Introduction to Data Science
Session 10: Debugging, automation, and packaging

Simon Munzert
Hertie School |

https://github.com/intro-to-data-science-21

Table of contents

1. Strategies for debugging
2. Debugging R

3. Automation and scripting
4. Scheduling

5. R packages

2/ 66

Strategies for debugging

3/ 66

What's debugging?

Straight from the Wikipedia

"Debugging is the process of finding and resolving bugs
(defects or problems that prevent correct operation)
within computer programs, software, or systems."

A famous (yet not the first) bug:

The term "bug" was used in an account by computer
pioneer Grace Hopper (see on the right). While she was
working on a Mark Il computer at Harvard University, her
associates discovered a moth stuck in a relay and
thereby impeding operation, whereupon she remarked
that they were "debugging" the system. This bug was
carefully removed and taped to the log book (see on the
right).

{

Above: Grace Hopper, Below: The bug

9a |
06t Oackon M‘J {ﬁtna ?.037 57 0L5
/00 . Sh‘(—?«i = oaghom e 9087 FYC 09T crmuih
1o lon ne -me EFSESRL) e03) /57250550
@33 PRO. > 2. 1304q6YyiS
Cans ok o

- ; 2.130e7693

Bdos 2 = 033] ’1“";"1 &r‘)j doot

{m w e et -
(@agy oo h

teoe (Stapted Cosinl I TR e T (Sine chen)
$258 foted [Mults Adder "ot

\Say (zet #7'5 ?‘-\"\L r

' 6101‘13?}“ (A \au\- '
] S e e
1200 | clard Jpum |

4 | 66

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Harvard_Mark_II

Why debugging matters

The Wikipedia list of software bugs with significant consequences is growing
and you don't want to be on it.

NASA software engineers are famous for producing bug-free code. This was
learned the hard and costly way though. Some highlights from space:

e 1962: A booster went off course during launch, resulting in the
destruction of NASA Mariner 1. This was the result of the failure of a
transcriber to notice an overbar in a handwritten specification for the
guidance program, resulting in an incorrect formula the FORTRAN code.

e 1999: NASA's Mars Climate Orbiter was destroyed, due to software on the
ground generating commands based on parameters in pound-force (lbf)
rather than newtons (N)

e 2004: NASA's Spirit rover became unresponsive on January 21, 2004, a
few weeks after landing on Mars. Engineers found that too many files
had accumulated in the rover's flash memory (the problem could be
fixed though by deleting unnecessary files, and the Rover lived happily
ever after. Until it froze to death in 2011).

[\ :NéSA’s 150 Million Dollar Coding Error Y ~»
I:‘f\-IGI NEERING Watch later Share

NASA’S >

[»
"’1; :—/‘\ 'U—at _Plgifh Iater Share |
s\

?}r-rg+vot+—at2
b =1ty > (v+ o)t
‘;/»/i vv—v2+2a(r r9)
' r—r0+vt——at2 '

Watch on @BVoulube

5/ 66

https://en.wikipedia.org/wiki/List_of_software_bugs
https://www.bugsplat.com/blog/less-serious/why-nasa-code-doesnt-crash/
https://www.youtube.com/watch?v=CkOOazEJcUc
https://www.youtube.com/watch?v=lcYkOh4nweE
https://www.youtube.com/watch?v=7V54LRRJaGk
https://en.wikipedia.org/wiki/Spirit_(rover

Why debugging matters (cont.

% ZDNet

Microsoft Excel blunder: Developers blamed for loss of
thousands of COVID-19 test results

The error has hampered the UK's contact-tracing program at a time when
the country is undergoing a second wave of coronavirus infections. By using
the XLS ...

1 month ago

2 ABC News

Excel glitch leads to nearly 16,000 confirmed coronavirus
cases going unreported in United Kingdom

For the test and trace program to work well, contacts should be notified as
soon as possible. Health Secretary Matt Hancock told MPs that the problem
related to ...

1 month ago

"“ Metro

How were 16,000 Test and Trace coronavirus cases lost on
Excel?

The cases were lost due to a technical error on a Microsoft Excel
spreadsheet. ... Trace 'immediately' after the issue was resolved and
thanked contact tracers for ...

1 month ago

Does Contact Tracing Work?
Quasi-Experimental Evidence from an
Excel Error in England®

Thiemo Fetzert Thomas Graeber*

November 24, 2020

Abstract

Contact tracing has been a central pillar of the public health response to the
COVID-19 pandemic. Yet, contact tracing measures face substantive chal-
lenges in practice and well-identified evidence about their effectiveness re-
mains scarce. This paper exploits quasi-random variation in COVID-19 con-
tact tracing. Between September 25 and October 2, 2020, a total of 15,841
COVID-19 cases in England (around 15 to 20% of all cases) were not imme-
diately referred to the contact tracing system due to a data processing error.
Case information was truncated from an Excel spreadsheet after the row limit
had been reached, which was discovered on October 3. There is substantial
variation in the degree to which different parts of England areas were exposed
- by chance - to delayed referrals of COVID-19 cases to to the contact tracing
system. We show that more affected areas subsequently experienced a drastic
rise in new COVID-19 infections and deaths alongside an increase in the pos-
itivity rate and the number of test performed, as well as a decline in the per-
formance of the contact tracing system. Conservative estimates suggest that
the failure of timely contact tracing due to the data glitch is associated with
more than 125,000 additional infections and over 1,500 additional COVID-19-
related deaths. Our findings provide strong quasi-experimental evidence for
the effectiveness of contact tracing.

Keywords: HEALTH, CORONAVIRUS
JEL Classification: 131, Z18

6/ 66

Why debugging matters (cont.

Technology

Facebook made big mistake in data it provided to
researchers, undermining academic work

Company accidentally left out half of all of its U.S. users in providing data to a research consortium

The error resulted from Facebook accidentally excluding data from U.S. users who had no detectable
political leanings — a group that amounted to roughly half of all of Facebook’s users in the United

States. Data from users in other countries was not affected.

“It’s data. Of course, there are errors,” said Gary King, a Harvard professor who co-chairs Social Science

One. “This, of course, was a big error.”

King, director of the university’s Institute for Quantitative Social Science, said dozens of papers from
researchers affiliated with Social Science One had relied on the data since Facebook shared the flawed
set in February 2020, but he said the impact could be determined only after Facebook provided
corrected data that could be reanalyzed. He said some of the errors may cause little or no problems, but

others could be serious.

Social Science One shared the flawed data with at least 110 researchers, King said.

An Ttalian researcher, Fabio Giglietto, discovered data anomalies last month and brought them to
Facebook’s attention. The company contacted researchers in recent days with news that they had failed
to include roughly half of its U.S. users — a group that likely is less politically polarized than Facebook’s
overall user base. The New York Times first reported Facebook’s error.

Source Washington Post

Sol Messing @SolomonMg - Sep 11

What happened that generated the error: TBD. I'd bet that U.S. user-
political affinity was joined to the rest of the data using a LEFT JOIN instead
of a LEFT OUTER JOIN. Again FB folks are likely working to fix this ASAP.

O 3 0 10 Q 35 M

Sol Messing @SolomonMg - Sep 11
What was the likely consequence: people in the U.S. with no interest in
political information were excluded. Substantively this would make FB look
more hyper-partisan, as per @deaneckles' tweet here:

ﬁ Dean Eckles @deaneckles - Sep 11

That is, contra some reactions that somehow this error "helped"
Facebook, | would expect this made FB look more filled with misinfo &
polarizing content than it was.

