
Introduction to Data Science
Session 9: Working at the command line

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents
�. Introduction1

�. Shell basics

�. Help!

�. Navigating your system

�. Managing your �les

�. Working with text �les

�. Redirects, pipes, and loops

�. Scripting

�. Next steps

1 Much of this lecture draws on materials from Grant McDermott's excellent Data Science for Economists class. 2 / 76

https://github.com/uo-ec607/lectures

Introduction

3 / 76

A computer in a nutshell
The operating system (OS) is system software that
interfaces with (and manages access to) a
computer's hardware. It also provides software
resources.
The OS is divided into the kernel and user space.
The kernel is the core of the OS. It's responsible for
interfacing with hardware (drivers), managing
resources etc. Running software in the kernel is
extremely sensitive! That's why users are kept away
from it.
The user space provides an interface for users, who
can run programs/applications on the machine.
Hardware access of programs (e.g., memory usage) is
managed by the kernel. Programs in user space are
essentially in sandboxes, which sets a limit to how
much damage they can do.

Credit Dave Kerr

What is the command line? What is the shell?

4 / 76

https://effective-shell.com/docs/part-2-core-skills/what-is-a-shell/

A computer in a nutshell
The shell is just a general name for any user space
program that allows access to resources in the
system, via some kind of interface.
Shells come in many different �avours but are
generally provided to aid a human operator in
accessing the system. This could be interactively, by
typing at a terminal, or via scripts, which are �les
that contain a sequence of commands.
Modern computers use graphical user interfaces
(GUIs) as the standard tool for human-computer
interaction.
Why "kernel" and "shell"? The kernel is the soft,
edible part of a nut or seed, which is surrounded by
a shell to protect it. Useful metaphor, no?

Credit Dave Kerr/Kkchaudhary11

What is the command line? What is the shell? (cont.)

5 / 76

https://effective-shell.com/docs/part-2-core-skills/what-is-a-shell/
https://commons.wikimedia.org/w/index.php?curid=49069244

Interacting with the shell
Things are still a bit more complicated.
We're not directly interacting with the "shell" but
using a terminal.
A terminal is just a program that reads input from
the keyboard, passes that input to another program,
and displays the results on the screen.
A shell program on its own does not do this - it
requires a terminal as an interface.
Why "terminal"? Back in the old days (even before
computer screen existed), terminal machines
(hardware!) were used to let humans interface with
large machines ("mainframes"). Often many
terminals were connected to a single machine.
When you want to work with a computer in a data
center (or remotely ~ cloud computing), you'll still
do pretty much the same.

Credit Dave Kerr/Rama/Musée Bolo/ClickRick

What is the command line? What is the shell? (cont.)

6 / 76

https://effective-shell.com/docs/part-2-core-skills/what-is-a-shell/
https://en.wikipedia.org/wiki/Teletype_Model_33#/media/File:Teletype-IMG_7287.jpg
https://de.m.wikipedia.org/wiki/Datei:IBM_3486_terminal.jpg

Interacting with the shell
Terminals are really quite simple - they're just
interfaces.
The �rst thing that a terminal program will do is run
a shell program - a program that we can use to
operate the computer.
Back to the shell: the shell usually takes input (a)
interactively from the user via the terminal's
command line. (b) executes scripts (without
command line).
In interactive mode the shell then returns output (a)
to the terminal where it is printed/shown. (b) to �les
or other locations.
The command line (or command prompt) represents
what is shown and entered in the terminal. They can
be customized (e.g., with color highlighting) to make
interaction more convenient.

Credit Dave Kerr

What is the command line? What is the shell? (cont.)

7 / 76

https://ohmyz.sh/
https://effective-shell.com/docs/part-2-core-skills/what-is-a-shell/

Shell variants
It is important to note that there are many different
shell programs, and they differ in terms of
functionality.
On most Unix-like systems, the default shell is a
program called bash), which stands for "Bourne
Again Shell".
Other examples are the Z Shell (or zsh; default on
MacOS)1, Windows Command Prompt (cmd.exe, the
default CLI on MS Windows), Windows PowerShell, C
Shell, and many more.
When a terminal opens, it will immediately start the
user's preferred shell program. (This can be
changed.)

Left: Command Prompt, right: Bash

Left: C Shell, right: more shells

Credit Read-back spider/Dave Kerr

What is the command line? What is the shell? (cont.)

1That's what I use, which is why the shell on the following slides might look a bit different. Also, some commands/programs might
or might not be available (or need to be installed). 8 / 76

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Bash_(Unix_shell
https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/Cmd.exe
https://en.wikipedia.org/wiki/PowerShell
https://en.wikipedia.org/wiki/C_shell
https://effective-shell.com/docs/getting-started/
https://commons.wikimedia.org/wiki/File:Different_types_of_shells.jpg
https://effective-shell.com/docs/part-2-core-skills/what-is-a-shell/

Summing things up
All that being said, don't be thrown off by
terminology: shell, terminal, command prompt,
command line, bash, etc.
In everyday usage they are all referring to a
command line interface (CLI) with which we can talk
to our computer, execute (chains of) programs,
wrangling input and output, and so much more.

What is the command line? What is the shell? (cont.)

9 / 76

Why using this...

... instead of this?

Why bother with the shell?

10 / 76

Why bother with the shell? (cont.)
�. Speed. Typing is fast: A skilled shell user can manipulate a system at dazzling speeds just using a keyboard. Typing

commands is generally much faster than exploring through user interfaces with a mouse.

�. Power. Both for executing commands and for �xing problems. There are some things you just can't do in an IDE or
GUI. It also avoids memory complications associated with certain applications and/or IDEs.

�. Reproducibility. Scripting is reproducible, while clicking is not.

�. Portability. A shell can be used to interface to almost any type of computer, from a mainframe to a Raspberry Pi, in a
very similar way. The shell is often the only game in town for high performance computing (interacting with servers
and super computers).

�. Automation. Shells are programmable: Working in the shell allows you to program work�ows, that is create scripts to
automate time-consuming or repetitive processes.

�. Become a marketable data scientist. Modern programming is often polyglot. The shell provides a common interface
for tooling. Modern solutions are often built to run in containers on Linux. In this environment shell knowledge has
become very valuable. In short, the shell is having a renaissance in the age of data science.

11 / 76

https://effective-shell.com/docs/part-1-transitioning-to-the-shell/the-renaissance-of-the-shell/

The Unix philosophy
The shell tools that we're going to be using today have their roots in the Unix family of operating systems originally
developed at Bells Labs in the 1970s.

