
Introduction to Data Science
Session 4: Relational databases and SQL

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

�. Why databases?

�. Relational database fundamentals

�. Back to dplyr : joins

�. SQL

�. Talking to databases with R

�. Summary

2 / 61

Why databases?

3 / 61

From data frames...
When you have a background in social sciences,
your top-of-the-head mental image of data might be
a rectangular spreadsheet.
In fact, much of classical "statistical" software (SPSS,
Stata, MS Excel) operates with rectangular data
frames by default.
At the same time, your perception might be �le-
based. Data is stored in �les, and these �les are
read (and produced) by our data management
software.
In many cases, the two-dimensional structure
makes sense. For instance, we observe

persons x attitudes
countries x characteristics
social media posts x text features

The ubiqity of multi-dimensional data structures

4 / 61

https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/List_of_file_formats

Credit saschagobel/legislatoR

... to complex data structures
However, the longer you think about it, the more
problematic it becomes to store your data in two-
dimensional structures.
Examples:

countries x persons x characteristics x time
countries x states x communities x time x
variables
social media posts x retweets x users x user
characteristics x network features x meta data

Mapping three- onto two-dimensional structures is
easy (think: pivot_longer , pivot_wider).
With multiple heterogeneous data sources, things
get messy.
Managing complex data structures is just one perk
of using databases.

The ubiqity of multi-dimensional data structures

5 / 61

https://github.com/saschagobel/legislatoR

Size and speed
You have loads of data that exceed the working
memory on your computer. Databases are only
limited by available disk size (or can be distributed
across multiple disks/machines).
Your data structure is complex. Databases
allow/encourage you to store, retrieve and subset
data with complex data structures.
Your data is big and you have to
access/subset/operate frequently. Querying
databases is fast.
You care about data quality and have clear
expectations how data should look like. Using
databases you can de�ne speci�c rules for
extending and updating your database.

When databases become useful

6 / 61

Size and speed
You have loads of data that exceed the working
memory on your computer. Databases are only
limited by available disk size (or can be distributed
across multiple disks/machines).
Your data structure is complex. Databases
allow/encourage you to store, retrieve and subset
data with complex data structures.
Your data is big and you have to
access/subset/operate frequently. Querying
databases is fast.
You care about data quality and have clear
expectations how data should look like. Using
databases you can de�ne speci�c rules for
extending and updating your database.

Accessibility and concurrency
You collaborate with others on a data collection
project. With a database, you have a common,
simultaneously accessible, and reliable
infrastructure at hand that multiple users can
access at the same time.
When several parties are involved, who is allowed to
do what with the database might differ (e.g., read-
only, access to parts of the data, limited admin
rights, etc.). Most databases allow de�ning different
usage rights for different users.

When databases become useful

6 / 61

What we should distinguish
The types of databases, e.g.: relational, navigational,
NoSQL, NewSQL
The database management system, e.g.: PostgreSQL,
Oracle, SQL Server, SQLite
The data structure, e.g.: tables, columns, keys,
normal forms
The data manipulations, e.g.: selects, joins, grouping
The query language, e.g., SQL, SPARQL

Also, there are so many more ways to classify databases.
But that's enough for now.

Today, we focus on relational databases. They are by no
means the only type of databases (see above), but
they're ubiquitous and won't go away any time soon.

Talking about databases

7 / 61

https://en.wikipedia.org/wiki/Database#Classification

What we should distinguish
The types of databases, e.g.: relational, navigational,
NoSQL, NewSQL
The database management system, e.g.: PostgreSQL,
Oracle, SQL Server, SQLite
The data structure, e.g.: tables, columns, keys,
normal forms
The data manipulations, e.g.: selects, joins, grouping
The query language, e.g., SQL, SPARQL

Also, there are so many more ways to classify databases.
But that's enough for now.

Today, we focus on relational databases. They are by no
means the only type of databases (see above), but
they're ubiquitous and won't go away any time soon.

Databases versus data frames
When reading/talking about features of databases, you
will encounter a particular jargon. Here's how database
concepts map onto R data frame jargon:

R jargon Database jargon

column attribute/�eld

row tuple/record

element/cell attribute value

data frame relation/table

column types table schema

bunch of related data frames database

Talking about databases

7 / 61

https://en.wikipedia.org/wiki/Database#Classification

Relational database fundamentals

8 / 61

The concept of relational databases builds on the
relational model (RM) for database management, as
proposed by Edgar F. "Ted" Codd in 1969/1970.
Todd described the RM formally, but also introduced
it using concepts that are still in use today
(normalization, keys, joins, redundancy, etc.).
The key assumption of the relational model is that
all data can be represented as relations (tables).
Information is then represented by data values in
relations.
When you think this is trivial, check out the history
of databases and live through the pain of the early
era of navigational DBMS in the 1960s and the
NoSQL era that we've (not yet) overcome.

Credit Communications of the ACM 13(6), 1970

Codd's relational model for databases

9 / 61

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Database
https://dl.acm.org/doi/10.1145/362384.362685

Storing data in tables
Again, the key concept of relational databases is
that all information can be represented in a table.
A single table already introduces relations: All data
in one row belongs to the same record.
If we want to represent more complex relations (i.e.,
measuring a person's weight twice or measuring the
weight of their children as well), we can relate data
from one table to another.

