
Introduction to Data Science
Session 10: Debugging, automation, and packaging

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

�. Strategies for debugging

�. Debugging R

�. Automation and scripting

�. Scheduling

�. R packages

2 / 66

Strategies for debugging

3 / 66

Straight from the Wikipedia
"Debugging is the process of �nding and resolving bugs
(defects or problems that prevent correct operation)
within computer programs, software, or systems."

A famous (yet not the �rst) bug:
The term "bug" was used in an account by computer
pioneer Grace Hopper (see on the right). While she was
working on a Mark II computer at Harvard University, her
associates discovered a moth stuck in a relay and
thereby impeding operation, whereupon she remarked
that they were "debugging" the system. This bug was
carefully removed and taped to the log book (see on the
right).

Above: Grace Hopper, Below: The bug

What's debugging?

4 / 66

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Harvard_Mark_II

The Wikipedia list of software bugs with signi�cant consequences is growing
and you don't want to be on it.

NASA software engineers are famous for producing bug-free code. This was
learned the hard and costly way though. Some highlights from space:

1962: A booster went off course during launch, resulting in the
destruction of NASA Mariner 1 . This was the result of the failure of a
transcriber to notice an overbar in a handwritten speci�cation for the
guidance program, resulting in an incorrect formula the FORTRAN code.
1999: NASA's Mars Climate Orbiter was destroyed, due to software on the
ground generating commands based on parameters in pound-force (lbf)
rather than newtons (N)
2004: NASA's Spirit rover became unresponsive on January 21, 2004, a
few weeks after landing on Mars. Engineers found that too many �les
had accumulated in the rover's �ash memory (the problem could be
�xed though by deleting unnecessary �les, and the Rover lived happily
ever after. Until it froze to death in 2011).

Why debugging matters

5 / 66

https://en.wikipedia.org/wiki/List_of_software_bugs
https://www.bugsplat.com/blog/less-serious/why-nasa-code-doesnt-crash/
https://www.youtube.com/watch?v=CkOOazEJcUc
https://www.youtube.com/watch?v=lcYkOh4nweE
https://www.youtube.com/watch?v=7V54LRRJaGk
https://en.wikipedia.org/wiki/Spirit_(rover

Why debugging matters (cont.)

6 / 66

Source Washington Post

Source Solomon Messing / Twitter

Why debugging matters (cont.)

7 / 66

https://www.washingtonpost.com/technology/2021/09/10/facebook-error-data-social-scientists/
https://twitter.com/solomonmg/status/1436742352039669760

1. Google

2. Reset

3. Debug

4. Deter

A general strategy for debugging

8 / 66

According to this analysis, the most common error types in R are:1

�. Could not find function errors, usually caused by typos or not
loading a required package.

�. Error in if errors, caused by non-logical data or missing values
passed to R's if conditional statement.

�. Error in eval errors, caused by references to objects that don't
exist.

�. Cannot open errors, caused by attempts to read a �le that doesn't
exist or can't be accessed.

�. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

�. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist

�. Package errors caused by being unable to install, compile or load
a package.

Google

1Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 9 / 66

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md

According to this analysis, the most common error types in R are:1

�. Could not find function errors, usually caused by typos or not
loading a required package.

�. Error in if errors, caused by non-logical data or missing values
passed to R's if conditional statement.

�. Error in eval errors, caused by references to objects that don't
exist.

�. Cannot open errors, caused by attempts to read a �le that doesn't
exist or can't be accessed.

�. no applicable method errors, caused by using an object-oriented
function on a data type it doesn't support.

�. subscript out of bounds errors, caused by trying to access an
element or dimension that doesn't exist

�. Package errors caused by being unable to install, compile or load
a package.

Whenever you see an error message,
start by googling it. Improve your
chances of a good match by removing
any variable names or values that are
speci�c to your problem. Also, look for
Stack Over�ow posts and list of
answers.

Google

1Do you get an error message you don't understand? That's good news actually, because the really nasty bugs come without errors. 9 / 66

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md
https://lmgtfy.app/?q=Error+in+interpretative_method+%3A+%20+%20could+not+find+function+%22interpretative_method%22&iie=1
https://stackoverflow.com/questions/tagged/r

If at �rst you don't succeed, try exactly the same
thing again.
Have you tried turning it off and on again?
Do you use rm(list = ls()) ? Don't. Packages
remain loaded, options and environment variables
set, ... all possible sources of error!
A fresh start clears the workspace, resets options,
environment variables, and the path.

Reset

10 / 66

Debug

Make the error repeatable.
Execute the code many times as you consider and reject hypotheses. To make that iteration as quick possible, it’s
worth some upfront investment to make the problem both easy and fast to reproduce.
Work with reproducible and minimal examples by removing innocuous code and simplifying data.
Consider automated testing. Add some nearby tests to ensure that existing good behaviour is preserved.

Track the error down.
Execute code step by step and inspect intermediate outputs.
Adopt the scienti�c method: Generate hypotheses, design experiments to test them, and record your results.