Besides paying homage, acknowledging the Unix lineage is important because these tools still embody the "Unix
philosophy":

Do One Thing And Do It Well

12 / 76

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix_philosophy

The Unix philosophy
The shell tools that we're going to be using today have their roots in the Unix family of operating systems originally
developed at Bells Labs in the 1970s.

Besides paying homage, acknowledging the Unix lineage is important because these tools still embody the "Unix
philosophy":

Do One Thing And Do It Well

By pairing and chaining well-designed individual components, we can build powerful and much more complex larger
systems.

You can see why the Unix philosophy is also referred to as "minimalist and modular".

Again, this philosophy is very clearly expressed in the design and functionality of the Unix shell.

12 / 76

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix_philosophy

Things to use the shell for
Version control with Git

Renaming and moving �les en masse

Finding things on your computer

Combining and manipulating PDFs

Installing and updating software

Scheduling tasks

Monitoring system resources

Connecting to cloud environments

Running analyses ("jobs") on super computers

etc.

13 / 76

Shell basics

14 / 76

First look
Let's open up our shell.

A convenient way to do this is through RStudio's built-in Terminal.

Hitting Shift + Alt + T (or Shift + ⌥ + R on a Mac) will cause a "Terminal" tab to open up next to the "Console" tab.

Your system default shell is loaded. To �nd out what that is, type:

$ echo $SHELL

 /bin/zsh

Ok, it's Z bash in my case.

15 / 76

https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal

First look
Let's open up our shell.

A convenient way to do this is through RStudio's built-in Terminal.

Hitting Shift + Alt + T (or Shift + ⌥ + R on a Mac) will cause a "Terminal" tab to open up next to the "Console" tab.

Your system default shell is loaded. To �nd out what that is, type:

$ echo $SHELL

 /bin/zsh

Ok, it's Z bash in my case.

Of course, it's always possible to open up the Shell directly if you prefer.

Linux
Mac
Windows

15 / 76

https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal
https://www.wikihow.com/Open-a-Terminal-Window-in-Ubuntu
https://www.techwalla.com/articles/how-to-open-terminal-on-a-macbook
https://www.howtogeek.com/265900/everything-you-can-do-with-windows-10s-new-bash-shell/

First look (cont.)
You should see something like:

 username@hostname:~$

16 / 76

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

16 / 76

First look (cont.)
You should see something like:

 `username`@hostname:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

16 / 76

First look (cont.)
You should see something like:

 username`@hostname`:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

16 / 76

First look (cont.)
You should see something like:

 username@hostname`:~`$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

:~ denotes the directory path (where ~ signi�es the user's home directory).

16 / 76

First look (cont.)
You should see something like:

 username@hostname:~`$`

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

:~ denotes the directory path (where ~ signi�es the user's home directory).

$ (or maybe %) denotes the start of the command prompt.

(For a special "superuser" called root, the dollar sign will change to a #).

16 / 76

Useful keyboard shortcuts
Tab completion.

Use the ↑ (and ↓) keys to scroll through previous commands.

Ctrl + → (and Ctrl + ←) to skip whole words at a time.

Ctrl + a moves the cursor to the beginning of the line.

Ctrl + e moves the cursor to the end of the line.

Ctrl + k deletes everything to the right of the cursor.

Ctrl + u deletes everything to the left of the cursor.

Ctrl + Shift + c to copy and Ctrl + Shift + v to paste (or just ⌘ + c/v on a Mac).

Ctrl + l clears your terminal.

17 / 76

All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

Syntax

18 / 76

All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ `ls` �lh ~/Documents/

 $ `sort` �u myfile.txt

Commands

You don't always need options or arguments. (For
example, $ ls ~/Documents/ and $ ls �lh are both
valid commands that will yield output.)
However, you always need a command.

Syntax (cont.)

19 / 76

All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls `�lh` ~/Documents/

 $ sort `�u` myfile.txt

Options (also called Flags)

Start with a dash.
Usually one letter.
Multiple options can be chained together under a
single dash.

$ ls �l �a �h /var/log �� This works
$ ls �lah /var/log �� So does this

An exception is with (rarer) options requiring two
dashes.

Think it's dif�cult to memorize what the individual
letters stand for? You're totally right.

Syntax (cont.)

$ ls ��group�directories�first ��human�readable /

20 / 76

All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh `~/Documents/`

 $ sort �u `myfile.txt`

Arguments

Tell the command what to operate on.
Totally depends on the command what legit inputs
are.
Can be a �le, path, a set of �les and folders, a string,
and more
Sometimes more than just one argument is needed:

$ mv pics/cat.JPG best�pics/cat.jpeg

Syntax (cont.)

21 / 76

Help!

22 / 76

Overview
The man tool can be used to look at the manual
page for a topic.
The man pages are grouped into sections, we can
see them with man man .
The tldr tool shows a very short description of a
tool, which covers the most common use cases only.
The cht.sh website can be used directly from the
shell to get help on tools or even ask speci�c
questions. (Or install cheat .)

For more info on how to get help, see here.
Actually, typing man bash and reading/skimming the
whole thing might be a good start to learn basic
command line speak.

Multiple ways to get help

23 / 76

https://effective-shell.com/docs/part-1-transitioning-to-the-shell/getting-help/

Getting help with man
The man command ("manual pages") is your friend if you ever need help.

$ man ls

 LS(1) BSD General Commands Manual LS(1)

 N�NA�AM�ME�E
 l�ls�s �� list directory contents

 S�SY�YN�NO�OP�PS�SI�IS�S
 l�ls�s [-�-A�AB�BC�CF�FG�GH�HL�LO�OP�PR�RS�ST�TU�UW�W@�@a�ab�bc�cd�de�ef�fg�gh�hi�ik�kl�lm�mn�no�op�pq�qr�rs�st�tu�uw�wx�x1�1%�%] [_�f_�i_�l_ �e _�._�._�.]

 D�DE�ES�SC�CR�RI�IP�PT�TI�IO�ON�N
 For each operand that names a _�f_�i_�l_�e of a type other than directory, l�ls�s
 displays its name as well as any requested, associated information. For
 each operand that names a _�f_�i_�l_�e of type directory, l�ls�s displays the names
 of files contained within that directory, as well as any requested, asso�
 ciated information.

 If no operands are given, the contents of the current directory are dis�
 played. If more than one operand is given, non�directory operands are
 displayed first; directory and non�directory operands are sorted sepa�
 rately and in lexicographical order.

24 / 76

Manual pages are shown in the shell pager. Here are the
essentials to navigate through contents presented in the
pager:

d - Scroll down half a page
u - Scroll up half a page
j / k - Scroll down or up a line. You can also use
the arrow keys for this
q - Quit
/pattern - Search for text provided as "pattern"
n - When searching, �nd the next occurrence
N - When searching, �nd the previous occurrence

These and other man tricks are detailed in the help
pages (hit "h" when you're in the pager for an overview).

