Introduction to Data Science
Session 5: Web data and technologies

Simon Munzert
Hertie School |

https://github.com/intro-to-data-science-21

Table of contents

1. Web data for data science

2. HTML basics

3. XPath basics

4, CSS basics

5. Scraping static webpages with R
6. Web scraping: good practice

/. Summary

2/ 69

Web data for data science

3/69

What is web data?

Data Descriptor | Open Access | Published: 02 August 2021 British Journal of Political Science (2021), page 1 of 11 British Journal of

d0i:10.1017/50007123420000897 PoIiticaI Science
The Upworthy Research Archive, a time series of 32,487

experiments in U.S. media LETTER

J. Nathan Matias &, Kevin Munger, Marianne Aubin Le Quere & Charles Ebersole The Com pa rative Legislato rs Data base

Scientific Data 8, Article number: 195 (2021) | Cite this article . .
Sascha Gobel™ (©) and Simon Munzert?
4164 Accesses | 110 Altmetric | Metrics

!Faculty of Social Sciences, Goethe University Frankfurt am Main, Germany; and Data Science Lab, Hertie School, Berlin,
Germany
Abstract *Corresponding author. E-mail: sascha.goebel@soz.uni-frankfurt.de

. . . . L. Received 7 June 2020; revised 12 November 2020; accepted 2 December 2020
The pursuit of audience attention online has led organizations to conduct thousands of (v J v P)

behavioral experiments each year in media, politics, activism, and digital technology. One

. . . . Abstract
f A/B test thy. .S. med blisher that conducted d d
pl.oneer of A/ e.s s was Upw<.)r y.com, aU.S r-ne 'a publisher . a. cor.1 ucte a. randomize Knowledge about political representatives’ behavior is crucial for a deeper understanding of politics and
trial for every article they published. Each experiment tested variations in a headline and policy-making processes. Yet resources on legislative elites are scattered, often specialized, limited in scope
image “package,” recording how many random|y_assigned viewers selected each variation. or not always accessible. This article introduces the Oomparative Legislators Database (CLD), which joins

micro-data collection efforts on open-collaboration platforms and other sources, and integrates with
renowned political science datasets. The CLD includes political, sociodemographic, career, online pres-
advance knowledge by meta-analyzing and data-mining the tens of thousands of ence, public attention, and visual information for over 45,000 contemporary and historical politicians

experiments Upworthy conducted. This archive records the stimuli and outcome for every A/B from ten countries. The authors provide a straightforward and open-source interface to the database

) . . through an R package, offering targeted, fast and analysis-ready access in formats familiar to social scien-
test fielded by Upworthy between January 24, 2013 and April 30, 2015. In total, the archive tists and standardized across time and space. The data is verified against human-coded datasets, and its

includes 32,487 experiments, 150,817 experiment arms, and 538,272,878 participant use for investigating legislator prominence and turnover is illustrated. The CLD contributes to a central
assignments' The open access dataset is organized to Support exploratory and Confirmatory hub for versatile information about legislators and their behavior, SuPPOrting individual-level Comparative
research over long periods.

While none of these tests were designed to answer scientific questions, scientists can

research, as well as meta-scientific research on ways that scientists make use of the archive.

4 [69

What is web data? (cont.

Experimental evidence of massive-scale emotional
contagion through social networks

Adam D. |. Kramer, Jamie E. Guillory, and Jeffrey T. Hancock

+ See all authors and affiliations

PNAS June 17,2014 111 (24) 8788-8790; first published June 2, 2014; https://doi.org/10.1073/pnas.1320040111

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 25, 2014 (received for review
October 23, 2013)

This article has Corrections. Please see:
Editorial Expression of Concern: Experimental evidence of massivescale emotional
contagion through social networks - July 03, 2014

Correction for Kramer et al., Experimental evidence of massive-scale emotional contagion
through social networks - July 03, 2014

Significance

Info & Metrics 3 PDF

We show, via a massive (N = 689,003) experiment on Facebook, that emotional states can
be transferred to others via emotional contagion, leading people to experience the same
emotions without their awareness. We provide experimental evidence that emotional
contagion occurs without direct interaction between people (exposure to a friend
expressing an emotion is sufficient), and in the complete absence of nonverbal cues.

The consequences of online partisan media

Andrew M. Guess®**'2(, Pablo Barbera“'(®, Simon Munzert®'(®, and JungHwan Yang (& &l 2H="

aDepartment of Politics, Princeton University, Princeton, NJ 08544; PSchool of Public and International Affairs, Princeton University, Princeton, NJ 08544;
“Department of Political Science and International Relations, University of Southern California, Los Angeles, CA 90089; YData Science Lab, Hertie School,
10117 Berlin, Germany; and ¢Department of Communication, University of lllinois at Urbana-Champaign, Urbana, IL 61801

Edited by Christopher Andrew Bail, Duke University, Durham, NC, and accepted by Editorial Board Member Margaret Levi February 17, 2021 (received for

review June 29, 2020)

What role do ideologically extreme media play in the polar-
ization of society? Here we report results from a randomized
longitudinal field experiment embedded in a nationally represen-
tative online panel survey (N = 1,037) in which participants were
incentivized to change their browser default settings and social
media following patterns, boosting the likelihood of encounter-
ing news with either a left-leaning (HuffPost) or right-leaning
(Fox News) slant during the 2018 US midterm election campaign.
Data on =~ 19 million web visits by respondents indicate that
resulting changes in news consumption persisted for at least 8
wk. Greater exposure to partisan news can cause immediate but
short-lived increases in website visits and knowledge of recent
events. After adjusting for multiple comparisons, however, we
find little evidence of a direct impact on opinions or affect. Still,
results from later survey waves suggest that both treatments pro-
duce a lasting and meaningful decrease in trust in the mainstream
media up to 1y later. Consistent with the minimal-effects tradi-
tion, direct consequences of online partisan media are limited,
although our findings raise questions about the possibility of sub-
tle, cumulative dynamics. The combination of experimentation
and computational social science techniques illustrates a powerful
approach for studying the long-term consequences of exposure to
partisan news.

media | politics | polarization | computational social science

argues that media primarily reinforce existing predispositions
(16). At the same time, more recent research strongly implies
that newspapers and especially cable news can change peo-
ple’s voting behavior, especially those without strong partisan
attachments (17-20). We propose an internet-age synthesis that
views people’s information environments through the lens of
choice architecture (21): frictions, subtle design features, and
default settings that structure people’s online experience. In
this view, small changes (or nudges) could disproportionately
affect information consumption habits that have downstream
consequences.

To that end, we designed a large, longitudinal online field
experiment that subtly but naturalistically increased people’s
exposure to partisan news websites. Our choice of treatment is
ecologically valid: Despite the importance of social media for
agenda-setting (22) and public expression (23), more Americans
continue to say that they get news from news websites or apps
than social media sites (24). The intervention thus served as a
nudge, boosting the likelihood that subjects encountered news
framed with a partisan slant during their day-to-day web brows-
ing experience, even if inadvertently. The powerful, sustained
nature of the intervention and our ability to track participants
with survey and behavioral data for months provided the oppor-
tunity to test a range of hypotheses about the long-term impact
of online partisan media.

