
Introduction to Data Science
Session 3: R and the tidyverse

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents

�. Tidyverse basics1

�. Pipes

�. Data wrangling with dplyr

�. Data tidying with tidyr

�. Tidy programming

�. Coding style

�. Summary

1 Parts of this lecture draw on materials from Grant McDermott's excellent Data Science for Economists class.

2 / 94

https://github.com/uo-ec607/lectures

Today's session in a nutshell

3 / 94

Tidyverse basics

4 / 94

R packages for data science
Let's take it from the tidyverse website:

"The tidyverse is an opinionated collection of R
packages designed for data science. All packages share
an underlying design philosophy, grammar, and data
structures."

It's the contribution of many people of the R
community.
Hadley Wickham had a key role in shaping it by
developing many of the core packages, such as
ggplot2 , dplyr , tidyr , tibble , and stringr .
Install the complete tidyverse with:

R> install.packages("tidyverse")
Hadley Wickham

What is the tidyverse?

5 / 94

https://www.tidyverse.org/
http://hadley.nz/

Valuable resources
Welcome to the Tidyverse, a quick overview from
many tidyverse contributors
Tidy data, a foundational paper on data wrangling
and structuring, by Hadley Wickham, 2014, Journal of
Statistical Software; check here for a hands-on
vignette based on the tidyr package
The tidyverse design guide, a (soon-to-be book)
manifesto to promote design consistency across the
tidyverse
R for Data Science, our main textbook for this course

A guide to the tidyverse

6 / 94

https://tidyverse.tidyverse.org/articles/paper.html
https://vita.had.co.nz/papers/tidy-data.pdf
https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://design.tidyverse.org/
https://r4ds.had.co.nz/

Tidyverse packages

Loading the tidyverse
R> library(tidyverse)

�� ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

�� ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
�� ✓ tibble 3.1.3 ✓ dplyr 1.0.7
�� ✓ tidyr 1.1.3 ✓ stringr 1.4.0
�� ✓ readr 2.0.0 ✓ forcats 0.5.1

�� ── Conflicts ── tidyverse_conflicts() ──
�� x dplyr��filter() masks stats��filter()
�� x dplyr��lag() masks stats��lag()

7 / 94

Tidyverse packages

Loading the tidyverse
R> library(tidyverse)

�� ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

�� ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
�� ✓ tibble 3.1.3 ✓ dplyr 1.0.7
�� ✓ tidyr 1.1.3 ✓ stringr 1.4.0
�� ✓ readr 2.0.0 ✓ forcats 0.5.1

�� ── Conflicts ── tidyverse_conflicts() ──
�� x dplyr��filter() masks stats��filter()
�� x dplyr��lag() masks stats��lag()

We see that we have actually loaded a number of packages (which could also be loaded individually): ggplot2 ,
tibble , dplyr , etc.
We can also see information about the package versions and some namespace con�icts.

7 / 94

Tidyverse packages cont.
In addition to the currently 8 core packages, the tidyverse includes many others for more specialized usage.1

See here for an overview, or just in R directly:

R> tidyverse_packages()

�� [1] "broom" "cli" "crayon" "dbplyr"
�� [5] "dplyr" "dtplyr" "forcats" "googledrive"
�� [9] "googlesheets4" "ggplot2" "haven" "hms"
�� [13] "httr" "jsonlite" "lubridate" "magrittr"
�� [17] "modelr" "pillar" "purrr" "readr"
�� [21] "readxl" "reprex" "rlang" "rstudioapi"
�� [25] "rvest" "stringr" "tibble" "tidyr"
�� [29] "xml2" "tidyverse"

1 It also includes a lot of dependencies upon installation. This is a matter of some controversy.

8 / 94

https://www.tidyverse.org/packages/
http://www.tinyverse.org/

Tidyverse packages cont.
In addition to the currently 8 core packages, the tidyverse includes many others for more specialized usage.1

See here for an overview, or just in R directly:

R> tidyverse_packages()

�� [1] "broom" "cli" "crayon" "dbplyr"
�� [5] "dplyr" "dtplyr" "forcats" "googledrive"
�� [9] "googlesheets4" "ggplot2" "haven" "hms"
�� [13] "httr" "jsonlite" "lubridate" "magrittr"
�� [17] "modelr" "pillar" "purrr" "readr"
�� [21] "readxl" "reprex" "rlang" "rstudioapi"
�� [25] "rvest" "stringr" "tibble" "tidyr"
�� [29] "xml2" "tidyverse"

We'll use several of these additional packages during the remainder of this course (e.g., the lubridate package for
working with dates and the rvest package for web scraping).
However, bear in mind that these packages will have to be loaded separately.

