.
< c Also map_at().

v 4s) modify_at(x, "b", ~+2)
(a)>(a) modify_if(x,.p,.f ..)Applya
Y | bl function to elements that pass
< c a test. Also map_if().

GG) modify_if(x, is.numeric,~+2)

modify_depth(.x, .depth, f,...)
Apply function to each element
ata given level of a list. Also
map_depth().

modify_depth(x, 1, ~.+2)

Reduce

reduce(.x, f, ..., .init, .

dir = ¢("forward", "backward"))

Apply function recursively to each element of a
list or vector. Also reduce2().

reduce(x, sum)

-func(a R b)

funcrl, c)

func
accumulate(.x, ., ..., .init) Reduce a list, but also

return intermediate results. Also accumulate2().
accumulate(x, sum)

vectors o

compact(.x, .p = identity)
Discard empty elements.
compact(x)

keep_at(x, at)

Keep/discard elements based
by name or position.
Conversely, discard_at().
keep_at(x, “a”)

oo+ (p set_names(x, nm =x) i
b q Set the names of a vector/list
< r directly or with a function.

set_names(x, c("p","q", "r"))
set_names(x, tolower)

Predicate functions

keep(.x,.p, ...)
; * Keep elements that pass a
logical test.
Conversely, discard().
keep(x, is.numeric)

B - head_while(.x, .p, ...)

b Return head elements until

cH one does not pass.

d Also tail_while().
head_whilelx, is.character)

ﬂ

detect(.x, .f, ..., dir=
c("forward", "backward"),
.right = NULL, .default= NULL)
Find first element to pass.
detect(x, is.character)

detect_index(.x, .f, ..., dir=
c("forward", "backward"),
.right = NULL) Find index of
first element to pass.
detect_indexlx, is.character)

every(x,.p,...)
Do all elements pass a test?
every(x, is.character)

some(.x,.p,...)
Do some elements pass a test?
some(x, is.character)

none(x, .p,...)
Do no elements pass a test?
nonefx, is.character)

has_element(.x, .y)
Does a list contain an element?
has_element(x, "foo")

cont.

Pluck

(al)-+>»b pluck(.x, ..., .default=NULL)
b Select an element by name or
M index. Also attr_getter() and
— chuck().
pluck(x, "b")
x [> pluck("b")
(al)-»a assign_in(x, where, value)
b bl Assign a value to a location
f, ; using pluck selection.
~— assign_in(x, "b", 5)
x [=assign_in("b", 5)
G a modify_in(.x, .where, .f) Apply
b fun(m) | afunctiontoavalueata
< < selzc:;d l(()cat‘ nEj)
d d modify_in(x, "b", abs;
— x [> modify_in("b", abs)

Concatenate

xl<lista=1,b=2,c=3)

x2 <- list(
a=data.framelx = 1.2),

: b =data.frame(y = "a")

into a vector by concatenating
them together.

list_c(x) Combines elements
@ -
u list_c(x1)

list_rbind(x) Combines
elements into a data frame by

| row-binding them together.
list_rbind(x2)

list_cbind(x) Combines
[elements into a data frame by
] column-binding them
together.
list_cbind(x2)

Reshape

list_flatten(.x) Remove a level
of indexes from a list.
list_flatten(x)

List-Columns
List-columns are columns of a
CrmrTEm data frame where each element is
3 <im3> @ list or vector instead of an atomic
4 <int@> Value. Columns canalso be lists of
5 <int[s]> dataframes. See tidyr for more
about nested data and list
columns.

WORK WITH LIST-COLUMNS

Manipulate list-columns like any other kind of
column, using dplyr functions like mutate().
Because each element is a list, use map
functions within a column function to
manipulate each element.

list_ranspose(.l, .names =
NULL)

Transposes the index order in
amulti-level list.
list_transpose(x)

map(), map2(), or pmapl() return lists and will
create new list-columns.

starwars [>
transmute(ships = map2(vehicles,
starships,
append)

Suffixed map functions like map_int() return an
atomic data type and will simplify list-columns
into regular columns.

starwars |»
mutate(n_films = map_int(films, length))

column function

CC BY SA Posit Software, PBC - info@posit.co - posit.co - Learn more at purrrtidyverse.org - HTML cheatsheets at pos.it/cheatsheets -. purrr 1.0.1 - Updated: 2023-07

35/ 57

Strategies for debugging

What's debugging?