Example
We have collected data on Peter, Paul, and Mary.
We have information on birthdays, telephone
numbers, and favorite foods.
How can we represent this information in tables?

Codd's relational model for databases (cont.)

10 / 61

Storing data in tables
Again, the key concept of relational databases is
that all information can be represented in a table.
A single table already introduces relations: All data
in one row belongs to the same record.
If we want to represent more complex relations (i.e.,
measuring a person's weight twice or measuring the
weight of their children as well), we can relate data
from one table to another.

Example
We have collected data on Peter, Paul, and Mary.
We have information on birthdays, telephone
numbers, and favorite foods.
How can we represent this information in tables?

We start representing the data in two tables.
They are linked via the key nameid , so we don't have
to add the full names to the phone numbers table.
Note that we have a 1:m (one-to-many) relation here
because Peter has two phone numbers.

Codd's relational model for databases (cont.)

10 / 61

Storing data in tables
Again, the key concept of relational databases is
that all information can be represented in a table.
A single table already introduces relations: All data
in one row belongs to the same record.
If we want to represent more complex relations (i.e.,
measuring a person's weight twice or measuring the
weight of their children as well), we can relate data
from one table to another.

Example
We have collected data on Peter, Paul, and Mary.
We have information on birthdays, telephone
numbers, and favorite foods.
How can we represent this information in tables?

However, the way we store the data is not ideal. In
the �rst table, we have three columns measuring
effectively the same thing. And what if there's more
favorite food? Adding information in such a fashion
creates a lot of redundant information.

Codd's relational model for databases (cont.)

11 / 61

Storing data in tables
Again, the key concept of relational databases is
that all information can be represented in a table.
A single table already introduces relations: All data
in one row belongs to the same record.
If we want to represent more complex relations (i.e.,
measuring a person's weight twice or measuring the
weight of their children as well), we can relate data
from one table to another.

Example
We have collected data on Peter, Paul, and Mary.
We have information on birthdays, telephone
numbers, and favorite foods.
How can we represent this information in tables?

Splitting up the information by creating another
table for food preferences is better.
There's still some redundancy left. Is it really
necessary to have hamburger in the table twice?

Codd's relational model for databases (cont.)

12 / 61

Storing data in tables
Again, the key concept of relational databases is
that all information can be represented in a table.
A single table already introduces relations: All data
in one row belongs to the same record.
If we want to represent more complex relations (i.e.,
measuring a person's weight twice or measuring the
weight of their children as well), we can relate data
from one table to another.

Example
We have collected data on Peter, Paul, and Mary.
We have information on birthdays, telephone
numbers, and favorite foods.
How can we represent this information in tables?

Now that's better.
In restructuring the information in our database, we
avoided redundancy (duplication).
This is the process of database normalization.

Codd's relational model for databases (cont.)

13 / 61

What is database normalization?
From the Wikipedia: "Database normalization is the
process of structuring a database, usually a relational
database, in accordance with a series of so-called
normal forms in order to reduce data redundancy and
improve data integrity. It was �rst proposed by Edgar F.
Codd as part of his relational model."

You'll probably not have to apply normalization
yourself because you are a user not a designer of
databases.
However, it helps to have an idea of what the �rst
normal forms are.
Higher-order normal forms imply lower-order
normal forms (e.g., in order to satisfy the 3rd normal
form, the 1st and 2nd normal forms have to be
satis�ed, too).

Database normalization

14 / 61

https://en.wikipedia.org/wiki/Database_normalization

What is database normalization?
From the Wikipedia: "Database normalization is the
process of structuring a database, usually a relational
database, in accordance with a series of so-called
normal forms in order to reduce data redundancy and
improve data integrity. It was �rst proposed by Edgar F.
Codd as part of his relational model."

You'll probably not have to apply normalization
yourself because you are a user not a designer of
databases.
However, it helps to have an idea of what the �rst
normal forms are.
Higher-order normal forms imply lower-order
normal forms (e.g., in order to satisfy the 3rd normal
form, the 1st and 2nd normal forms have to be
satis�ed, too).

Normalization and tidy data
There is also a straightforward link to Hadley Wickham's
"tidy data":

�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

This is Codd's 3rd normal form using "statistical" jargon
and applied to a single dataset.

Database normalization

14 / 61

https://en.wikipedia.org/wiki/Database_normalization
https://www.jstatsoft.org/article/view/v059i10

Database normalization (cont.)
The normal forms (from least normalized to most normalized):

Credit English Wikipedia, "Database normalization"

15 / 61

https://en.wikipedia.org/wiki/Database_normalization

Database normalization (cont.)

16 / 61

What schemas are
The database schema describes the structure of a
database. It represents the map or blueprint of how
the database is constructed.
The schema speci�es all core ingredients of the
database, including tables, �elds, keys relationships,
views, etc.
The visualization helps database users understand
the relationships between the tables.