1 It also includes a lot of dependencies upon installation. This is a matter of some controversy.

8 / 94

https://www.tidyverse.org/packages/
http://www.tinyverse.org/

The tidyverse philosophy

Key philosophy for tidy data
�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

9 / 94

https://en.wikipedia.org/wiki/Wide_and_narrow_data

The tidyverse philosophy

Key philosophy for tidy data
�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

More unifying principles
Today, the tidyverse stands for more than just "tidy data".
It is guided by the principles of being human centered, consistent, composable, and inclusive.
We will learn about these unifying principles inductively when working with more and more tidyverse packages.
Later today, we will learn about tidyverse style principles of low-level code formatting.

9 / 94

https://en.wikipedia.org/wiki/Wide_and_narrow_data
https://design.tidyverse.org/unifying-principles.html
https://style.tidyverse.org/

The tidyverse philosophy

Key philosophy for tidy data
�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

More unifying principles
Today, the tidyverse stands for more than just "tidy data".
It is guided by the principles of being human centered, consistent, composable, and inclusive.
We will learn about these unifying principles inductively when working with more and more tidyverse packages.
Later today, we will learn about tidyverse style principles of low-level code formatting.

Resources
Check out the tidyverse design guide for a comprehensive treatment of the tidyverse philosophy.

9 / 94

https://en.wikipedia.org/wiki/Wide_and_narrow_data
https://design.tidyverse.org/unifying-principles.html
https://style.tidyverse.org/
https://design.tidyverse.org/

Tidyverse vs. base R

10 / 94

Tidyverse vs. base R: what's the difference?
Both are compatible. You can wrangle your data with dplyr , plot it with ggplot2 , and model it with yet another
package.
Ultimately, the tidyverse is just a bunch of (hugely popular!) packages that share design principles.
Often, tidyverse packages don't reinvent the wheel. Instead, they offer more consistency in naming, arguments, and
output (among other things).
For instance, compare function naming principles (tidyverse��snake_case vs base��period.case rule; more on these
conventions later) in these examples:

tidyverse base

?readr��read_csv ?utils��read.csv

?dplyr��if_else ?base��ifelse

?tibble��tibble ?base��data.frame

If you call up the above examples, you'll see that the tidyverse alternative typically offers some enhancements or
other useful options (and sometimes restrictions) over its base counterpart.

11 / 94

Tidyverse vs. base R: what's the difference?
Both are compatible. You can wrangle your data with dplyr , plot it with ggplot2 , and model it with yet another
package.
Ultimately, the tidyverse is just a bunch of (hugely popular!) packages that share design principles.
Often, tidyverse packages don't reinvent the wheel. Instead, they offer more consistency in naming, arguments, and
output (among other things).
For instance, compare function naming principles (tidyverse��snake_case vs base��period.case rule; more on these
conventions later) in these examples:

tidyverse base

?readr��read_csv ?utils��read.csv

?dplyr��if_else ?base��ifelse

?tibble��tibble ?base��data.frame

If you call up the above examples, you'll see that the tidyverse alternative typically offers some enhancements or
other useful options (and sometimes restrictions) over its base counterpart.

And remember: There are (almost) always multiple ways to achieve a single goal in R.
11 / 94

Tidyverse

Credit sawiki.com

Tidyverse vs. base R: what's the difference? cont.

12 / 94

https://www.sakwiki.com/tiki-index.php?page=Craftsman

Tidyverse

Credit sawiki.com

Base R

Credit multimedialab.be

Tidyverse vs. base R: what's the difference? cont.

12 / 94

https://www.sakwiki.com/tiki-index.php?page=Craftsman
http://www.multimedialab.be/doc/images/index.php?album=design&image=2007_Wenger_Giant_Swiss_Knife_2007.jpg

Stories from the past
When I started to learn R ~13 years ago, there was no
tidyverse. The learning curve felt much steeper. I
often switched back to Stata for data wrangling.
As the tidyverse grew, R became more convenient to
use for the entire research pipeline.
There's simply no need for you to live through the
same pain.

Why we start with the tidyverse
Because clever people think it's the right way.
Documentation + community support are great.
Having a consistent syntax makes it easier to learn.

Tidyverse vs. base R: what to use?

13 / 94

http://varianceexplained.org/r/teach-tidyverse/

Stories from the past
When I started to learn R ~13 years ago, there was no
tidyverse. The learning curve felt much steeper. I
often switched back to Stata for data wrangling.
As the tidyverse grew, R became more convenient to
use for the entire research pipeline.
There's simply no need for you to live through the
same pain.

Why we start with the tidyverse
Because clever people think it's the right way.
Documentation + community support are great.
Having a consistent syntax makes it easier to learn.

You still will want to check out base R
alternatives later

Base R is extremely �exible and powerful (and
stable).
There are some things that you'll have to venture
outside of the tidyverse for.
A combination of tidyverse and base R is often the
best solution to a problem.
Excellent base R data manipulation tutorials: here
and here.

Tidyverse vs. base R: what to use?

13 / 94

http://varianceexplained.org/r/teach-tidyverse/
https://www.rspatial.org/intr/index.html
https://github.com/matloff/fasteR

R packages you'll need today
☑ tidyverse

☑ nyc�ights13

You can install/update them both with the following
command.