Our preregistered hypotheses were divided into two separate

5/ 69

What is web data? (cont.)

So what is web data, really?

e Not all data you get from the web is "web data".

« Web data is data that is created on, for, or via the
web. By that definition, a survey dataset that you
download from a data repository is not web data.

« On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.

e Examples of web data:

o Online news articles

Social media network structures

Crowdsourced databases (e.g., Wikidata)

Server logs (e.g., viewership statistics)

Data from surveys, experiments, clickworkers

Just any website

(@)

(0]

(0]

(0]

(0]

6/ 69

What is web data? (cont.)

So what is web data, really?

e Not all data you get from the web is "web data".

« Web data is data that is created on, for, or via the
web. By that definition, a survey dataset that you
download from a data repository is not web data.

« On the other hand, survey data collected online (i.e.,
web/mobile questionnaires) is web data but we
don't consider it in today's session.

e Examples of web data:

o Online news articles
Social media network structures

(@)

Crowdsourced databases (e.g., Wikidata)

(0]

Server logs (e.g., viewership statistics)

(0]

(0]

Data from surveys, experiments, clickworkers
Just any website

(0]

And why is web data attractive?

e Data is abundant online.

e« Human behavior increasingly takes place online.

« Countless services track human behavior.

e Getting data from the web is cheap and often quick.

e An analysis workflow that involves web data can
often be easily updated.

e The vast majority of web data was not created with a
data analysis purpose in mind. This fact is often a
feature, not a bug.

Today, we focus on one particular way of collecting data
from the web: web scraping. This also limits the type of
web data we'll be talking about (basically: data from
static webpages). But it'll be fun nevertheless.

6/ 69

Web scraping

What is web scraping?

1. Pulling (unstructured) data from websites (HTMLs)
2. Bringing it into shape (into an analysis-ready
format)

The philosophy of scraping with R

e No point-and-click procedure
Script the entire process from start to finish
Automate
o The downloading of files
o The scraping of information from web sites
o Tapping APIs
o Parsing of web content
o Data tidying, text data processing
Easily scale up scraping procedures
Scheduling of scraping tasks

web crawler web scrapmg

. e
-‘--‘
crawler .

V|S|t all links
scraper

build Ilst l

@ indexing data
xml sql

store in database excel

Credit prowebscraping.com

7 | 69

http://prowebscraping.com/web-scraping-vs-web-crawling/

Technologies of the world wide web

e To fully unlock the potential of web data for data
science, we draw on certain web technologies.
e Importantly, often a basic understanding of these

technologies is sufficient as the focus is on web

data collection, not web development.
e Specifically, we have to understand

o

How our machine/browser/R communicates
with web servers (— HTTP/S)

How websites are built (— HTML, CSS, basics of
JavaScript)

How content in webpages can be effectively
located (— XPath, CSS selectors)

How dynamic web applications are executed
and tapped (— AJAX, Selenium)

How data by web services is distributed and
processed (— APIs, JSON, XML)

Technologies for

disseminating content . . .
information extraction

Technologies for] [

on the Web
| HTTP L R |
: plain text pp— Regular expressions :
: HTML i —>, XPath/CSS selectors i
R ! I S 4
! AJAX |— Selenium :
i JSON | — i JSON parsers :
| APIs | — API clients :

__

Credit ADCR

8/ 69

https://en.wikipedia.org/wiki/Web_development
http://r-datacollection.com/

HTML basics

9/ 69

HTML background

What is HTML?

e HyperText Markup Language

Markup language = plain text + markups

Originally specified by Tim Berners-Lee at CERN in 1989/90

W3C standard for the construction of websites.

The fundamentals of HTML haven't changed much recently. Current
version is HTML 5.2 (published in 2017).

What is it good for?

 In the early days, the internet was mainly good for sharing texts. But HTML
plain text is boring. Markup is fun!

e HTML lies underneath of what you see in your browser. You don't see it
because your browser interprets and renders it for you.

e A basic understanding of HTML helps us locate the information we want
to retrieve.

10 / 69

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium

HTML tree structure

The DOM tree

e« HTML documents are hierarchically structured. Think
of them as a tree with multiple nodes and branches.

« When a webpage (HTML resource) is loaded, the
browser creates a Document Object Model of that
page - the DOM Tree.

e Think of it as a representation that considers all
HTML elements as objects than can be accessed.

Parts of the tree

e The DOM is constituted of nodes, which are just
data types that can be referred to - such as
"attribute node" "text node" or "element node"

« A node set is a set of nodes. This will become
relevant when you learn about XPath, which you can
use to access multiple nodes (e.g, all title nodes).

<html>
<head>
<title id=1>First HTML</title>
</head>
<body>
I am your first HTML file!
</body>
</html>

[<html> |

[<head> | [<body> |
I am your first
HTML-file!

[<title>
| First HTML |

1/ 69

https://en.wikipedia.org/wiki/Document_Object_Model

HTML: elements and attributes

Elements

e Elements are a combination of start tags, content,
and end tags.

e Example: <title>First HTML</title>

o An element is everything from (including) the
element's start tag to (including) the element's end
tag, but also other elements that are nested within
that element.

e Syntax:

Component Representation

Element title title

Start tag <title>
End tag </title>
Value First HTML

Attributes

e Describe elements and are stored in the start tag.
e There are specific attributes for specific elements.
e Example: <a href="http://ww.r-
datacollection.com/">Link to Homepage
e Syntax:
o Name-value pairs: name="value"
o Simple and double quotation marks possible
o Several attributes per element possible

Why tags and attributes are important

e Tags structure HTML documents.
e In the context of web scraping, the structure can be
exploited to locate and extract data from websites.

12/ 69

Important tags and attributes

Anchor tag <a>

e Links to other pages or resources.

e Classical links are always formatted with an anchor tag.
e The href attribute determines the target location.

e The value is the name of the link.

Link to another resource:

Link with absolute path
Reference within a document:

Reference point

Link to a reference within a document:

Link to reference point

13/ 69

Important tags and attributes

Heading tags <h1>, <h2>, ..., and paragraph tag <p>

e Structure text and paragraphs.
e Heading tags range from level 1to 6.
e Paragraph tag induces a line break.

Examples:
<p>This text is going to be a paragraph one day and separated from other text by line breaks.</p>

<hi1>heading of level 1 - this will be BIG</h1>

<h6>heading of level 6 - the smallest heading</h6>

14 | 69

Important tags and attributes

Listing tags , , and <dl>

e The tag creates a numeric list.

e The tag creates an unnumbered list.

e The <d1> tag creates a description list.

e List elements within and are indicated with the <1i> tag.

Example:

Dogs</1i>
Cats</1i>
Fish</1i>

15/ 69

Important tags and attributes

Organizational and styling tags <div> and

o They are used to group content over lines (<div>, creating a block-level element) or within lines (, creating an
inline-element).

e By grouping or dividing content into blocks, it's easier to identify or apply different styling to them.
e They do not change the layout themselves but work together with CSS (see later?).