Once found, �x the error and test it.
Ensure you haven’t introduced any new bugs in the process.
Make sure to carefully record the correct output, and check against the inputs that previously failed.
Reset and run again to make sure everything still works.

11 / 66

Defensive programming
Pay attention. Do results make sense? Do they look different from
previous results? Why?
Know what you're doing, and what you're expecting.

Avoid functions that return different types of output
depending on their input, e.g., [] and sapply() .
Be strict about what you accept (e.g., only scalars).
Avoid functions that use non-standard evaluation (e.g.,
with())

Fail fast.
As soon as something wrong is discovered, signal an error.
Add tests (e.g., with the testthat package).
Practice good condition/exception handling, e.g., with try()
and tryCatch() .
Write error messages for humans.

Transparency
Collaborate! Pair programming is an
established software development
technique that increases code robustness. It
also works from remote.
Be transparent! Let others access your code
and comment on it.

Deter

12 / 66

https://en.wikipedia.org/wiki/Pair_programming
https://ivelasq.rbind.io/blog/vscode-live-share/

Debugging R

13 / 66

What you get

Error : .onLoad failed in loadNamespace() for 'rJava', details:

call: dyn.load(file, DLLpath = DLLpath, ...)

error: unable to load shared object '/Users/janedoe/Library/R/3.6/library/rJava/libs/rJava.so':

libjvm.so: cannot open shared object file: No such file or directory

Error: loading failed

Execution halted

ERROR: loading failed

* removing '/Users/janedoe/Library/R/3.6/library/rJava/'

Warning in install.packages :

installation of package 'rJava' had non-zero exit status

Credit Jenny Bryan

14 / 66

https://github.com/jennybc/debugging

What you see

Error : blah failed blah blah() blah 'blah', blah:

call: blah.blah(blah, blah = blah, ...)

error: unable to blah blah blah '/blah/blah/blah/blah/blah/blah/blah/blah/blah.so':

blah.so: cannot open blah blah blah: No blah blah blah blah

Error: blah failed

blah blah

ERROR: blah failed

* removing '/blah/blah/blah/blah/blah/blah/blah/'

Warning in blah.blah :

blah of blah 'blah' blah blah-blah blah blah

Credit Jenny Bryan

15 / 66

https://github.com/jennybc/debugging

Strategies to debug your R code
Sometimes the mistake in your code is hard to diagnose, and googling doesn't help. Here are a couple of strategies to
debug your code:

Use traceback() to determine where a given error is occurring.

Output diagnostic information in code with print() , cat() or message() statements.

Use browser() to open an interactive debugger before the error

Use debug() to automatically open a debugger at the start of a function call.

Use trace() to make temporary code modi�cations inside a function that you don't have easy access to.

16 / 66

Motivation and usage
When an error occurs with an unidenti�able error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.
The traceback() function prints the sequence of
calls that led to an uncaught error error.
The traceback() output reads from bottom to top.
Note that errors caught via try() or tryCatch() do
not generate a traceback!
If you’re calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber .

Locating errors with traceback()

17 / 66

Motivation and usage
When an error occurs with an unidenti�able error
message or an error message that you are in
principle familiar with but cannot locate its sources,
the traceback() function comes in handy.
The traceback() function prints the sequence of
calls that led to an uncaught error error.
The traceback() output reads from bottom to top.
Note that errors caught via try() or tryCatch() do
not generate a traceback!
If you’re calling code that you source() d into R, the
traceback will also display the location of the
function, in the form filename.r#linenumber .

Example
In the call sequence below the execution of g() triggers
an error:

R> f �� function(x) x + 1
R> g �� function(x) f(x)
R> g("a")

Doing the traceback reveals that the function call f(x) is
what lead to the error:

R> traceback()

#> 2� f(x) at #1
#> 1� g("a")

Locating errors with traceback()

#> Error in x + 1 : non�numeric argument to binary op

17 / 66

Motivation and usage
Sometimes, you need more information than the
precise location of an error in a function to �x it.
The interactive debugger lets you pause the run of a
function and interactively explore its state.
Two options to enter the interactive debugger:

�. Through RStudio's "Rerun with Debug" tool,
shown to the right of an error message.

�. You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

In either case, you’ll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You’ll
know when you’re in the interactive debugger
because you get a special prompt, Browse[1]> .

Interactive debugging with browser()

18 / 66

Motivation and usage
Sometimes, you need more information than the
precise location of an error in a function to �x it.
The interactive debugger lets you pause the run of a
function and interactively explore its state.
Two options to enter the interactive debugger:

�. Through RStudio's "Rerun with Debug" tool,
shown to the right of an error message.

�. You can insert a call to browser() into the
function at the stage where you want to pause,
and re-run the function.

In either case, you’ll end up in an interactive
environment inside the function where you can run
arbitrary R code to explore the current state. You’ll
know when you’re in the interactive debugger
because you get a special prompt, Browse[1]> .

Example
R> h �� function(x) x + 3
R> g �� function(b) {
+ browser()
+ h(b)
+ }
R> g(10)

Some useful things to do are:

�. Use ls() to determine what objects are available in
the current environment.