RTFM

Getting help with man (cont.)

25 / 76

Help: cheat, tldr, cheat.sh
There are various other utilities which provide more readable summaries/cheatsheets of various commands. Those
include

cheat

cheat.sh

tldr

The �rst two need to be installed �rst. cheat.sh sheets are accessible via:

$ curl cheat.sh/ls

List files one per line:
ls -1

List all files, including hidden files:
ls �a

List all files, with trailing `/` added to directory names:
ls -F

Long format list with size displayed using human readable units (KB, MB, GB):
ls �lh

26 / 76

https://github.com/cheat/cheat
https://cheat.sh/
https://tldr.sh/

Navigating your �le system

27 / 76

We're all so used to a graphical user interface that
switching to the shell can take some time to get
used to.
Modern operating systems increasingly abstract
away from underlying �le systems (think about iOS,
Android).
For data science operations it is key that you're able
to ef�ciently navigate your system to get
information on �les and folders.
Some questions that will pop up:

What is my home directory?
In which directory am I currently operating?
Where is my stuff?
Where do I want to put my stuff?
How do I navigate from here to there?

Navigating your �le system

28 / 76

Navigation
Key navigation commands are:

pwd to print (the current) working directory.

cd to change directory.

$ pwd

 /Users/simonmunzert/github/intro�to�data�science-21/lectures/09-command�line

29 / 76

Navigation
Key navigation commands are:

pwd to print (the current) working directory.

cd to change directory.

$ pwd

 /Users/simonmunzert/github/intro�to�data�science-21/lectures/09-command�line

You can use absolute paths, but it's better to use relative paths and invoke special symbols for a user's home folder (~),
current directory (.), and parent directory (��) as needed.

$ cd examples �� Move into the "examples" sub�directory of this lecture directory.
$ cd ��/�� �� Now go back up two directories.
$ pwd

 /Users/simonmunzert/github/intro�to�data�science-21/lectures

29 / 76

Beware of directory names that contain spaces. Say you have a directory
called "My Documents". (I'm looking at you, Windows.)

Why won't $ cd My Documents work?

Bash syntax is super pedantic about spaces and ordering. Here it thinks
that "My" and "Documents" are separate arguments.

How to deal with it:

Use quotation marks: $ cd "My Documents" .
Use Tab completion to automatically "escape" the space: $ cd My\
Documents .
Don't use spaces in �le and folder names. Just don't.
I've developed the habit to name �les and folders (a) always
lowercase and (b) using dashes, as in assignment-05 . It's a useful
convention and frees up cognitive resources for more important
decisions.

Navigation (cont.)

30 / 76

We're about to go into more depth
about the ls (list) command. It
shows the contents of the current
(or given) directory:

$ ls

 09-command�line.Rmd
 09-command�line.html
 examples
 libs
 pics
 simons�touch.css

Listing �les and their properties

31 / 76

We're about to go into more depth
about the ls (list) command. It
shows the contents of the current
(or given) directory:

$ ls

 09-command�line.Rmd
 09-command�line.html
 examples
 libs
 pics
 simons�touch.css

Now we list the contents of the examples/ sub-directory with the �lh
option ("long format", "human readable �le size unit suf�xes"; again, check
out man ls for the details):

$ ls �lh examples

 total 280
 drwxrwxr�x@ 3 simonmunzert staff 96B Nov 10 23�32 ABC
 �rw�rw�r��@ 1 simonmunzert staff 149B Jul 1 19�58 hello.R
 �rwxr�xr�x@ 1 simonmunzert staff 34B Nov 10 20�36 hello.sh
 drwxrwxr�x@ 10 simonmunzert staff 320B Nov 10 23�32 meals
 �rw�rw�r��@ 1 simonmunzert staff 32B Jul 1 19�58 nursery.txt
 �rw�rw�r��@ 1 simonmunzert staff 38B Nov 10 14�52 nursery2.txt
 �rwxr�xr�x@ 1 simonmunzert staff 153B Jul 1 19�58 reps.txt
 �rw�rw�r��@ 1 simonmunzert staff 117K Jul 1 19�58 sonnets.txt

Listing �les and their properties

31 / 76

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

32 / 76

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

32 / 76

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1) owner, 2) the owner's group,
and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

32 / 76

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1) owner, 2) the owner's group,
and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.

32 / 76

https://linuxaria.com/howto/counting-and-listing-hard-links-on-linux

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1) owner, 2) the owner's group,
and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.
We also see the identity of the object's owner and their group.

32 / 76

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxrwxr�x@ 3 simonmunzert staff 96B Nov 9 23�20 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1) owner, 2) the owner's group,
and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.
We also see the identity of the object's owner and their group.
Finally, we see some descriptive elements about the object:

Size, date and time of creation, and the object name.

32 / 76

Summary
The pwd (print working directory) command shows the current working directory.
The ls (list) command shows the contents of the current directory or a given directory.
The ls �l command shows the contents of the current directory as list.
The cd (change directory) changes the current working directory.
You can run cd at any time to quickly go to your home directory.
You can use the cd - command to go back to the last location.
Absolute paths are paths which specify the exact location of a �le or folder.
Relative paths are paths which are relative to the current directory.
The . special folder means ‘this folder’.
The �� special folder means ‘the parent folder’.
The ~ special folder is the ‘home directory’.
The $PWD environment variable holds the current working directory.
The $HOME environment variable holds the user's home directory.
The tree command can show the �les and folders in a given directory. (Install �rst on a Mac.)
The file command can be used to ask the shell what it thinks a �le is.

For a more detailed overview, see here.

33 / 76

https://effective-shell.com/docs/part-1-transitioning-to-the-shell/navigating-your-system/

Managing your �les

34 / 76

The obvious next step after navigating the �le
system is managing �les.
There's a lot you can do with �les, including
downloading, unzipping, copying, moving, renaming
and deleting.
Again, doing this in a GUI is intuitive but usually
scales badly.
We'll learn how to do these operations at scale
using the shell.
Be careful when handling �les in the shell though!
Don't expect friendly reminders such as "Do you
really want to delete this folder of pictures from
your anniversary?"

Managing your �les

35 / 76

Create: touch and mkdir
One of the most common shell tasks is object creation (�les, directories, etc.).

We use mkdir to create directories. E.g., to create a new "testing" directory we do:

$ mkdir testing

36 / 76

Create: touch and mkdir
One of the most common shell tasks is object creation (�les, directories, etc.).