Example of CSS definition: In the HTML document:

div.happy { <div class="happy">

color:pink; <p>I am a happy-styled paragraph</p>
font-family:"Comic Sans MS"; </div>
font-size:120%
] unhappy text with some
span.happy { happiness

color:pink;
font-family:"Comic Sans MS";
font-size:120%

}

16 / 69

Important tags and attributes

Form tag <form>

e Allows to incorporate HTML forms.
e Client can send information to the server via forms.
e Whenever you type something into a field or click on radio buttons in your browser, you are interacting with forms.

Example:

<form name="submitPW" action="Passed.html" method="get">
password:
<input name="pw" type="text" value="">
<input type="submit" value="SubmitButtonText"

</ form>

17 | 69

Important tags and attributes

Table tags <table>, <tr>, <td>, and <th>

e Standard HTML tables always follow a standard architecture.
« The different tags allow defining the table as a whole, individual rows (including the heading), and cells.
e If the data is hidden in tables, scraping will be straightforward.

Example:

<table>
<tr> <th>Rank</th> <th>Nominal GDP</th> <th>Name</th> </tr>
<tr> <th></th> <th>(per capita, USD)</th> <th></th> </tr>
<tr> <td>1</td> <td>170,373</td> <td>Lichtenstein</td> </tr>
<tr> <td>2</td> <td>167,021</td> <td>Monaco</td> </tr>
<tr> <td>3</td> <td>115,377</td> <td>Luxembourg</td> </tr>
<tr> <td>4</td> <td>98,565</td> <td>Norway</td> </tr>
<tr> <td>5</td> <td>92,682</td> <td>Qatar</td> </tr>

</ table>

18 / 69

More resources on HTML

More HTML

e Allin all there are over 100 HTML elements.

e But overall, it's still a fairly tight and easy-to-understand markup
language.

e Knowing more about the rest is probably not necessary to become a
good web scraper, but it helps parsing (in your brain) HTML documents
quicker.

More resources

e Check out the excellent MDN Web Docs for an overview, which also
point to additional tutorials and references.

e The W3Schools tutorials are also a classic.

e While you're at it, you might also want to learn about related
technologies such as CSS (used to specify a webpage's
appearance/layout) and JavaScript (used to enrich HTMLs with
additional functionality and options to interact).

Cookbook g

OREILLY"

The Definitive Guide

VISUAL PRESENTATION FO!

Eric A. Meyer & Estelle Weyl

Java

OREILLY" YAHOOL Press Douglas Crockfond

XPath o §
XPointer

19 / 69

https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.w3schools.com/

Accessing the web using your browser vs. R

Using your browser to access webpages

1. You click on a link, enter a URL, run a Google query, etc.

2. Browser/your machine sends request to server that hosts website.
3. Server returns resource (often an HTML document).

4. Browser interprets HTML and renders it in a nice fashion.

Using R to access webpages

1. You manually specify a resource.

2. R/your machine sends a request to the server that hosts the website.
3. The server returns a resource (e.g., an HTML file).

4. R parses the HTML, but does not render it in a nice fashion.

5. It's up to you to tell R what content to extract.

20 / 69

Interacting with your browser

On web browsers

e Modern browsers are complex pieces of software that take care of multiple operations while you browse the web.

And they're basically all doing a good job.! Common operations are to retrieve resources, render and display
information, and provide interface for user-webpage interaction.
« Although our goal is to automate web data retrieval, the browser is an important tool in web scraping workflow.

The use of browsers for web scraping

e Give you an intuitive impression of the architecture of a webpage
» Allow you to inspect the source code

e Let you construct XPath/CSS selector expressions with plugins

« Render dynamic web content (JavaScript interpreter)

T Check out this Wikipedia article on the Browser Wars that happened in the 1990s and 2000s (yes, there was Browser War | and
Browser War Il - and for once Germany was not to blame) to relive some of your instructor's pains when he started to look into this

"Internet",

21/ 69

https://en.wikipedia.org/wiki/Browser_wars

Inspecting HTML source code

& en.wikipedia.org/wiki/List_of_tallest_buildings b 4 5@ R | - O f

& Not logged in Talk Contributions Create account Log in

Article Talk Read View source View history | Search Wikipedia Q

e Goal: retrieving data from a
Wikipedia page on List of tallest R

b u i [d i n g S Main page Not to be confused with list of tallest freestanding structures or list of tallest structures.

Contents

List of tallest buildings a

From Wikipedia, the free encyclopedia

This list of tallest buildings includes skyscrapers with continuously occupiable floors and a height of at least 350 m. Non-building structures, such as
towers, are not included in this list (see list of tallest buildings and structures).

Current events
Random article

« Right-click on page (anywhere)

Contents [hide]

. D:::z p 1 History
° S e l.e Ct V l eW P a g e S O u r C e S 2 Ranking criteria and alternatives

3 Tallest buildings in the world
. IRED 4 Alternative measurements /
Learn to edit
o HTML (CSS, JavaScript) code can 41 Hoightto pnnacie (ighet i)
R 4.2 Height to occupied floor
ecent changes
5 Buildings under construction

b l Upload file
e u g y 6 List by continent A

« But looking more closely, we e T

Permanent link 10 External links

find the displayed information

Cite this page .
Wikidata item History

The 828-metre (2,717 ft) tall Burj =
Main article: History of the world's tallest buildings Khalifa in Dubai has been the tallest
— . — . » & building since 2010.!"l The Burj Khalifa
Historically, the world's tallest man-made structure was the Great Pyramid of Giza in Egypt, which held the position for over 3,800 years!® until the has been classified as M 2]

12

Print/export

22 [69

https://en.wikipedia.org/wiki/List_of_tallest_buildings

Inspecting the live HTML source code with the DOM

<« G (¢ & en.wikipedia.org/wiki/List_of_tallest_buildings * © % R | - O N f‘ :

e Goal: retrieving data from a
Wikipedia page on List of tallest |
buildings \X/:I\KiPEDIA List of tallest buildings a

‘The Free Encyclopedia

& Not logged in Talk Contributions Create account Log in

Article Talk Read View source View history | Search Wikipedia Q

From Wikipedia, the free encyclopedia

4 R I g h t_ C l- I C k O n th e e |~e m e n T— Of Main page Not to be confused with list of tallest freestanding structures or list of tallest structures.

Content: . g n . . S
o C::::I ;ents This list of tallest buildings includes skyscrapers with continuously occupiable floors and a height of at least 350 m. Non-building structures, such as
I n te re St Random article towers, are not included in this list (see list of tallest buildings and structures).