Straight from the Wikipedia

"Debugging is the process of finding and resolving bugs
(defects or problems that prevent correct operation)
within computer programs, software, or systems."

A famous (yet not the first) bug:

The term "bug" was used in an account by computer
pioneer Grace Hopper (see on the right). While she was
working on a Mark Il computer at Harvard University, her
associates discovered a moth stuck in a relay and
thereby impeding operation, whereupon she remarked
that they were "debugging" the system. This bug was
carefully removed and taped to the log book (see on the
right).

4

Above: Grace Hopper, Below: The bug

4
ot OQadkaw M {,, 2 e P PR
/000 . odptao i ¥YC 29T cnuph

Tive
sh}rj 5 G037
oo 00 ne-ne ETSISSELS) 7445 25055
o3 o

1S4y

ue

37 /57

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Harvard_Mark_II

Why debugging matters

The Wikipedia list of software bugs with significant consequences is growing
and you don't want to be on it.

NASA software engineers are famous for producing bug-free code. This was
learned the hard and costly way though. Some highlights from space:

e 1962: A booster went off course during launch, resulting in the
destruction of NASA Mariner 1. This was the result of the failure of a
transcriber to notice an overbar in a handwritten specification for the
guidance program, resulting in an incorrect formula the FORTRAN code.

e 1999: NASA's Mars Climate Orbiter was destroyed, due to software on the
ground generating commands based on parameters in pound-force (lbf)
rather than newtons (N)

e 2004: NASA's Spirit rover became unresponsive on January 21, 2004, a
few weeks after landing on Mars. Engineers found that too many files
had accumulated in the rover's flash memory (the problem could be
fixed though by deleting unnecessary files, and the Rover lived happily
ever after. Until it froze to death in 2011).

/\ =NASAs 150 Million Dollar Coding Error U ~»
t‘l\-lCINEERING Watch later Share

NASA'S *
$150 MILLION
CODING ERI

rs ro -|-_vot+ --at2

: ,l rﬁro‘+1(v+vo)t'
«-/;i e —v2+2a(r r9)
-

' r—ro+vt——at2 '

Watch on (@3 YouTube 4

38 /57

https://en.wikipedia.org/wiki/List_of_software_bugs
https://www.bugsplat.com/blog/less-serious/why-nasa-code-doesnt-crash/
https://www.youtube.com/watch?v=CkOOazEJcUc
https://www.youtube.com/watch?v=lcYkOh4nweE
https://www.youtube.com/watch?v=7V54LRRJaGk
https://en.wikipedia.org/wiki/Spirit_(rover

Why debugging matters (cont.)

% ZDNet

Microsoft Excel blunder: Developers blamed for loss of
thousands of COVID-19 test results

The error has hampered the UK's contact-tracing program at a time when
the country is undergoing a second wave of coronavirus infections. By using
the XLS ...

1 month ago

% ABC News

Excel glitch leads to nearly 16,000 confirmed coronavirus
cases going unreported in United Kingdom

For the test and trace program to work well, contacts should be notified as
soon as possible. Health Secretary Matt Hancock told MPs that the problem
related to ...

1 month ago

."‘ Metro

How were 16,000 Test and Trace coronavirus cases lost on
Excel?

The cases were lost due to a technical error on a Microsoft Excel
spreadsheet. ... Trace 'immediately' after the issue was resolved and
thanked contact tracers for ...

1 month ago

Does Contact Tracing Work?
Quasi-Experimental Evidence from an
Excel Error in England®

Thiemo Fetzert Thomas Graeber?

