
Introduction to Data Science
Session 5: Web data and technologies

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

�. Web data for data science

�. HTML basics

�. XPath basics

�. CSS basics

�. Scraping static webpages with R

�. Web scraping: good practice

�. Summary

2 / 69

Web data for data science

3 / 69

What is web data?

4 / 69

What is web data? (cont.)

5 / 69

So what is web data, really?
Not all data you get from the web is "web data".
Web data is data that is created on, for, or via the
web. By that de�nition, a survey dataset that you
download from a data repository is not web data.
On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.
Examples of web data:

Online news articles
Social media network structures
Crowdsourced databases (e.g., Wikidata)
Server logs (e.g., viewership statistics)
Data from surveys, experiments, clickworkers
Just any website

What is web data? (cont.)

6 / 69

So what is web data, really?
Not all data you get from the web is "web data".
Web data is data that is created on, for, or via the
web. By that de�nition, a survey dataset that you
download from a data repository is not web data.
On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.
Examples of web data:

Online news articles
Social media network structures
Crowdsourced databases (e.g., Wikidata)
Server logs (e.g., viewership statistics)
Data from surveys, experiments, clickworkers
Just any website

And why is web data attractive?
Data is abundant online.
Human behavior increasingly takes place online.
Countless services track human behavior.
Getting data from the web is cheap and often quick.
An analysis work�ow that involves web data can
often be easily updated.
The vast majority of web data was not created with a
data analysis purpose in mind. This fact is often a
feature, not a bug.

Today, we focus on one particular way of collecting data
from the web: web scraping. This also limits the type of
web data we'll be talking about (basically: data from
static webpages). But it'll be fun nevertheless.

What is web data? (cont.)

6 / 69

What is web scraping?
�. Pulling (unstructured) data from websites (HTMLs)
�. Bringing it into shape (into an analysis-ready

format)

The philosophy of scraping with R
No point-and-click procedure
Script the entire process from start to �nish
Automate

The downloading of �les
The scraping of information from web sites
Tapping APIs
Parsing of web content
Data tidying, text data processing

Easily scale up scraping procedures
Scheduling of scraping tasks

Credit prowebscraping.com

Web scraping

7 / 69

http://prowebscraping.com/web-scraping-vs-web-crawling/

To fully unlock the potential of web data for data
science, we draw on certain web technologies.
Importantly, often a basic understanding of these
technologies is suf�cient as the focus is on web
data collection, not web development.
Speci�cally, we have to understand

How our machine/browser/R communicates
with web servers (→ HTTP/S)
How websites are built (→ HTML, CSS, basics of
JavaScript)
How content in webpages can be effectively
located (→ XPath, CSS selectors)
How dynamic web applications are executed
and tapped (→ AJAX, Selenium)
How data by web services is distributed and
processed (→ APIs, JSON, XML)

Credit ADCR

Technologies of the world wide web

8 / 69

https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

HTML basics

9 / 69

What is HTML?
HyperText Markup Language
Markup language = plain text + markups
Originally speci�ed by Tim Berners-Lee at CERN in 1989/90
W3C standard for the construction of websites.
The fundamentals of HTML haven't changed much recently. Current
version is HTML 5.2 (published in 2017).

What is it good for?
In the early days, the internet was mainly good for sharing texts. But
plain text is boring. Markup is fun!
HTML lies underneath of what you see in your browser. You don't see it
because your browser interprets and renders it for you.
A basic understanding of HTML helps us locate the information we want
to retrieve.

HTML background

10 / 69

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium

The DOM tree
HTML documents are hierarchically structured. Think
of them as a tree with multiple nodes and branches.
When a webpage (HTML resource) is loaded, the
browser creates a Document Object Model of that
page - the DOM Tree.
Think of it as a representation that considers all
HTML elements as objects than can be accessed.

Parts of the tree
The DOM is constituted of nodes, which are just
data types that can be referred to - such as
"attribute node", "text node", or "element node".
A node set is a set of nodes. This will become
relevant when you learn about XPath, which you can
use to access multiple nodes (e.g., all title nodes).

<!DOCTYPE html>
 <html>
 <head>
 <title id=1>First HTML��title>
 ��head>
 <body>
 I am your first HTML file!
 ��body>
��html>

HTML tree structure

11 / 69

https://en.wikipedia.org/wiki/Document_Object_Model

Elements
Elements are a combination of start tags, content,
and end tags.
Example: <title>First HTML��title>
An element is everything from (including) the
element's start tag to (including) the element's end
tag, but also other elements that are nested within
that element.
Syntax:

Component Representation

Element title title

Start tag <title>

End tag ��title>

Value First HTML

Attributes
Describe elements and are stored in the start tag.
There are speci�c attributes for speci�c elements.
Example: <a href="http:�����.r�
datacollection.com/">Link to Homepage��a>

Syntax:
Name-value pairs: name="value"
Simple and double quotation marks possible
Several attributes per element possible

Why tags and attributes are important
Tags structure HTML documents.
In the context of web scraping, the structure can be
exploited to locate and extract data from websites.