How they can look like

Credit Timo Tijhof/Wikimedia Commons

Database schema

17 / 61

https://en.wikipedia.org/wiki/Database_schema#/media/File:MediaWiki_1.28.0_database_schema.svg

What are databases?
Databases are an organized collection of data.
They are organized to afford ef�cient retrieval of (selections) of data.
They entail data + metadata about structure and organization.
They are generally accessed through a database management system.

Where are databases?
Databases can exist locally or remotely, in-memory or on-disk.
When they are stored locally, they are stored as binary �le (not text �le).
Commonly, we think of a client-server model:

Databases live on a server, which manages them
Users interact with the server through a client program.
Lets multiple users access the same database simultaneously.

Databases and Database Management Systems

18 / 61

What are DBMS?
Database Management Systems (DBMS) provide ef�cient, reliable,
convenient, safe, multi-user storage of and access to massive data.

Massive: Think Terabytes, not Gigabytes. Handle data that resides
outside memory.
Safe: Robust to power outages, node failures, etc.
Multi-user: Concurrency control. Not one user, but multiple.
Convenient: High-level query languages.
Ef�cient: Just fast.
Reliable: High uptime.

There are so many DBMS for relational database structures alone.
RDBMS differ in terms of capabilities, implemented features, operating
system support, and much more.
You'll probably not be in the position to decide which database to use.
If you're still interested in the differences, this or this overview might be
a good starting point.
Also, I've heard good things about DuckDB.

Databases and Database Management Systems

19 / 61

https://en.wikipedia.org/wiki/List_of_relational_database_management_systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://duckdb.org/

Back to dplyr: joins

20 / 61

Relational data in R
For the simple examples that I'm going to show here, we'll need some data sets that come bundled with the nyc�ights13
package.

Let's load it now and then inspect these data frames in your own console.

R> library(nycflights13)

21 / 61

http://github.com/hadley/nycflights13

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

22 / 61

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

The airlines data frame lets you look up the full carrier name from its abbreviated code:

R> head(airlines, 10)

�� # A tibble: 10 × 2
�� carrier name
�� <chr> <chr>
�� 1 9E Endeavor Air Inc.
�� 2 AA American Airlines Inc.
�� 3 AS Alaska Airlines Inc.
�� 4 B6 JetBlue Airways
�� 5 DL Delta Air Lines Inc.
�� 6 EV ExpressJet Airlines Inc.
�� 7 F9 Frontier Airlines Inc.
�� 8 FL AirTran Airways Corporation
�� 9 HA Hawaiian Airlines Inc.
�� 10 MQ Envoy Air

22 / 61

https://en.wikipedia.org/wiki/List_of_airline_codes

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

airports gives information about each airport, identi�ed by the faa airport code:

R> head(airports, 10)

�� # A tibble: 10 × 8
�� faa name lat lon alt tz dst tzone
�� <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
�� 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/New_Yo…
�� 2 06A Moton Field Municipal A… 32.5 -85.7 264 -6 A America/Chicago
�� 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chicago
�� 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New_Yo…
�� 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/New_Yo…
�� 6 0A9 Elizabethton Municipal … 36.4 -82.2 1593 -5 A America/New_Yo…
�� 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/New_Yo…
�� 8 0G7 Finger Lakes Regional A… 42.9 -76.8 492 -5 A America/New_Yo…
�� 9 0P2 Shoestring Aviation Air… 39.8 -76.6 1000 -5 U America/New_Yo…
�� 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/Los_An…

23 / 61

https://airportcodes.io/en/faa-codes/

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

planes gives information about each plane, identi�ed by its tailnum (aircraft registration a.k.a. tail number):

R> head(planes, 10)

�� # A tibble: 10 × 9
�� tailnum year type manufacturer model engines seats speed engine
�� <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
�� 1 N10156 2004 Fixed wing m… EMBRAER EMB-1… 2 55 NA Turbo�…
�� 2 N102UW 1998 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 3 N103US 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 4 N104UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 5 N10575 2002 Fixed wing m… EMBRAER EMB-1… 2 55 NA Turbo�…
�� 6 N105UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 7 N107US 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 8 N108UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 9 N109UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…
�� 10 N110UW 1999 Fixed wing m… AIRBUS INDUST… A320-… 2 182 NA Turbo�…

24 / 61

https://en.wikipedia.org/wiki/Aircraft_registration

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

weather gives the weather at each NYC airport for each hour:

R> head(weather, 10)

�� # A tibble: 10 × 15
�� origin year month day hour temp dewp humid wind_dir wind_speed
�� <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
�� 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4
�� 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06
�� 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5
�� 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7
�� 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7
�� 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5
�� 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0
�� 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4
�� 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0
�� 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8
�� # … with 5 more variables: wind_gust <dbl>, precip <dbl>, pressure <dbl>,
�� # visib <dbl>, time_hour <dttm>

25 / 61

https://www.youtube.com/watch?v=1ZyT_Aiey1U

Relational data in R (cont.)
The package contains the tables flights , airlines , airports , planes , and weather .