Obviously, this error will have lasting consequences...
twitter.com/daveyalba/stat...

Show this thread

O 1 n 8 Q 3 0

Sol Messing @SolomonMg - Sep 11
What are the broader systematic issues in play here: researchers didn't
have access to the raw data or pipeline code. That's a huge deal and makes
it nearly impossible to do the usual, focused deep dive data forensics that
research often entails.

Source Solomon Messing / Twitter

7| 66

https://www.washingtonpost.com/technology/2021/09/10/facebook-error-data-social-scientists/
https://twitter.com/solomonmg/status/1436742352039669760

A general strategy for debugging

1. Google
2. Reset
3. Debug

4. Deter

8/ 66

Google

According to this analysis, the most common error types in R are:’

1. Could not find function errors, usually caused by typos or not
loading a required package.

2. Error in if errors, caused by non-logical data or missing values
passed to R's if conditional statement.

3. Error in eval errors, caused by references to objects that don't
exist.

4. Cannot open errors, caused by attempts to read a file that doesn't
exist or can't be accessed.

5. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

6. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist

7. Package errors caused by being unable to install, compile or load
a package.

Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 9/ 66

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md

Google

According to this analysis, the most common error types in R are:’ Whenever you see an error message,
start by googling it. Improve your

1. Could not find function errors, usually caused by typos or not chances of a good match by removing
loading a required package. any variable names or values that are

2. Error in if errors, caused by non-logical data or missing values specific to your problem. Also, look for
passed to R's if conditional statement. Stack Overflow posts and list of

3. Error in eval errors, caused by references to objects that don't answers.
exist.

DAY1 OF PROGRAMMING

4. Cannot open errors, caused by attempts to read a file that doesn't
exist or can't be accessed. Go gle

5. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

6. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist Go gle

7. Package errors caused by being unable to install, compile or load

10 YEARS OF PROGRAMMING

a package.

Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 9/ 66

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md
https://lmgtfy.app/?q=Error+in+interpretative_method+%3A+%20+%20could+not+find+function+%22interpretative_method%22&iie=1
https://stackoverflow.com/questions/tagged/r

If at first you don't succeed, try exactly the same
thing again.

Have you tried turning it off and on again?

Do you use rm(list = 1s())? Don't. Packages
remain loaded, options and environment variables
set, ... all possible sources of error!

A fresh start clears the workspace, resets options,
environment variables, and the path.

Options

Default working directory (when not in a project):

General
\~ Browse...
Code X . . .
v|Re-use idle sessions for project links
1 Appearance v/ Restore most recently opened project at startup
v Restore previously open source documents at startup
Restore .RData into workspace at startup
| Package Save workspace to .RData on exit:
R Markdown v Always save history (even when not saving .RData)
Remove duplicate entries in histo
@ sweave o w
xcl) Show .Last.value in environment listing
7 Spelling
v/ Use debug error handler only when my code contains errors
‘ Git/SWN Automatically expand tracebacks in error inspector
“%, Publishin igati i
~ 9 Wrap around when navigating to previous/next tab
Il Terminal v| Automatically notify me of updates to RStudio

_Plots IS Build Debug Profile Too

New Session

Interrupt R
Terminate R...

Restart R

Set Working Directory

Load Workspace...
Save Workspace As...

Clear Workspace...

Quit Session...
10 / 66

Debug

Make the error repeatable.

e Execute the code many times as you consider and reject hypotheses. To make that iteration as quick possible, it's

worth some upfront investment to make the problem both easy and fast to reproduce.
e Work with reproducible and minimal examples by removing innocuous code and simplifying data.
e Consider automated testing. Add some nearby tests to ensure that existing good behaviour is preserved.

Track the error down.

e Execute code step by step and inspect intermediate outputs.
» Adopt the scientific method: Generate hypotheses, design experiments to test them, and record your results.

Once found, fix the error and test it.

e Ensure you haven't introduced any new bugs in the process.
« Make sure to carefully record the correct output, and check against the inputs that previously failed.

e Reset and run again to make sure everything still works.

11/ 66

Defensive programming

« Pay attention. Do results make sense? Do they look different from

previous results? Why?
« Know what you're doing, and what you're expecting.
o Avoid functions that return different types of output
depending on their input, e.g., [] and sapply().
o Be strict about what you accept (e.g., only scalars).
o Avoid functions that use non-standard evaluation (e.g,
with())
o Fail fast.
o As soon as something wrong is discovered, signal an error.
o Add tests (e.g., with the testthat package).
o Practice good condition/exception handling, e.g., with try()
and tryCatch().
o Write error messages for humans.

Transparency

e Collaborate! Pair programming is an
established software development
technique that increases code robustness. It
also works from remote.

e Be transparent! Let others access your code
and comment on it.

12 |/ 66

https://en.wikipedia.org/wiki/Pair_programming
https://ivelasq.rbind.io/blog/vscode-live-share/

Debugging R

13/ 66

What you get

Error : .onLoad failed in loadNamespace () for 'rJava', details:

call: dyn.load(file, DLLpath = DLLpath, ...)

error: unable to load shared object '/Users/janedoe/Library/R/3.6/library/rJava/libs/rJava.so':
libjvm.so: cannot open shared object file: No such file or directory

Error: loading failed

Execution halted

ERROR: loading failed

* removing '/Users/janedoe/Library/R/3.6/library/rJava/"

Warning in install.packages

installation of package 'rJava' had non-zero exit status

Credit Jenny Bryan

14 | 66

https://github.com/jennybc/debugging

What you see

Error : blah failed blah blah() blah 'blah', blah:

call: blah.blah(blah, blah = blah, ...)

error: unable to blah blah blah '/blah/blah/blah/blah/blah/blah/blah/blah/blah.so':
blah.so: cannot open blah blah blah: No blah blah blah blah

Error: blah failed

blah blah

ERROR: blah failed

* removing '/blah/blah/blah/blah/blah/blah/blah/"'

Warning in blah.blah

blah of blah 'blah' blah blah-blah blah blah

Credit Jenny Bryan

15/ 66

https://github.com/jennybc/debugging

Strategies to debug your R code

Sometimes the mistake in your code is hard to diagnose, and googling doesn't help. Here are a couple of strategies to
debug your code:

e Use traceback() to determine where a given error is occurring.

Output diagnostic information in code with print(), cat() or message() statements.

Use browser() to open an interactive debugger before the error

Use debug() to automatically open a debugger at the start of a function call.

Use trace() to make temporary code modifications inside a function that you don't have easy access to.

16 / 66

Locating errors with traceback()

Motivation and usage

e When an error occurs with an unidentifiable error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.

e The traceback() function prints the sequence of
calls that led to an uncaught error error.

e The traceback() output reads from bottom to top.

e Note that errors caught via try() or tryCatch() do
not generate a traceback!

e Ifyou're calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber .

17 | 66

Locating errors with traceback()

Motivation and usage

When an error occurs with an unidentifiable error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.

The traceback() function prints the sequence of
calls that led to an uncaught error error.

The traceback() output reads from bottom to top.
Note that errors caught via try() or tryCatch() do
not generate a traceback!

If you're calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber .

Example

In the call sequence below the execution of g() triggers

an error:

R> f « function(x) x + 1
R> g « function(x) f(x)
R> g(uan)

Doing the traceback reveals that the function call f(x) is

what lead to the error:

R> traceback()

17 | 66

Interactive debugging with browser()

Motivation and usage

e Sometimes, you need more information than the
precise location of an error in a function to fix it.

e The interactive debugger lets you pause the run of a
function and interactively explore its state.

e Two options to enter the interactive debugger:

1. Through RStudio's "Rerun with Debug" tool,
shown to the right of an error message.

2. You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

e In either case, you'll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You'll
know when you're in the interactive debugger
because you get a special prompt, Browse[1]>.

18 / 66

Interactive debugging with browser()

Motivation and usage

e Sometimes, you need more information than the
precise location of an error in a function to fix it.

e The interactive debugger lets you pause the run of a
function and interactively explore its state.

e Two options to enter the interactive debugger:

1. Through RStudio's "Rerun with Debug" tool,
shown to the right of an error message.

2. You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

e In either case, you'll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You'll
know when you're in the interactive debugger
because you get a special prompt, Browse[1]>.

Example

R>

h < function(x) x + 3

R> ¢ « function(b) {

+

+

+ }

browser()
h(b)

R> g(10)

Some useful things to do are:

1.

N U

Use 1s() to determine what objects are available in
the current environment.

Use str(), print() etc.to examine the objects.
Use n to evaluate the next statement.

Use s:like n but also step into function calls.

Use where to print a stack trace (— traceback).

Use c to exit debugger and continue execution.

Use Q to exit debugger and return to the R prom%/ ”

Debugging other peoples' code

Motivation

e Sometimes the error is outside your code in a
package you're using, you might still want to be able
to debug.

e Two options:

1. Download the package code locally and debug it
Is if It were your own.

2. Use functions which which allow you to start a
browser in existing functions, including
recover() and debug().

19 / 66

Debugging other peoples' code (cont.)

Motivation

e recover() Serves as an
alternative error handler which
you activate by calling
options(error = recover).

e You can then select from a list
of current calls to browse.

e options(error = NULL) turns
off this debugging mode again.

e Asimpler alternative is
options(error = browser), but
this only allows you to browse
the call where the error
occurred.

20 / 66

Debugging other peoples' code (cont.)

Motivation Example

recover() Serves as an o Activate debugging mode; then execute (flawed) function:

alternative error handler which

you activate by calling R> options(error = recover)

. R> Im(mpg ~ wt, data = "mtcars")
options(error = recover).

e You can then select from a list

Error in model.frame.default(formula = mpg ~ wt, data = "mtcars", drop
of current calls to browse.

‘data’ must be a data.frame, environment, or list
e options(error = NULL) turns

off this debugging mode again.

e Asimpler alternative is 1: lm(mpg ~ wt, data = "mtcars")
2: eval(mf, parent.frame())

3: eval(mf, parent.frame())

Enter a frame number, or 0 to exit

options(error = browser), but
this only allows you to browse
the call where the error Selection:

occurred.
e Deactivate debugging mode:

R> options(error = NULL)
20 / 66

Debugging other peoples' code (cont.)

Motivation

e debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.

e Some functions in another package are easier to
find than others. There are

o exported functions which are available outside
of a package and

o internal functions which are only available
within a package.

 To find (and debug) exported functions, use the ::
syntax, as in ggplot2::ggplot.

e To find un-exported functions, use the ::: syntax,
as in ggplot2:::check_required aesthetics.

21/ 66

Debugging other peoples' code (cont.)

Motivation

e debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.

e Some functions in another package are easier to
find than others. There are

o exported functions which are available outside
of a package and

o internal functions which are only available
within a package.

 To find (and debug) exported functions, use the ::
syntax, as in ggplot2::ggplot.

e To find un-exported functions, use the ::: syntax,
as in ggplot2:::check_required aesthetics.

Example

e Activate debugging mode for 1m() function; then
execute function:

R> debug(stats::1m)
R> lm(mpg ~ weight, data = "mtcars")

e Interactive debugging mode for 1m() is entered; use
the common browser() functionality to navigate:

debugging in: 1m(mpg ~ weight, data = mtcars)
debug: {
ret.x < Xx

Browsel[2]>

e Deactivate debugging mode:

R> undebug(stats::1m) 21/ 66

Debugging in RStudio

Debug Mode

Open with debug(), browser(), or a breakpoint. RStudio will open the

debugger mode when it encounters a breakpoint while executing code.

Launch debugger

mode from origin
of error

Open traceback to examine
the functions that R called
before the error occurred

2 RMarkdown.Rmd =]appR x] ScriptR 5] palindrome. R - Enviranment t History Build Git =
C“Ck n ext to ‘o'. £ Source onSave | G A - HRun | (o Source ~ List~
. 7 # Indicate whether a positive number is a palindrome B palindromel -
- . 8- palindreme < function(num) { Values
line number to s o Feits = aoontioateim, 10342 dge o
dd 18- for‘_()_t in l:((dlgllté %% ?_})E { digits 5
add/removea | n an-eanon

H 13 ,+" if (digitl |- digit2) f .
breakpoint. 1
15 }
o 16 return{TRUE)
17)

return(FALSE)

19 # Find the largest palindrome that is the product of two i'dic Traceback Show internals =

H | gh llghted 28 - biggest_palindrome <- function() { "~ % palindrome(candidate) at palindrome.R:12

21 best <- @

line shows 1@ porerer e

Cansale

biggest_palindrome() at palindrome.R:25

h e T @ T s TS : % Next * p Continue [l Sto
W ere CrumE (1040)%%(18A(n - 120 N Files Plots Packages Help Viewer — = 5 “. - . p
: ¥ o @i New Falder 10 O Delete () Rename e~ . : : t .
execution has Browse[3]> f sz AT T : :
debug et ~/RStudio-Essentiols/Essentiols-2/palindrome.R#12: digitZ « Naghe Siza Modified
pa used < get_digit(num, (digits + 1) - x) - t.
Br‘owse[z]:-_ '-' @ apph 1.2 KB Dec 24, 201 05 AM

—

Console t —

> foo()

Error in get_digit(num, x>.: ¢ Show Traceback

Error! " #& Rerun with Debug

Console —

Examine variables Select function

in executing in traceback to
environment debug

Run commands in

environment where
execution has paused

Step through Step into and
codeoneline outoffunctions
atatime

Resume Quit debug
execution mode
to run

22 | 66

More on debugging R

Using the

Further reading debugger tools

e 12-minute video on debugging in R

e Jenny Bryan's talk on debugging at rstudio:conf 2020

e Jenny Bryan and Jim Hester's "What They Forgot to
Teach You About R", Chapter 11: Debugging R code

e Jonathan McPherson's Debugging with RStudio

Commenting out
lines until you find
out what's causing the bug

N

23/ 66

https://vimeo.com/99375765
https://github.com/jennybc/debugging
https://rstats.wtf/debugging-r-code.html
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio

Automation and scripting

24 | 66

“T SPEND A LOT OF TiIME ON THIS TRSK.
T SHOULD WRITE A PROGRAM AUTOMATING IT!™
THEORY:
WRITING
CODE e
WORK \JORK ON- AUTOMATION TIME.
ORGINAL TASK \JPKES OVER
TME

WORK

ANYVIORE

TME

credit Randall Munroe/xkcd 1319
25 / 66

https://xkcd.com/1319/

Automation

Motivation Different ways of doing it

e We spend too much time on repetitive tasks. We will consider automation

» We're already automating using scripts that bundle multiple
commands! Next step: The pipeline as a series of scripts and
commands.

e Good pipelines are modular. But you don't want to trigger 10
scripts sequentially by hand.

o Some tasks are to be repeated on a regular basis (schedule).

e USINgR,

o using the Shell and RScript,

e using make, and

 using dedicated scheduling tools.