We use mkdir to create directories. E.g., to create a new "testing" directory we do:

$ mkdir testing

We use touch to create (empty) �les. If the �le(s) already exist, touch changes a �le's "Access", "Modify" and "Change"
timestamps to the current time and date. To add some �les to our new directory, we do:

$ touch testing/test1.txt testing/test2.txt testing/test3.txt

36 / 76

Create: touch and mkdir
One of the most common shell tasks is object creation (�les, directories, etc.).

We use mkdir to create directories. E.g., to create a new "testing" directory we do:

$ mkdir testing

We use touch to create (empty) �les. If the �le(s) already exist, touch changes a �le's "Access", "Modify" and "Change"
timestamps to the current time and date. To add some �les to our new directory, we do:

$ touch testing/test1.txt testing/test2.txt testing/test3.txt

Check that it worked:

$ ls testing

 test1.txt
 test2.txt
 test3.txt

36 / 76

Remove: rm and rmdir
Let's delete the objects that we just created. Start with one of the .txt �les, by using rm .

We could delete all the �les at the same time, but you'll see why I want to keep some.

$ rm testing/test1.txt

37 / 76

Remove: rm and rmdir
Let's delete the objects that we just created. Start with one of the .txt �les, by using rm .

We could delete all the �les at the same time, but you'll see why I want to keep some.

$ rm testing/test1.txt

The equivalent command for directories is rmdir .

$ rmdir testing

 rmdir: testing: Directory not empty

37 / 76

Remove: rm and rmdir
Let's delete the objects that we just created. Start with one of the .txt �les, by using rm .

We could delete all the �les at the same time, but you'll see why I want to keep some.

$ rm testing/test1.txt

The equivalent command for directories is rmdir .

$ rmdir testing

 rmdir: testing: Directory not empty

Uh oh... It won't let us delete the directory while it still has �les inside of it. The solution is to use the rm command again
with the "recursive" (�r or -R) and "force" (�f) options.

Excluding the �f option is safer, but will trigger a con�rmation prompt for every �le, which I'd rather avoid here.

$ rm �rf testing �� Success

37 / 76

Copy: cp
The syntax for copying is $ cp object path/copyname .

If you don't provide a new name for the copied object, it will just take the old name.
However, if there is already an object with the same name in the target destination, then you'll have to use �f to
force an overwrite.

$ �� Create new "copies" sub�directory
$ mkdir examples/copies
$ �� Now copy across a file (with a new name)
$ cp examples/reps.txt examples/copies/reps�copy.txt
$ �� Show that we were successful
$ ls examples/copies

 reps�copy.txt

38 / 76

Copy: cp
The syntax for copying is $ cp object path/copyname .

If you don't provide a new name for the copied object, it will just take the old name.
However, if there is already an object with the same name in the target destination, then you'll have to use �f to
force an overwrite.

$ �� Create new "copies" sub�directory
$ mkdir examples/copies
$ �� Now copy across a file (with a new name)
$ cp examples/reps.txt examples/copies/reps�copy.txt
$ �� Show that we were successful
$ ls examples/copies

 reps�copy.txt

You can use cp to copy directories, although you'll need the �r �ag if you want to recursively copy over everything
inside of it too:

$ cp �r examples/meals examples/copies

38 / 76

Move (and rename): mv
The syntax for moving is $ mv object path/newobjectname

$ �� Move the abc.txt file and show that it worked
$ mv examples/ABC/abc.txt examples
$ ls examples/ABC �� empty

$ �� Move it back again
$ mv examples/abc.txt examples/ABC
$ ls examples/ABC �� not empty

 abc.txt

39 / 76

Move (and rename): mv
The syntax for moving is $ mv object path/newobjectname

$ �� Move the abc.txt file and show that it worked
$ mv examples/ABC/abc.txt examples
$ ls examples/ABC �� empty

$ �� Move it back again
$ mv examples/abc.txt examples/ABC
$ ls examples/ABC �� not empty

 abc.txt

Note that "moving" an object within the same directory, but with specifying newobjectname , is effectively the same as
renaming it.

$ �� Rename reps�copy to reps2 by "moving" it with a new name
$ mv examples/copies/reps�copy.txt examples/copies/reps2.txt
$ ls examples/copies

 reps2.txt

39 / 76

Rename en masse: zmv
A more convenient way to do renaming in zsh is with zmv . It has to be installed and autoloaded �rst:

$ autoload -U zmv

The syntax is zmv <options> <old�files�pattern> <new�files�pattern>

For example, say we want to change the �le type (i.e. extension) of a set of �les in the examples/meals directory, we do:

$ cd examples/meals
$ zmv �n -W "*.csv" "*.txt"

mv �� friday.csv friday.txt
mv �� monday.csv monday.txt
mv �� saturday.csv saturday.txt
mv �� sunday.csv sunday.txt
mv �� thursday.csv thursday.txt
mv �� tuesday.csv tuesday.txt
mv �� wednesday.csv wednesday.txt

A very useful �ag is �n which does not execute the command but prints the command that would be executed. Use this
if you are unsure about your patterns. The -W �ag ensures that the wildcard * is recycled in the second pattern. 40 / 76

Rename en masse: zmv (cont.)
zmv really shines in conjunction with regular expressions and wildcards (more on the next slide). This works especially
well for dealing with a whole list of �les or folders.

As another example, let's change all of the �le names in the examples/meals directory.

$ zmv �n '(**/)(*).csv' '$1$2-sucks.csv'

mv �� friday.csv friday�sucks.csv
mv �� monday.csv monday�sucks.csv
mv �� saturday.csv saturday�sucks.csv
mv �� sunday.csv sunday�sucks.csv
mv �� thursday.csv thursday�sucks.csv
mv �� tuesday.csv tuesday�sucks.csv
mv �� wednesday.csv wednesday�sucks.csv

Notice that the patterns are now bit more complicated. The �rst is surrounded by single quotes, (**/) which de�nes a
group that we can refer to later. It allows us to search in both the given directory and sub-directories (which we don't
have in this case). The second, (*) is also grouped. Both are referred to in the replacement pattern with $1 and $2 .

Want to learn more about zmv ? Check out this.
41 / 76

https://filipe.kiss.ink/zmv-zsh-rename/

Wildcards
Wildcards are special characters that can be used as a replacement for other characters. The two most important ones
are:

�. Replace any number of characters with * .

Convenient when you want to copy, move, or delete a whole class of �les.

$ cp examples��.sh examples/copies �� Copy any file with an .sh extension to "copies"
$ rm examples/copies�� �� Delete everything in the "copies" directory

�. Replace a single character with ?