About Wikipedia
Contact us

e Select Inspect G o ey

2 Ranking criteria and alternatives

e The Web Developer Tools oo il @

eamigedt 4.1 Height to pinnacle (highest point)

Contents [hide]

Community portal
4.2 Height to occupied floor

a Recent changes
WI n OW p O p S U p Upload file 5 Buildings under construction
6 List by continent
2ok 7 See also

e Corresponding part in the HTML

Related changes
. 9 References
Special pages

tree is highlighted R

Page information
Cite this page

e Interaction with the tree

Print/export

Histo —— ‘
ry The 828-metre (2,717 ft) tall Burj &

Main article: History of the world's tallest buildings Khalifa in Dubai has been the tallest
o , —_— . " 8 building since 2010.111 Thy
Historically, the world's tallest man-made structure was the Great Pyramid of Giza in Egypt, which held the position for over 3,800 years[1 until the has been classified as

possible! > 0:00/0:58

23 / 69

https://en.wikipedia.org/wiki/List_of_tallest_buildings

When to do what with your browser

When to inspect the complete page source

o Check whether data is in static source code (the search function helps!)
e For small HTML files: understand structure

When to use the DOM explorer

e Almost always
 Particularly useful to construct XPath/CSS selector expressions
e To monitor dynamic changes in the DOM tree

A note on browser differences

o Inspecting the source code (as shown on the following slides) works
more or less identically in Chrome and Firefox.

e In Safari, g0 to — Preferences, then — Advanced and select Show
Develop menu in menu bar. This unlocks the Show Page Source and
Inspect options and the Web Developer Tools.

e [|

<o

<em:>
<abbr>

<title>

Credit watershedcreative.com

24 [69

http://watershedcreative.com/naked/html-tree.html

XPath basics

25/ 69

Accessing the DOM tree with R

Different perspectives on HTML

e HTML documents are human-readable.

e HTML tags structure the document, comprising the DOM.

« Web user perspective: The browser interprets the code and renders the page.

« Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

26 |/ 69

Accessing the DOM tree with R

Different perspectives on HTML

HTML documents are human-readable.
HTML tags structure the document, comprising the DOM.

« Web user perspective: The browser interprets the code and renders the page.
« Web scraper perspective: Parse the document retaining the structure, use the tree/tags to locate information.

HTML parsing

Our goal is to get HTML into R while retaining the tree structure. That's similar to getting a spreadsheet into R and

retaining the rectangular structure.
HTML is human-readable, so we could also import HTML files as plain text via readLines(). That's a bad option

though - the document's structure would not be retained.
The xml2 package allows us to parse XML-style documents. HTML is a "flavor" of XML, so it works for us.
The rvest package, which we will mainly use for scraping, wraps the xml12 package, so we rarely have to load it

manually.
There is one high-level function to remember: read_html(). It represents the HTML in a list-style fashion.

26 |/ 69

Accessing the DOM tree with R (cont.)

Getting HTML into R

Parsing a website is straightforward:

R> library(rvest)
R> parsed_doc ¢« read_html("https://google.com")
R> parsed_doc

t## {html_document}

#H <html lang="de" dir="1ltr">

[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8
[2] <body>\n<div class="signin"><a href="https://accounts.google.com/Servicel

There are various functions to inspect the parsed document. They aren't really helpful - better use the browser instead if
you want to dive into the HTML.

R> xml2::html_structure(parsed_doc)
R> xml2::as_list(parsed _doc)

27 | 69

What's XPath?

Definition

« Short for XML Path Language, another W3C standard.
o A query language for XML-based documents (including HTML).
« With XPath we can access node sets (e.g., elements, attributes) and extract content.

Why XPath for web scraping?

« Source code of webpages (HTML) structures both layout and content.
e Not only content, but context matters!
« XPath enables us to extract content based on its location in the document (and potentially other features).
o With XPath, we can tell R to do things like:
1. Give me all <1i> elements in the document!
2. Look for all <table> elements in the document and give me the third one!
3. Extract all content in <p> elements that is labelled with class=newscontent !

28 | 69

Example: source code

<html>
<head>
<title>Collected R wisdoms</title>
</ head>
<body>
<div id="R Inventor" lang="english" date="June/2003">
<h1>Robert Gentleman</h1>
<p><i>'What we have is nice, but we need something very different'</i></p>
<p>Source: Statistical Computing 2003, Reisensburg</p>
</div>
<div lang="english" date="October/2011">
<h1>Rolf Turner</hil>
<p><i>'R is wonderful, but it cannot work magic'</i>

<emph>answering a request for automatic generation of 'data from a known mean and 95% CI'</emph></p>
<p>Source: R-help</p>
</div>
<address>
<i>The book homepage</i>
</address>
</body>
</html>

29 / 69

Example: DOM tree

<html>
|

<head> <body> <address>

<title> <a>
value: Col- href: htips...
lected... — @@
<i>
href: htips...

(<div> |

id: R-Inventor lang: english
lang: english date: Octo-
date: June/2003 ber/2011

| |
e) (®) [@) e) (®) [@)

value: Robert value: Statis- value: Robert
Gentleman tical... Turner
|
| <i> | (<emph> |

) [e) e e
value: What value: value: R is... value: an- value: value: R-help
we... Source. .. swering. .. Source... href: http...

30 / 69

Applying XPath on HTML in R

e Load package rvest
e Parse HTML document with read _html()

R> library(rvest)
R> parsed _doc <« read _html("materials/fortunes.html")
R> parsed_doc

t#H {html _document}

#H <html>

[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8
[2] <body>\n<div id="R Inventor" lang="english" date="June/2003">\n <hi1>Robe

e Query document using html_elements()
e rvest can process XPath queries as well as CSS selectors.
e Today, we'll focus on XPath:

R> html_elements(parsed_doc, xpath = "//div[last()]/p/i")

t## {xml _nodeset (1)}
[1] <i>'R is wonderful, but it cannot work magic'</i>

31/ 69

Grammar of XPath

Basic rules

1. We access nodes/elements by writing down the hierarchical structure in the DOM that locates the element set of

Interest.
2. A sequence of nodes is separated by /.
3. The easiest localization of a element is given by the absolute path (but often not the most efficient one!).

4. Apply XPath on DOM in R using html_elements() .

R> html_elements(parsed doc, xpath = "//div[last()]/p/i")

{xml _nodeset (1)}
[1] <i>'R is wonderful, but it cannot work magic'</i>

32/ 69

Grammar of XPath

Absolute vs. relative paths

Absolute paths start at the root element and follow the whole way down to the target element (with simple slashes, /).

R> html_elements(parsed_doc, xpath = "/html/body/div/p/i")

t#H# {xml_nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths skip nodes (with double slashes, //).

R> html_elements(parsed_doc, xpath = "//body//p/i")

{xml _nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

Relative paths are often preferrable. They are faster to write and more comprehensive. On the other hand, they are less
targeted and therefore potentially less robust, and running them takes more computing time, as the entire tree has to be

evaluated. But that's usually not relevant for reasonably small documents. 3/ 69

Grammar of XPath

The wildcard operator

e Meta symbol *

e Matches any element

e Works only for one arbitrary element

o Far less important than, e.g., wildcards in content-based queries (regex!)

R> html_elements(parsed _doc, xpath = "/html/body/div/*/i")

#H# {xml _nodeset (2)}
[1] <i>'What we have is nice, but we need something very different'</i>
[2] <i>'R is wonderful, but it cannot work magic'</i>

R>
R> html_elements(parsed_doc, xpath = "/html/body/div/x/i")

xml_nodeset (2)}
] <i>'What we have is nice, but we need something very different'</i>

|
#H [1
[2] <i>'R is wonderful, but it cannot work magic'</i>

34 | 69

Grammar of XPath

Navigational operators "."and ".."

o "." accesses elements on the same level ("self axis"), which is useful when working with predicates (see later!).
e " .. " accesses elements at a higher hierarchical level.