Finally, flights gives data on each of the 336776 �ights in the dataset:

R> head(flights, 10)

�� # A tibble: 10 × 19
�� year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
�� <int> <int> <int> <int> <int> <dbl> <int> <int>
�� 1 2013 1 1 517 515 2 830 819
�� 2 2013 1 1 533 529 4 850 830
�� 3 2013 1 1 542 540 2 923 850
�� 4 2013 1 1 544 545 -1 1004 1022
�� 5 2013 1 1 554 600 -6 812 837
�� 6 2013 1 1 554 558 -4 740 728
�� 7 2013 1 1 555 600 -5 913 854
�� 8 2013 1 1 557 600 -3 709 723
�� 9 2013 1 1 557 600 -3 838 846
�� 10 2013 1 1 558 600 -2 753 745
�� # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
�� # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
�� # hour <dbl>, minute <dbl>, time_hour <dttm>

26 / 61

We can illustrate the relationships between the
different tables with a schematic drawing.1

One table seems central (flights), but that's not a
necessary feature of relational databases.
Key to understanding the diagram is that each
relation always concerns a pair of tables:

flights connects to planes via tailnum .
flights connects to airlines via carrier .
flights connects to airports via origin and
dest .
flights connects to weather via origin
(location) and year , month , day , and hour
(time).

Relational data in R (cont.)

1 Of course there are R packages that help you create such data models visually, e.g., the dm package.

27 / 61

https://cynkra.github.io/dm/

Question time
�. Imagine you wanted to draw (approximately) the

route each plane �ies from its origin to its
destination. What variables would you need? What
tables would you need to combine?

�. We know that some days of the year are “special”,
and fewer people than usual �y on them. How might
you represent that data as a data frame? What
would be the primary keys of that table? How would
it connect to the existing tables?

Relational data in R (cont.)

28 / 61

One of the mainstays of the dplyr package is merging
data with the family of join operations.

Luckily, the functions are both intuitive to apply and
consistent with SQL join vocabulary.

The main functions are:

inner_join(df1, df2)

left_join(df1, df2)

right_join(df1, df2)

full_join(df1, df2)

semi_join(df1, df2)

anti_join(df1, df2)

Joins

29 / 61

https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html

The logic of joins
We start with a simple setup of two tables x and y :

30 / 61

The logic of joins
We start with a simple setup of two tables x and y :

The colored columns represent the key variables, the gray columns the value variables. The basic ideas of joining will
generalize to multiple keys and values.

30 / 61

The logic of joins
We start with a simple setup of two tables x and y :

The colored columns represent the key variables, the gray columns the value variables. The basic ideas of joining will
generalize to multiple keys and values.

Joining is about connecting each row in x to zero, one, or more rows in y :

30 / 61

The logic of joins
We start with a simple setup of two tables x and y :

The colored columns represent the key variables, the gray columns the value variables. The basic ideas of joining will
generalize to multiple keys and values.

Joining is about connecting each row in x to zero, one, or more rows in y :

In an actual join, matches will be indicated with dots. The number of dots = the number of matches = the number of
rows in the output. 31 / 61

Inner join
An inner join matches pairs of observations when their keys are equal.
The output of an inner join is a new table that contains the key and
values of both tables.
Unmatched rows are not included in the result. To be used with caution,
because it's easy to lose observations!

Outer joins
Outer joins keep observations that appear in at least one of the tables.
There are three types of outer joins:

A left join keeps all observations in x .
A right join keeps all observations in y .
A full join keeps all observations in x and y .

Use the left join unless you have a strong reason not to do so; it
preserves original observations even when there isn't a match.

The logic of joins (cont.)

32 / 61

https://twitter.com/SolomonMg/status/1436742352039669760

Keys
Variables used to connect each pair of tables are called keys.
A key is a variable (or set of variables) that uniquely identi�es an observation.
In simple cases, a single variable is suf�cient to identify an observation (plane → tailnum).
In other cases, multiple variables are needed (look again at the weather table).

33 / 61

Keys
Variables used to connect each pair of tables are called keys.
A key is a variable (or set of variables) that uniquely identi�es an observation.
In simple cases, a single variable is suf�cient to identify an observation (plane → tailnum).
In other cases, multiple variables are needed (look again at the weather table).

Primary keys
A primary key uniquely identi�es an observation in its own table.
It is either a column containing a (sometimes autogenerated and otherwise meaningless) identi�er that uniquely
identi�es each row, or
Several substantively meaningful columns whose row values taken together uniquely identify each row.

33 / 61

Keys
Variables used to connect each pair of tables are called keys.
A key is a variable (or set of variables) that uniquely identi�es an observation.
In simple cases, a single variable is suf�cient to identify an observation (plane → tailnum).
In other cases, multiple variables are needed (look again at the weather table).

Primary keys
A primary key uniquely identi�es an observation in its own table.
It is either a column containing a (sometimes autogenerated and otherwise meaningless) identi�er that uniquely
identi�es each row, or
Several substantively meaningful columns whose row values taken together uniquely identify each row.

Foreign keys
A foreign key is a column containing primary key(s) from another table.
It is the piece of information necessary to join both tables.
Note that a variable can be both a primary and a foreign key. In our example, origin is part of the weather primary
key, and is also a foreign key for the airports table.