When automation makes sense

e The input is variable but the process of turning input into output
Is highly standardized.

e You use a diverse set of software to produce the output.

o Others (humans, machines) are supposed to run the analyses.

e Time saved by automation >> Time needed to automate.

https://itchronicles.com/technology/repetitive-tasks-cost-5-trillion-annually/

Thinking in pipelines

Key characteristics

e Pipelines make complex projects easier to handle
because they break up a monolithic script into
discrete, manageable chunks.

 If properly done, each stage of the pipeline defines
its input and its outputs.

 Pipeline modules do not modify their inputs
(idempotence). Rerunning one module produces the
same results as the previous run.

Key advantages

e When you modify one stage of the pipeline, you only
have to rerun the downstream, dependent stages.

e Division of labor is straightforward.

e Modules tend to be a lot easier to debug.

27 | 66

A data science pipeline is a graph

Wait what
o Scripts and data files are vertices @

of the graph.
e Dependencies between stages are
edges of the graph.
e Pipelines are not necessarily DAGS.
Recursive routines are imaginable
(but to be avoided?).
e Also, scripts are not necessarily
hierarchical (e.g., multiple different mwmwmkm_tsvj
modeling approaches of the same
data in different scripts). siplotvrdByRace.The Felonstip, O The Kin s |

e An automation script gives one

lotr_raw.tsv1

01_filterReorder.R

lotr_clean.tsv

02_aggregatePlot.R

y
barchart_totalWords.png '1

barchart_totalWordsFilmDodge .pngT

stripplot_wordsByRace_The_Remm_Of_The_King‘png7

order in which you can successfully

fun t h e p | p e l' ne. slripplol_wordsByRace_The_Two_Towers.pngDI

28 | 66

An example pipeline

In the following, we will work with
this toy pipeline:

Courtesy of Jenny Bryan. 29 | 66

https://github.com/STAT545-UBC/STAT545-UBC-original-website

An example pipeline

In the following, we will work with 00-packages.R:
this toy pipeline:
R>
e 00-packages.R loads the R> p_needed « c("tidyverse"
+)

packages necessary for
R> packages ¢« rownames(installed.packages())

R> p_to_install ¢« p_needed[!(p_needed %in% packages)]
R> if (length(p_to_install) > 0) {

+ install.packages(p_to_install)

+ }

R> lapply(p_needed, require, character.only = TRUE)

analysis,

30/ 66

An example pipeline

In the following, we will work with 01-download-data.R:
this toy pipeline:
R>
e 00-packages.R loads the R> download.file(url = "http://bit.ly/lotr_raw-tsv",
- destfile = "lotr_raw.tsv")

packages necessary for
analysis,

e 0l-download-data.R downloads
a spreadsheet, which is stored

as lotr_raw.tsv,

31/ 66

An example pipeline

In the following, we will work with 02-process-data.R:
this toy pipeline:
R>

e 00-packages.R loads the R> lotr_dat ¢« read _tsv("lotr_raw.tsv")

packages necessary for &
. R>
analysis, R> old levels « levels(as.factor(lotr dat$Film))

» 01-download-data.R downloads R> j_order <« sapply(c("Fellowship", "Towers", "Return"),
a spreadsheet, which is stored + function(x) grep(x, old_levels))
as o R> new_levels « old_levels[j_order]

. R>
e 02-process-data.R Imports and o
processes the data and exports R> lotr dat <« lotr dat %>%
a clean spreadsheet as +
lotr_clean.tsv, and + mutate(Film = factor(as.character(Film), new_levels),
+
- Race = recode(Race, “Ainur’ = "Wizard", "Men = "Man")) %>%
+
+
+
+ write tsv(lotr_dat, "lotr_clean.tsv")

32/ 66

An example pipeline

In the following, we will work with 03-plot.R:
this toy pipeline:
R>
e 00-packages.R loads the R> lotr_dat ¢« read_tsv("lotr_clean.tsv") %>%

packages necessary for "

. + mutate(Race = reorder(Race, Words, sum))
analysis,

R>
e 0l-download-data.R downloads R>
a spreadsheet, which is stored R> p < ggplot(lotr_dat, aes(x = Race, weight = Words)) + geom_bar()

as lotr_raw.tsv, R> ggsave("barchart-words-by-race.png", p)

e 02-process-data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv, and

e 03-plot.R imports the clean
dataset, produces a figure and
exports it as barchart-words-
by-race.png.

33/ 66

An example pipeline

R> slice_sample(lotr_dat, n = 10)

A tibble: 10 x 5

Film Chapter Character Race Words

<chr> <chr> <chr> <chr> <dbl>
1 The Return Of The King 64: The Mouth Of Sauron Aragorn Man 23
2 The Fellowship Of The Ring 36: The Bridge Of Khazad.. Frodo Hobb... 4
3 The Two Towers 36: Isengard Unleashed Saruman Wiza.. 50
4 The Fellowship Of The Ring 42: The Great River Sam Hobb... 37
5 The Return Of The King 42: Breaking The Gate Of.. Gandalf Wiza.. 21
6 The Two Towers 45: The Glittering Caves Legolas ELf 36
7 The Two Towers 35: Helm's Deep Rohan Warri.. Man 22
8 The Fellowship Of The Ring 33: Moria Aragorn Man 31
9 The Fellowship Of The Ring 43: Parth Galen Aragorn Man 79
10 The Return Of The King 24: Courage Is The Best .. Gothmog Orc 4

34 [66

An example pipeline

+

7500

5000

count

2500

R> p « ggplot(lotr_dat, aes(x

Race, welght
geom_bar() + theme_minimal()

Words)) +

0 - -
Orc Dwarf Elf

Wizard Man

Automation using pipelines in R

Motivation and usage

e The source() function reads and parses R code
from a file or connection.

e We can build a pipeline by sourcing scripts
sequentially.

e This pipeline is usually stored in a "master" script.

e The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.

e Itis recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).

e Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

36 / 66

Automation using pipelines in R

Motivation and usage Example
e The source() function reads and parses R code The master script master.R:
from a file or connection.
e We can build a pipeline by sourcing scripts R>
: R> outputs « c("lotr_raw.tsv",
sequentially.))
. :) _) + lotr_clean.tsv",
 This pipeline is usually stored in a "master" script. N list.files(pattern = "x.png$"))
e The removal of previous work is optional and maybe R> file.remove(outputs)
redundant. Often the data is overwritten by default. R>
e Itis recommended that the individual scripts are *>))

. . - R> source("00-packages.R")
(partial) standalones, i.e. that they import all data R> source("01-download-data.R")
they need by default (loading the packages could be R> source("02-process-data.R")
considered an exception). R> source("03-plot.R")

e Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

36 / 66

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

« Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

37/ 66

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

« Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

Example

The master script master.sh:

cd /Users/simonmunzert/github/examples/02-automation
set -eux

Rscript 0l1-download-data.R

Rscript 02-process-data.R

Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

e -e:Stop at first error
e -u:Undefined variables are an error
e -x:Printeach command as itis run

For more information on set, see here.
37/ 66

http://linuxcommand.org/lc3_man_pages/seth.html

Automation using the Shell and Rscript

Motivation and usage

e Alternatively to using an R master script, we can also
run the pipeline from the command line.