R> html_elements(parsed_doc, xpath = "//title/..")

t#H {xml _nodeset (1)}
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8

R> html_elements(parsed_doc, xpath = "//div[starts-with(./@id, 'R')1")

t## {xml _nodeset (1)}
[1] <div id="R Inventor" lang="english" date="June/2003">\n <hl>Robert Gentl

35/ 69

In XPath

Element (node) relations ("axes")

Family relations between elements i
[
e The tools learned so far are sometimes not
sufficient to access specific elements without) xa;t;%ute
accessing other, undesired elements as well. *.Q B / ®
« Relationship statuses are useful to establish parent| |)© -7 mamespace
unambiguity. N
e Can be combined with other elements of the pmed%; M
grammar
e Basic syntax: elementl/relation:: element2 }5\
o We describe relation of element2 to elementl self
e element2 isto be extracted - we always extract the
element at the end! Ch'ld ®
descendant ‘ ‘
descendant-or-self

36 / 69

Element (node) relations in XPath

Axis name Description
ancestor All ancestors (parent, grandparent etc.) of the current element
ancestor-or-self All ancestors of the current element and the current element itself
attribute All attributes of the current element
child All children of the current element
descendant All descendants (children, grandchildren etc.) of the current element
descendant-or-self All descendants of the current element and the current element itself
following Everything in the document after the closing tag of the current element
following-sibling All siblings after the current element
parent The parent of the current element
preceding All elements that appear before the current element, except ancestors/attribute elements
preceding-sibling All siblings before the current element
self The current element

37/ 69

Element (node) relations in XPath

Example: access the <div> elements that are ancestors to an <a> element:

R> html_elements(parsed _doc, xpath = "//a/ancestor::div")

t#H {xml _nodeset (1)}
[1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi>\n <p><i

Another example: Select all <h1> nodes that precede a <p> node:

R> html_elements(parsed_doc, xpath = "//p/preceding-sibling::h1")

xml_nodeset (2)}
] <h1>Robert Gentleman</hl>

|
#H [1
t#H [2] <h1>Rolf Turner</hil>

38 / 69

Predicates

What are predicates?

 Predicates are conditions based on an element's features (true/false).
e Think of them as ways to filter nodesets.

e They are applicable to a variety of features: name, value attribute.

e Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

t## {xml_nodeset (2)}
#H [1] <p><i>'What we have is nice, but we need something very different'</i></p>
[2] <p><i>'R is wonderful, but it cannot work magic'</i>
<emph>answering

39 / 69

Predicates

What are predicates?

Predicates are conditions based on an element's features (true/false).
Think of them as ways to filter nodesets.
They are applicable to a variety of features: name, value attribute.

Basic syntax: element[predicate]

Select all first <p> elements that are children of a <div> element, using a numeric predicate:

R> html_elements(parsed_doc, xpath = "//div/p[1]")

t## {xml_nodeset (2)}
#H [1] <p><i>'What we have is nice, but we need something very different'</i></p>
[2] <p><i>'R is wonderful, but it cannot work magic'</i>
<emph>answering

Can you find out what the following expressions do?

"//div/p[last()-11")
"//div[count(./@*)>2]1")
"//*[string-length(text())>50]")

R> html_elements(parsed_doc, xpath
R> html_elements(parsed_doc, xpath
R> html_elements(parsed_doc, xpath

39 / 69

Predicates (cont.)

Select all <div> nodes that contain an attribute named ’october/2011’, using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[adate='October/2011']")

t#H {xml _nodeset (1)}
[1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi>\n <p><i

Rudimentary string matching is also possible using string functions like contains(), starts-with(), Or ends-with().

40 | 69

Predicates (cont.)

Select all <div> nodes that contain an attribute named ’october/2011’, using a textual predicate:

R> html_elements(parsed_doc, xpath ="//div[adate='October/2011']")

t#H {xml _nodeset (1)}
[1] <div lang="english" date="October/2011">\n <hi1>Rolf Turner</hi>\n <p><i

Rudimentary string matching is also possible using string functions like contains(), starts-with(), Or ends-with().

Can you tell what the following calls do?

R> html_elements(parsed_doc, xpath
R> html_elements(parsed_doc, xpath

"//div[starts-with(./@id, 'R')1")
"//div[substring-after(./@date, '/')='2003"']//1i")

40 | 69

Content extraction

« Until now, we used XPath expressions to extract complete nodes or nodesets (that is, elements with tags).
e However, in most cases we're interested in extracting the content only.
e To that end, we can use extractor functions that are applied on the output of XPath query calls.

Function Argument Return value
html_text() Element value
html_text2() Element value (with a bit more cleanup)
html_attr() name Element attribute
html_attrs() (All) element attributes
html_name() trim Element name
html_children() Element children

41| 69

Content extraction (cont.)

Extracting element values/content:

R> html_elements(parsed_doc, xpath "//title") %>% html _text2()
[1] "Collected R wisdoms"

Extracting attributes:

"//div[1]") %>% html_attrs()

R> html_elements(parsed_doc, xpath

i [[1]]
H 1d lang date
#H "R Inventor" "english" "June/2003"

Extracting attribute values:

R> html_elements(parsed_doc, xpath = "//div") %>% html_attr("lang")

[1] "english" "english"

472 | 69

More XPath?

Training resources

« XPath is a little language of its own. As always with languages, mastery comes with practice.
e A good environment for practice is the XPath expression testbed at whitebeam.org.

e Also check out this cheat sheet.

XPath creator tools

e Now, do you really have to construct XPath expressions by your own? No! At least not always.

« SelectorGadget: http://selectorgadget.com is a browser plugin that constructs XPath statements via a point-and-
click approach. The generated expressions are not always efficient and effective though (more on this later).

e Web developer tools - the internal browser functionality to study the DOM, among other things, also lets you extract
XPath statements for selected nodes. These are specific to unique nodes/elements though, and therefore less
helpful to extract node sets. (But they come in handy when we want to script live navigation, e.g. for Selenium.)

43 | 69

http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
https://devhints.io/xpath
http://selectorgadget.com/

CSS basics

44 | 69

What 1s CSS?

Background

o Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.

e By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML

1. External CSS. Inside <head> with a reference to the
external file inside the <link> element.

2. Internal CSS. Inside <head> and stored in <style>
elements.

3. Inline CSS. Inside <body> using the style attribute
of elements.

45 | 69

What 1s CSS?

Background

o Cascading Style Sheets (CSS) is a style sheet
language that allows web developers to adjust the
"look and feel" of websites.

e By using CSS to adjust style features such as layout,
colors, and fonts, it's easier to separate content
(HTML) from presentation (CSS).