R> install.packages(
+ c('tidyverse', 'nycflights13'),
+ repos = 'https:��cran.rstudio.com',
+ dependencies = TRUE
+)

Now, let's get started with the tidyverse!

14 / 94

https://www.tidyverse.org/
hhttps://github.com/hadley/nycflights13

Pipes

15 / 94

Credit likestowastetime/imgur

16 / 94

https://imgur.com/gallery/v2Mjdra

The pipe

%>%
17 / 94

The pipe way

R> Alex %>%
+ wake_up(7) %>%
+ shower(temp = 38) %>%
+ breakfast(c("coffee", "croissant")) %>%
+ walk(step_function()) %>%
+ bvg(
+ train = "U2",
+ destination = "Stadtmitte"
+) %>%
+ hertie(course = "Intro to DS")

The classic way

R> hertie(
+ bvg(
+ walk(
+ breakfast(
+ shower(
+ wake_up(
+ Alex, 7
+),
+ temp = 38
+),
+ c("coffee", "croissant")
+),
+ step_function()
+),
+ train = "U2",
+ destination = "Stadtmitte"
+),
+ course = "Intro to DS"
+)

Example

18 / 94

The pipe way

R> Alex %>%
+ wake_up(7) %>%
+ shower(temp = 38) %>%
+ breakfast(c("coffee", "croissant")) %>%
+ walk(step_function()) %>%
+ bvg(
+ train = "U2",
+ destination = "Stadtmitte"
+) %>%
+ hertie(course = "Intro to DS")

The classic way, nightmare edition

Example

R> alex_awake �� wake_up(Alex, 7)
R> alex_showered �� shower(alex_awake,
+ temp = 38)
R> alex_replete �� breakfast(alex_showered,
+ c("coffee", "croissant")
R> alex_underway �� walk(alex_replete,
+ step_function())
R> alex_on_train �� bvg(alex_underway,
+ train = "U2",
+ destination = "Stadtmitte
R> alex_hertie �� hertie(alex_on_train,
+ course = "Intro to DS")

19 / 94

The beauty of pipes

A simple but powerful tool
The forward-pipe operator %>% pipes the left-hand side values forward into expressions on the right-hand side.
We replace f(x) with x %>% f() .

20 / 94

The beauty of pipes

A simple but powerful tool
The forward-pipe operator %>% pipes the left-hand side values forward into expressions on the right-hand side.
We replace f(x) with x %>% f() .

Why piping is cool
It structures sequences of data operations as pipes, i.e. left-to-right (as opposed to from the inside and out).
It serves the natural way of reading ("do this, then this, then this, ...").
It avoids nested function calls.
It improves cognitive performance of code writers and readers.
It minimizes the need for local variables and function de�nitions.

20 / 94

The beauty of pipes

A simple but powerful tool
The forward-pipe operator %>% pipes the left-hand side values forward into expressions on the right-hand side.
We replace f(x) with x %>% f() .

Why piping is cool
It structures sequences of data operations as pipes, i.e. left-to-right (as opposed to from the inside and out).
It serves the natural way of reading ("do this, then this, then this, ...").
It avoids nested function calls.
It improves cognitive performance of code writers and readers.
It minimizes the need for local variables and function de�nitions.

Background
The pipe was originally created in 2014 by Stefan Milton Bache and published with the magrittr package.
Magrittr? Get it? 🤡
The basics come with the tidyverse by default, but magrittr can do more (watch out for the "tee" pipe, %T>% , the
"exposition" pipe, %$% , and the "assignment" pipe, %��%). Also, be sure to check out aliases. 20 / 94

https://stefanbache.dk/
https://magrittr.tidyverse.org/
https://en.wikipedia.org/wiki/The_Treachery_of_Images
https://rdrr.io/cran/magrittr/man/aliases.html

Piping etiquette

When to avoid the pipe
Pipes are not very handy when you need to manipulate more than one object at a time. Reserve pipes for a
sequence of steps applied to one primary object.
Don't use the pipe when there are meaningful intermediate objects that can be given informative names (and that
are used later on).

21 / 94

Piping etiquette

When to avoid the pipe
Pipes are not very handy when you need to manipulate more than one object at a time. Reserve pipes for a
sequence of steps applied to one primary object.
Don't use the pipe when there are meaningful intermediate objects that can be given informative names (and that
are used later on).

Instead, here's how to use it
%>% should always have a space before it, and should usually be followed by a new line.
A one-step pipe can stay on one line, but unless you plan to expand it later on, you should consider rewriting it to a
regular function call.
magrittr allows you to omit () on functions that don't have arguments (as in mydata %>% summary). Avoid this
feature.