33 / 61

Joins in R
Let's perform a left join on the �ights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

34 / 61

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins in R
Let's perform a left join on the �ights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

R> left_join(flights, planes) %>%
+ select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, model)

�� Joining, by = c("year", "tailnum")

�� # A tibble: 336,776 × 10
�� year month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1 1 517 830 UA 1545 N14228 <NA> <NA>
�� 2 2013 1 1 533 850 UA 1714 N24211 <NA> <NA>
�� 3 2013 1 1 542 923 AA 1141 N619AA <NA> <NA>
�� 4 2013 1 1 544 1004 B6 725 N804JB <NA> <NA>
�� 5 2013 1 1 554 812 DL 461 N668DN <NA> <NA>
�� 6 2013 1 1 554 740 UA 1696 N39463 <NA> <NA>
�� 7 2013 1 1 555 913 B6 507 N516JB <NA> <NA>
�� 8 2013 1 1 557 709 EV 5708 N829AS <NA> <NA>
�� 9 2013 1 1 557 838 B6 79 N593JB <NA> <NA>
�� 10 2013 1 1 558 753 AA 301 N3ALAA <NA> <NA>
�� # … with 336,766 more rows 34 / 61

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins in R (cont.)
Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name). It
also told us its choices:

��� Joining, by = c("year", "tailnum")

However, there's an obvious problem here: the variable "year" does not have a consistent meaning across our joining
datasets!

In one it refers to the year of �ight, in the other it refers to year of construction.

35 / 61

Joins in R (cont.)
Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name). It
also told us its choices:

��� Joining, by = c("year", "tailnum")

However, there's an obvious problem here: the variable "year" does not have a consistent meaning across our joining
datasets!

In one it refers to the year of �ight, in the other it refers to year of construction.

Luckily, there's an easy way to avoid this problem.

See if you can �gure it out before turning to the next slide.
Try ?dplyr��join .

35 / 61

Joins in R (cont.)
You just need to be more explicit in your join call by using the by = argument.

You can also rename any ambiguous columns to avoid confusion.

R> left_join(
+ flights,
+ planes %>% rename(year_built = year), ��� Not necessary w/ below line, but helpful
+ by = "tailnum" ��� Be specific about the joining column
+) %>%
+ select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_built, type, model) %>%
+ head(3) ��� Just to save vertical space on the slide

�� # A tibble: 3 × 11
�� year month day dep_time arr_time carrier flight tailnum year_built type
�� <int> <int> <int> <int> <int> <chr> <int> <chr> <int> <chr>
�� 1 2013 1 1 517 830 UA 1545 N14228 1999 Fixed w…
�� 2 2013 1 1 533 850 UA 1714 N24211 1998 Fixed w…
�� 3 2013 1 1 542 923 AA 1141 N619AA 1990 Fixed w…
�� # … with 1 more variable: model <chr>

36 / 61

Joins in R (cont.)
Last thing to mention on joins for now; note what happens if we again specify the join column... but don't rename the
ambiguous "year" column in at least one of the given data frames:

R> left_join(
+ flights,
+ planes, ��� Not renaming "year" to "year_built" this time
+ by = "tailnum"
+) %>%
+ select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, model) %>%
+ head(3)

�� # A tibble: 3 × 11
�� year.x year.y month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
�� 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
�� 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

37 / 61

Joins in R (cont.)
Last thing to mention on joins for now; note what happens if we again specify the join column... but don't rename the
ambiguous "year" column in at least one of the given data frames:

R> left_join(
+ flights,
+ planes, ��� Not renaming "year" to "year_built" this time
+ by = "tailnum"
+) %>%
+ select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, model) %>%
+ head(3)

�� # A tibble: 3 × 11
�� year.x year.y month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
�� 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
�� 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

Make sure you know what "year.x" and "year.y" are. Again, it pays to be speci�c.

37 / 61

Duplicate keys
If you're lucky, keys are unique. But that's not always the case. There are two common scenarios:

38 / 61

Duplicate keys
If you're lucky, keys are unique. But that's not always the case. There are two common scenarios:

�. One table has duplicate keys, the other hasn't. This gives us a one-to-many relationship.

38 / 61

Duplicate keys
If you're lucky, keys are unique. But that's not always the case. There are two common scenarios:

�. One table has duplicate keys, the other hasn't. This gives us a one-to-many relationship.

�. Both tables have duplicate keys. This is usually an error because in neither table do the keys uniquely identify an
observation. When joining duplicated keys, we get all possible combinations (the Cartesian product, a many-to-many
relationship):

38 / 61

SQL

39 / 61

What is SQL?

Background and history
SQL (pronounced [ɛsˌkjuːˈɛl] as in S-Q-L, or [siːkwəl] as in sequel) stands for Structured Query Language. Initially it
was called SEQUEL (Structured English Query Language), but this was dropped due to trademark issues.
It's a domain-speci�c language designed to query data contained in relational databases.
Initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce in 1974.

40 / 61

https://en.wikipedia.org/wiki/Donald_D._Chamberlin
https://en.wikipedia.org/wiki/Raymond_F._Boyce

What is SQL?