« Note that here, the environments don't carry over
across Rscript calls. The scripts definitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).

e The working directory should be set either in the
script(s) or in the shell with cd.

e One advantage of this approach is that it can be
easily coupled with other command line tools,
building a polyglot pipeline.

Example

The master script master.sh:

cd /Users/simonmunzert/github/examples/02-automation
set -eux

curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv
Rscript 02-process-data.R
Rscript 03-plot.R

The set command allows to adjust some base shell
parameters:

e -e:Stop at first error
e -u:Undefined variables are an error
e -x:Printeach command as itis run

For more information on set, see here.

38 /66

http://linuxcommand.org/lc3_man_pages/seth.html

Automation using Make

Motivation and usage

e Make is an automation tool that allows us to specify and manage build processes.
It is commonly run via the shell.

At the heart of a make operation is the makefile (or Makefile, GNUmakefile), a
script which serves as a recipe for the building process.

A makefile is written following a particular syntax and in a declarative fashion.
Conceptually, the recipe describes which files are built how and using what input.

Q

Advantages of Make

« It looks at which files you have and automatically figures out how to create the files G N U Ma ke
that you have. For complex pipelines this "automation of the automation process"

can be very helpful.

e While shell scripts give one order in which you can successfully run the pipeline,
Make will figure out the parts of the pipeline (and their order) that are needed to
build a desired target.

39 /66

https://en.wikipedia.org/wiki/Make_%28software%29

Automation using Make (cont.)

Basic syntax Example makefile
Each batch of lines indicates all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png
« a file to be created (the target), LOLr_raw. tsvi .
) curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv
o the files it depends on (the
prerequishes) and lotr_clean.tsv: lotr_raw.tsv 02-process-data.R
o set of commands needed to Rscript 82-process-data.R
construct the target from the barchart-words-by-race.png: lotr_clean.tsv 03-plot.R
dependent files. Rscript 03-plot.R

words-histogram.png: lotr_clean.tsv
Rscript -e 'library(ggplot2);
gplot(Words, data = read.delim("$<"), geom = "histogram");
ggsave("$Q")"

Dependencies propagate.

e To create any of the png

figures, we need rm Rplots.pdf
lotr clean.tsv. clean:
e If this file changes, the pngs rm -f lotr_raw.tsv lotr_clean.tsv *.png

change as well when they're

built. 40 | 66

Automation using Make (cont.)

Getting Make to run Example makefile

e Using the command line, go all: lotr_clean.tsv barchart-words-by-race.png words-histogram.png

Into the directory for your lotr raw.tsv:

project. curl -L http://bit.ly/lotr_raw-tsv > lotr_raw.tsv

: 1
» Create the Makeflle file. lotr_clean.tsv: lotr_raw.tsv 02-process-data.R
e The most basic Make Rscript 02-process-data.R

commands are make all and
barchart-words-by-race.png: lotr_clean.tsv 03-plot.R

make clean which builds (or Rscript 83-plot.R
deletes) all output as specified

HWthEéSCHpt_ words-histogram.png: lotr_clean.tsv

Rscript -e 'library(ggplot2);

gplot(Words, data = read.delim("$<"), geom = "histogram");
ggsave("$Q")"

rm Rplots.pdf

clean:
rm -f lotr_raw.tsv lotr_clean.tsv *.png

TWhile the basic syntax is simple (see right), the devil's in the detail. Check out resources listed on the next slide if you want to
learn more. 41/ 66

Automation using Make - FAQ

Does it work on Windows?

To install an run make on Windows, check out these instructions.

Where can | learn more?

If you consider working with Make, check out the official manual, this helpful tutorial, Karl Broman's excellent minimal
make introduction, or this Stat545 piece.

This is dusty technology. Are there alternatives?

In the context of data science with R, the targets package is an interesting option. It 4 hal

provides R functionality to define a Make-stype pipeline. Check out the overview and t/V\tb
argets .
manual.

42 | 66

https://docs.ropensci.org/targets/
https://books.ropensci.org/targets/
https://stat545.com/make-windows.html
https://www.gnu.org/software/make/manual/make.html
https://makefiletutorial.com/
https://kbroman.org/minimal_make/
https://stat545.com/automation-overview.html

Scheduling

43 | 66

Scheduling

HOW LONG CAN YOU WORK ON MAKING A ROUTINE. TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TIME THAN YOU SAVE?
(RCROSS FIVE YEARS)

TME

5 MINUTES

1| DAY

HOW OFTEN YOU DO THE TROK ——

/. Sha DALY WEEKY MONFLY YEPRLY

2 HOURS

30
MINUTES

4
MINVTES

1
MINUTE

|2 HOURS

2 HOURS

2|
MINUTES

|2 HOURS

2 HOURS

Y Hours

credit Randall Munroe/xkcd 1205

44 | 66

https://xkcd.com/1205/

Scheduling scripts and processes

Motivation

» So far, we have automated data science pipelines.

e But the execution of these pipelines still needs to be triggered.

e In some cases, it is desirable to also automate the initialization of R
scripts (or any processes for that matter) on a regular basis, e.g. weekly,
daily, on logon, etc.

e This makes particular sense when you have moving parts in your
pipeline (most likely: data).

Common scenarios for scheduling

1. You fetch data from the web on a regular basis (e.g., via scraping scripts
or APIs).

2. You generate daily/weekly/monthly reports/tweets based on changing
data.

3. You build an alert control system informing you about anomalies in a
database.

Credit Simone Giertz

45 | 66

https://www.youtube.com/watch?v=Lh2-iJj3dI0

Scheduling scripts and processes on Windows

Scheduling options taskscheduleR example

e Processes on Windows can be scheduled R> library(taskscheduleR)
with the Windows Task Scheduler. R> myscript < "examples/scrape-wiki.R"
e Manage them via a GUI (— Control Panel) or *>

. ' R> taskscheduler_create(
the command line using schtasks.exe. + taskname = "WikiScraperR _5min", rscript = myscript,

e The R package taskscheduleR provides a + schedule = "MINUTE", starttime = "10:40", modifier = 5)
programmable R interface to the WTS. R>
R>
B B, R> taskscheduler_create(
"WikiScraperR_SatSun", rscript
"WEEKLY", starttime = "09:10",

e 2@ BE

& Computer Management (Local) Actions + t a S k n a m e

myscript,

v I} System Tools

~ | Task scheduler -
() Task Scheduler

T Create Basic Tsk.. €= + SC h e d u -L e

[Overview of Task Scheduler -]

2] Event Viewer

_ ~
&) Shared Folders P Task Scheduler to create and manage common tasks that your computer will © Create Task..
2 ups / stomatically at the times you specify. To begin, click a command in the Action
Import Task... + d _ 1 SAT 1 1 SU N 1
. . . 5 [7 Display All Running Tasks a y S - C ?
Tasks are stored in folders in the Task Scheduler Library. To view or perform an operation
on an individual task, select the task in the Task Scheduler Library and click on a . & Disable All Tasks History
mrand in the m
= e AT Service Account Conf.. R >
S Services and Applications Task Status. R ‘
View »
Status of tasks that have started in the following time period: Last 24 hours ~ 6] Refresh R >
Summary: 272 total - 2 running, 258 succeeded, 0 stopped, 12 failed @ rep
n : | - n
R> taskscheduler_delete("WikiScraperR_SatSun
Task Name Run Result Run Start Run End Triggere —_ _—
NET Framework NGEN v403031..