21 / 94

The base R pipe: |>
The magrittr pipe has proven so successful and popular that the R core team recently added a "native" pipe operator to
base R (version 4.1), denoted �� .1

22 / 94

https://stat.ethz.ch/R-manual/R-devel/library/base/html/pipeOp.html

The base R pipe: |>
The magrittr pipe has proven so successful and popular that the R core team recently added a "native" pipe operator to
base R (version 4.1), denoted �� .1

Here's how it works:

mtcars �� subset(cyl �� 4) �� head()
mtcars �� subset(cyl �� 4) �� (\(x) lm(mpg ~ disp, data = x))()

1 That's actually a | followed by a > . The default font on these slides just makes it look extra fancy.

22 / 94

https://stat.ethz.ch/R-manual/R-devel/library/base/html/pipeOp.html

The base R pipe: |>
The magrittr pipe has proven so successful and popular that the R core team recently added a "native" pipe operator to
base R (version 4.1), denoted �� .1

Here's how it works:

mtcars �� subset(cyl �� 4) �� head()
mtcars �� subset(cyl �� 4) �� (\(x) lm(mpg ~ disp, data = x))()

This illustrates how the popularity of the tidyverse has repercussions on the development of base R.
Note that with the native pipe, the RHS function has to be written out together with the brackets (i.e., ��� �� head()
instead of ��� �� head).
Also note the use of the new shorthand inline function syntax, \(x) , to pass content to the RHS but not to the �rst
argument.
Now, should we use the "magrittr" pipe or the native pipe? The native pipe might make more sense in the long term,
since it avoids dependencies and might be more ef�cient. Check out this Stackover�ow post for a discussion of
differences.

1 That's actually a | followed by a > . The default font on these slides just makes it look extra fancy.

22 / 94

https://stat.ethz.ch/R-manual/R-devel/library/base/html/pipeOp.html
https://stackoverflow.com/questions/67633022/what-are-the-differences-between-rs-new-native-pipe-and-the-magrittr-pipe

The tidyverse core developer team

23 / 94

Data wrangling with dplyr

24 / 94

There are �ve key dplyr verbs that you need to learn.1

�. filter() : Filter (i.e. subset) rows based on their values.

�. arrange() : Arrange (i.e. reorder) rows based on their values.

�. select() : Select (i.e. subset) columns by their names.

�. mutate() : Create new columns.

�. summarize() : Collapse multiple rows into a single summary value.2

But let's start with studying the key commands using the starwars dataset
that comes pre-packaged with dplyr .

Key dplyr verbs

1 There is much, much more in dplyr , and we will look beyond these core functions later. Have a glimpse at the overview at
tidyverse.org and at this excellent cheat sheet.
2 summarize() with an "s" works too. I slightly prefer the barbarian version though.

25 / 94

https://dplyr.tidyverse.org/
https://github.com/rstudio/cheatsheets/blob/master/data-transformation.pdf

1) dplyr::�lter()
We can chain multiple �lter commands with the pipe (%>%), or just separate them within a single �lter command using
commas.

R> starwars %>%
+ filter(
+ species �� "Human",
+ height �� 190
+)

�� # A tibble: 4 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Darth Va… 202 136 none white yellow 41.9 male mascu…
�� 2 Qui-Gon … 193 89 brown fair blue 92 male mascu…
�� 3 Dooku 193 80 white fair brown 102 male mascu…
�� 4 Bail Pre… 191 NA black tan brown 67 male mascu…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

26 / 94

1) dplyr::�lter() cont.
Regular expressions work well, too.

R> starwars %>%
+ filter(stringr��str_detect(name, "Skywalker"))

�� # A tibble: 3 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
�� 2 Anakin … 188 84 blond fair blue 41.9 male mascu…
�� 3 Shmi Sk… 163 NA black fair brown 72 female femin…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

27 / 94

1) dplyr::�lter() cont.
A very common filter() use case is identifying (or removing) missing data cases.

R> starwars %>%
+ filter(is.na(height))

�� # A tibble: 6 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Arvel C… NA NA brown fair brown NA male mascu…
�� 2 Finn NA NA black dark dark NA male mascu…
�� 3 Rey NA NA brown light hazel NA female femin…
�� 4 Poe Dam… NA NA brown light brown NA male mascu…
�� 5 BB8 NA NA none none black NA none mascu…
�� 6 Captain… NA NA unknown unknown unknown NA <NA> <NA>
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

28 / 94

1) dplyr::�lter() cont.
A very common filter() use case is identifying (or removing) missing data cases.

R> starwars %>%
+ filter(is.na(height))

�� # A tibble: 6 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Arvel C… NA NA brown fair brown NA male mascu…
�� 2 Finn NA NA black dark dark NA male mascu…
�� 3 Rey NA NA brown light hazel NA female femin…
�� 4 Poe Dam… NA NA brown light brown NA male mascu…
�� 5 BB8 NA NA none none black NA none mascu…
�� 6 Captain… NA NA unknown unknown unknown NA <NA> <NA>
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

To remove missing observations, simply use negation: filter(!is.na(height)) .

28 / 94

1) dplyr::�lter() cont.
Importantly, when we list several �lter conditions, filter() interprets them as a Boolean "AND".