�. Use str() , print() etc. to examine the objects.
�. Use n to evaluate the next statement.
�. Use s : like n but also step into function calls.
�. Use where to print a stack trace (→ traceback).
�. Use c to exit debugger and continue execution.
�. Use Q to exit debugger and return to the R prompt.

Interactive debugging with browser()

18 / 66

Motivation
Sometimes the error is outside your code in a
package you're using, you might still want to be able
to debug.
Two options:

�. Download the package code locally and debug it
is if it were your own.

�. Use functions which which allow you to start a
browser in existing functions, including
recover() and debug() .

Debugging other peoples' code

19 / 66

Motivation
recover() serves as an
alternative error handler which
you activate by calling
options(error = recover) .
You can then select from a list
of current calls to browse.
options(error = NULL) turns
off this debugging mode again.
A simpler alternative is
options(error = browser) , but
this only allows you to browse
the call where the error
occurred.

Debugging other peoples' code (cont.)

20 / 66

Motivation
recover() serves as an
alternative error handler which
you activate by calling
options(error = recover) .
You can then select from a list
of current calls to browse.
options(error = NULL) turns
off this debugging mode again.
A simpler alternative is
options(error = browser) , but
this only allows you to browse
the call where the error
occurred.

Example
Activate debugging mode; then execute (�awed) function:

R> options(error = recover)
R> lm(mpg ~ wt, data = "mtcars")

Deactivate debugging mode:

R> options(error = NULL)

Debugging other peoples' code (cont.)

Error in model.frame.default(formula = mpg ~ wt, data = "mtcars", drop
 'data' must be a data.frame, environment, or list

Enter a frame number, or 0 to exit

1: lm(mpg ~ wt, data = "mtcars")
2: eval(mf, parent.frame())
3: eval(mf, parent.frame())

Selection:

20 / 66

Motivation
debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.
Some functions in another package are easier to
�nd than others. There are

exported functions which are available outside
of a package and
internal functions which are only available
within a package.

To �nd (and debug) exported functions, use the ��
syntax, as in ggplot2��ggplot .
To �nd un-exported functions, use the ��� syntax,
as in ggplot2���check_required_aesthetics .

Debugging other peoples' code (cont.)

21 / 66

Motivation
debug() activates the debugger on any function,
including those in packages (see on the right).
undebug() deactivates the debugger again.
Some functions in another package are easier to
�nd than others. There are

exported functions which are available outside
of a package and
internal functions which are only available
within a package.

To �nd (and debug) exported functions, use the ��
syntax, as in ggplot2��ggplot .
To �nd un-exported functions, use the ��� syntax,
as in ggplot2���check_required_aesthetics .

Example
Activate debugging mode for lm() function; then
execute function:

R> debug(stats��lm)
R> lm(mpg ~ weight, data = "mtcars")

Interactive debugging mode for lm() is entered; use
the common browser() functionality to navigate:

debugging in: lm(mpg ~ weight, data = mtcars)
debug: {
 ret.x �� x
 ���
Browse[2]>

Deactivate debugging mode:

R> undebug(stats��lm)

Debugging other peoples' code (cont.)

21 / 66

Debugging in RStudio

22 / 66

Further reading
12-minute video on debugging in R
Jenny Bryan's talk on debugging at rstudio::conf 2020
Jenny Bryan and Jim Hester's "What They Forgot to
Teach You About R", Chapter 11: Debugging R code
Jonathan McPherson's Debugging with RStudio

More on debugging R

23 / 66

https://vimeo.com/99375765
https://github.com/jennybc/debugging
https://rstats.wtf/debugging-r-code.html
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio

Automation and scripting

24 / 66

Automation

Credit Randall Munroe/xkcd 1319

25 / 66

https://xkcd.com/1319/

Motivation
We spend too much time on repetitive tasks.
We're already automating using scripts that bundle multiple
commands! Next step: The pipeline as a series of scripts and
commands.
Good pipelines are modular. But you don't want to trigger 10
scripts sequentially by hand.
Some tasks are to be repeated on a regular basis (schedule).

When automation makes sense
The input is variable but the process of turning input into output
is highly standardized.
You use a diverse set of software to produce the output.
Others (humans, machines) are supposed to run the analyses.
Time saved by automation >> Time needed to automate.

Different ways of doing it
We will consider automation

using R,
using the Shell and RScript,
using make, and
using dedicated scheduling tools.

Automation

26 / 66

https://itchronicles.com/technology/repetitive-tasks-cost-5-trillion-annually/

Key characteristics
Pipelines make complex projects easier to handle
because they break up a monolithic script into
discrete, manageable chunks.
If properly done, each stage of the pipeline de�nes
its input and its outputs.
Pipeline modules do not modify their inputs
(idempotence). Rerunning one module produces the
same results as the previous run.

Key advantages
When you modify one stage of the pipeline, you only
have to rerun the downstream, dependent stages.
Division of labor is straightforward.
Modules tend to be a lot easier to debug.