November 24, 2020

Abstract

Contact tracing has been a central pillar of the public health response to the
COVID-19 pandemic. Yet, contact tracing measures face substantive chal-
lenges in practice and well-identified evidence about their effectiveness re-
mains scarce. This paper exploits quasi-random variation in COVID-19 con-
tact tracing. Between September 25 and October 2, 2020, a total of 15,841
COVID-19 cases in England (around 15 to 20% of all cases) were not imme-
diately referred to the contact tracing system due to a data processing error.
Case information was truncated from an Excel spreadsheet after the row limit
had been reached, which was discovered on October 3. There is substantial
variation in the degree to which different parts of England areas were exposed
— by chance - to delayed referrals of COVID-19 cases to to the contact tracing
system. We show that more affected areas subsequently experienced a drastic
rise in new COVID-19 infections and deaths alongside an increase in the pos-
itivity rate and the number of test performed, as well as a decline in the per-
formance of the contact tracing system. Conservative estimates suggest that
the failure of timely contact tracing due to the data glitch is associated with
more than 125,000 additional infections and over 1,500 additional COVID-19-
related deaths. Our findings provide strong quasi-experimental evidence for
the effectiveness of contact tracing.

Keywords: HEALTH, CORONAVIRUS
JEL Classification: 131, Z18

39 /57

Why debugging matters (cont.)

Technology

Facebook made big mistake in data it provided to
researchers, undermining academic work

Company accidentally left out half of all of its U.S. users in providing data to a research consortium

The error resulted from Facebook accidentally excluding data from U.S. users who had no detectable
political leanings — a group that amounted to roughly half of all of Facebook’s users in the United
States. Data from users in other countries was not affected.

“It’s data. Of course, there are errors,” said Gary King, a Harvard professor who co-chairs Social Science

One. “This, of course, was a big error.”

King, director of the university’s Institute for Quantitative Social Science, said dozens of papers from
researchers affiliated with Social Science One had relied on the data since Facebook shared the flawed
set in February 2020, but he said the impact could be determined only after Facebook provided
corrected data that could be reanalyzed. He said some of the errors may cause little or no problems, but

others could be serious.

Social Science One shared the flawed data with at least 110 researchers, King said.

An Ttalian researcher, Fabio Giglietto, discovered data anomalies last month and brought them to
Facebook’s attention. The company contacted researchers in recent days with news that they had failed
to include roughly half of its U.S. users — a group that likely is less politically polarized than Facebook’s

overall user base. The New York Times first reported Facebook’s error.

Source Washington Post

Sol Messing @SolomonMg - Sep 11

What happened that generated the error: TBD. I'd bet that U.S. user-
political affinity was joined to the rest of the data using a LEFT JOIN instead
of a LEFT OUTER JOIN. Again FB folks are likely working to fix this ASAP.

Q 3 T 10 Q 35 0

Sol Messing @SolomonMg - Sep 11

What was the likely consequence: people in the U.S. with no interest in
political information were excluded. Substantively this would make FB look
more hyper-partisan, as per @deaneckles' tweet here:

C Dean Eckles @deaneckles - Sep 11

That is, contra some reactions that somehow this error "helped"
Facebook, | would expect this made FB look more filled with misinfo &
polarizing content than it was.

Obviously, this error will have lasting consequences...
twitter.com/daveyalba/stat...

Show this thread

O 1 m 8 QO 31 o

Sol Messing @SolomonMg - Sep 11
What are the broader systematic issues in play here: researchers didn't
have access to the raw data or pipeline code. That's a huge deal and makes
it nearly impossible to do the usual, focused deep dive data forensics that
research often entails.

Source Solomon Messing / Twitter

40 [57

https://www.washingtonpost.com/technology/2021/09/10/facebook-error-data-social-scientists/
https://twitter.com/solomonmg/status/1436742352039669760

A general strategy for debugging

1. Google
2. Reset
3. Debug
4. Deter

41 | 57

Google

According to this analysis, the most common error types in R are:’ Whenever you see an error message,
start by googling it. Improve your

1. Could not find function errors, usually caused by typos or not chances of a good match by removing
loading a required package. any variable names or values that are

2. Error in if errors, caused by non-logical data or missing values specific to your problem. Also, look for
passed to R's if conditional statement. Stack Overflow posts and list of

3. Error in eval errors, caused by references to objects that don't answers.
exist.

4. Cannot open errors, caused by attempts to read a file that doesn't DAY OF FROGRAMMING
exist or can't be accessed. Go gle

5. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

6. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist Go gle

7. Package errors caused by being unable to install, compile or load

10 YEARS OF PROGRAMMING

a package.

Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 42 | 57

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md
https://lmgtfy.app/?q=Error+in+interpretative_method+%3A+%20+%20could+not+find+function+%22interpretative_method%22&iie=1
https://stackoverflow.com/questions/tagged/r

If at first you don't succeed, try exactly the same
thing again.

Have you tried turning it off and on again?

Do you use rm(list = 1s())? Don't. Packages

remain loaded, options and environment variables

set, ... all possible sources of error!

A fresh start clears the workspace, resets options,
environment variables, and the path.

While we're at it, check out James Wade's advice
"How | set up RStudio for Efficient Coding"
(YouTube).

Options

General
Code

—ﬂ Appearance

R Markdown
@/‘~ Sweave

Y% Spelling

W Git/sw

"5, Publishing

. Terminal

Default working directory (when not in a project):

‘ ~ Browse...

v Re-use idle sessions for project links
v Restore most recently opened project at startup

| Restore previously open source documents at startup
Restore .RData into workspace at startup
| Package: Save workspace to .RData on exit:
Data)

v Always save history (even when not saving .R|

Remove duplicate entries in history

Show .Last.value in environment listing
| Use debug error handler only when my code contains errors

Automatically expand tracebacks in error inspector
Wrap around when navigating to previous/next tab

| Automatically notify me of updates to RStudio

_Plots JEEE Build Debug Profile Too

New Session ks/20

Interrupt R
Terminate R...

Restart R
Set Working Directory

Load Workspace...
Save Workspace As...

Clear Workspace...

Quit Session...
43 | 57

https://www.youtube.com/watch?v=p-r-AWR3-Es
https://www.youtube.com/watch?v=p-r-AWR3-Es

Debug

Make the error repeatable.

e Execute the code many times as you consider and reject hypotheses. To make that iteration as quick possible, it's
worth some upfront investment to make the problem both easy and fast to reproduce.

o Work with reproducible and minimal examples by removing innocuous code and simplifying data.
e Consider automated testing. Add some nearby tests to ensure that existing good behaviour is preserved.

Track the error down.

e Execute code step by step and inspect intermediate outputs.
« Adopt the scientific method: Generate hypotheses, design experiments to test them, and record your results.

Once found, fix the error and test it.

e Ensure you haven't introduced any new bugs in the process.
» Make sure to carefully record the correct output, and check against the inputs that previously failed.

e Reset and run again to make sure everything still works.

4t | 57

Defensive programming

 Pay attention. Do results make sense? Do they look different from

previous results? Why?
« Know what you're doing, and what you're expecting.
o Avoid functions that return different types of output
depending on their input, e.g., []1 and sapply().
o Be strict about what you accept (e.g., only scalars).
o Avoid functions that use non-standard evaluation (e.g.,
with())
« Fail fast.
o As soon as something wrong is discovered, signal an error.
o Add tests (e.g., with the testthat package).
o Practice good condition/exception handling, e.g., with try()
and tryCatch().
o Write error messages for humans.

Transparency

e Collaborate! Pair programming is an
established software development
technique that increases code robustness. It
also works from remote.

e Be transparent! Let others access your code
and comment on it.