B NET Framework NGEN v403031.. R >
\crobat Update Task (last..

layer Updater (last..

Nact rim

raad - © R >
— i R> tasks ¢« taskscheduler 1s()

Active tasks are tasks that are currently enabled and have not expired.

N ¢ R> str(tasks)

Last refreshed at 28-11-2019 16:06:12 Refresh

Curctam

46 | 66

https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html

Scheduling scripts and processes on a Mac

Scheduling options cronR example
e On macOS you can schedule background R> library(cronR)
jobs using cron and launchd. R> myscript < "examples/scrape-wiki.R"

R>

]
launchd ' was created by Apple as a R> cmd « cron_rscript(myscript)

replacement for the popular Linux utility R>
cron (deprecated but still usable). R>
. > - = 1 9 1
e The R package cronR provides a R cron_add(éommand cmd, frgquency .mlhutely , |
i + id = 'ScraperR_1min', description = 'Every 1min')
programmable R interface. RS
e cron syntax for more complex scheduling: R>
R> cron_add(cmd, frequency = 'x/15 % * % %',
-I 2 3 4 5 /PATH/TU/FILE + id = 'ScraperR_15min', description = 'Every 15 mins',
5 8 5 ¢ R>
% _Z ;.. '?:1" E Timing Syntax Example R>
o n < D 2 *** This will run once a daya .
ES ! % N E 8?**O-‘rrziswil\llrunonSunja;e:fear’:mour R> Cron—nJObS()
5 g 1001:8;?:0 W5:325 will run once every hour between R>
R>

R> cron_rm("WikiScraperR_1min", ask = TRUE)

TFor more resources on scheduling with launchd, check out this and this and this. 47 | 66

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Launchd
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html
https://cran.r-project.org/web/packages/cronR/index.html
https://babichmorrowc.github.io/post/launchd-jobs/
https://towardsdatascience.com/a-step-by-step-guide-to-scheduling-tasks-for-your-data-science-project-d7df4531fc41
https://zerolaunched.herokuapp.com/

R packages

48 | 66

Writing an R package

The state of the R package ecosystem

As of November 2021, the CRAN package repository
features more than 18,000 packages.

Many, many more are available on GitHub and other
code sharing platforms.

R has a vivid community that continuous to create
and build extensions and maintain the existing
environment. Many of them have much more

training and time to invest in software development.

So, why should we (and with that | mean YOU) write
yet another R package?

00000

00000

nnnnn

nnnnn

00000

ooooo

00000

00000

Number of R packages ever published on CRAN

Credit daroczig

49 [66

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

Why create another R package?

1. Thinking in functions. R is a functional programming language, and
packages bundle functions. Thinking of projects as packages is
consistent with a functional mindset.

2. Automation and transportability. By turning tasks into functions you
save repetitive typing, keep frequently-used code together, and let code
travel across projects.

3. Collaboration and transparency. Packages are ideal to make
functionality available to others, but also to let others contribute. As a
side effect, it nudges you to document your functions properly and

gives you the opportunity to let others review and improve your code 0 R
easily.

4. Visibility and productization. Publishing code in packages is potentially °
giving you project a big boost in visibility. Also, it is more likely to be GItH“b

perceived as a product than an insular project.

The Comprehensive R
Archive Network

50 / 66

Creating a package from start to finish

1. Choose a package name
2. Set up your package with RStudio (and GitHub)
3. Fill your package with life

o Add functions

o Write help files

o Write a DESCRIPTION

o Add internal data
4. Check your package

o Write tests

o Check on various operating systems

o Check for good coding practice
5. Submit to CRAN (or GitHub early in the process)
6. Promotion

o Write a vignette

o Build a package website

Install Helper Packages

> library(devtools)
> library(usethis)
> library(roxygen2)
> library(testthat)

\

Create Package Structure

> usethis: create_package("path/to/name”)

v

Populate Package Contents

= Package
| DESCRIPTION > devtools:use_package()
3 R/ > devtools:load_all()
0 tests/ > usethis: use_testthat() devtools: test()
O man/ > devtools:document()
0 vignettes/ > usethis:: use_vignette()
O data/ > usethis:: use_datal()

B NAMESPACE @export @import

v

Release Package

> devtools:: build()

Credit Simo Goshey, Steve Worthington

51/ 66

https://iqss.github.io/dss-rbuild/

Tools to get you started

devtools usethis

e The workhorse of package e Provides workflow utilities for
project development (loaded
by devtools)

e Many use_x() functions to

help create package tests, data,

development in R

e Provides functions that
simplify common tasks, such as
package setup, simulating
installs, compiling from source description, etc.

devtools

testthat

e Provides functions that make it
easy to describe what you

roxygen2

e Provides functions to
streamline/automate the

roxygen2

documentation of your
packages and functions

expect a function to do,
including catching errors,
warnings, and messages.

52/ 66

An example walkthrough

In the following we will briefly study the process of creating a package.

The example is taken from Methods Bites, the Blog of the MZES Social Science Data Lab, and developed by Cosima Meyer
and Dennis Hammerschmidt,

The idea is to create a package overviewR that helps you to get an overview - hence, the
name - of your data with particular emphasis on the extent that your distinct units of
observation are covered for the entire time frame of your data set.

The package is real and lives on both CRAN and GitHub. Check out the vignette.

53/ 66

https://cosimameyer.github.io/overviewR/
https://cran.r-project.org/web/packages/overviewR/index.html
https://github.com/cosimameyer/overviewR
https://cran.r-project.org/web/packages/overviewR/vignettes/overviewR_vignette.html
https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#section1
https://www.mzes.uni-mannheim.de/socialsciencedatalab/
https://cosimameyer.rbind.io/
http://dennis-hammerschmidt.rbind.io/

Step 1: Idea and name

Idea Example

e |'ll leave you alone with that one. R> library(available)

e ... but you might want to check out the over R> | ' | |
18k€9d5ﬂﬂg()ﬂesthatlhm9on CRAN. R> available::suggest("Easily extract information about sample")

easilyr
Name
R>
» Package names can only be letters and R> available::available("overviewR", browse = FALSE)
numbers and must start with a letter. ,
h <) hel hoth — overviewR
e The package available helps you — pot Name valid: v
with getting inspiration for a name and with Available on CRAN: x
checking whether your name is available. Available on Bioconductor: v

Available on GitHub:

Abbreviations: http://ww.abbreviations.com/overview

Wikipedia: https://en.wikipedia.org/wiki/overview

Wiktionary: https://en.wiktionary.org/wiki/overview

Urban Dictionary:
a general [summary] of a subject "the [treasurer] gave [a brief]
http://overview.urbanup.com/3904264 54 / 66

https://cran.r-project.org/web/packages/available_packages_by_name.html

Step 2: Set up your package

Option 1: via RStudio and GitHub Example

e Use RStudio's Project Wizard and click on
File > New Project ... > New Directory >
R Package.

e Check the box Create a git to setup a
local git.