HTML: elements and attributes

12 / 69

Important tags and attributes

Anchor tag <a>
Links to other pages or resources.
Classical links are always formatted with an anchor tag.
The href attribute determines the target location.
The value is the name of the link.

Link to another resource:

Link with absolute path��a>

Reference within a document:

Reference point��a>

Link to a reference within a document:

Link to reference point��a>

13 / 69

Important tags and attributes

Heading tags <h1> , <h2> , ..., and paragraph tag <p>
Structure text and paragraphs.
Heading tags range from level 1 to 6.
Paragraph tag induces a line break.

Examples:

<p>This text is going to be a paragraph one day and separated from other text by line breaks.��p>

<h1>heading of level 1 - this will be BIG��h1>
���
<h6>heading of level 6 - the smallest heading��h6>

14 / 69

Important tags and attributes

Listing tags , , and <dl>
The tag creates a numeric list.
The tag creates an unnumbered list.
The <dl> tag creates a description list.
List elements within and are indicated with the tag.

Example:

 Dogs��li>
 Cats��li>
 Fish��li>
��ul>

15 / 69

Example of CSS de�nition:

div.happy {
 color:pink;
 font�family:"Comic Sans MS";
 font�size:120%
}
span.happy {
 color:pink;
 font�family:"Comic Sans MS";
 font�size:120%
}

In the HTML document:

<div class="happy">
 <p>I am a happy�styled paragraph��p>
��div>

unhappy text with some
happiness��span>

Important tags and attributes

Organizational and styling tags <div> and
They are used to group content over lines (<div> , creating a block-level element) or within lines (, creating an
inline-element).
By grouping or dividing content into blocks, it's easier to identify or apply different styling to them.
They do not change the layout themselves but work together with CSS (see later!).

16 / 69

Important tags and attributes

Form tag <form>
Allows to incorporate HTML forms.
Client can send information to the server via forms.
Whenever you type something into a �eld or click on radio buttons in your browser, you are interacting with forms.

Example:

<form name="submitPW" action="Passed.html" method="get">
 password:
 <input name="pw" type="text" value="">
 <input type="submit" value="SubmitButtonText"
��form>

17 / 69

Important tags and attributes

Table tags <table> , <tr> , <td> , and <th>
Standard HTML tables always follow a standard architecture.
The different tags allow de�ning the table as a whole, individual rows (including the heading), and cells.
If the data is hidden in tables, scraping will be straightforward.

Example:

<table>
 <tr> <th>Rank��th> <th>Nominal GDP��th> <th>Name��th> ��tr>
 <tr> <th>��th> <th>(per capita, USD)��th> <th>��th> ��tr>
 <tr> <td>1��td> <td>170,373��td> <td>Lichtenstein��td> ��tr>
 <tr> <td>2��td> <td>167,021��td> <td>Monaco��td> ��tr>
 <tr> <td>3��td> <td>115,377��td> <td>Luxembourg��td> ��tr>
 <tr> <td>4��td> <td>98,565��td> <td>Norway��td> ��tr>
 <tr> <td>5��td> <td>92,682��td> <td>Qatar��td> ��tr>
��table>

18 / 69

More HTML
All in all there are over 100 HTML elements.
But overall, it's still a fairly tight and easy-to-understand markup
language.
Knowing more about the rest is probably not necessary to become a
good web scraper, but it helps parsing (in your brain) HTML documents
quicker.

More resources
Check out the excellent MDN Web Docs for an overview, which also
point to additional tutorials and references.
The W3Schools tutorials are also a classic.
While you're at it, you might also want to learn about related
technologies such as CSS (used to specify a webpage's
appearance/layout) and JavaScript (used to enrich HTMLs with
additional functionality and options to interact).

More resources on HTML

19 / 69

https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3schools.com/

Using your browser to access webpages
�. You click on a link, enter a URL, run a Google query, etc.
�. Browser/your machine sends request to server that hosts website.
�. Server returns resource (often an HTML document).
�. Browser interprets HTML and renders it in a nice fashion.

Using R to access webpages
�. You manually specify a resource.
�. R/your machine sends a request to the server that hosts the website.
�. The server returns a resource (e.g., an HTML �le).
�. R parses the HTML, but does not render it in a nice fashion.
�. It's up to you to tell R what content to extract.

Accessing the web using your browser vs. R

20 / 69

Interacting with your browser

On web browsers
Modern browsers are complex pieces of software that take care of multiple operations while you browse the web.
And they're basically all doing a good job.1 Common operations are to retrieve resources, render and display
information, and provide interface for user-webpage interaction.
Although our goal is to automate web data retrieval, the browser is an important tool in web scraping work�ow.