45 | 57

https://en.wikipedia.org/wiki/Pair_programming
https://ivelasq.rbind.io/blog/vscode-live-share/

Debugging R

What you get

Error : .onLoad failed in loadNamespace() for 'rJava', details:

call: dyn.load(file, DLLpath = DLLpath, ...)

error: unable to load shared object '/Users/janedoe/Library/R/3.6/library/rJava/libs/rJava.so’:
libjvm.so: cannot open shared object file: No such file or directory

Error: loading failed

Execution halted

ERROR: loading failed

* removing '/Users/janedoe/Library/R/3.6/library/rJava/’

Warning in install.packages

installation of package 'rJdava' had non-zero exit status

Credit Jenny Bryan

47 | 57

https://github.com/jennybc/debugging

What you see

Error : blah failed blah blah() blah 'blah', blah:

call: blah.blah(blah, blah = blah, ...)

error: unable to blah blah blah '/blah/blah/blah/blah/blah/blah/blah/blah/blah.so':
blah.so: cannot open blah blah blah: No blah blah blah blah

Error: blah failed

blah blah

ERROR: blah failed

* removing '/blah/blah/blah/blah/blah/blah/blah/’'

Warning in blah.blah

blah of blah 'blah' blah blah-blah blah blah

Credit Jenny Bryan

48 | 57

https://github.com/jennybc/debugging

Strategies to debug your R code

Sometimes the mistake in your code is hard to diagnose, and googling doesn't help. Here are a couple of strategies to
debug your code:

Use traceback() to determine where a given error is occurring.

Output diagnostic information in code with print(), cat() or message() statements.

Use browser() to open an interactive debugger before the error

Use debug() to automatically open a debugger at the start of a function call.

Use trace() to make temporary code modifications inside a function that you don't have easy access to.

49 [57

Locating errors with traceback()

Motivation and usage

When an error occurs with an unidentifiable error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.

The traceback() function prints the sequence of
calls that led to an uncaught error.

The traceback() output reads from bottom to top.
Note that errors caught via try() or tryCatch() do
not generate a traceback!

If you're calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber.

Example

In the call sequence below, the execution of g() triggers

dan error:

R> f « function(x) x + 1
R> g « function(x) f(x)
R> g(nau)

Doing the traceback reveals that the function call f(x) is

what lead to the error:

R> traceback()

50 / 57

Interactive debugging with browser()

Motivation and usage

e Sometimes, you need more information than the
precise location of an error in a function to fix it.

e The interactive debugger lets you pause the run of a
function and interactively explore its state.

e Two options to enter the interactive debugger:

1. Through RStudio's "Rerun with Debug" toal,
shown to the right of an error message.

2.You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

e In either case, you'll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You'll
know when you're in the interactive debugger
because you get a special prompt, Browse[1]>.

Example

R>

h < function(x) x + 3

R> g « function(b) {

+

+

+ 3

browser()
h(b)

R> ¢(10)

Some useful things to do are:

1.

~N O O B W N

Use 1s() to determine what objects are available in
the current environment.

.Use str(), print() etc.to examine the objects.

. Use n to evaluate the next statement.

. Use s:like n but also step into function calls.

. Use where to print a stack trace (— traceback).

. Use c to exit debugger and continue execution.

. Use q to exit debugger and return to the R prompSti

| 57

Debugging other peoples' code

Motivation

e Sometimes the error is outside your code in a
package you're using, you might still want to be able
to debug.

e Two options:

1. Get a local version of the package code and
debug as if it were your own.

2. Use functions which which allow you to start a
browser in existing functions, including
recover() and debug().

52/ 57

Debugging other peoples' code (cont.)

Motivation Example
e recover() Serves as an Activate debugging mode; then execute (flawed) function:
alternative error handler which
you activate by Caulng R> OptiOﬂS(erI‘OF = recover)

; R> Im(mpg ~ wt, data = "mtcars")
options(error = recover).

e You can then select from a list]
Error in model.frame.default(formula = mpg ~ wt, data = "mtcars", drop

of current calls to browse. 'data' must be a data.frame, environment, or list

e options(error = NULL) turns
off this debugging mode again.

e Asimpler alternative is 1: lm(mpg ~ wt, data = "mtcars")
2: eval(mf, parent.frame())

3: eval(mf, parent.frame())

Enter a frame number, or 0 to exit

options(error = browser), but
this only allows you to browse
the call where the error Selection:

occurred.
e Deactivate debugging mode:

R> options(error = NULL)
53 / 57

Debugging other peoples' code (cont.)