Option 2: usethis

e Use usethis::create_package(), which will
set up a template package directory in the
specified folder.

e You have to take care of version control
yourself (recommendation: initiate project
on GitHub first).

R> create_package("overviewR", open = FALSE)

v Creating 'overviewR/'

v Setting active project to '/Users/simonmunzert/github/intro-to-

v Creating 'R/

v Writing 'DESCRIPTION'

Package: overviewR

Title: What the Package Does (One Line, Title Case)

Version: 0.0.0.9000

Authors@R (parsed):
* First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-

Description: What the package does (one paragraph).

License: “use_mit license()”, “use_gpl3 license() or friends to
pick a license

Encoding: UTF-8

LazyData: true

Roxygen: list(markdown = TRUE)

RoxygenNote: 7.1.2

s Writing 'NAMESPACE'
8 55 / 66

Step 2: Set up your package (cont.)

Basic components

1. The DESCRIPTION file
o stores metadata about the package
o lists dependencies if any
o IS pre-generated by roxygen2

Example

Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
AuthorsaR:
person(given = "First",
family = "Last",
role = c("aut", "cre"),
email = "first.lastaexample.com",
comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).

License: “use _mit license()", “use_gpl3 license()” or friends to

license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2

56 / 66

Step 2: Set up your package (cont.)

Basic components Example
1. The DESCRIPTION file Type: Package

o stores metadata about the package Package: overviewR
: . Title: Easily Extracting Information About Your Data

o lists dependencies if any ,
) Version: 0.0.2

o Is pre-generated by roxygen2 suthersaR: e

o it will later look like this person("Cosima", "Meyer", email = "XX@XX.com", role = c("cre"

person("Dennis", "Hammerschmidt", email = "XX@XX.com", role -
Description: Makes it easy to display descriptive information on
a data set. Getting an easy overview of a data set by displec
visualizing sample information in different tables (e.g., tin
scope conditions). The package also provides publishable Te>
present the sample information.
License: GPL-3

URL: https:
BugReports: https:
Depends:

R (> 3.5.0)
Imports:

dplyr (> 1.0.0)
Suggests: 57 | 66

Step 2: Set up your package (cont.)

Basic components

1. The DESCRIPTION file

o

o

stores metadata about the package
lists dependencies if any

Is pre-generated by roxygen2

it will later look like this

and displayed online like this

Example

overviewR: Easily Extracting Information About Your Data

Makes it easy to display descriptive information on a data set. Getting an easy overview of a data set by
displaying and visualizing sample information in different tables (e.g., time and scope conditions). The
package also provides publishable 'LaTeX' code to present the sample information.

Version: 00.7

Depends: R(=350)

Imports: dplyr (= 1.0.0), ggplot2 (= 3.3.2), tibble (= 3.0.1)
Suggests: covr, devtools, knitr, pkgdown, rmarkdown, spelling, testthat
Published: 2020-11-23

Author: Cosima Meyer [cre, aut], Dennis Hammerschmidt [aut]
Maintainer: Cosima Meyer <cosima.meyer at gmail.com>
BugReports: https://github.com/cosimameyer/overviewR/issues
License: GPL-3

URL: https://github.com/cosimameyer/overviewR
NeedsCompilation: no

Language: en-US

Materials: README NEWS

CRAN checks: overviewR results

58 / 66

Step 2: Set up your package (cont.)

Basic

1. The

o

o

components

DESCRIPTION file

stores metadata about the package
lists dependencies if any

Is pre-generated by roxygen2

it will later look like this

and displayed online like this
NAMESPACE file

will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes

will be populated automatically using

devtools :: document()

Example

Generated by roxygen2: do not edit by hand

export(overview_crossplot)
export(overview_crosstab)
export(overview heat)
export(overview na)
export(overview_overlap)
export(overview_plot)
export(overview print)
export(overview_tab)
importFrom(dplyr, "%>%")
importFrom(ggplot2,ggplot)
importFrom(ggrepel,geom_text_repel)
importFrom(ggvenn, ggvenn)
importFrom(stats,reorder)
importFrom(tibble, "rownames_to_column")

59 / 66

Step 2: Set up your package (cont.)

Basic components

1. The DESCRIPTION file
o stores metadata about the package
o lists dependencies if any
o IS pre-generated by roxygen2
o it will later look like this
o and displayed online like this
2. The NAMESPACE file
o will later contain information on
exported and imported functions.
o helps you manage (and avoid) function
clashes
o will be populated automatically using
devtools ::document()
3. The R folder
o this is where all the functions you will
Ccreate go 60 / 66

Step 3: Fill your package with life

Adding functions Example

The folder R contains all your functions and atitle

each function is saved in a new R file where the o

function name and the file name are the same. ARESEIEAON

In the preamble of this file, we can add

. aparam

iInformation on the function. This information Aparam

will be used to render the help files. aparam
areturn
@examples
aexport
@importfFrom

61/ 66

Step 3: Fill your package with life (cont.)

Adding functions Example

The folder R contains all your functions and

overview_tab {overviewR} R Documentation

each function is saved in a new R file where the

. overview_ tab
function name and the file name are the same. -

Description
In the preamble of this file, we can add Provides an overview table for the time and scope conditions of a data set
information on the function. This information Usage
will be used to render the help files. overview tab(dat, id, time)

Arguments

When you execute devtools::document(), R

dat A data set object

automatically generates the respective help file id Scope (e.q. country codes or individual IDs)
in man as Well as the new NAMESPACE ﬁle time Time (e.g., time periods given by years, months, ...)
Value

A data frame object that contains a summary of a sample that can later be converted to a TeX output using
overview_print

Examples

data(toydata)
output_table <- overview_tab(dat = toydata, id = ccode, time = year)

62 | 66

Step 6: Install your package!

Installing a local package

We are now ready to load a developmental
version of the package. This works with
devtools::install(), which will also try to
install dependencies of the package from CRAN,
if they're not already installed.

You need to run this from the parent working
directory that contains the package folder.

We're now ready to call functions from the
package.

Example

R> install("overviewR")

v checking for file ‘/Users/simonmunzert/github/intro-to-data-sc
— preparing ‘overviewR’:
v checking DESCRIPTION meta-information ...
— checking for LF line-endings in source and make files and shel
— checking for empty or unneeded directories

Omitted ‘LazyData’ from DESCRIPTION
— building ‘overviewR _0.0.0.9000.tar.gz’

Running /Library/Frameworks/R.framework/Resources/bin/R CMD INST/
/var/folders/38/fqbc3hzd0r123h350bh27 _540000gp/T//RtmpAuLIL4/ o\
-——install-tests

installing to library ‘/Library/Frameworks/R.framework/Versionsy
installing *source* package ‘overviewR’

testing if installed package can be loaded from temporary locati
testing if installed package can be loaded from final location
testing if installed package keeps a record of temporary install

DONE (overviewR)
63 / 66

Steps 3-6

We skipped a couple of important (and some optional) steps now, including:

e Build and check a package, clean up — devtools :: check()

e Iterative loading and testing — devtools::load_all()

e Adding unit tests — usethis::use_testthat()

« Import functions from other packages (CRAN package dependency) — usethis::use_package()
e Git version control and collaboration — usethis::use_github()

e Add a proper public description — usethis::use_readme_rmd()

e Build PDF manual — devtools::build manual()

e Add vignettes — usethis::use_vignette()

e Add a licence — usethis::use_gpl _license(), usethis::use_mit_license(), ..
o Convert into a single bundled file (binary or zipped) — devtools :: build()

e Submit to CRAN — devtools::release()

e Build website for your package — pkgdown :: build_site()

Be sure to check out the motivating example and more resources (next slide).