Three ways to insert CSS into HTML

1. External CSS. Inside <head> with a reference to the
external file inside the <link> element.

2. Internal CSS. Inside <head> and stored in <style>
elements.

3. Inline CSS. Inside <body> using the style attribute
of elements.

External CSS

<head>

<link rel="stylesheet" href="mystyle.css">
</head>

Internal CSS

<head>
<style>
hl {
color: red;
margin-left: 20px;
t
</style>
</head>

Inline CSS

<p style="color: blue;">This is a paragraph.</p>

45 | 69

CSS selectors

Selectors

e CSS selectors find/select the HTML elements that
should be styled.

e There are various categories of selectors. In addition
to generic element selectors (which selected just
based on the element name, such as <p>), we often
care about:

o CSS id selectors, which use the id attribute of
an HTML element. Think of them as "labels" as
In <p id="paral">.The respective CSS selector
would be #paral.

o CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large">. Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be
p.center.large. 46 | 69

CSS selectors

Selectors Writing CSS selectors

o CSS selectors find/select the HTML elements that e Just as XPath, CSS selectors are a little language of
should be styled. their own.

e There are various categories of selectors. In addition e | won't teach you more about it, but you might
to generic element selectors (which selected just nevertheless want to learn it.
based on the element name, such as <p>), we often e Check out the CSS diner tutorial at
care about: https://flukeout.github.io/. It's one of the best

o CSS id selectors, which use the id attribute of tutorials of anything out there.

an HTML element. Think of them as "labels" as
In <p id="paral">.The respective CSS selector
would be #paral.

o CSS class selectors, which use the class
attribute of an HTML element, as in <p class =
"center large">. Note that these can refer to
more than one class (here: center and large).
The respective CSS selector would be

O B hitpsifickeout github.o %

p.center.large. 46 | 69

https://flukeout.github.io/

Scraping static webpages with R

47 | 69

The scraping workflow

Key tools for scraping static webpages

1. You are able to inspect HTML pages in your browser
using the web developer tools.

. . '® identify information that is nested] (@

2. You are able to parse HTML into R with rvest. in an HTML document — develop XPath query
browser, HTML source code, developer tools backward induction, developer tools, SelectorGadget
3. You are able to speak XPath (or CSS selectors). ‘] : - ‘ lp —
4. You are able to apply XPath expressions with rvest. @ &
.] download documents / web sites extract information
5. You are able to tidy web data with R/ dplyr / regex. E— —_ :
download.file(), write_disk()) L XPath applied with rvest, regular expressions
l l
T h e b i g p i Ct u re @ parse document - @ debug code
L read_html ()) L inspection, validation

e Every scraping project is different, but the coding
pipeline is fundamentally similar.

o The (technically) hardest steps are location (XPath,
CSS selectors) and extraction (clean-up), sometimes
the scaling (from one to multiple sources).

48 [69

Web scraping with rvest

rvest IS a suite of scraping tools. It is part of the tidyverse and has made
scraping with R much more convenient.

There are three key rvest verbs that you need to learn.’

1. read_html(): Read (parsing) an HTML resource.

2. html_elements(): Find elements that match a CSS selector or XPath
expression.

3. html_text2(): Extract the text/value inside the node set.

T There is more in rvest than what we can cover today. Have a glimpse at the overview at tidyverse.org and at this excellent
(unofficial) cheat sheet.

49 | 69

https://rvest.tidyverse.org/
https://github.com/yusuzech/r-web-scraping-cheat-sheet

Web scraping with rvest: example

°
024 A-0n@:

e We are going to scrape a
iInformation from a

Wikipedia article on

women philosophers
available at
https://en.wikipedia.org/wiki/
List_of_women_philosophers.

Medieval philosophy

(((((((((((

===========

e The article provides two
types of lists - one by e

* O2xNA-0*»@

Alphabetically (s

. » <h2>..</h2
period and one sorted > <diy. class="noprint>.</div
> s/
alphabe“ca“y We wa nt >/Sst’fyyllee data—mvj/—dedupllcate TemplateS.tyles:r998391716
the alphabetlcal lISt Vvdll\Jllclass div-col"” style="column-width: 30em;
o . v == $0
e The information we are : imarker
]) a href /wiki/Feliciq I_Iimug Ackerman" title="Fel:
actua“y Inte rested n - ? T;T?ezlgizirman Felicia Nimue Ackerman</a
0 0 /i
names - is stored in b <lisae/U
) : b <lisae/ld
unordered list elements. b <Uiswe/ld

50 / 69

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_women_philosophers

Scraping HTML tables: example (cont.)

Step 1: Parse the page

R> url_p ¢« read_html("https://en.wikipedia.org/wiki/List _of_women_philosophers")

51/ 69

Scraping HTML tables: example (cont.)

Step 1: Parse the page
R> url_p ¢« read_html("https://en.wikipedia.org/wiki/List _of_women_philosophers")
Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set « html_elements(url_p, xpath = "//h2/span[text()="Alphabetically']//following::1i/al[1]")

51/ 69

Scraping HTML tables: example (cont.)

Step 1: Parse the page
R> url_p ¢« read_html("https://en.wikipedia.org/wiki/List _of_women_philosophers")
Step 2: Develop an XPath expression (or multiple) that select the information of interest and apply it

R> elements_set « html_elements(url_p, xpath = "//h2/span[text()="Alphabetically']//following::1i/al[1]")

The XPath expression reads:

//h2: Look for h2 elements anywhere in the document.

//following:: 1i: In the DOM tree following that element (at any level), look for 1i elements.
/al1] within these elements look for the first a element you can find.

/span[text()="Alphabetically']: Within that element look for span elements with the content "Alphabetically".

51/ 69

Scraping HTML tables: example (cont.)

Step 3: Extract information and clean it up

R> phil_names ¢« elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

#H [1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

52 / 69

Scraping HTML tables: example (cont.)

Step 3: Extract information and clean it up

R> phil_names ¢« elements_set %>% html_text2()
R> phil_names[c(1:2, 101:102)]

#H [1] "A" "B" "Elisabeth of Bohemia"
[4] "Dorothy Emmet"

Step 4: Clean up (here: select the subset of links we care about)

R> names_iffer «

+ seqg_along(phil_names) > seq_along(phil_names)[str_detect(phil_names, "Felicia Nimue Ackerman")] &
+ seq_along(phil_names) < seq_along(phil_names)[str_detect(phil_names, "Alenka Zupancic")]

R> philosopher_names_clean <« phil_names[names_iffer]

R> length(philosopher_names_clean)

#H [1] 267

R> philosopher_names_clean[1:5]

[1] "Felicia Nimue Ackerman" "Marilyn McCord Adams" "Aedesia"

#H [4] "Alia Al-Saji Lilli Alanen 52 / 69

Quick-n-dirty static webscraping with SelectorGadget

The hassle with XPath

e The most cumbersome part of web scraping (data
tidying aside) is the construction of XPath
expressions that match the components of a page
you want to extract.

o It will take a couple of scraping projects until you'll
truly have mastered XPath.

A much-appreciated helper

» SelectorGadget is a JavaScript browser plugin that
constructs XPath statements (or CSS selectors) via a
point-and-click approach.

o Itis available here: http://selectorgadget.com/
(there is also a Chrome extension).

e The tool is magic and you will love it.