Background and history
SQL (pronounced [ɛsˌkjuːˈɛl] as in S-Q-L, or [siːkwəl] as in sequel) stands for Structured Query Language. Initially it
was called SEQUEL (Structured English Query Language), but this was dropped due to trademark issues.
It's a domain-speci�c language designed to query data contained in relational databases.
Initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce in 1974.

Why SQL?
While database types differ, most of the relational databases you'll encounter speak SQL.
The key skill to work with databases (outside R) is to learn how to speak SQL. Once you've mastered this, you should
be able to work with any of them.
SQL is featured as a required skill in many (most?) data science job ads out there.

40 / 61

https://en.wikipedia.org/wiki/Donald_D._Chamberlin
https://en.wikipedia.org/wiki/Raymond_F._Boyce

General SQL syntax

Classes of SQL syntax
Data query language (DQL) to perform queries on the data [SELECT , FROM , WHERE]
Data de�nition language (DDL) to describe data structure and its relations (create tables, columns, de�ne data
types, keys, constraints) [CREATE , ALTER , DROP]
Data manipulation language (DML) to �ll database or retrieve information from it [SELECT , FROM , WHERE , INSERT ,
UPDATE , DELETE]
Data control language (DCL) to de�ne usage/admin rights [GRANT , REVOKE]

41 / 61

General SQL syntax

Classes of SQL syntax
Data query language (DQL) to perform queries on the data [SELECT , FROM , WHERE]
Data de�nition language (DDL) to describe data structure and its relations (create tables, columns, de�ne data
types, keys, constraints) [CREATE , ALTER , DROP]
Data manipulation language (DML) to �ll database or retrieve information from it [SELECT , FROM , WHERE , INSERT ,
UPDATE , DELETE]
Data control language (DCL) to de�ne usage/admin rights [GRANT , REVOKE]

A generic query
The main SQL tool is SELECT , which allows you to perform queries on a table in a database. It has the generic form:

R> SELECT columns or computations
+ FROM table
+ WHERE condition
+ GROUP BY columns
+ HAVING condition
+ ORDER BY column [ASC | DESC]
+ LIMIT offset,count;

41 / 61

Basic rules
SQL statements start with a command describing
the desired action (SELECT), followed by the unit on
which it should be executed (SELECT column1), and
one or more clauses (WHERE column 2 = 1).
Although it's customary to write all SQL statements
in capital letters, SQL is actually case insensitive
towards its key words.
Each SQL statement ends with a semicolon, so SQL
statements can span across multiple lines.
Comments either start with �� or have to be put in
between �� and �� .

R> CREATE DATABASE database1 ;
+ SELECT column1 FROM table1 WHERE column2 = 1 ;
+ UPDATE table1 SET column1 = 1 WHERE column2 > 3 ;
+ INSERT INTO table1 (column1, column2)
+ VALUES ('rc11', 'rc12'), ('rc21', 'rc22') ;

R> �� One line comment.
+ ��
+ Comment spanning
+ several lines
+ ��

General SQL syntax (cont.)

42 / 61

General SQL syntax (cont.)

Notes from a dplyr user
SQL syntax is intuitive until it isn't.
One problem: SQL imposes a lexical order of operations ("order of execution") which does not necessarily match the
logical order of operations you'd have in mind.
Conceptually, every step (like " WHERE ") of the query transforms its input. However, the query's steps don't happen in
the order they're written (e.g., SELECT is written �rst but the operation comes much later in the process).
Compare this to our dplyr logic: Take this, do this, then do this, etc.

43 / 61

https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

General SQL syntax (cont.)

Notes from a dplyr user
SQL syntax is intuitive until it isn't.
One problem: SQL imposes a lexical order of operations ("order of execution") which does not necessarily match the
logical order of operations you'd have in mind.
Conceptually, every step (like " WHERE ") of the query transforms its input. However, the query's steps don't happen in
the order they're written (e.g., SELECT is written �rst but the operation comes much later in the process).
Compare this to our dplyr logic: Take this, do this, then do this, etc.

The good news
With dplyr we have a package that can effectively speak SQL for us.
Those queries (formulated with dplyr commands!) can then easily be submitted as SQL queries to the database
(also thanks to the DBI package).
So, do you still have to learn SQL? Probably not, but it won't hurt!

43 / 61

https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/

More resources to get started with SQL
Probably the best way to learn SQL hands-on is the interactive tutorial at SQLBolt.

Another hands-on beginner SQL tutorial is at DataQuest.

Yet another good starting point to learn about the basics of SQL lives at Codeacademy.

If you want to know more about how indexes work in SQLite, check out this resource.

Finally, another good read is 10 easy steps to a complete understanding of SQL by Lukas Eder.

44 / 61

https://sqlbolt.com/
https://www.dataquest.io/blog/sql-basics
https://www.codecademy.com/learn/learn-sql
https://www.sqlite.org/queryplanner.html
https://blog.jooq.org/10-easy-steps-to-a-complete-understanding-of-sql/

Talking to databases with R

45 / 61

A database interface
DBMS implement SQL but all have somewhat different conventions.
R can connect to all major existing databases types.
The R package DBI (DataBase Interface) is a uni�ed interface to them
(car analogy: wheel, pedals).
In addition, we need a separate "driver" to connect to the database
engine (car analogy: fuel (?)).