Thinking in pipelines

27 / 66

Wait what
Scripts and data �les are vertices
of the graph.
Dependencies between stages are
edges of the graph.
Pipelines are not necessarily DAGS.
Recursive routines are imaginable
(but to be avoided?).
Also, scripts are not necessarily
hierarchical (e.g., multiple different
modeling approaches of the same
data in different scripts).
An automation script gives one
order in which you can successfully
run the pipeline.

A data science pipeline is a graph

28 / 66

In the following, we will work with
this toy pipeline:

An example pipeline

1Courtesy of Jenny Bryan. 29 / 66

https://github.com/STAT545-UBC/STAT545-UBC-original-website

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,

00-packages.R :

R> # install packages from CRAN
R> p_needed �� c("tidyverse" # tidyverse packages
+)
R> packages �� rownames(installed.packages())
R> p_to_install �� p_needed[!(p_needed %in% packages)]
R> if (length(p_to_install) > 0) {
+ install.packages(p_to_install)
+ }
R> lapply(p_needed, require, character.only = TRUE)

An example pipeline

30 / 66

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download�data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,

01-download�data.R :

R> �� download raw data
R> download.file(url = "http:��bit.ly/lotr_raw�tsv",
+ destfile = "lotr_raw.tsv")

An example pipeline

31 / 66

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download�data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,
02-process�data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv , and

02-process�data.R :

R> �� import raw data
R> lotr_dat �� read_tsv("lotr_raw.tsv")
R>
R> �� reorder Film factor levels based on story
R> old_levels �� levels(as.factor(lotr_dat$Film))
R> j_order �� sapply(c("Fellowship", "Towers", "Return"),
+ function(x) grep(x, old_levels))
R> new_levels �� old_levels[j_order]
R>
R> �� process data set
R> lotr_dat �� lotr_dat %>%
+ # apply new factor levels to Film
+ mutate(Film = factor(as.character(Film), new_levels),
+ # revalue Race
+ Race = recode(Race, `Ainur` = "Wizard", `Men` = "Man")) %>%
+ �� <skipping some steps here to avoid slide overflow>
+
+ �� write data to file
+ write_tsv(lotr_dat, "lotr_clean.tsv")

An example pipeline

32 / 66

In the following, we will work with
this toy pipeline:

00-packages.R loads the
packages necessary for
analysis,
01-download�data.R downloads
a spreadsheet, which is stored
as lotr_raw.tsv ,
02-process�data.R imports and
processes the data and exports
a clean spreadsheet as
lotr_clean.tsv , and
03-plot.R imports the clean
dataset, produces a �gure and
exports it as barchart�words�
by�race.png .

03-plot.R :

R> �� import clean data
R> lotr_dat �� read_tsv("lotr_clean.tsv") %>%
+ # reorder Race based on words spoken
+ mutate(Race = reorder(Race, Words, sum))
R>
R> �� make a plot
R> p �� ggplot(lotr_dat, aes(x = Race, weight = Words)) + geom_bar()
R> ggsave("barchart�words�by�race.png", p)

An example pipeline

33 / 66

An example pipeline
R> slice_sample(lotr_dat, n = 10)

 # A tibble: 10 × 5
 Film Chapter Character Race Words
 <chr> <chr> <chr> <chr> <dbl>
 1 The Return Of The King 64� The Mouth Of Sauron Aragorn Man 23
 2 The Fellowship Of The Ring 36� The Bridge Of Khazad… Frodo Hobb… 4
 3 The Two Towers 36� Isengard Unleashed Saruman Wiza… 50
 4 The Fellowship Of The Ring 42� The Great River Sam Hobb… 37
 5 The Return Of The King 42� Breaking The Gate Of… Gandalf Wiza… 21
 6 The Two Towers 45� The Glittering Caves Legolas Elf 36
 7 The Two Towers 35� Helm's Deep Rohan Warri… Man 22
 8 The Fellowship Of The Ring 33� Moria Aragorn Man 31
 9 The Fellowship Of The Ring 43� Parth Galen Aragorn Man 79
 10 The Return Of The King 24� Courage Is The Best … Gothmog Orc 4

34 / 66

An example pipeline
R> p �� ggplot(lotr_dat, aes(x = Race, weight = Words)) +
+ geom_bar() + theme_minimal()

35 / 66

Motivation and usage
The source() function reads and parses R code
from a �le or connection.
We can build a pipeline by sourcing scripts
sequentially.
This pipeline is usually stored in a "master" script.
The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.
It is recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).
Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

Automation using pipelines in R

36 / 66

Motivation and usage
The source() function reads and parses R code
from a �le or connection.
We can build a pipeline by sourcing scripts
sequentially.
This pipeline is usually stored in a "master" script.
The removal of previous work is optional and maybe
redundant. Often the data is overwritten by default.
It is recommended that the individual scripts are
(partial) standalones, i.e. that they import all data
they need by default (loading the packages could be
considered an exception).
Note that as long as the environment is not reset, it
remains intact across scripts, which is a potential
source of error and confusion.

Example
The master script master.R :

R> �� clean out any previous work
R> outputs �� c("lotr_raw.tsv",
+ "lotr_clean.tsv",
+ list.files(pattern = "*.png$"))
R> file.remove(outputs)
R>
R> �� run scripts
R> source("00-packages.R")
R> source("01-download�data.R")
R> source("02-process�data.R")
R> source("03-plot.R")

Automation using pipelines in R

36 / 66

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts de�nitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .

Automation using the Shell and Rscript

37 / 66

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts de�nitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .

Example
The master script master.sh :

The set command allows to adjust some base shell
parameters:

�e : Stop at �rst error
�u : Unde�ned variables are an error
�x : Print each command as it is run

For more information on set , see here.

Automation using the Shell and Rscript

��/bin/sh
cd /Users/simonmunzert/github/examples/02-automation
set �eux
Rscript 01-download�data.R
Rscript 02-process�data.R
Rscript 03-plot.R

37 / 66

http://linuxcommand.org/lc3_man_pages/seth.html

Motivation and usage
Alternatively to using an R master script, we can also
run the pipeline from the command line.
Note that here, the environments don't carry over
across Rscript calls. The scripts de�nitely have to
run in a standalone fashion (i.e., load packages,
import all necessary data, etc.).
The working directory should be set either in the
script(s) or in the shell with cd .
One advantage of this approach is that it can be
easily coupled with other command line tools,
building a polyglot pipeline.

Example
The master script master.sh :

The set command allows to adjust some base shell
parameters:

�e : Stop at �rst error
�u : Unde�ned variables are an error
�x : Print each command as it is run

For more information on set , see here.

Automation using the Shell and Rscript

��/bin/sh
cd /Users/simonmunzert/github/examples/02-automation
set �eux
curl -L http:��bit.ly/lotr_raw�tsv > lotr_raw.tsv
Rscript 02-process�data.R
Rscript 03-plot.R

38 / 66

http://linuxcommand.org/lc3_man_pages/seth.html

Motivation and usage
Make is an automation tool that allows us to specify and manage build processes.
It is commonly run via the shell.
At the heart of a make operation is the makefile (or Makefile , GNUmakefile), a
script which serves as a recipe for the building process.
A makefile is written following a particular syntax and in a declarative fashion.
Conceptually, the recipe describes which �les are built how and using what input.

Advantages of Make
It looks at which �les you have and automatically �gures out how to create the �les
that you have. For complex pipelines this "automation of the automation process"
can be very helpful.
While shell scripts give one order in which you can successfully run the pipeline,
Make will �gure out the parts of the pipeline (and their order) that are needed to
build a desired target.

Automation using Make

39 / 66

https://en.wikipedia.org/wiki/Make_%28software%29

Basic syntax
Each batch of lines indicates

a �le to be created (the target),
the �les it depends on (the
prerequisites), and
set of commands needed to
construct the target from the
dependent �les.

Dependencies propagate.

To create any of the png
�gures, we need
lotr_clean.tsv .
If this �le changes, the png s
change as well when they're
built.

Example makefile
all: lotr_clean.tsv barchart�words�by�race.png words�histogram.png

lotr_raw.tsv:
 curl -L http:��bit.ly/lotr_raw�tsv > lotr_raw.tsv

lotr_clean.tsv: lotr_raw.tsv 02-process�data.R
 Rscript 02-process�data.R

barchart�words�by�race.png: lotr_clean.tsv 03-plot.R
 Rscript 03-plot.R

words�histogram.png: lotr_clean.tsv
 Rscript �e 'library(ggplot2);
 qplot(Words, data = read.delim("$<"), geom = "histogram");
 ggsave("$@")'
 rm Rplots.pdf

clean:
 rm �f lotr_raw.tsv lotr_clean.tsv *.png

Automation using Make (cont.)

40 / 66

Getting Make to run
Using the command line, go
into the directory for your
project.
Create the Makefile �le.1

The most basic Make
commands are make all and
make clean which builds (or
deletes) all output as speci�ed
in the script.

Example makefile
all: lotr_clean.tsv barchart�words�by�race.png words�histogram.png

lotr_raw.tsv:
 curl -L http:��bit.ly/lotr_raw�tsv > lotr_raw.tsv

lotr_clean.tsv: lotr_raw.tsv 02-process�data.R
 Rscript 02-process�data.R

barchart�words�by�race.png: lotr_clean.tsv 03-plot.R
 Rscript 03-plot.R

words�histogram.png: lotr_clean.tsv
 Rscript �e 'library(ggplot2);
 qplot(Words, data = read.delim("$<"), geom = "histogram");
 ggsave("$@")'
 rm Rplots.pdf

clean:
 rm �f lotr_raw.tsv lotr_clean.tsv *.png

Automation using Make (cont.)

1While the basic syntax is simple (see right), the devil's in the detail. Check out resources listed on the next slide if you want to
learn more. 41 / 66

This is dusty technology. Are there alternatives?
In the context of data science with R, the targets package is an interesting option. It
provides R functionality to de�ne a Make-stype pipeline. Check out the overview and
manual.

Automation using Make - FAQ

Does it work on Windows?
To install an run make on Windows, check out these instructions.

Where can I learn more?
If you consider working with Make, check out the of�cial manual, this helpful tutorial, Karl Broman's excellent minimal
make introduction, or this Stat545 piece.