64 | 66

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#subsection4-3

Writing R packages - FAQ

Is learning this worth the time?

Yes.

Where can | learn more?

Glad that you're asking! There's tons of materials out
there. Apart from the used tutorial and the R packages
book, have a look at the devtools cheatsheet and
another overview over at RStudio. Knowing how to turn a
package into a website within minutes is fascinating, too.

When do we need a package, and
when is a GitHub repo simply enough?

Do you think of your work as a project or a product? If
it's the latter, maybe a package is right for you. (But... a
research paper is also a product, right? &

Package Development: : CHEAT SHEET

Package Structure

the7

an R package:

& Package
1 DESCRIPTION
O/

© tests/
O vignettes/

© data/
I NAMESPACE

Setup (I DESCRIPTION)

‘The [DESCRIPTION fl describes your work, sets up how your

(¥ Yourusthavea DESCRPTION fle

() Addthepacages thatyours el onvth
deviools use_package()
Addsa package tothe Import o Suggests feld

cco M GPL2

MIT lcenseapplies to

yourcodelfreshared. code, andll codeanyone.

devtools

p

person(chadiey”, "Wicka', esail =
e e dcren
pescriptian: what the Dackage docs fone pataaraphy
o3 10 et pacages oo pacare
et hoe o work Rvilnsal hem
e ntals your pckags.

govis Suggest packages thtare notvery
Suggests: essentl o yours.Users caninstal
Kaier (o= 0.1.0) themmanualy,orno,a hey e

Write Code ((OR/)

Test (OO tests/)

Allof OIR/A

+ bundle - a single compressed il ({arg2)

session orarchived online n repository. Use the functions
belowto move betvicen these sttes.

Repository
Source
Bundle
Installed
Inmemory

4

devtools:create(path/tojname")

UseDtests/

[Addatests directory
@ Import testthat with cevtools: use_testthat(), which

(W save your code in (3 R/ as scripts (extension &)

WORKFLOW

installpackages()

sl packagesype - o) CRAN
RCMD install

deviools:install()
Seviools:bulld()

devtools instal_gthubl) ¢ithub->
deviools-load_all)

L Edit your code.
2L

deviools:toad_all()
Re-load:

[Wite tests with context(), test(), and expect statements
[V save yourtests as Riiles nteststestthat/
WORKFLOW

1. Modify your code or tests.

Example Test
2.Testyour code with one of

SR/ into.
Crlfcmd + Shift+ L (keyboard shortcut]
Saves all open files then calls load.all).
3. Experimentin the console.
4. Repeat.

Build & Reload (RStudio) *——eo—o

brary() oo
[Ondisk Uy neno

devtools:use_build_ignoref

(le’)
‘Adds file to Rbuildignore, alistoffles that will not be included
when package s buil

Studio

Rt trademrkf RSudi, . - CC Y S RSt fogrstudiocom

Document ((Oman/)

=} ‘your the hels
pages in your package.

+ Clickon a function and press F2 to open its definition
+ Search for a function with Ctrl+.

Visitr-pgs.had.conzto

learn much more about
writing and publishing
packages forR

context ("Arithmetic’)
Runsalltests inOtests/ | test_tnat (*Hath works",
FE
C"‘/""“s""‘" expect_equal(1 + 2, 3)
board shortcut) Spect_equal(l + 3, 4)

S Repnl untilalltests pass | ¥

«

oxpectaquall isceua witinsmallumercal leance?
oxpec o) isenactyequal

expectmat mathesspecedstingor rogulr
expectoutpul) prints specied utpu?
expectmessape) dplays specitedmessge?
expectwarming) iplys speced varning?
expectarorl) throws pecedaror

expect) outpotinberts rom ertinclass?
peet i) reumsiaser

expect_tue) s TRUE?

ROXVGEN2

Use roxygen comme
St

4

documentation inline n your R fles witha
shorthand syntax.devtools implements o

(4
worKFLow

1. Add roxygen comments n your R files
2

that begin with #.

object documented.
+ Place roxygen @ tag (ight) ater # to supply a specific

devtools: document()

+ Untagged descript

Add Data ((D data/)

The(D data dirctory allows youto
include data with your package.

[V save data as Rdatafiles (suggested)
‘Store data in one of data/, R/Sysdata.rda, inst/extdata
@ Always use LazyData: true in your DESCRIPTION file.
detools:use_data

Adds a data object to data/
(RISysdata.rda finternal = TRUE)

devtools:use_data_raw()
Adds an R Script used to clean a data set o data-ravi/.
Rbuild

ents to Rd fil
them inC3 man/. Builds NAMESPACE.
trlfcmd + Shift+ D (Keyboard Shortcu)

3. Open help pages with ?to preview documentation
4.Repeat

R FORMATTING TAGS.
\emphfialc text) \emailiname@@foo.com}
\stron(bold text) relripio
\codeffunction(args)) \urlfr
\phelpackage)

\ink{=dest}display}
\dontrunicode} \inkSdclass{class}
\dontshow{code) \codelylink{function))
\degna + b (block)} \tabular{ler}{
\eqnia +b (nine)} left\tab centered \tab ight \cr

cellbeell \abeell \er

Teach (3 vignettes/)
Ovig

Add together tuo nusbers

cexport
dd < function(x, y) {
Xty

COMMON ROXYGEN TAGS

@aliases @inheritParams @seealso
@concepts @keywords @format
@describeln @param @source data
@examples @rdname @include

@eport @return @slot P
@family @section @field Re

[Createalvignetes/ directory and a templatevignettewith
devtoois:use.vignette()
‘Ades template vignette as vignettes/my-vignette.Amd.
(W Append YAML headers toyour vignettes ike right)
& Wiritethe body of your vignettes i R Markdown
(markcown rstudio.com)

Studio

ate
rmuvkdnw “hnl_vignette

gne:
Aignettetndextntryvigneste Ticie)
“\Vignet teEngine {knitr: : markdown
\usepackage [utfa] {inputenc}

Storedatain
- data/ to make data avalable to package users
+ Risysdata.rda o keep data nternal for use by your
functions.
+ instjextdata to make raw data avalable for loading and
parsing examples. Access this data with syste.file()

Organize (I NAMESPACE)

The B NANESPACE e hlsyoumokeyour pacogesel:
ined:twon'nterfere with other packages, and other
g wonmare win

(& Booruncionsfouser ylacing @exprtinchi

rongen comments
Impebic o other s i

[packsge:iobject recommended) or i,
impenrrom, @imporcisserror
@importMethodsFrom (ot siways recommended)

WORKFLOW
1. Modify your code or tests.
2. Document your package (devtools: document())
3. Check NAMESPACE
4. Repeat until NAMESPACE is correct

SUBMIT YOUR PACKAGE

nc. - cCavSRSudo-

 dewans 151 - Updatad 2151

65 / 66

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/
https://r-pkgs.org/
https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-the-RStudio-IDE
https://pkgdown.r-lib.org/dev/

Next steps

Assignment

No further assignment! Be sure to hand in assignment 5 until the updated deadlines.

Next lecture

We turn to the next (and sometimes final) step in the data science workflow, Monitoring and communication.

66 / 66