The use of browsers for web scraping
Give you an intuitive impression of the architecture of a webpage
Allow you to inspect the source code
Let you construct XPath/CSS selector expressions with plugins
Render dynamic web content (JavaScript interpreter)

1 Check out this Wikipedia article on the Browser Wars that happened in the 1990s and 2000s (yes, there was Browser War I and
Browser War II - and for once Germany was not to blame) to relive some of your instructor's pains when he started to look into this
"internet".

21 / 69

https://en.wikipedia.org/wiki/Browser_wars

Goal: retrieving data from a
Wikipedia page on List of tallest
buildings
Right-click on page (anywhere)
Select View Page Source
HTML (CSS, JavaScript) code can
be ugly
But looking more closely, we
�nd the displayed information

Inspecting HTML source code

0:00 / 1:12

22 / 69

https://en.wikipedia.org/wiki/List_of_tallest_buildings

Goal: retrieving data from a
Wikipedia page on List of tallest
buildings
Right-click on the element of
interest
Select Inspect
The Web Developer Tools
window pops up
Corresponding part in the HTML
tree is highlighted
Interaction with the tree
possible!

Inspecting the live HTML source code with the DOM
explorer

0:00 / 0:58

23 / 69

https://en.wikipedia.org/wiki/List_of_tallest_buildings

When to inspect the complete page source
Check whether data is in static source code (the search function helps!)
For small HTML �les: understand structure

When to use the DOM explorer
Almost always
Particularly useful to construct XPath/CSS selector expressions
To monitor dynamic changes in the DOM tree

A note on browser differences
Inspecting the source code (as shown on the following slides) works
more or less identically in Chrome and Firefox.
In Safari, go to → Preferences , then → Advanced and select Show
Develop menu in menu bar . This unlocks the Show Page Source and
Inspect options and the Web Developer Tools.

Credit watershedcreative.com

When to do what with your browser

24 / 69

http://watershedcreative.com/naked/html-tree.html

XPath basics

25 / 69

Accessing the DOM tree with R

Different perspectives on HTML
HTML documents are human-readable.
HTML tags structure the document, comprising the DOM.
Web user perspective: The browser interprets the code and renders the page.
Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

26 / 69

Accessing the DOM tree with R

Different perspectives on HTML
HTML documents are human-readable.
HTML tags structure the document, comprising the DOM.
Web user perspective: The browser interprets the code and renders the page.
Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

HTML parsing
Our goal is to get HTML into R while retaining the tree structure. That's similar to getting a spreadsheet into R and
retaining the rectangular structure.
HTML is human-readable, so we could also import HTML �les as plain text via readLines() . That's a bad option
though - the document's structure would not be retained.
The xml2 package allows us to parse XML-style documents. HTML is a "�avor" of XML, so it works for us.
The rvest package, which we will mainly use for scraping, wraps the xml2 package, so we rarely have to load it
manually.
There is one high-level function to remember: read_html() . It represents the HTML in a list-style fashion.

26 / 69

Accessing the DOM tree with R (cont.)

Getting HTML into R
Parsing a website is straightforward:

R> library(rvest)
R> parsed_doc �� read_html("https:��google.com")
R> parsed_doc

�� {html_document}
�� <html lang="de" dir="ltr">
�� [1] <head>\n<meta http�equiv="Content-Type" content="text/html; charset=UTF-8 ���
�� [2] <body>\n<div class="signin"><a href="https:��accounts.google.com/ServiceL ���

There are various functions to inspect the parsed document. They aren't really helpful - better use the browser instead if
you want to dive into the HTML.

R> xml2��html_structure(parsed_doc)
R> xml2��as_list(parsed_doc)

27 / 69

What's XPath?

De�nition
Short for XML Path Language, another W3C standard.
A query language for XML-based documents (including HTML).
With XPath we can access node sets (e.g., elements, attributes) and extract content.

Why XPath for web scraping?
Source code of webpages (HTML) structures both layout and content.
Not only content, but context matters!
XPath enables us to extract content based on its location in the document (and potentially other features).
With XPath, we can tell R to do things like:

�. Give me all elements in the document!
�. Look for all <table> elements in the document and give me the third one!
�. Extract all content in <p> elements that is labelled with class=newscontent !

28 / 69

Example: source code
<!DOCTYPE HTML PUBLIC "-��IETF��DTD HTML��EN">
<html>
 <head>
 <title>Collected R wisdoms��title>
 ��head>
 <body>
 <div id="R Inventor" lang="english" date="June/2003">
 <h1>Robert Gentleman��h1>
 <p><i>'What we have is nice, but we need something very different'��i>��p>
 <p>Source: ��b>Statistical Computing 2003, Reisensburg��p>
 ��div>
 <div lang="english" date="October/2011">
 <h1>Rolf Turner��h1>
 <p><i>'R is wonderful, but it cannot work magic'��i>

<emph>answering a request for automatic generation of 'data from a known mean and 95% CI'��emph>��p>
 <p>Source: ��b>R-help��a>��p>
 ��div>
 <address>
 <i>The book homepage��i>��a>
 ��address>
 ��body>
��html>