42 / 66

https://docs.ropensci.org/targets/
https://books.ropensci.org/targets/
https://stat545.com/make-windows.html
https://www.gnu.org/software/make/manual/make.html
https://makefiletutorial.com/
https://kbroman.org/minimal_make/
https://stat545.com/automation-overview.html

Scheduling

43 / 66

Scheduling

Credit Randall Munroe/xkcd 1205

44 / 66

https://xkcd.com/1205/

Motivation
So far, we have automated data science pipelines.
But the execution of these pipelines still needs to be triggered.
In some cases, it is desirable to also automate the initialization of R
scripts (or any processes for that matter) on a regular basis, e.g. weekly,
daily, on logon, etc.
This makes particular sense when you have moving parts in your
pipeline (most likely: data).

Common scenarios for scheduling
�. You fetch data from the web on a regular basis (e.g., via scraping scripts

or APIs).
�. You generate daily/weekly/monthly reports/tweets based on changing

data.
�. You build an alert control system informing you about anomalies in a

database.

Credit Simone Giertz

Scheduling scripts and processes

45 / 66

https://www.youtube.com/watch?v=Lh2-iJj3dI0

Scheduling options
Processes on Windows can be scheduled
with the Windows Task Scheduler.
Manage them via a GUI (→ Control Panel) or
the command line using schtasks.exe .
The R package taskscheduleR provides a
programmable R interface to the WTS.

taskscheduleR example
R> library(taskscheduleR)
R> myscript �� "examples/scrape�wiki.R"
R> �� Run every 5 minutes, starting from 10�40
R> taskscheduler_create(
+ taskname = "WikiScraperR_5min", rscript = myscript,
+ schedule = "MINUTE", starttime = "10�40", modifier = 5)
R>
R> �� Run every week on Saturday and Sunday at 09�10
R> taskscheduler_create(
+ taskname = "WikiScraperR_SatSun", rscript = myscript,
+ schedule = "WEEKLY", starttime = "09�10",
+ days = c('SAT', 'SUN'))
R>
R> �� Delete task
R> taskscheduler_delete("WikiScraperR_SatSun")
R>
R> �� Get a data.frame of all tasks
R> tasks �� taskscheduler_ls()
R> str(tasks)

Scheduling scripts and processes on Windows

46 / 66

https://en.wikipedia.org/wiki/Windows_Task_Scheduler
https://cran.r-project.org/web/packages/taskscheduleR/vignettes/taskscheduleR.html

Scheduling options
On macOS you can schedule background
jobs using cron and launchd .
launchd 1 was created by Apple as a
replacement for the popular Linux utility
cron (deprecated but still usable).
The R package cronR provides a
programmable R interface.
cron syntax for more complex scheduling:

cronR example

Scheduling scripts and processes on a Mac

R> library(cronR)
R> myscript �� "examples/scrape�wiki.R"
R> # Create bash code for crontab to execute R script
R> cmd �� cron_rscript(myscript)
R>
R> �� Run every minute
R> cron_add(command = cmd, frequency = 'minutely',
+ id = 'ScraperR_1min', description = 'Every 1min')
R>
R> �� Run every 15 minutes (using cron syntax)
R> cron_add(cmd, frequency = '��15 * * * *',
+ id = 'ScraperR_15min', description = 'Every 15 mins')
R>
R> �� Check number of running cronR jobs
R> cron_njobs()
R>
R> �� Delete task
R> cron_rm("WikiScraperR_1min", ask = TRUE)

1For more resources on scheduling with launchd , check out this and this and this. 47 / 66

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Launchd
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html
https://cran.r-project.org/web/packages/cronR/index.html
https://babichmorrowc.github.io/post/launchd-jobs/
https://towardsdatascience.com/a-step-by-step-guide-to-scheduling-tasks-for-your-data-science-project-d7df4531fc41
https://zerolaunched.herokuapp.com/

R packages

48 / 66

The state of the R package ecosystem
As of November 2021, the CRAN package repository
features more than 18,000 packages.
Many, many more are available on GitHub and other
code sharing platforms.
R has a vivid community that continuous to create
and build extensions and maintain the existing
environment. Many of them have much more
training and time to invest in software development.
So, why should we (and with that I mean YOU) write
yet another R package?

Credit daroczig

Writing an R package

49 / 66

https://gist.github.com/daroczig/3cf06d6db4be2bbe3368

�. Thinking in functions. R is a functional programming language, and
packages bundle functions. Thinking of projects as packages is
consistent with a functional mindset.

�. Automation and transportability. By turning tasks into functions you
save repetitive typing, keep frequently-used code together, and let code
travel across projects.

�. Collaboration and transparency. Packages are ideal to make
functionality available to others, but also to let others contribute. As a
side effect, it nudges you to document your functions properly and
gives you the opportunity to let others review and improve your code
easily.

�. Visibility and productization. Publishing code in packages is potentially
giving you project a big boost in visibility. Also, it is more likely to be
perceived as a product than an insular project.

Why create another R package?