R> starwars %>%
+ filter(str_detect(name, "Skywalker"),
+ eye_color �� "blue")

�� # A tibble: 2 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
�� 2 Anakin S… 188 84 blond fair blue 41.9 male mascu…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

29 / 94

1) dplyr::�lter() cont.
Importantly, when we list several �lter conditions, filter() interprets them as a Boolean "AND".

R> starwars %>%
+ filter(str_detect(name, "Skywalker"),
+ eye_color �� "blue")

�� # A tibble: 2 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke Sky… 172 77 blond fair blue 19 male mascu…
�� 2 Anakin S… 188 84 blond fair blue 41.9 male mascu…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

We can work with operators | ("OR") and & ("AND") and combine them with parentheses to specify more complex �lter
commands, as in:

R> starwars %>%
+ filter(species �� "Wookiee" | (species �� "Human" & height �� 200))

29 / 94

2) dplyr::arrange()
arrange() sorts observations in increasing order by default.

R> starwars %>%
+ arrange(birth_year)

�� # A tibble: 87 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Wicket … 88 20 brown brown brown 8 male mascu…
�� 2 IG-88 200 140 none metal red 15 none mascu…
�� 3 Luke Sk… 172 77 blond fair blue 19 male mascu…
�� 4 Leia Or… 150 49 brown light brown 19 fema… femin…
�� 5 Wedge A… 170 77 brown fair hazel 21 male mascu…
�� 6 Plo Koon 188 80 none orange black 22 male mascu…
�� 7 Biggs D… 183 84 black light brown 24 male mascu…
�� 8 Han Solo 180 80 brown fair brown 29 male mascu…
�� 9 Lando C… 177 79 black dark brown 31 male mascu…
�� 10 Boba Fe… 183 78.2 black fair brown 31.5 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

30 / 94

2) dplyr::arrange()
arrange() sorts observations in increasing order by default.

R> starwars %>%
+ arrange(birth_year)

�� # A tibble: 87 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Wicket … 88 20 brown brown brown 8 male mascu…
�� 2 IG-88 200 140 none metal red 15 none mascu…
�� 3 Luke Sk… 172 77 blond fair blue 19 male mascu…
�� 4 Leia Or… 150 49 brown light brown 19 fema… femin…
�� 5 Wedge A… 170 77 brown fair hazel 21 male mascu…
�� 6 Plo Koon 188 80 none orange black 22 male mascu…
�� 7 Biggs D… 183 84 black light brown 24 male mascu…
�� 8 Han Solo 180 80 brown fair brown 29 male mascu…
�� 9 Lando C… 177 79 black dark brown 31 male mascu…
�� 10 Boba Fe… 183 78.2 black fair brown 31.5 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

Note: Arranging on a character-based column (i.e. strings) will sort alphabetically.
30 / 94

2) dplyr::arrange() cont.
We can also arrange items in descending order using arrange(desc()) .

R> starwars %>%
+ arrange(desc(birth_year))

�� # A tibble: 87 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Yoda 66 17 white green brown 896 male mascu…
�� 2 Jabba … 175 1358 <NA> green�tan,… orange 600 herm… mascu…
�� 3 Chewba… 228 112 brown unknown blue 200 male mascu…
�� 4 C-3PO 167 75 <NA> gold yellow 112 none mascu…
�� 5 Dooku 193 80 white fair brown 102 male mascu…
�� 6 Qui-Go… 193 89 brown fair blue 92 male mascu…
�� 7 Ki-Adi… 198 82 white pale yellow 92 male mascu…
�� 8 Finis … 170 NA blond fair blue 91 male mascu…
�� 9 Palpat… 170 75 grey pale yellow 82 male mascu…
�� 10 Cliegg… 183 NA brown fair blue 82 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

31 / 94

3) dplyr::select()
Use commas to select multiple columns out of a data frame. (You can also use <first>:<last> for consecutive columns).
Deselect a column with "-".

R> starwars %>%
+ select(name:skin_color, species, �height)

�� # A tibble: 87 × 5
�� name mass hair_color skin_color species
�� <chr> <dbl> <chr> <chr> <chr>
�� 1 Luke Skywalker 77 blond fair Human
�� 2 C-3PO 75 <NA> gold Droid
�� 3 R2-D2 32 <NA> white, blue Droid
�� 4 Darth Vader 136 none white Human
�� 5 Leia Organa 49 brown light Human
�� 6 Owen Lars 120 brown, grey light Human
�� 7 Beru Whitesun lars 75 brown light Human
�� 8 R5-D4 32 <NA> white, red Droid
�� 9 Biggs Darklighter 84 black light Human
�� 10 Obi-Wan Kenobi 77 auburn, white fair Human
�� # … with 77 more rows

32 / 94

3) dplyr::select() cont.
You can also rename some (or all) of your selected variables in place.