29 / 69

Example: DOM tree

30 / 69

Applying XPath on HTML in R
Load package rvest
Parse HTML document with read_html()

R> library(rvest)
R> parsed_doc �� read_html("materials/fortunes.html")
R> parsed_doc

�� {html_document}
�� <html>
�� [1] <head>\n<meta http�equiv="Content-Type" content="text/html; charset=UTF-8 ���
�� [2] <body>\n<div id="R Inventor" lang="english" date="June/2003">\n <h1>Robe ���

Query document using html_elements()
rvest can process XPath queries as well as CSS selectors.
Today, we'll focus on XPath:

R> html_elements(parsed_doc, xpath = "��div[last()]/p/i")

�� {xml_nodeset (1)}
�� [1] <i>'R is wonderful, but it cannot work magic'��i>

31 / 69

Grammar of XPath

Basic rules
�. We access nodes/elements by writing down the hierarchical structure in the DOM that locates the element set of

interest.
�. A sequence of nodes is separated by / .
�. The easiest localization of a element is given by the absolute path (but often not the most ef�cient one!).
�. Apply XPath on DOM in R using html_elements() .

R> html_elements(parsed_doc, xpath = "��div[last()]/p/i")

�� {xml_nodeset (1)}
�� [1] <i>'R is wonderful, but it cannot work magic'��i>

32 / 69

Grammar of XPath

Absolute vs. relative paths
Absolute paths start at the root element and follow the whole way down to the target element (with simple slashes, /).

R> html_elements(parsed_doc, xpath = "/html/body/div/p/i")

�� {xml_nodeset (2)}
�� [1] <i>'What we have is nice, but we need something very different'��i>
�� [2] <i>'R is wonderful, but it cannot work magic'��i>

Relative paths skip nodes (with double slashes, ��).

R> html_elements(parsed_doc, xpath = "��body��p/i")

�� {xml_nodeset (2)}
�� [1] <i>'What we have is nice, but we need something very different'��i>
�� [2] <i>'R is wonderful, but it cannot work magic'��i>

Relative paths are often preferrable. They are faster to write and more comprehensive. On the other hand, they are less
targeted and therefore potentially less robust, and running them takes more computing time, as the entire tree has to be
evaluated. But that's usually not relevant for reasonably small documents.

33 / 69

Grammar of XPath

The wildcard operator
Meta symbol *
Matches any element
Works only for one arbitrary element
Far less important than, e.g., wildcards in content-based queries (regex!)

R> html_elements(parsed_doc, xpath = "/html/body/div/*/i")

�� {xml_nodeset (2)}
�� [1] <i>'What we have is nice, but we need something very different'��i>
�� [2] <i>'R is wonderful, but it cannot work magic'��i>

R> # the following does not work:
R> html_elements(parsed_doc, xpath = "/html/body/div/*/i")

�� {xml_nodeset (2)}
�� [1] <i>'What we have is nice, but we need something very different'��i>
�� [2] <i>'R is wonderful, but it cannot work magic'��i>

34 / 69

Grammar of XPath

Navigational operators "."and "��"
"." accesses elements on the same level ("self axis"), which is useful when working with predicates (see later!).
"��" accesses elements at a higher hierarchical level.

R> html_elements(parsed_doc, xpath = "��title/��")

�� {xml_nodeset (1)}
�� [1] <head>\n<meta http�equiv="Content-Type" content="text/html; charset=UTF-8 ���

R> html_elements(parsed_doc, xpath = "��div[starts�with(./@id, 'R')]")

�� {xml_nodeset (1)}
�� [1] <div id="R Inventor" lang="english" date="June/2003">\n <h1>Robert Gentl ���

35 / 69

Family relations between elements
The tools learned so far are sometimes not
suf�cient to access speci�c elements without
accessing other, undesired elements as well.
Relationship statuses are useful to establish
unambiguity.
Can be combined with other elements of the
grammar
Basic syntax: element1/relation��element2
We describe relation of element2 to element1
element2 is to be extracted - we always extract the
element at the end!

Element (node) relations ("axes") in XPath

36 / 69

Element (node) relations in XPath

Axis name Description

ancestor All ancestors (parent, grandparent etc.) of the current element

ancestor�or�self All ancestors of the current element and the current element itself

attribute All attributes of the current element

child All children of the current element

descendant All descendants (children, grandchildren etc.) of the current element

descendant�or�self All descendants of the current element and the current element itself

following Everything in the document after the closing tag of the current element

following�sibling All siblings after the current element

parent The parent of the current element

preceding All elements that appear before the current element, except ancestors/attribute elements

preceding�sibling All siblings before the current element

self The current element
37 / 69

Element (node) relations in XPath
Example: access the <div> elements that are ancestors to an <a> element:

R> html_elements(parsed_doc, xpath = "��a/ancestor��div")