53 / 69

http://selectorgadget.com/

Quick-n-dirty static webscraping with SelectorGadget

The hassle with XPath What does SelectorGadget do?
e The most cumbersome part of web scraping (data e You activate the tool on any webpage you want to
tidying aside) is the construction of XPath scrape.
expressions that match the components of a page e Based on your selection of components, the tool
you want to extract. learns about your desired components and
o It will take a couple of scraping projects until you'll generates an XPath expression (or CSS selector) for
truly have mastered XPath. you.
A much-appreciated helper Under the hood
» SelectorGadget is a JavaScript browser plugin that « Based on your selection(s), the tool looks for similar
constructs XPath statements (or CSS selectors) via a elements on the page.
point-and-click approach. e The underlying algorithm, which draws on Google's
o Itis available here: http://selectorgadget.com/ diff-match-patch libraries, focuses on CSS
(there is also a Chrome extension). characteristics, such as tag names and <div> and
e The tool is magic and you will love it. attributes.

53 / 69

http://selectorgadget.com/

SelectorGadget: example

@ New Tab X

| : Q, Search with Google or enter address

L} Most Visited

% Firefox |

-~ - - 1 y
7 Search with Google or enter address /

a ebay G@ [> | n i) @

Amazon eBay + @google YouTube Facebook Wikipedia Reddit
Sponsaored Sponsored

» 0:00/1:23

54 | 69

SelectorGadget: example (cont.)

R> library(rvest)
R> url_p ¢« read_html("https://ww.nytimes.com")

R> xpath « '//*[contains(concat(, aclass, " "), concat(" ", "erslblwo", " "))1//*[contains(concat(" ",
R> headlines ¢« html_elements(url_p, xpath = xpath)

R> headlines raw ¢« html_text(headlines)

R> length(headlines_raw)

R> head(headlines raw)

#H [1] 29

[1] "Retailers’ Latest Headache: Shutdowns at Their Vietnamese SuppliersRetailers’ Latest Headache: Shutdowns at T
[2] "wWith virus restrictions waning, it's becoming clear: Britain's gas crisis is a Brexit crisis, too. Here's why
[3] "Business updates: U.S. stock futures signaled a rebound as bond yields fell back."

[4] "Republicans at 0dds Over Infrastructure Bill as Vote ApproachesRepublicans at 0dds Over Infrastructure Bill a
[5] "Liberals Dig In Against Infrastructure Bill as Party Divisions Persist"

[6] "Successful programs from around the world could guide Congress in designing a paid family leave plan."

55 / 69

SelectorGadget: when to use and not to use it

Having learned about a semi-automated approach to generating XPath expressions, you might ask:
Why bother with learning XPath at all?
Well...

e SelectorGadget is not perfect. Sometimes, the algorithm will fail.

Starting from a different element sometimes (but not always!) helps.

Often the generated expressions are unnecessarily complex and therefore difficult to debug.

In my experience, SelectorGadget works 50-60% of the times when scraping from static webpages.
You are also prepared for the remaining 40-50%!

56 / 69

Scraping HTML tables

N Built ¢ Building $ City $ Country $ Roof 4+ Floors ¢ Pinnacle ¢ Current status $
| Purchased Equipments (June, 2006) 1870 | Equitable Life Building New York City 043m | 142ft 8 Destroyed by fire in 1912
.. . 1889 Auditorium Building Chicago 082m | 269ft 17 106 m | 349ft | Standing
Ttem Descripti B
ItEl]‘.'l Nl].l]‘.‘l# ItEl'l:‘I. Pil:tlll‘E | em Lescription ce 1890 New York World Building New York City 094m 309ft |20 106 m | 349ft | Demolished in 1955
|Sl‘|.lp]]]11g Hﬂ.l'l.l'“.i.l'l.g, Iusta]latiun, etc ‘EI]_JEIISE 1894 Philadelphia City Hall Philadelphia 1558 m 511 ft |9 167m | 548ft | Standing
1908 Singer Building 187m 612t |47 Demolished in 1968
IBM Clone Computer. :E 400,00 1909 | Met Life Tower = United States 2183m |700ft |50 Standing
1 P 1913 Woolworth Building - 241m | 792ft |57 Standing
-;f Shlpplng Handlmg, Insta]lat:ion, etc $ 20,00 1930 40 Wall Street New York City 70 283m 927 ft | Standing
1930 Chrysler Building 2829m 927ft |77 319m | 1,046 ft | Standing
].GB R.AIH"I MO du].e for C'C"mputer $ 50 OO 1931 Empire State Building 381m | 1,250 ft 102 443 m | 1,454 ft | Standing
o ' i 1972 World Trade Center (North Tower) 417m 1,368 ft 110 527.3m | 1,730 ft | Destroyed in 2001 in the September 11 attacks
. Shinmi Handli Tnstallation. etc $ 14,00 1974 Willis Tower (formerly Sears Tower) | Chicago 442m | 1,450 ft | 108 527m | 1,729 ft | Standing
PPINg " ’) 1996 | Petronas Towers Kuala Lumpur | BE& Malaysia 379m | 1,242t |88 452m | 1,483 ft | Standing
PI]J‘I:]IH.‘SEI']. Equipments (JIJ.IIE 2006) 2004 Taipei 101 Taipei Bl Taiwan 449 m | 1,474 ft| 101 509m | 1,671 ft | Standing
’ ' ! 2010 Burj Khalifa Dubai == United Arab Emirates | 828 m | 2,717 ft | 163 829.8 m | 2,722 ft | Standing
NZ
S
QQQO \°3??
DATES POLLSTER GRADE SAMPLE WEIGHT e Q ADJUSTED
* DEC. 28-30 Gallup 1,500 A 1 1.03 | 40% 55% 41% 53%
Rasmussen Reports/Pulse Opinion
* DEC.26-28 Rocearoh ports/ P 1,500V _ 0.85 | 45% 53% 40% 53%
* DEC.24-28 Ipsos 1,5192 1l 2.01 37% 58% 37% 51%
* DEC.23-27 Gallup 1,500] 0.58 | 38% 56% 39% 54%
* DEC.24-26 YouGov 1,500) 1.13 | 38% 52% 39% 55%

57 | 69

Scraping HTML tables

e HTML tables are everywhere.

e They are easy to spot in the wild - just look for <table> tags!

e Exactly because scraping tables is an easy and repetitive task, there is a dedicated rvest function for it:
html_table().

Function definition Argument Description
X Document (from read_html()) or node set (from html_elements()).
R> html_table(x,
+ header = NA, header Use first row as header? If NA, will use first row if it consists of <th> tags.
+ trim = TRUE,
+ dec = ".", trim Remove leading and trailing whitespace within each cell?
+ na.strings = "NA", .
N convert = TRUE dec The character used as decimal place marker.
+)

na.strings Character vector of values that will be converted to NA if convert IS TRUE.

convert IT TRUE, will run type.convert() to interpret texts as int, dbl, or NA.

58 / 69

Scraping HTML tables: example

wikipedia.org/wkiList of_human spacefigh * © g

List of human spaceflights e

mmmmmmm

e We are going to scrape a small
table from the Wikipedia page
https://en.wikipedia.org/wiki/
List_of_human_spaceflights.