R> starwars %>%
+ select(alias = name, crib = homeworld, sex = gender)

�� # A tibble: 87 × 3
�� alias crib sex
�� <chr> <chr> <chr>
�� 1 Luke Skywalker Tatooine masculine
�� 2 C-3PO Tatooine masculine
�� 3 R2-D2 Naboo masculine
�� 4 Darth Vader Tatooine masculine
�� 5 Leia Organa Alderaan feminine
�� 6 Owen Lars Tatooine masculine
�� 7 Beru Whitesun lars Tatooine feminine
�� 8 R5-D4 Tatooine masculine
�� 9 Biggs Darklighter Tatooine masculine
�� 10 Obi-Wan Kenobi Stewjon masculine
�� # … with 77 more rows

33 / 94

3) dplyr::select() cont.
You can also rename some (or all) of your selected variables in place.

R> starwars %>%
+ select(alias = name, crib = homeworld, sex = gender)

�� # A tibble: 87 × 3
�� alias crib sex
�� <chr> <chr> <chr>
�� 1 Luke Skywalker Tatooine masculine
�� 2 C-3PO Tatooine masculine
�� 3 R2-D2 Naboo masculine
�� 4 Darth Vader Tatooine masculine
�� 5 Leia Organa Alderaan feminine
�� 6 Owen Lars Tatooine masculine
�� 7 Beru Whitesun lars Tatooine feminine
�� 8 R5-D4 Tatooine masculine
�� 9 Biggs Darklighter Tatooine masculine
�� 10 Obi-Wan Kenobi Stewjon masculine
�� # … with 77 more rows

If you just want to rename columns without subsetting them, you can use rename() .

33 / 94

3) dplyr::select() cont.
The select(contains(<PATTERN>)) option provides a nice shortcut in relevant cases.

R> starwars %>%
+ select(name, contains("color"))

�� # A tibble: 87 × 4
�� name hair_color skin_color eye_color
�� <chr> <chr> <chr> <chr>
�� 1 Luke Skywalker blond fair blue
�� 2 C-3PO <NA> gold yellow
�� 3 R2-D2 <NA> white, blue red
�� 4 Darth Vader none white yellow
�� 5 Leia Organa brown light brown
�� 6 Owen Lars brown, grey light blue
�� 7 Beru Whitesun lars brown light blue
�� 8 R5-D4 <NA> white, red red
�� 9 Biggs Darklighter black light brown
�� 10 Obi-Wan Kenobi auburn, white fair blue�gray
�� # … with 77 more rows

34 / 94

3) dplyr::select() cont.
The select(contains(<PATTERN>)) option provides a nice shortcut in relevant cases.

R> starwars %>%
+ select(name, contains("color"))

�� # A tibble: 87 × 4
�� name hair_color skin_color eye_color
�� <chr> <chr> <chr> <chr>
�� 1 Luke Skywalker blond fair blue
�� 2 C-3PO <NA> gold yellow
�� 3 R2-D2 <NA> white, blue red
�� 4 Darth Vader none white yellow
�� 5 Leia Organa brown light brown
�� 6 Owen Lars brown, grey light blue
�� 7 Beru Whitesun lars brown light blue
�� 8 R5-D4 <NA> white, red red
�� 9 Biggs Darklighter black light brown
�� 10 Obi-Wan Kenobi auburn, white fair blue�gray
�� # … with 77 more rows

There are many more useful selection helpers, such as starts_with() , ends_with() , and matches() . See here for an
overview.

34 / 94

https://dplyr.tidyverse.org/reference/select.html

3) dplyr::select() cont.
The select(���, everything()) option is another useful shortcut if you only want to bring some variable(s) to the
"front" of a data frame.

R> starwars %>%
+ select(species, homeworld, everything()) %>%
+ head(5)

�� # A tibble: 5 × 14
�� species homeworld name height mass hair_color skin_color eye_color
�� <chr> <chr> <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 Human Tatooine Luke Skywalker 172 77 blond fair blue
�� 2 Droid Tatooine C-3PO 167 75 <NA> gold yellow
�� 3 Droid Naboo R2-D2 96 32 <NA> white, blue red
�� 4 Human Tatooine Darth Vader 202 136 none white yellow
�� 5 Human Alderaan Leia Organa 150 49 brown light brown
�� # … with 6 more variables: birth_year <dbl>, sex <chr>, gender <chr>,
�� # films <list>, vehicles <list>, starships <list>

35 / 94

3) dplyr::select() cont.
The select(���, everything()) option is another useful shortcut if you only want to bring some variable(s) to the
"front" of a data frame.

R> starwars %>%
+ select(species, homeworld, everything()) %>%
+ head(5)

�� # A tibble: 5 × 14
�� species homeworld name height mass hair_color skin_color eye_color
�� <chr> <chr> <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 Human Tatooine Luke Skywalker 172 77 blond fair blue
�� 2 Droid Tatooine C-3PO 167 75 <NA> gold yellow
�� 3 Droid Naboo R2-D2 96 32 <NA> white, blue red
�� 4 Human Tatooine Darth Vader 202 136 none white yellow
�� 5 Human Alderaan Leia Organa 150 49 brown light brown
�� # … with 6 more variables: birth_year <dbl>, sex <chr>, gender <chr>,
�� # films <list>, vehicles <list>, starships <list>

Note: The new relocate() function available in dplyr 1.0.0 has brought a lot more functionality to the ordering of
columns. See here.