Motivation

e debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.

e Some functions in another package are easier to
find than others. There are

o exported functions which are available outside
of a package and

o |nternal functions which are only available
within a package.

 To find (and debug) exported functions, use the ::
syntax, as in ggplot2::ggplot.

e To find un-exported functions, use the ::: syntax,
as in ggplot2:::check_required aesthetics.

Example

e Activate debugging mode for 1m() function; then
execute function:

R> debug(stats::1m)
R> Im(mpg ~ weight, data = "mtcars")

 Interactive debugging mode for 1m() Is entered; use
the common browser() functionality to navigate:

debugging in: 1lm(mpg ~ weight, data = mtcars)
debug: {
ret.x & X

Browse[2]>
e Deactivate debugging mode:

R> undebug(stats::1m) 54 [57

Debugging in RStudio

Debug Mode

Open with debug(), browser(), or a breakpoint. RStudio will open the

debugger mode when it encounters a breakpoint while executing code.

Launch debugger

mode from origin
of error

Open traceback to examine
the functions that R called
before the error occurred

] RMarkdown. Rend Y] app.R 2] Seript.R 2 | palindrome R - Environment t History Build Git -

C“Ck I’]e)(t tO ", Source on Save O - HRun | b Source = List=
.'_ 7 # Indicate whether a positive number is a palindrome £l palindromel) ~
. *s] 8- palindrome <- functionCnum) { Values
line number to Te o aigtte - fioorcioginum, 105 + 1 R o
add/removea | @ e e o digtts s
igitl <- get_digit(num, x) 10000L
V » 12 . digitZ <- get_digit(num, (digits + 1) - x) un m
b k H t 13 " if (digitl - digit2) L
rea pO| ﬂ . 18" return(FALSE)
45 }
16 return(TRUE)

17 1

Find the largest palindrome that is the product of two i'chc Traceback Show internals =

. . : 19 c * - -
H | gh ll ghted 20- biggest_palindrome < function() { * palindrome(candidate) at palindrome.R:12

21 best <- @ biggest_palindrome() at palindrome.R:25

line shows ol T Sl

Consale
Where “=Next (¥ &= P Continue W Stop
(numEEC 184))% KC10An - 1))

execution has

Files Plots Packages Help Viewer -

@ New Folder 20 | Upload © | Delete (5] Rename | G More~

1
Browse[3]> f

.| /) Home .iDEcheatshest foo

debug at ~/RStudio-Essentials/Essentials-2/palindropme.R#12: digit2 =INa Size Modified
pa used <- get_digit(num, (digits + 1) - x) a =
BruwsE[Z]:‘_ K @9 appk 1.2 KB Dec 24, 201 05 AM

—

Console 2 —

> foo()

Error in get_digit(Cnum, i}._.: t Show Traceback

Error! “*# Rerun with Debug

Console —_

9=Next Y ¢ p Continue |l Stop

Examine variables Select function

in executing in traceback to
environment debug

Run commands in

environment where
execution has paused

Step through Step into and
codeoneline outoffunctions
at a time

Resume Quitdebug
execution mode
to run

55/ 57

More on debugging R

Using the

Further reading debugger tools

e 12-minute video on debugging in R

e Jenny Bryan's talk on debugging at rstudio:conf 2020

e Jenny Bryan and Jim Hester's "What They Forgot to
Teach You About R", Chapter 11: Debugging R code

e Jonathan McPherson's Debugging with RStudio

Commenting out
lines until you find
out what's causing the bug

.

56 / 57

https://vimeo.com/99375765
https://github.com/jennybc/debugging
https://rstats.wtf/debugging-r
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio

Next steps

Assignment

Assignment 2 is online! You have a bit more than a week to work on it - final upload deadline is Oct 4.

Next lecture

Relational databases and SQL. Buckle up and bring coffee, because it'll get both exciting and tedious at the same time.

57 | 57