�� {xml_nodeset (1)}
�� [1] <div lang="english" date="October/2011">\n <h1>Rolf Turner��h1>\n <p><i ���

Another example: Select all <h1> nodes that precede a <p> node:

R> html_elements(parsed_doc, xpath = "��p/preceding�sibling��h1")

�� {xml_nodeset (2)}
�� [1] <h1>Robert Gentleman��h1>
�� [2] <h1>Rolf Turner��h1>

38 / 69

Predicates

What are predicates?
Predicates are conditions based on an element's features (true/false).
Think of them as ways to �lter nodesets.
They are applicable to a variety of features: name, value attribute.
Basic syntax: element[predicate]

Select all �rst <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "��div/p[1]")

�� {xml_nodeset (2)}
�� [1] <p><i>'What we have is nice, but we need something very different'��i>��p>
�� [2] <p><i>'R is wonderful, but it cannot work magic'��i>
<emph>answering ���

39 / 69

Predicates

What are predicates?
Predicates are conditions based on an element's features (true/false).
Think of them as ways to �lter nodesets.
They are applicable to a variety of features: name, value attribute.
Basic syntax: element[predicate]

Select all �rst <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "��div/p[1]")

�� {xml_nodeset (2)}
�� [1] <p><i>'What we have is nice, but we need something very different'��i>��p>
�� [2] <p><i>'R is wonderful, but it cannot work magic'��i>
<emph>answering ���

Can you �nd out what the following expressions do?

R> html_elements(parsed_doc, xpath = "��div/p[last()-1]")
R> html_elements(parsed_doc, xpath = "��div[count(./@*)>2]")
R> html_elements(parsed_doc, xpath = "��*[string�length(text())>50]")

39 / 69

Predicates (cont.)
Select all <div> nodes that contain an attribute named ’October/2011’ , using a textual predicate:

R> html_elements(parsed_doc, xpath ="��div[@date='October/2011']")

�� {xml_nodeset (1)}
�� [1] <div lang="english" date="October/2011">\n <h1>Rolf Turner��h1>\n <p><i ���

Rudimentary string matching is also possible using string functions like contains() , starts�with() , or ends�with() .

40 / 69

Predicates (cont.)
Select all <div> nodes that contain an attribute named ’October/2011’ , using a textual predicate:

R> html_elements(parsed_doc, xpath ="��div[@date='October/2011']")

�� {xml_nodeset (1)}
�� [1] <div lang="english" date="October/2011">\n <h1>Rolf Turner��h1>\n <p><i ���

Rudimentary string matching is also possible using string functions like contains() , starts�with() , or ends�with() .

Can you tell what the following calls do?

R> html_elements(parsed_doc, xpath = "��div[starts�with(./@id, 'R')]")
R> html_elements(parsed_doc, xpath = "��div[substring�after(./@date, '/')='2003']��i")

40 / 69

Content extraction
Until now, we used XPath expressions to extract complete nodes or nodesets (that is, elements with tags).
However, in most cases we're interested in extracting the content only.
To that end, we can use extractor functions that are applied on the output of XPath query calls.

Function Argument Return value

html_text() Element value

html_text2() Element value (with a bit more cleanup)

html_attr() name Element attribute

html_attrs() (All) element attributes

html_name() trim Element name

html_children() Element children

41 / 69

Content extraction (cont.)
Extracting element values/content:

R> html_elements(parsed_doc, xpath = "��title") %>% html_text2()

�� [1] "Collected R wisdoms"

Extracting attributes:

R> html_elements(parsed_doc, xpath = "��div[1]") %>% html_attrs()

�� [[1]]
�� id lang date
�� "R Inventor" "english" "June/2003"

Extracting attribute values:

R> html_elements(parsed_doc, xpath = "��div") %>% html_attr("lang")

�� [1] "english" "english"

42 / 69

More XPath?

Training resources
XPath is a little language of its own. As always with languages, mastery comes with practice.
A good environment for practice is the XPath expression testbed at whitebeam.org.
Also check out this cheat sheet.

XPath creator tools
Now, do you really have to construct XPath expressions by your own? No! At least not always.
SelectorGadget: http://selectorgadget.com is a browser plugin that constructs XPath statements via a point-and-
click approach. The generated expressions are not always ef�cient and effective though (more on this later).
Web developer tools - the internal browser functionality to study the DOM, among other things, also lets you extract
XPath statements for selected nodes. These are speci�c to unique nodes/elements though, and therefore less
helpful to extract node sets. (But they come in handy when we want to script live navigation, e.g. for Selenium.)

43 / 69

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
https://devhints.io/xpath
http://selectorgadget.com/

CSS basics

44 / 69

Background
Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.
By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML
�. External CSS. Inside <head> with a reference to the

external �le inside the <link> element.
�. Internal CSS. Inside <head> and stored in <style>

elements.
�. Inline CSS. Inside <body> using the style attribute

of elements.

What is CSS?