Convenient when you want to discriminate between similarly named �les.

$ ls examples/meals/��nday.csv
$ ls examples/meals/?onday.csv

 examples/meals/monday.csv
 examples/meals/sunday.csv
 examples/meals/monday.csv

42 / 76

http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Find
The last command that I want to mention w.r.t. navigation is find .

This can be used to locate �les and directories based on a variety of criteria; from pattern matching to object properties.

$ find examples �iname "monday.csv" �� will automatically do recursive, �iname makes search case�insensitive

 examples/meals/monday.csv

$ find . �iname "*.txt" �� must use "." to indicate pwd

 ./examples/ABC/abc.txt
 ./examples/sonnets.txt
 ./examples/reps.txt
 ./examples/nursery.txt
 ./examples/nursery2.txt

$ find . �size +2000k �� find files larger than 2000 KB

 ./pics/bookshelf.gif
 ./pics/pipe�giphy.gif
 ./pics/that�way�giphy.gif

43 / 76

Summary
The rm (remove) command can delete a �le (they are gone forever, no recycle bin!).
The rm command won't delete a folder which has �les in it, unless you tell it to by adding the �r (recursive) �ag.
The cp (copy) command can copy a �le.
The cp can also be given wildcards like * to copy many �les.
The mv (move) command can move or rename a �le.
The zmv command enables convenient renaming.
The mkdir command can create a folder - it can even create a whole tree of folders if you pass the �p (create parent
directories) �ag.
The find command lets you �nd �les based on speci�ed criteria.
The cat command (concatenated) can be used to write the contents of a �le to the screen.
We can pass multiple �les to commands like cat if we use wildcards, such as quotes�� .
The wget (web get) command can download a �le from the web. (Install �rst on a Mac.)
The zip / unzip commands can zip/unzip a �le/folder for us.

For a more detailed overview, see here.

44 / 76

https://effective-shell.com/docs/part-1-transitioning-to-the-shell/managing-your-files/

Working with text �les

45 / 76

Data scientists spend a lot of time working with text,
including scripts, Markdown documents, and
delimited text �les like CSVs.
You will have the opportunity to learn more on the
statistical analysis of text using NLP technique over
the course of your studies.
While Python and R are strong environments for text
wrangling and analysis, it still makes sense to spend
a few slides showing off some Bash shell
capabilities for working with text �les.
We'll only scratch the surface, but hopefully you'll
get an idea of how powerful the shell is in the text
domain.

Working with text �les

46 / 76

Counting text: wc
You can use the wc command to count:

�. The lines of text
�. The number of words
�. The number of characters

Let's demonstrate with a text �le containing all of Shakespeare's Sonnets.1

$ wc examples/sonnets.txt

 3029 20701 119751 examples/sonnets.txt

(You couldn't tell here, but the character count is actually higher than we'd get if we (bothered) counting by hand,
because wc counts the invisible newline character "\n".)

1 Courtesy of Project Gutenberg.
47 / 76

http://www.gutenberg.org/cache/epub/1041/pg1041.txt

Reading text

Read everything: cat
The simplest way to read in text is with the cat ("concatenate") command. Note that cat will read in all of the text. You
can scroll back up in your shell window, but this can still be a pain.

Again, let's demonstrate using Shakespeare's Sonnets. (This will over�ow the slide.) We also use the �n �ag to show line
numbers:

48 / 76

Reading text

Read everything: cat
The simplest way to read in text is with the cat ("concatenate") command. Note that cat will read in all of the text. You
can scroll back up in your shell window, but this can still be a pain.

Again, let's demonstrate using Shakespeare's Sonnets. (This will over�ow the slide.) We also use the �n �ag to show line
numbers:

$ cat �n examples/sonnets.txt

 1 The Project Gutenberg EBook of Shakespeare's Sonnets, by William Shakespeare
 2
 3 This eBook is for the use of anyone anywhere at no cost and with
 4 almost no restrictions whatsoever. You may copy it, give it away or
 5 re�use it under the terms of the Project Gutenberg License included
 6 with this eBook or online at ���.gutenberg.org
 7
 8
 9 Title: Shakespeare's Sonnets
 10
 11 Author: William Shakespeare
 12 48 / 76

Reading text (cont.)

Scroll: more and less
The more and less commands provide extra functionality over cat . For example, they allow you to move through long
text one page at a time. (While they look similar, less is more than more , more or less...)

Try this yourself with $ more examples/sonnets.txt .
You can move forward and back using the f and b keys, and quit by hitting q .

Preview: head and tail
The head and tail commands let you limit yourself to a preview of the text, down to a speci�ed number of rows. (The
default is 10 rows if you don't specify a number with the �n �ag.)

$ head �n 3 examples/sonnets.txt �� First 3 rows
$ # head examples/sonnets.txt �� First 10 rows (default)

 The Project Gutenberg EBook of Shakespeare's Sonnets, by William Shakespeare

 This eBook is for the use of anyone anywhere at no cost and with

49 / 76

https://unix.stackexchange.com/questions/604/isnt-less-just-more

Reading text (cont.)

Preview: head and tail (cont.)
tail works very similarly to head , but starting from the bottom. For example, we can see the very last row of a �le as
follows:

$ tail �n 1 examples/sonnets.txt �� Last row

 subscribe to our email newsletter to hear about new eBooks.

By using the �n +N option, we can specify that we want to preview all lines starting from row N and after, as in:

$ tail �n +3024 examples/sonnets.txt �� Show everything from line 3024

 ���.gutenberg.org

 This Web site includes information about Project Gutenberg�tm,
 including how to make donations to the Project Gutenberg Literary
 Archive Foundation, how to help produce our new eBooks, and how to
 subscribe to our email newsletter to hear about new eBooks.

50 / 76

To �nd patterns in text, we can use regular expression-
type matching with grep .

For example, say we want to �nd the famous opening
line to Shakespeare's Sonnet 18.

(We're going to include the �n ("number") �ag to get the
line that it occurs on.)

 336� Shall I compare thee to a summer's day?

Find patterns: grep

$ grep �n "Shall I compare thee" examples/sonnets.txt

51 / 76

https://en.wikipedia.org/wiki/Sonnet_18

To �nd patterns in text, we can use regular expression-
type matching with grep .

For example, say we want to �nd the famous opening
line to Shakespeare's Sonnet 18.

(We're going to include the �n ("number") �ag to get the
line that it occurs on.)

 336� Shall I compare thee to a summer's day?

By default, grep returns all matching patterns.