35 / 94

https://www.tidyverse.org/blog/2020/03/dplyr-1-0-0-select-rename-relocate/

4) dplyr::mutate()
You can create new columns from scratch with mutate() , or (more commonly) as transformations of existing columns.

R> starwars %>%
+ select(name, birth_year) %>%
+ mutate(
+ dog_years = birth_year * 7, �� Separate with a comma
+ comment = paste0(name, " is ", dog_years, " in dog years.")
+) %>%
+ slice(1:6) # Just show first six observations

�� # A tibble: 6 × 4
�� name birth_year dog_years comment
�� <chr> <dbl> <dbl> <chr>
�� 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
�� 2 C-3PO 112 784 C-3PO is 784 in dog years.
�� 3 R2-D2 33 231 R2-D2 is 231 in dog years.
�� 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
�� 5 Leia Organa 19 133 Leia Organa is 133 in dog years.
�� 6 Owen Lars 52 364 Owen Lars is 364 in dog years.

36 / 94

4) dplyr::mutate()
You can create new columns from scratch with mutate() , or (more commonly) as transformations of existing columns.

R> starwars %>%
+ select(name, birth_year) %>%
+ mutate(
+ dog_years = birth_year * 7, �� Separate with a comma
+ comment = paste0(name, " is ", dog_years, " in dog years.")
+) %>%
+ slice(1:6) # Just show first six observations

�� # A tibble: 6 × 4
�� name birth_year dog_years comment
�� <chr> <dbl> <dbl> <chr>
�� 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
�� 2 C-3PO 112 784 C-3PO is 784 in dog years.
�� 3 R2-D2 33 231 R2-D2 is 231 in dog years.
�� 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
�� 5 Leia Organa 19 133 Leia Organa is 133 in dog years.
�� 6 Owen Lars 52 364 Owen Lars is 364 in dog years.

Note: mutate() is order aware. So you can chain multiple mutates in a single call.

36 / 94

4) dplyr::mutate() cont.
Boolean, logical and conditional operators all work well with mutate() too.

R> starwars %>%
+ select(name, height) %>%
+ filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>%
+ mutate(tall1 = height > 180) %>%
+ mutate(tall2 = ifelse(height > 180, "Tall", "Short")) �� Same effect, but can choose labels

�� # A tibble: 2 × 4
�� name height tall1 tall2
�� <chr> <int> <lgl> <chr>
�� 1 Luke Skywalker 172 FALSE Short
�� 2 Anakin Skywalker 188 TRUE Tall

37 / 94

4) dplyr::mutate() cont.
Lastly, combining mutate() with the across() feature allows you to easily work on a subset of variables. For example:

R> starwars %>%
+ select(name:eye_color) %>%
+ mutate(across(where(is.character), toupper)) %>%
+ head(5)

�� # A tibble: 5 × 6
�� name height mass hair_color skin_color eye_color
�� <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 LUKE SKYWALKER 172 77 BLOND FAIR BLUE
�� 2 C-3PO 167 75 <NA> GOLD YELLOW
�� 3 R2-D2 96 32 <NA> WHITE, BLUE RED
�� 4 DARTH VADER 202 136 NONE WHITE YELLOW
�� 5 LEIA ORGANA 150 49 BROWN LIGHT BROWN

38 / 94

4) dplyr::mutate() cont.
Lastly, combining mutate() with the across() feature allows you to easily work on a subset of variables. For example:

R> starwars %>%
+ select(name:eye_color) %>%
+ mutate(across(where(is.character), toupper)) %>%
+ head(5)

�� # A tibble: 5 × 6
�� name height mass hair_color skin_color eye_color
�� <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 LUKE SKYWALKER 172 77 BLOND FAIR BLUE
�� 2 C-3PO 167 75 <NA> GOLD YELLOW
�� 3 R2-D2 96 32 <NA> WHITE, BLUE RED
�� 4 DARTH VADER 202 136 NONE WHITE YELLOW
�� 5 LEIA ORGANA 150 49 BROWN LIGHT BROWN

Note: More on across() and where() later!

38 / 94

5) dplyr::summarize()
You can summarize variables with all sorts of operations (e.g., mean() , median() , n() , n_distinct() , sum() , first() ,
last() , ...).

R> starwars %>%
+ group_by(species, gender) %>%
+ summarize(mean_height = mean(height, na.rm = TRUE)) %>%
+ head(5)

�� `summarise()` has grouped output by 'species'. You can override using the `.groups` argument.