45 / 69

Background
Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.
By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML
�. External CSS. Inside <head> with a reference to the

external �le inside the <link> element.
�. Internal CSS. Inside <head> and stored in <style>

elements.
�. Inline CSS. Inside <body> using the style attribute

of elements.

External CSS

<head>
 <link rel="stylesheet" href="mystyle.css">
��head>

Internal CSS

<head>
 <style>
 h1 {
 color: red;
 margin�left: 20px;
 }
 ��style>
��head>

Inline CSS

<p style="color: blue;">This is a paragraph.��p>

What is CSS?

45 / 69

Selectors
CSS selectors �nd/select the HTML elements that
should be styled.
There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels", as
in <p id="para1"> . The respective CSS selector
would be #para1 .
CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large"> . Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large .

CSS selectors

46 / 69

Selectors
CSS selectors �nd/select the HTML elements that
should be styled.
There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels", as
in <p id="para1"> . The respective CSS selector
would be #para1 .
CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large"> . Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large .

Writing CSS selectors
Just as XPath, CSS selectors are a little language of
their own.
I won't teach you more about it, but you might
nevertheless want to learn it.
Check out the CSS diner tutorial at
https://�ukeout.github.io/. It's one of the best
tutorials of anything out there.

CSS selectors

46 / 69

https://flukeout.github.io/

Scraping static webpages with R

47 / 69

Key tools for scraping static webpages
�. You are able to inspect HTML pages in your browser

using the web developer tools.
�. You are able to parse HTML into R with rvest .
�. You are able to speak XPath (or CSS selectors).
�. You are able to apply XPath expressions with rvest .
�. You are able to tidy web data with R/ dplyr / regex .

The big picture
Every scraping project is different, but the coding
pipeline is fundamentally similar.
The (technically) hardest steps are location (XPath,
CSS selectors) and extraction (clean-up), sometimes
the scaling (from one to multiple sources).

The scraping work�ow

48 / 69

rvest is a suite of scraping tools. It is part of the tidyverse and has made
scraping with R much more convenient.

There are three key rvest verbs that you need to learn.1

�. read_html() : Read (parsing) an HTML resource.

�. html_elements() : Find elements that match a CSS selector or XPath
expression.

�. html_text2() : Extract the text/value inside the node set.

Web scraping with rvest

1 There is more in rvest than what we can cover today. Have a glimpse at the overview at tidyverse.org and at this excellent
(unof�cial) cheat sheet.

49 / 69

https://rvest.tidyverse.org/
https://github.com/yusuzech/r-web-scraping-cheat-sheet

We are going to scrape a
information from a
Wikipedia article on
women philosophers
available at
https://en.wikipedia.org/wiki/
List_of_women_philosophers.
The article provides two
types of lists - one by
period and one sorted
alphabetically. We want
the alphabetical list.
The information we are
actually interested in -
names - is stored in
unordered list elements.

Web scraping with rvest: example

50 / 69

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_women_philosophers

Scraping HTML tables: example (cont.)
Step 1: Parse the page

R> url_p �� read_html("https:��en.wikipedia.org/wiki/List_of_women_philosophers")

51 / 69

Scraping HTML tables: example (cont.)
Step 1: Parse the page

R> url_p �� read_html("https:��en.wikipedia.org/wiki/List_of_women_philosophers")

Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set �� html_elements(url_p, xpath = "��h2/span[text()='Alphabetically']��following��li/a[1]")

51 / 69

Scraping HTML tables: example (cont.)
Step 1: Parse the page

R> url_p �� read_html("https:��en.wikipedia.org/wiki/List_of_women_philosophers")

Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set �� html_elements(url_p, xpath = "��h2/span[text()='Alphabetically']��following��li/a[1]")

The XPath expression reads:

��h2 : Look for h2 elements anywhere in the document.
/span[text()='Alphabetically'] : Within that element look for span elements with the content "Alphabetically" .
��following��li : In the DOM tree following that element (at any level), look for li elements.
/a[1] within these elements look for the �rst a element you can �nd.

51 / 69

Scraping HTML tables: example (cont.)
Step 3: Extract information and clean it up

R> phil_names �� elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

�� [1] "A" "B" "Elisabeth of Bohemia"
�� [4] "Dorothy Emmet"

52 / 69

Scraping HTML tables: example (cont.)
Step 3: Extract information and clean it up

R> phil_names �� elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

�� [1] "A" "B" "Elisabeth of Bohemia"
�� [4] "Dorothy Emmet"

Step 4: Clean up (here: select the subset of links we care about)

R> names_iffer ��
+ seq_along(phil_names) �� seq_along(phil_names)[str_detect(phil_names, "Felicia Nimue Ackerman")] &
+ seq_along(phil_names) �� seq_along(phil_names)[str_detect(phil_names, "Alenka Zupančič")]
R> philosopher_names_clean �� phil_names[names_iffer]
R> length(philosopher_names_clean)

�� [1] 267

R> philosopher_names_clean[1:5]

�� [1] "Felicia Nimue Ackerman" "Marilyn McCord Adams" "Aedesia"
�� [4] "Alia Al-Saji" "Lilli Alanen" 52 / 69

The hassle with XPath
The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.
It will take a couple of scraping projects until you’ll
truly have mastered XPath.