Drivers for open-source/commercial DBs
There are various R packages that allow you to connect to particular
open-source database types including SQLite (via RSQLite), MySQL
(RMySQL), PostgreSQL (RPostgres), Google BigQuery (bigrquery),
MariaDB (RMariaDB), DuckDB (duckdb), and more.
For commercial databases such as Microsoft SQL Server or Oracle, the
odbc package provides a DBI-compliant interface to Open Database
Connectivity (ODBC) drivers.

Credit db.rstudio.com

Connecting to databases with R

46 / 61

https://cran.r-project.org/web/packages/DBI/vignettes/DBI-proposal.html
https://cran.r-project.org/web/packages/RSQLite/index.html
https://cran.r-project.org/web/packages/RMySQL/index.html
https://cran.r-project.org/web/packages/RPostgres/index.html
https://cran.r-project.org/web/packages/bigrquery/index.html
https://cran.r-project.org/web/packages/RMariaDB/index.html
https://cran.r-project.org/web/packages/duckdb/index.html
https://github.com/r-dbi/odbc
https://db.rstudio.com/

dplyr as a database interface
Good news: dplyr is able to interact with databases
directly by translating the dplyr verbs into SQL
queries. This convenient feature allows you to
"speak" directly with the database from R.
Using dplyr as an interface allows you to:

�. Run data exploration routines over all of the
data, instead of importing parts of the data into
R.

�. Use the SQL engine to run the data
transformations. In effect, computation is being
pushed to the database.

�. Collect into R only a targeted dataset.
�. Keep all your code in R. There is no need to

alternate between languages or tools to
perform the data exploration.

Credit db.rstudio.com

Talking to databases

47 / 61

https://db.rstudio.com/

A hands-on database session with R
Before we start, we load the DBI package to connect to a DBMS and the RSQLite package to communicate with an SQLite
database. Tidyverse and dplyr / dbplyr will be used, too. Also, we will rely on nycflights13 for some toy data sets.

R> library(DBI)
R> library(RSQLite)
R> library(tidyverse)
R> library(nycflights13)

48 / 61

Connecting to the database
Now, let's set up a connection with an SQLite database. In fact, we will not interact with an existing one but build up our
own, which will live in the memory:

R> con �� dbConnect(RSQLite��SQLite(), dbname = ":memory:")

con represents our database connection via which we'll interact with the database.

49 / 61

Connecting to the database
Now, let's set up a connection with an SQLite database. In fact, we will not interact with an existing one but build up our
own, which will live in the memory:

R> con �� dbConnect(RSQLite��SQLite(), dbname = ":memory:")

con represents our database connection via which we'll interact with the database.

The arguments to DBI��dbConnect() vary from database to database, but the �rst argument is always the database
backend. For instance, it’s RSQLite��SQLite() for RSQLite, RMariaDB��MariaDB() for RMariaDB, RPostgres��Postgres() ,
and bigrquery��bigquery() for BigQuery.

49 / 61

Connecting to the database
Now, let's set up a connection with an SQLite database. In fact, we will not interact with an existing one but build up our
own, which will live in the memory:

R> con �� dbConnect(RSQLite��SQLite(), dbname = ":memory:")

con represents our database connection via which we'll interact with the database.

The arguments to DBI��dbConnect() vary from database to database, but the �rst argument is always the database
backend. For instance, it’s RSQLite��SQLite() for RSQLite, RMariaDB��MariaDB() for RMariaDB, RPostgres��Postgres() ,
and bigrquery��bigquery() for BigQuery.

Also, in real life, chances are that the database lives on a server and you have to authenticate to connect to it. This could
look as follows:

R> con �� DBI��dbConnect(RSQLite��SQLite(),
+ host = "mydatabase.host.com",
+ user = "simon",
+ password = "mypassword"
+)

49 / 61

Filling the database
Next, we upload a local data frame into the remote data source; here: our database. Note that this is speci�c to our (toy)
example. You'll probably not have to build up your own database.

R> dplyr��copy_to(
+ dest = con,
+ df = nycflights13��flights,
+ name = "flights")

50 / 61

Filling the database
Next, we upload a local data frame into the remote data source; here: our database. Note that this is speci�c to our (toy)
example. You'll probably not have to build up your own database.

R> dplyr��copy_to(
+ dest = con,
+ df = nycflights13��flights,
+ name = "flights",
+ temporary = FALSE,
+ indexes = list(
+ c("year", "month", "day"),
+ "carrier",
+ "tailnum",
+ "dest"
+)
+)

We can also explicitly set up indexes that will allow us to quickly process the data by day, carrier, plane, and destination.
While creating the right indices is key to good database performance, in common applications this will be taken care of
by the database maintainer.