50 / 66

�. Choose a package name
�. Set up your package with RStudio (and GitHub)
�. Fill your package with life

Add functions
Write help �les
Write a DESCRIPTION
Add internal data

�. Check your package
Write tests
Check on various operating systems
Check for good coding practice

�. Submit to CRAN (or GitHub early in the process)
�. Promotion

Write a vignette
Build a package website

Credit Simo Goshev, Steve Worthington

Creating a package from start to �nish

51 / 66

https://iqss.github.io/dss-rbuild/

devtools
The workhorse of package
development in R
Provides functions that
simplify common tasks, such as
package setup, simulating
installs, compiling from source

 usethis
Provides work�ow utilities for
project development (loaded
by devtools)
Many use_*() functions to
help create package tests, data,
description, etc.

testthat
Provides functions that make it
easy to describe what you
expect a function to do,
including catching errors,
warnings, and messages.

roxygen2
Provides functions to
streamline/automate the
documentation of your
packages and functions

Tools to get you started

52 / 66

The idea is to create a package overviewR that helps you to get an overview – hence, the
name – of your data with particular emphasis on the extent that your distinct units of
observation are covered for the entire time frame of your data set.

The package is real and lives on both CRAN and GitHub. Check out the vignette.

An example walkthrough

In the following we will brie�y study the process of creating a package.

The example is taken from Methods Bites, the Blog of the MZES Social Science Data Lab, and developed by Cosima Meyer
and Dennis Hammerschmidt.

53 / 66

https://cosimameyer.github.io/overviewR/
https://cran.r-project.org/web/packages/overviewR/index.html
https://github.com/cosimameyer/overviewR
https://cran.r-project.org/web/packages/overviewR/vignettes/overviewR_vignette.html
https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#section1
https://www.mzes.uni-mannheim.de/socialsciencedatalab/
https://cosimameyer.rbind.io/
http://dennis-hammerschmidt.rbind.io/

Idea
I'll leave you alone with that one.
... but you might want to check out the over
18k existing ones that live on CRAN.

Name
Package names can only be letters and
numbers and must start with a letter.
The package available helps you — both
with getting inspiration for a name and with
checking whether your name is available.

Example
R> library(available)
R> # Check for potential names
R> available��suggest("Easily extract information about sample")

 easilyr

R> # Check whether it's available
R> available��available("overviewR", browse = FALSE)

 ── overviewR ──
 Name valid: ✔
 Available on CRAN� ✖
 Available on Bioconductor: ✔
 Available on GitHub: ✖
 Abbreviations: http:�����.abbreviations.com/overview
 Wikipedia: https:��en.wikipedia.org/wiki/overview
 Wiktionary: https:��en.wiktionary.org/wiki/overview
 Urban Dictionary:
 a general [summary] of a subject "the [treasurer] gave [a brief]
 http:��overview.urbanup.com/3904264

Step 1: Idea and name

54 / 66

https://cran.r-project.org/web/packages/available_packages_by_name.html

Option 1: via RStudio and GitHub
Use RStudio's Project Wizard and click on
File > New Project��� > New Directory >
R Package .
Check the box Create a git to set up a
local git.

Option 2: usethis
Use usethis��create_package() , which will
set up a template package directory in the
speci�ed folder.
You have to take care of version control
yourself (recommendation: initiate project
on GitHub �rst).

Example
R> create_package("overviewR", open = FALSE)

Step 2: Set up your package

✓ Creating 'overviewR/'
✓ Setting active project to '/Users/simonmunzert/github/intro�to�
✓ Creating 'R/'
✓ Writing 'DESCRIPTION'
Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed):
 * First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to
 pick a license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2
✓ Writing 'NAMESPACE'

55 / 66

Basic components
�. The DESCRIPTION �le

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2

Example

Step 2: Set up your package (cont.)

Package: overviewR
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:
 person(given = "First",
 family = "Last",
 role = c("aut", "cre"),
 email = "first.last@example.com",
 comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to
 license
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.2

56 / 66

Basic components
�. The DESCRIPTION �le

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this

Example

Step 2: Set up your package (cont.)

Type: Package
Package: overviewR
Title: Easily Extracting Information About Your Data
Version: 0.0.2
Authors@R: c(
 person("Cosima", "Meyer", email = "XX@XX.com", role = c("cre"
 person("Dennis", "Hammerschmidt", email = "XX@XX.com", role =
Description: Makes it easy to display descriptive information on
 a data set. Getting an easy overview of a data set by displa
 visualizing sample information in different tables (e.g., tim
 scope conditions). The package also provides publishable TeX
 present the sample information.
License: GPL-3
URL: https:��github.com/cosimameyer/overviewR
BugReports: https:��github.com/cosimameyer/overviewR/issues
Depends:
 R (�� 3.5.0)
Imports:
 dplyr (�� 1.0.0)
Suggests: 57 / 66

Basic components
�. The DESCRIPTION �le

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

Example

Step 2: Set up your package (cont.)