A much-appreciated helper
SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.
It is available here: http://selectorgadget.com/
(there is also a Chrome extension).
The tool is magic and you will love it.

Quick-n-dirty static webscraping with SelectorGadget

53 / 69

http://selectorgadget.com/

The hassle with XPath
The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.
It will take a couple of scraping projects until you’ll
truly have mastered XPath.

A much-appreciated helper
SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.
It is available here: http://selectorgadget.com/
(there is also a Chrome extension).
The tool is magic and you will love it.

What does SelectorGadget do?
You activate the tool on any webpage you want to
scrape.
Based on your selection of components, the tool
learns about your desired components and
generates an XPath expression (or CSS selector) for
you.

Under the hood
Based on your selection(s), the tool looks for similar
elements on the page.
The underlying algorithm, which draws on Google’s
diff-match-patch libraries, focuses on CSS
characteristics, such as tag names and <div> and
 attributes.

Quick-n-dirty static webscraping with SelectorGadget

53 / 69

http://selectorgadget.com/

SelectorGadget: example

0:00 / 1:23

54 / 69

SelectorGadget: example (cont.)

�� [1] 29

�� [1] "Retailers’ Latest Headache: Shutdowns at Their Vietnamese SuppliersRetailers’ Latest Headache: Shutdowns at T
�� [2] "With virus restrictions waning, it’s becoming clear: Britain’s gas crisis is a Brexit crisis, too. Here’s why
�� [3] "Business updates: U.S. stock futures signaled a rebound as bond yields fell back."
�� [4] "Republicans at Odds Over Infrastructure Bill as Vote ApproachesRepublicans at Odds Over Infrastructure Bill a
�� [5] "Liberals Dig In Against Infrastructure Bill as Party Divisions Persist"
�� [6] "Successful programs from around the world could guide Congress in designing a paid family leave plan."

R> library(rvest)
R> url_p �� read_html("https:�����.nytimes.com")
R> # xpath: paste the expression from Selectorgadget!
R> # note: we use single quotation marks here (' instead of ") to wrap around the expression!
R> xpath �� '��*[contains(concat(" ", @class, " "), concat(" ", "erslblw0", " "))]��*[contains(concat(" ",
R> headlines �� html_elements(url_p, xpath = xpath)
R> headlines_raw �� html_text(headlines)
R> length(headlines_raw)
R> head(headlines_raw)

55 / 69

SelectorGadget: when to use and not to use it
Having learned about a semi-automated approach to generating XPath expressions, you might ask:

Why bother with learning XPath at all?

Well...

SelectorGadget is not perfect. Sometimes, the algorithm will fail.
Starting from a different element sometimes (but not always!) helps.
Often the generated expressions are unnecessarily complex and therefore dif�cult to debug.
In my experience, SelectorGadget works 50-60% of the times when scraping from static webpages.
You are also prepared for the remaining 40-50%!

56 / 69

Scraping HTML tables

57 / 69

Function de�nition

R> html_table(x,
+ header = NA,
+ trim = TRUE,
+ dec = ".",
+ na.strings = "NA",
+ convert = TRUE
+)

Argument Description

x Document (from read_html()) or node set (from html_elements()).

header Use �rst row as header? If NA , will use �rst row if it consists of <th> tags.

trim Remove leading and trailing whitespace within each cell?

dec The character used as decimal place marker.

na.strings Character vector of values that will be converted to NA if convert is TRUE .

convert If TRUE , will run type.convert() to interpret texts as int, dbl, or NA .

Scraping HTML tables
HTML tables are everywhere.
They are easy to spot in the wild - just look for <table> tags!
Exactly because scraping tables is an easy and repetitive task, there is a dedicated rvest function for it:
html_table() .

58 / 69

We are going to scrape a small
table from the Wikipedia page
https://en.wikipedia.org/wiki/
List_of_human_space�ights.
(Note that we're actually using
an old version of the page
(dating back to May 1, 2018),
which is accessible here.
Wikipedia pages change, but
this old revision and associated
link won't.))
The table is not entirely clean:
There are some empty cells, but
also images and links.
The HTML code looks
straightforward though.