Check out what happens when we do the following:

$ grep �n "winter" examples/sonnets.txt

 63� When forty winters shall besiege thy brow,
 119� To hideous winter, and confounds him there;
 126� But flowers distill'd, though they with winter
 132� Then let not winter's ragged hand deface,
 261� Against the stormy gusts of winter's day
 994� Or call it winter, which being full of care,
 1679� How like a winter hath my absence been
 1692� That leaves look pale, dreading the winter's n
 1708� Yet seem'd it winter still, and you away,
 1801� Such seems your beauty still. Three winters cold

Find patterns: grep

$ grep �n "Shall I compare thee" examples/sonnets.txt

51 / 76

https://en.wikipedia.org/wiki/Sonnet_18

Find patterns: grep (cont.)
Note that grep can be used to identify patterns in a group of �les (e.g. within a directory) too.

This is particularly useful if you are trying to identify a �le that contains, say, a function name.

Here's a simple example: Which days will I eat pasta this week?

I'm using the r (recursive) and l (just list the �les; don't print the output) �ags.

$ grep �rl "pasta" examples/meals

 examples/meals/monday.csv

Take a look at the grep man or cheat �le for other useful examples and �ags (e.g. �i for ignore case).

52 / 76

Manipulate text: sed
There are two main commands for manipulating text in the shell, namely sed and awk . Both of these are very powerful
and �exible. We'll brie�y look into sed for now. (Mac users, note that the MacOS sed works a bit differently; see here.)

sed is the stream editor command. It takes input from a stream - which in many cases will simply be a �le. It then
performs operations on the text as it is read, and returns the output.

53 / 76

https://unix.stackexchange.com/questions/13711/differences-between-sed-on-mac-osx-and-other-standard-sed

Example 1. Replace one text pattern with another.

$ cat examples/nursery.txt

 Jack and Jill
 Went up the hill

$ sed 's/Jack/Bill/g' examples/nursery.txt
$ cat examples/nursery.txt

 Bill and Jill
 Went up the hill
 Jack and Jill
 Went up the hill

Let's look at the expression s/Jack/Bill/g in detail:

The s indicates that we are going to run the
substitute function, which is used to replace text.
The / indicates the start of the pattern we are
searching for - Bill in this case.
The second / indicates the start of the replacement
we will make when the pattern is found.
The �nal / indicates the end of the replacement -
we can also optionally put �ags after this slash.
Here, g ensures global replacement (not just
replacement of the �rst match).

Manipulate text: sed
There are two main commands for manipulating text in the shell, namely sed and awk . Both of these are very powerful
and �exible. We'll brie�y look into sed for now. (Mac users, note that the MacOS sed works a bit differently; see here.)

sed is the stream editor command. It takes input from a stream - which in many cases will simply be a �le. It then
performs operations on the text as it is read, and returns the output.

53 / 76

https://unix.stackexchange.com/questions/13711/differences-between-sed-on-mac-osx-and-other-standard-sed

Manipulate text: sed (cont.)
Example 2. Find and count the 10 most commonly used words in Shakespeare's Sonnets.

The command below uses, among other things:

\s , the whitespace metacharacter
\n , the newline metacharacter
| , the pipe operator (more on that later)

$ sed 's/\s/\n/g' examples/sonnets.txt | sort | uniq �c | sort �nr | head -10

 725
 132
 90 ,
 56 e
 42 .
 34 A
 30 e,
 29 t,
 22 And
 20 t

54 / 76

Summary
head will show the �rst ten lines of a �le.
head �n 30 will show the �rst thirty lines of a �le, using the -n �ag to specify the number of lines.
tail will show the �nal ten lines of a �le.
tail �n 3 uses the -n �ag to specify three lines only.
tr 'a' 'b' is the translate characters command, which turns one set of characters into another.
cut can be used to extract parts of a line of text.
cut �d',' �f 3 shows how the �d or delimiter �ag is used to specify the delimiter to cut on and how the �f or
�eld �ag speci�es which of the �elds the text has been cut into is printed.
cut �c 2-4 uses the �c or characters �ag to specify that we are extracting a subset of characters in the line, in this
case characters two to four.
rev reverses text - by reversing, cutting and then re-reversing you can quickly extract text from the end of a line.
sort sorts the incoming text alphabetically. The �r �ag for sort reverses the sort order.
The uniq command removes duplicate lines - but only when they are next to each other, so you'll often use it in
combination with sort .
Your pager, for example the less program can be useful when inspecting the output of your text transformation
commands.

For a more detailed overview, see here.
55 / 76

https://effective-shell.com/docs/part-3-manipulating-text/

Good starting points are:

This chapter discussing regex in the context of the
shell
This base R regex intro
This intro from R4DS
This vignette from the stringr package
And, of course, the great presentations on the topic
featured in our I2DS Tools for Data Science
Workshop!

Also, make sure to master regular expressions!

56 / 76

https://effective-shell.com/docs/part-3-manipulating-text/regex-essentials/
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://r4ds.had.co.nz/strings.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://intro-to-data-science-21-workshop.github.io/

Redirects, pipes, and loops

57 / 76

You have learned about pipes in R already.
Understanding the concept of pipelines in the shell,
as well as how input and output work for command
line programs is critical to be able to use the shell
effectively.
Think again of the Unix philosophy of "doing one
thing, but doing it well" and combining multiple of
these modules.
Also, often you'll want to dump output in a �le as
part of your work�ow.
Let's learn how all this works.

Redirects, pipes, and loops

58 / 76

Redirect: >
You can send output from the shell to a �le using the redirect operator > .

For example, let's print a message to the shell using the echo command.

$ echo "At first, I was afraid, I was petrified"

 At first, I was afraid, I was petrified

59 / 76

Redirect: >
You can send output from the shell to a �le using the redirect operator > .

For example, let's print a message to the shell using the echo command.

$ echo "At first, I was afraid, I was petrified"

 At first, I was afraid, I was petrified

If you wanted to save this output to a �le, you need simply redirect it to the �lename of choice.

$ echo "At first, I was afraid, I was petrified" > survive.txt
$ find survive.txt �� Show that it now exists

 survive.txt

59 / 76

Redirect: > (cont.)
If you want to append text to an existing �le, then you should use �� .

Using > will try to overwrite the existing �le contents.

$ echo "'Kept thinking I could never live without you by my side" �� survive.txt
$ cat survive.txt

 At first, I was afraid, I was petrified
 'Kept thinking I could never live without you by my side

An example use case is when adding rules to your .gitignore, e.g. $ echo "*.csv" �� .gitignore .

60 / 76

Pipes: |
The pipe operator | is one of the coolest features in Bash.

It lets you send (i.e. "pipe") intermediate output to another command.
In other words, it allows us to chain together a sequence of simple operations and thereby implement a more
complex operation.