» (Note that we're actually using
an old version of the page
(dating back to May 1, 2018),
which is accessible here.

nnnnnnn
55555

nnnnnnnnnnnnnnn

of STS-51-L and Soyuz T-10-1.

v <table class="wikitable style="text-align:right;

Wikipedia pages change, but MNP *
this old revision and associated :E?t;' mtd
link won't.)) w30t
o The table is not entirely clean: /tirﬂ Soered
There are some empty cells, but Pt
also images and links. : ; : E

e The HTML code looks <sbody
straightforward though.

59 / 69

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/List_of_human_spaceflights
https://en.wikipedia.org/w/index.php?title=List_of_human_spaceflights&oldid=778165808

Scraping HTML tables: example (cont.)

R>
R>
R>
R>
R>
R>

library(rvest)

url < "https://en.wikipedia.org/wiki/List_of_human_spaceflights"
url _p ¢ read_html(url)

tables « html_table(url_p, header = TRUE)

spaceflights « tables[[1]]

spaceflights

#H # A tibble: 7 x 5

THEEHEERERR

~ o~

"Russia Soviet Union ~"United States China Total

<chr> <chr> <chr> <int> <chr>
1961-1970 16 25 NA 41
1971-1980 30 8 NA 38
1981-1990 *25 *38 NA *63
1991-2000 20 63 NA 83
2001-2010 24 34 3 61
2011-2020 24 3 3 30
Total *139 *171 6 *x316

60 / 69

Web scraping: good practice

61/ 69

Scraping: the rules of the game

1. You take all the responsibility for your web scraping work.

2. Think about the nature of the data. Does it entail sensitive information? Do not collect personal data without explicit
permission.

3. Take all copyrights of a country’s jurisdiction into account. If you publish data, do not commit copyright fraud.
4. If possible, stay identifiable. Stay polite. Stay friendly. Obey the scraping etiquette.

5. If in doubt, ask the author/creator/provider of data for permission—if your interest is entirely scientific, chances
aren’t bad that you get data.

62 / 69

Consult robots.txt

What's robots.txt?

e "Robots exclusion standard", informal protocol to

prohibit web robots from crawling content

« Located in the root directory of a website (e.g,
google.com/robots.txt)

e Documents which bot is allowed to crawl which
resources (and which not)

e Not a technical barrier, but a sign that asks for
compliance

What's robots.txt?

e Not an official W3C standard

e Rules listed bot by bot

e General rule listed under User-agent: * (most
interesting entry for R-based crawlers)

e Directories folders listed separately

Example

User-agent: Googlebot
Disallow: /images/
Disallow: /private/

Universal ban

User-agent: =
Disallow: /

Allow declaration

User-agent: =
Disallow: /images/
Allow: /images/public/

Crawl delay (in seconds)

User-agent: =
Crawl-delay: 2

63 / 69

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.google.com/robots.txt

Downloading HTML files

Stay modest when accessing lots of
data

e Content on the web is publicly available.

e But accessing the data causes server traffic.

e Stay polite by querying resources as sparsely as
possible.

Two easy-to-implement practices

1. Do not bombard the server with requests - and if
you have to, do so at modest pace.

2. Store web data on your local drive first, then parse.

Looping over a list of URLs

R> for (i in 1:length(list_of_urls)) {

+ if (!file.exists(paste0(folder, file_names[i])))
+ download.file(list of urls[il],

+ destfile = pasteO(folder, file_n
+)

+ Sys.sleep(runif(1, 1, 2))

+ t

+ }

e Ifile.exists() checks whether a file does not exist
In the specified location.

e download.file() downloads the file to a folder. The
destination file (location + name) has to be
specified.

e Sys.sleep() suspends the execution of R code for a
given time interval (in seconds).

64 | 69

Staying identifiable

Don't be a phantom Staying identifiable in practice
e Downloading massive amounts of data may arouse R> url « "http://a-totally-random-website.com"
attention from server administrators. R> FZZSt—SZSSi‘(’” ¢ session(urt,
) . . . + add_headers(From = "myaemail.com",
e Assuming thgt yog ve got nothing to hide, you . “UserAgent® -
should stay identifiable beyond your IP address. 5 R.Version()$version.string
+)
. . +)
Two eaSy'tO‘lmplement praCUCQS R> headlines ¢« rvest _session %>%
. _ _ o + html_elements(xpath = "p//a") %>%
1. Get in touch with website administrators / data N html_text()
owners.
2. Use HTTP header fields From and User-Agent to e rvest's session() creates a session object that
provide information about yourself. responds to HTTP and HTML methods.

e Here, we provide our email address and the current
R version as User-Agent information.

e This will pop up in the server logs: The webpage
administrator has the chance to easily get in touch

with you. o

Scraping etiquette (cont.)

World Wide Web

|

4 A (N
Try harder | Did you identify useful data on the | Get familiar with API output and
. E Web? ’ build your own wrapper
N J no \, J
lyes
{ 3\ 4 N\
Is there an API which offers an yes Is there an R package or project that yes _)
interface to a relevant database? T provides a wrapper? | S e e
. J \ J
lTLO
() ' ™
Do you assume a database to exist yes Is there someone who grants you yes Retrieve the data from your personal
behind the data? access to the database? contact and save a lot of time
\. J \L J
an
(N\ L 4)
Does robots.trt permit bot action on yes Is th L ’ Scraping dos and don'ls
.) — s there a robots. txt? ¢
files you are interested in? © Stay identifiable with User-agent
. J
and From header fields, i.e. do
. l”o not masquerade behind proxies or
s - - ~\ i) b _l-k . t
no . Are there terms of use which explicitly no Start scraping and consider all of the i e i
deny the use of the webpage you have |—— s . = | ® Reduce traffic: scrape as few
. pects on the right .] i
L in mind?) as possible, use gzip if avail-
Reconsider your task. Speak to the e e
y i 5 yes monitor changes before scraping

owner of the data if possible. If you
nevertheless start scraping, take into | ¢
account the ‘Scraping dos and don’ts’

on the right.

(Last-Modified header field)

® Do not bombard the server with un-
necessary requests

66 / 69

Summary

67 | 69

Outlook

Until now, the toy examples were limited to single HTML pages. However, often we want to scrape data from multiple
pages. You might think of newspaper articles, Wikipedia pages, shopping items and the like. In such scenarios,
automating the scraping process becomes really powerful. Also, principles of polite scraping are more relevant then.

In other cases, you might be confronted with

forms,

authentication,

dynamic (JavaScript-enriched) content, or want to
automatically navigate through pages interactively.

Moreover, we've ignored a major alternative way to collect data from the web so far which goes beyond scraping:
accessing web APIs. Be sure to check out the respective sessions in the workshop.

There's only so much we can cover in one session. Check out more material online here and there to learn about
solutions to some of these problems.

68 / 69

https://en.wikipedia.org/wiki/Web_API
https://github.com/hertie-data-science-lab/ds-workshop-webscraping
https://github.com/yusuzech/r-web-scraping-cheat-sheet

Coming up

Assignment

Assignment 3 is about to go online on GitHub Classroom. Check it out and start scraping the web (politely).

Next lecture

Model fitting and simulation. Now that we know how to retrieve data, let's learn how to run and learn from them.

69 / 69