Scraping HTML tables: example

59 / 69

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_human_spaceflights
https://en.wikipedia.org/w/index.php?title=List_of_human_spaceflights&oldid=778165808

Scraping HTML tables: example (cont.)
R> library(rvest)
R> url �� "https:��en.wikipedia.org/wiki/List_of_human_spaceflights"
R> url_p �� read_html(url)
R> tables �� html_table(url_p, header = TRUE)
R> spaceflights �� tables[[1]]
R> spaceflights

�� # A tibble: 7 × 5
�� `` `Russia Soviet Union` `United States` China Total
�� <chr> <chr> <chr> <int> <chr>
�� 1 1961–1970 16 25 NA 41
�� 2 1971–1980 30 8 NA 38
�� 3 1981–1990 *25 *38 NA *63
�� 4 1991–2000 20 63 NA 83
�� 5 2001–2010 24 34 3 61
�� 6 2011–2020 24 3 3 30
�� 7 Total *139 *171 6 *316

60 / 69

Web scraping: good practice

61 / 69

Scraping: the rules of the game

�. You take all the responsibility for your web scraping work.

�. Think about the nature of the data. Does it entail sensitive information? Do not collect personal data without explicit
permission.

�. Take all copyrights of a country’s jurisdiction into account. If you publish data, do not commit copyright fraud.

�. If possible, stay identi�able. Stay polite. Stay friendly. Obey the scraping etiquette.

�. If in doubt, ask the author/creator/provider of data for permission—if your interest is entirely scienti�c, chances
aren’t bad that you get data.

62 / 69

What's robots.txt?
"Robots exclusion standard", informal protocol to
prohibit web robots from crawling content
Located in the root directory of a website (e.g.,
google.com/robots.txt)
Documents which bot is allowed to crawl which
resources (and which not)
Not a technical barrier, but a sign that asks for
compliance

What's robots.txt?
Not an of�cial W3C standard
Rules listed bot by bot
General rule listed under User�agent: * (most
interesting entry for R-based crawlers)
Directories folders listed separately

Example

User�agent: Googlebot
Disallow: /images/
Disallow: /private/

Universal ban

User�agent: *
Disallow: /

Allow declaration

User�agent: *
Disallow: /images/
Allow: /images/public/

Crawl delay (in seconds)

User�agent: *
Crawl�delay: 2

Consult robots.txt

63 / 69

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.google.com/robots.txt

Stay modest when accessing lots of
data

Content on the web is publicly available.
But accessing the data causes server traf�c.
Stay polite by querying resources as sparsely as
possible.

Two easy-to-implement practices
�. Do not bombard the server with requests - and if

you have to, do so at modest pace.
�. Store web data on your local drive �rst, then parse.

Looping over a list of URLs

!file.exists() checks whether a �le does not exist
in the speci�ed location.
download.file() downloads the �le to a folder. The
destination �le (location + name) has to be
speci�ed.
Sys.sleep() suspends the execution of R code for a
given time interval (in seconds).

Downloading HTML �les

R> for (i in 1:length(list_of_urls)) {
+ if (!file.exists(paste0(folder, file_names[i])))
+ download.file(list_of_urls[i],
+ destfile = paste0(folder, file_na
+)
+ Sys.sleep(runif(1, 1, 2))
+ }
+ }

64 / 69

Don't be a phantom
Downloading massive amounts of data may arouse
attention from server administrators.
Assuming that you've got nothing to hide, you
should stay identi�able beyond your IP address.

Two easy-to-implement practices
�. Get in touch with website administrators / data

owners.
�. Use HTTP header �elds From and User-Agent to

provide information about yourself.

Staying identi�able in practice
R> url �� "http:��a�totally�random�website.com"
R> rvest_session �� session(url,
+ add_headers(From = "my@email.com",
+ `UserAgent` =
+ R.Version()$version.string
+)
+)
R> headlines �� rvest_session %>%
+ html_elements(xpath = "p��a") %>%
+ html_text()

rvest 's session() creates a session object that
responds to HTTP and HTML methods.
Here, we provide our email address and the current
R version as User-Agent information.
This will pop up in the server logs: The webpage
administrator has the chance to easily get in touch
with you.

Staying identi�able

65 / 69

Scraping etiquette (cont.)

66 / 69

Summary

67 / 69

Outlook
Until now, the toy examples were limited to single HTML pages. However, often we want to scrape data from multiple
pages. You might think of newspaper articles, Wikipedia pages, shopping items and the like. In such scenarios,
automating the scraping process becomes really powerful. Also, principles of polite scraping are more relevant then.

In other cases, you might be confronted with

forms,
authentication,
dynamic (JavaScript-enriched) content, or want to
automatically navigate through pages interactively.

Moreover, we've ignored a major alternative way to collect data from the web so far which goes beyond scraping:
accessing web APIs. Be sure to check out the respective sessions in the workshop.

There's only so much we can cover in one session. Check out more material online here and there to learn about
solutions to some of these problems.

68 / 69

https://en.wikipedia.org/wiki/Web_API
https://github.com/hertie-data-science-lab/ds-workshop-webscraping
https://github.com/yusuzech/r-web-scraping-cheat-sheet

Coming up

Assignment
Assignment 3 is about to go online on GitHub Classroom. Check it out and start scraping the web (politely).

Next lecture
Model �tting and simulation. Now that we know how to retrieve data, let's learn how to run and learn from them.

69 / 69