58 / 66

Basic components
�. The DESCRIPTION �le

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

�. The NAMESPACE �le
will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes
will be populated automatically using
devtools��document()

Example
Generated by roxygen2� do not edit by hand

export(overview_crossplot)
export(overview_crosstab)
export(overview_heat)
export(overview_na)
export(overview_overlap)
export(overview_plot)
export(overview_print)
export(overview_tab)
importFrom(dplyr,"%>%")
importFrom(ggplot2,ggplot)
importFrom(ggrepel,geom_text_repel)
importFrom(ggvenn,ggvenn)
importFrom(stats,reorder)
importFrom(tibble,"rownames_to_column")

Step 2: Set up your package (cont.)

59 / 66

Basic components
�. The DESCRIPTION �le

stores metadata about the package
lists dependencies if any
is pre-generated by roxygen2
it will later look like this
and displayed online like this

�. The NAMESPACE �le
will later contain information on
exported and imported functions.
helps you manage (and avoid) function
clashes
will be populated automatically using
devtools��document()

�. The R folder
this is where all the functions you will
create go

Step 2: Set up your package (cont.)

60 / 66

Adding functions
The folder R contains all your functions and
each function is saved in a new R �le where the
function name and the �le name are the same.

In the preamble of this �le, we can add
information on the function. This information
will be used to render the help �les.

Example

Step 3: Fill your package with life

#' @title overview_tab
#'
#' @description Provides an overview table for the time and scope
#' a data set
#'
#' @param dat A data set object
#' @param id Scope (e.g., country codes or individual IDs)
#' @param time Time (e.g., time periods are given by years, month
#'
#' @return A data frame object that contains a summary of a sampl
#' can later be converted to a TeX output using \code{overvie
#' @examples
#' data(toydata)
#' output_table �� overview_tab(dat = toydata, id = ccode, time =
#' @export
#' @importFrom dplyr "%>%"

61 / 66

Adding functions
The folder R contains all your functions and
each function is saved in a new R �le where the
function name and the �le name are the same.

In the preamble of this �le, we can add
information on the function. This information
will be used to render the help �les.

When you execute devtools��document() , R
automatically generates the respective help �le
in man as well as the new NAMESPACE �le.

Example

Step 3: Fill your package with life (cont.)

62 / 66

Installing a local package
We are now ready to load a developmental
version of the package. This works with
devtools��install() , which will also try to
install dependencies of the package from CRAN,
if they're not already installed.

You need to run this from the parent working
directory that contains the package folder.

We're now ready to call functions from the
package.

Example
R> install("overviewR")

Step 6: Install your package!

✓ checking for file ‘/Users/simonmunzert/github/intro�to�data�sc
─ preparing ‘overviewR’:
✓ checking DESCRIPTION meta�information ���
─ checking for LF line�endings in source and make files and shel
─ checking for empty or unneeded directories
 Omitted ‘LazyData’ from DESCRIPTION
─ building ‘overviewR_0.0.0.9000.tar.gz’

Running /Library/Frameworks/R.framework/Resources/bin/R CMD INSTA
 /var/folders/38/fqbc3hzd0rl23h350bh27_540000gp/T��RtmpAuLJL4/ov
 ��install�tests
 installing to library ‘/Library/Frameworks/R.framework/Versions/
 installing *source* package ‘overviewR’ ���
 testing if installed package can be loaded from temporary locati
 testing if installed package can be loaded from final location
 testing if installed package keeps a record of temporary install
 DONE (overviewR)

63 / 66

Steps 3-6

We skipped a couple of important (and some optional) steps now, including:

Build and check a package, clean up → devtools��check()
Iterative loading and testing → devtools��load_all()
Adding unit tests → usethis��use_testthat()
Import functions from other packages (CRAN package dependency) → usethis��use_package()
Git version control and collaboration → usethis��use_github()
Add a proper public description → usethis��use_readme_rmd()
Build PDF manual → devtools��build_manual()
Add vignettes → usethis��use_vignette()
Add a licence → usethis��use_gpl_license() , usethis��use_mit_license() , ...
Convert into a single bundled �le (binary or zipped) → devtools��build()
Submit to CRAN → devtools��release()
Build website for your package → pkgdown��build_site()

Be sure to check out the motivating example and more resources (next slide).

64 / 66

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/#subsection4-3

Is learning this worth the time?
Yes.

Where can I learn more?
Glad that you're asking! There's tons of materials out
there. Apart from the used tutorial and the R packages
book, have a look at the devtools cheatsheet and
another overview over at RStudio. Knowing how to turn a
package into a website within minutes is fascinating, too.

When do we need a package, and
when is a GitHub repo simply enough?
Do you think of your work as a project or a product? If
it's the latter, maybe a package is right for you. (But... a
research paper is also a product, right? 🤯)

Writing R packages - FAQ

65 / 66

https://www.mzes.uni-mannheim.de/socialsciencedatalab/article/r-package/
https://r-pkgs.org/
https://rawgit.com/rstudio/cheatsheets/master/package-development.pdf
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-the-RStudio-IDE
https://pkgdown.r-lib.org/dev/

Next steps

Assignment
No further assignment! Be sure to hand in assignment 5 until the updated deadlines.

Next lecture
We turn to the next (and sometimes �nal) step in the data science work�ow, Monitoring and communication.

66 / 66