Here's a simple example:

$ cat �n examples/sonnets.txt | head �n100 | tail �n10

 91 Despite of wrinkles this thy golden time.
 92 But if thou live, remember'd not to be,
 93 Die single and thine image dies with thee.
 94
 95 IV
 96
 97 Unthrifty loveliness, why dost thou spend
 98 Upon thy self thy beauty's legacy?
 99 Nature's bequest gives nothing, but doth lend,
 100 And being frank she lends to those are free:

61 / 76

Iteration with for loops
Sometimes you want to loop an operation over certain parameters. for loops in Bash/Z shell work similarly to other
programming languages that you are probably familiar with.

The basic syntax is:

for i in LIST
do
 OPERATION $i �� the $ sign indicates a variable in bash
done

62 / 76

Iteration with for loops
Sometimes you want to loop an operation over certain parameters. for loops in Bash/Z shell work similarly to other
programming languages that you are probably familiar with.

The basic syntax is:

for i in LIST
do
 OPERATION $i �� the $ sign indicates a variable in bash
done

We can also condense things into a single line by using ; appropriately.

for i in LIST; do OPERATION $i; done

Note: Using ; isn't limited to for loops. Semicolons are a standard way to denote line endings in Bash/Z shell.

62 / 76

Example 1: Print a sequence of numbers
To help make things concrete, here's a simple for loop in action.

$ for i in 1 2 3 4 5; do echo $i; done

 1
 2
 3
 4
 5

63 / 76

Example 1: Print a sequence of numbers
To help make things concrete, here's a simple for loop in action.

$ for i in 1 2 3 4 5; do echo $i; done

 1
 2
 3
 4
 5

FWIW, we can use bash's brace expansion ({1��n}) to save us from having to write out a long sequence of numbers.

$ for i in {1��5}; do echo $i; done

 1
 2
 3
 4
 5

63 / 76

Example 2: Combine CSVs
Here's a more realistic for loop use-case: Combining (i.e. concatenating) multiple CSVs.

Say we want to combine all the "daily" �les in the examples/meals directory into a single CSV, which I'll call mealplan.csv .
Here's one attempt that incorporates various bash commands and tricks that we've learned so far. The basic idea is:

�. Create a new (empty) CSV
�. Then, loop over the relevant input �les, appending their contents to our new CSV

�� create an empty CSV
$ touch examples/meals/mealplan.csv
�� loop over the input files and append their contents to our new CSV
$ for i in $(ls examples/meals��day.csv)
> do
> cat $i �� examples/meals/mealplan.csv
> done

64 / 76

Example 2: Combine CSVs
Here's a more realistic for loop use-case: Combining (i.e. concatenating) multiple CSVs.

Say we want to combine all the "daily" �les in the examples/meals directory into a single CSV, which I'll call mealplan.csv .
Here's one attempt that incorporates various bash commands and tricks that we've learned so far. The basic idea is:

�. Create a new (empty) CSV
�. Then, loop over the relevant input �les, appending their contents to our new CSV

�� create an empty CSV
$ touch examples/meals/mealplan.csv
�� loop over the input files and append their contents to our new CSV
$ for i in $(ls examples/meals��day.csv)
> do
> cat $i �� examples/meals/mealplan.csv
> done

Did it work? (See next slide.)

64 / 76

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

 day,breakfast,lunch,dinner
 friday,pancakes,ramen,stew
 day,breakfast,lunch,dinner
 monday,muesli,sandwich,pasta
 day,breakfast,lunch,dinner
 saturday,muesli,sandwich,pad thai
 day,breakfast,lunch,dinner
 sunday,muesli,roast,leftovers
 day,breakfast,lunch,dinner
 thursday,muesli,salad,tacos
 day,breakfast,lunch,dinner
 tuesday,muesli,soup,roast
 day,breakfast,lunch,dinner
 wednesday,muesli,sandwich,pizza

65 / 76

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

 day,breakfast,lunch,dinner
 friday,pancakes,ramen,stew
 day,breakfast,lunch,dinner
 monday,muesli,sandwich,pasta
 day,breakfast,lunch,dinner
 saturday,muesli,sandwich,pad thai
 day,breakfast,lunch,dinner
 sunday,muesli,roast,leftovers
 day,breakfast,lunch,dinner
 thursday,muesli,salad,tacos
 day,breakfast,lunch,dinner
 tuesday,muesli,soup,roast
 day,breakfast,lunch,dinner
 wednesday,muesli,sandwich,pizza

Hmmm. Sort of, but we need to get rid of the repeating header.

65 / 76

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

 day,breakfast,lunch,dinner
 friday,pancakes,ramen,stew
 day,breakfast,lunch,dinner
 monday,muesli,sandwich,pasta
 day,breakfast,lunch,dinner
 saturday,muesli,sandwich,pad thai
 day,breakfast,lunch,dinner
 sunday,muesli,roast,leftovers
 day,breakfast,lunch,dinner
 thursday,muesli,salad,tacos
 day,breakfast,lunch,dinner
 tuesday,muesli,soup,roast
 day,breakfast,lunch,dinner
 wednesday,muesli,sandwich,pizza

Hmmm. Sort of, but we need to get rid of the repeating header.

Can you think of a way? (Hint: tail and head ...)

65 / 76

Example 2: Combine CSVs (cont.)
Let's try again. First delete the old �le so we can start afresh.

$ rm �f examples/meals/mealplan.csv �� delete old file

66 / 76

Example 2: Combine CSVs (cont.)
Let's try again. First delete the old �le so we can start afresh.

$ rm �f examples/meals/mealplan.csv �� delete old file

Here's our adapted gameplan:

First, create the new �le by grabbing the header (i.e. top line) from any of the input �les and redirecting it. No need
for touch this time.
Next, loop over all the input �les as before, but this time only append everything after the top line.

�� create a new CSV by redirecting the top line of any file
$ head -1 examples/meals/monday.csv > examples/meals/mealplan.csv
�� loop over the input files, appending everything after the top line
$ for i in $(ls examples/meals��day.csv)
> do
> tail �n +2 $i �� examples/meals/mealplan.csv
> done

66 / 76

Example 2: Combine CSVs (cont.)
It worked!

$ cat examples/meals/mealplan.csv

 day,breakfast,lunch,dinner
 friday,pancakes,ramen,stew
 monday,muesli,sandwich,pasta
 saturday,muesli,sandwich,pad thai
 sunday,muesli,roast,leftovers
 thursday,muesli,salad,tacos
 tuesday,muesli,soup,roast
 wednesday,muesli,sandwich,pizza

67 / 76

Example 2: Combine CSVs (cont.)
It worked!