51 / 61

Querying the database
Now it's time to start querying our database. First, we generate a reference table from the database using dplyr 's tbl ():

R> flights_db �� tbl(con, "flights")

Note that flights_db is a remote source; the table is not stored in our local environment. We can use it as a "pointer" to
the actual database. Next, we perform various queries, such as:

R> flights_db %>% select(year:day, dep_delay, arr_delay)

�� # Source: lazy query [�� x 5]
�� # Database: sqlite 3.36.0
�� # [/Users/simonmunzert/github/intro�to�data�science-21/lectures/04-databases/nycflightsdb]
�� year month day dep_delay arr_delay
�� <int> <int> <int> <dbl> <dbl>
�� 1 2013 1 1 2 11
�� 2 2013 1 1 4 20
�� 3 2013 1 1 2 33
�� 4 2013 1 1 -1 -18
�� 5 2013 1 1 -6 -25
�� 6 2013 1 1 -4 12
�� 7 2013 1 1 -5 19
�� 8 2013 1 1 -3 -14 52 / 61

Querying the database
The most important difference between ordinary data frames and remote database queries is that your R code is
translated into SQL and executed in the database on the remote server, not in R on your local machine. When working
with databases, dplyr tries to be as lazy as possible:

It never pulls data into R unless you explicitly ask for it.
It delays doing any work until the last possible moment: it collects together everything you want to do and then
sends it to the database in one step.

This even applies when you assign the output of a database query to an object:

R> tailnum_delay_db �� flights_db %>%
+ group_by(tailnum) %>%
+ summarise(
+ delay = mean(arr_delay),
+ n = n()
+) %>%
+ arrange(desc(delay)) %>%
+ filter(n > 100)

53 / 61

Querying the database
Laziness also has some downsides. Because there’s generally no way to determine how many rows a query will return
unless you actually run it, nrow() is always NA:

R> nrow(tailnum_delay_db)

�� [1] NA

Because you can’t �nd the last few rows without executing the whole query, you can’t use tail():

R> tail(tailnum_delay_db)

�� Error: tail() is not supported by sql sources

If you then want to pull the data into a local data frame, use dplyr��collect() :

R> tailnum_delay �� tailnum_delay_db %>% collect()
R> tailnum_delay

�� # A tibble: 1,201 × 3
�� tailnum delay n
�� <chr> <dbl> <int>
�� 1 <NA> NA 2512 54 / 61

Using SQL directly in R
Again, because it is so cool: Yes, we can use dplyr syntax to do database queries! Behind the scenes, dplyr is
translating your R code into SQL. The dbplyr package is doing the work for us.

You can use the show_query() function to display the SQL code that was used to generate a queried table:

R> tailnum_delay_db %>% show_query()

�� <SQL>
�� SELECT *
�� FROM (SELECT `tailnum`, AVG(`arr_delay`) AS `delay`, COUNT(*) AS `n`
�� FROM `flights`
�� GROUP BY `tailnum`)
�� WHERE (`n` > 100.0)

If you still want to formulate SQL queries and pass them on to the DBMS, use DBI��dbGetQuery() :

R> sql_query �� "SELECT * FROM flights WHERE dep_delay > 240.0 LIMIT 5"
R> dbGetQuery(con, sql_query)

�� year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
�� 1 2013 1 1 848 1835 853 1001 1950
�� 2 2013 1 1 1815 1325 290 2120 1542 55 / 61

More useful resources to get started with databases

Relational databases FTW
A comprehensive overview of database interaction using R is available at db.rstudio.com. It also features a set of best
practices that go beyond what we covered today.

Not to mention Databases 101 by Grant McDermott, which also features example code to connect to DuckDB and Google
BigQuery.

Finally, there is the introduction to dbplyr which comes as a package vignette.

56 / 61

https://db.rstudio.com/getting-started/overview
https://raw.githack.com/uo-ec607/lectures/master/16-databases/16-databases.html
https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html

And what about NoSQL databases?
We haven't talked about non-relational databases so far, but you might encounter them in the future. NoSQL became
popular in the 2000s as a consequence of several developments: Cost of data storage decreased, which made the need
of ef�cient, non-redundant but complex data storage less urgent. At the same time, heterogeneity in data formats
increased and coming up with well-de�ned schemas was dif�cult. NoSQL offered more �exibility.

There are several types of NoSQL databases, including document DBs where documents contain pairs of �elds and
values (think: JSON), key-value DBs, or graph DBs.

Depending on your use case, this might be exactly what you need. If you want to learn more, start here or here.

57 / 61

https://www.mongodb.com/nosql-explained
https://www.digitalvidya.com/blog/nosql-tutorial/

Summary

58 / 61

Most data scientists never design a database.

But they almost all end up interacting with them.
Also, with database administrators (DBAs).

Lots of academic data work consists of working with bad
re-inventions of the relational database.

Looking at you, Excel users.
Looking at you, instructor.

Thinking about data relationally will help you with
statistics.

Multilevel models
Time-series
Network analysis
NLP

Database concept Statistical concept

Table Sample

Column Variable

Row Unit

Value Observation

Foreign key
relationships

Nested variables

Many-to-many
relationships

Crossed variables (possibly
unbalanced)

Summing it up

59 / 61

Databases: Maybe not the most exciting technology...

60 / 61

Coming up

Assignment
None! But you'll get the chance to practice databasing with R in the lab.

Next lecture
Web data and technologies - relational data structures FTW!

61 / 61