$ cat examples/meals/mealplan.csv

 day,breakfast,lunch,dinner
 friday,pancakes,ramen,stew
 monday,muesli,sandwich,pasta
 saturday,muesli,sandwich,pad thai
 sunday,muesli,roast,leftovers
 thursday,muesli,salad,tacos
 tuesday,muesli,soup,roast
 wednesday,muesli,sandwich,pizza

We still have to sort the correct week order, but that's an easy job in R.

The explicit bene�t of doing the concatenating in the shell is that it can be much more ef�cient, since all the �les
don't simultaneously have to be held in memory (i.e RAM).
This doesn't matter here, but can make a dramatic difference once we start working with lots of �les (or even a few
really big ones).

67 / 76

Scripting

68 / 76

Writing code interactively in the shell makes a lot of
sense when you are exploring data, �le structures, etc.

However, it's also possible (and often desirable) to write
reproducible shell scripts that combine a sequence of
commands.

These scripts are demarcated by their .sh �le extension.

Let's look at the contents of a short shell script,
hello.sh , that is included in the examples folder:

$ cat examples/hello.sh

 ��/bin/sh
 echo "\nHello World!\n"

What does this script do?

Scripting

69 / 76

Hello World!
��/bin/sh
echo "\nHello World!\n"

��/bin/sh is a shebang), indicating which program to run the command with (here: any Bash-compatible shell).
However, it is typically ignored (note that it begins with the hash comment character.)

70 / 76

https://en.wikipedia.org/wiki/Shebang_(Unix

Hello World! (cont.)
��/bin/sh
echo "\nHello World!\n"

��/bin/sh is a shebang), indicating which program to run the command with (here: any Bash-compatible shell).
However, it is typically ignored (note that it begins with the hash comment character.)
echo "\nHello World!\n" is the actual command that we want to run.

70 / 76

https://en.wikipedia.org/wiki/Shebang_(Unix

Hello World! (cont.)
��/bin/sh
echo "\nHello World!\n"

��/bin/sh is a shebang), indicating which program to run the command with (here: any Bash-compatible shell).
However, it is typically ignored (note that it begins with the hash comment character.)
echo "\nHello World!\n" is the actual command that we want to run.

To run this simple script, you can just type in the �le name and press enter.

$ examples/hello.sh
$ # bash examples/hello.sh �� Also works

 Hello World!

70 / 76

https://en.wikipedia.org/wiki/Shebang_(Unix

Rscript
It's important to realize that we aren't limited to running shell scripts in the shell. The exact same principles carry over to
other programs and �les.

The most relevant case for this class is the Rscript command for (you guessed it) executing R scripts and expressions.
For example:

$ Rscript �e "cat('Hello World, from R!')"

 Hello World, from R!

71 / 76

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/Rscript.html

Rscript
It's important to realize that we aren't limited to running shell scripts in the shell. The exact same principles carry over to
other programs and �les.

The most relevant case for this class is the Rscript command for (you guessed it) executing R scripts and expressions.
For example:

$ Rscript �e "cat('Hello World, from R!')"

 Hello World, from R!

Of course, the more typical Rscript use case is to execute full length R scripts. An optional, but very useful feature here
is the ability to pass extra arguments from the shell to your R script. Consider the hello.R script in the examples folder:

$ cat examples/hello.R

 args = commandArgs(trailingOnly = TRUE)
 i = args[1]; j = args[2]

 cat('Hello World, from R!\n',
 i, '+', j, '=', as.integer(i) + as.integer(j))

71 / 76

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/Rscript.html

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass them on as objects that can
be used within R.

72 / 76

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass them on as objects that can
be used within R.

Let's run the script to see it in action.

$ Rscript examples/hello.R 12 9

 Hello World, from R!
 12 + 9 = 21

72 / 76

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass them on as objects that can
be used within R.

Let's run the script to see it in action.

$ Rscript examples/hello.R 12 9

 Hello World, from R!
 12 + 9 = 21

Again, including trailing arguments is entirely optional. You could run Rscript myfile.R without any problems. But it
often proves very useful for the type of work that you'd likely be using Rscript for (e.g. batching big jobs).

72 / 76

Editing and writing scripts in the shell
Say you want to edit the hello.sh script. We have already seen how to append text lines to a �le. But when it comes to
more complicated editing work, you're better off using a command-line editor:

An easy starting point is nano. (Windows users, see here.)
Another popular (and nerdy) option is vim. Extremely powerful, but a steep learning curve (I am told).
More options here.

A key advantage of command-line editors is that using them �ts the command-line work�ow - the keyboard is the only
hardware input device.

But it's also absolutely legit to open (and modify) .sh scripts with your ordinary text editor. It will break the "�ow"
though.

With nano , open the script by typing $ nano examples/hello.sh .

Note that the functionality is more limited than a normal text editor.
Once you are �nished editing, hit Ctrl + X , then y and enter to exit.
Finally, run the edited version of the script.

73 / 76

https://www.nano-editor.org/
https://stackoverflow.com/questions/36802996/bash-nano-command-not-found-at-windows-git-bash
https://missing.csail.mit.edu/2020/editors/
https://itsfoss.com/command-line-text-editors-linux/

Next steps

74 / 76

Things we didn't cover today
We covered a lot of ground today. I hope that I've given you a sense of how the shell works and how powerful it is.

My main goal has been to "demystify" the shell, so that you aren't intimidated when we use shell commands later on.

At the same time, there's loads that we didn't cover.

User roles and �le permissions, environment variables, SSH, memory management (e.g. top and htop), GNU parallel,
etc.
Automation; see here, here, and here are great places to start learning about automation on your own.

If you want to dig deeper, check out

The Unix Shell (Software Carpentery)
The Unix Workbench (Sean Kross)
Data Science at the Command Line (Jeroen Janssens)
Effective Shell (Dave Kerr)
Using AWK and R to parse 25tb (Nick Strayer)

75 / 76

https://ss64.com/bash/top.html
https://hisham.hm/htop/
https://stat545.com/automation-overview.html
https://books.ropensci.org/drake/index.html
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
http://swcarpentry.github.io/shell-novice/
https://seankross.com/the-unix-workbench/
https://www.datascienceatthecommandline.com/
https://effective-shell.com/
https://livefreeordichotomize.com/2019/06/04/using_awk_and_r_to_parse_25tb/

Next steps

Assignment
No further assignment! Be sure to hand in assignments 4 and 5 until the updated deadlines.

Next lecture
Back to R. Become an even more ef�cient R programmer with Debugging, automation, packaging.

76 / 76