�� # A tibble: 5 × 3
�� # Groups: species [5]
�� species gender mean_height
�� <chr> <chr> <dbl>
�� 1 Aleena masculine 79
�� 2 Besalisk masculine 198
�� 3 Cerean masculine 198
�� 4 Chagrian masculine 196
�� 5 Clawdite feminine 168

39 / 94

5) dplyr::summarize()
You can summarize variables with all sorts of operations (e.g., mean() , median() , n() , n_distinct() , sum() , first() ,
last() , ...).

R> starwars %>%
+ group_by(species, gender) %>%
+ summarize(mean_height = mean(height, na.rm = TRUE)) %>%
+ head(5)

�� `summarise()` has grouped output by 'species'. You can override using the `.groups` argument.

�� # A tibble: 5 × 3
�� # Groups: species [5]
�� species gender mean_height
�� <chr> <chr> <dbl>
�� 1 Aleena masculine 79
�� 2 Besalisk masculine 198
�� 3 Cerean masculine 198
�� 4 Chagrian masculine 196
�� 5 Clawdite feminine 168

Note: This is particularly useful in combination with the group_by() command. Again, more on this later!

39 / 94

5) dplyr::summarize() cont.
Note that including na.rm = TRUE is usually a good idea with the functions fed into summarize() Otherwise, any missing
value will propagate to the summarized value too.

R> �� Probably not what we want
R> starwars %>%
+ summarize(mean_height = mean(height))

�� # A tibble: 1 × 1
�� mean_height
�� <dbl>
�� 1 NA

R> �� Much better
R> starwars %>%
+ summarize(mean_height = mean(height, na.rm = TRUE))

�� # A tibble: 1 × 1
�� mean_height
�� <dbl>
�� 1 174.

40 / 94

5) dplyr::summarize() cont.
The same across() -based work�ow that we saw with mutate() a few slides back also works with summarize() . For
example:

R> starwars %>%
+ group_by(species) %>%
+ summarize(across(where(is.numeric), mean, na.rm = TRUE)) %>%
+ head(5)

�� # A tibble: 5 × 4
�� species height mass birth_year
�� <chr> <dbl> <dbl> <dbl>
�� 1 Aleena 79 15 NaN
�� 2 Besalisk 198 102 NaN
�� 3 Cerean 198 82 92
�� 4 Chagrian 196 NaN NaN
�� 5 Clawdite 168 55 NaN

41 / 94

Grouping with dplyr::group_by()
With group_by() , you can create a "grouped" copy of a table grouped by unique values of a column. If multiple columns
are speci�ed, the function groups by all available combinations of values.

R> by_species_gender �� starwars %>% group_by(species, gender)
R> by_species_gender

�� # A tibble: 87 × 14
�� # Groups: species, gender [42]
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke S… 172 77 blond fair blue 19 male mascu…
�� 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
�� 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
�� 4 Darth … 202 136 none white yellow 41.9 male mascu…
�� 5 Leia O… 150 49 brown light brown 19 fema… femin…
�� 6 Owen L… 178 120 brown, grey light blue 52 male mascu…
�� 7 Beru W… 165 75 brown light blue 47 fema… femin…
�� 8 R5-D4 97 32 <NA> white, red red NA none mascu…
�� 9 Biggs … 183 84 black light brown 24 male mascu…
�� 10 Obi-Wa… 182 77 auburn, wh… fair blue�gray 57 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

42 / 94

More notes on grouping
Grouping doesn't change how the data looks (apart
from listing how it's grouped).
Grouping changes how it acts with other dplyr verbs
such as summarize() and mutate() , as we've already
seen.
By default, group_by() overrides existing grouping.
Use .add = TRUE to append instead.
By default, groups formed by factor levels that don't
appear in the data are dropped. Set .drop = FALSE
if you want to keep them.
ungroup() removes existing grouping.
dplyr noti�es you about grouping variables every
time you do operations on or with them. If you �nd
these messages annoying, switch them off with
options(dplyr.summarise.inform = FALSE) .

R> options(dplyr.summarise.inform = FALSE)
R> by_species_gender %>%
+ summarize(mean(height, na.rm = TRUE)) %>%
+ filter(n_distinct(gender) ��2)

�� # A tibble: 8 × 3
�� # Groups: species [4]
�� species gender `mean(height, na.rm = TRUE)`
�� <chr> <chr> <dbl>
�� 1 Droid feminine 96
�� 2 Droid masculine 140
�� 3 Human feminine 160.
�� 4 Human masculine 182.
�� 5 Kaminoan feminine 213
�� 6 Kaminoan masculine 229
�� 7 Twi'lek feminine 178
�� 8 Twi'lek masculine 180

Grouping with dplyr::group_by() cont.

43 / 94

https://twitter.com/MattCowgill/status/1278463099272491008

Other dplyr goodies

44 / 94

Other dplyr goodies
slice() : Subset rows by position rather than �ltering by values. There's also slice_sample() to randomly select rows,
slice_head() and slice_tail() to select �rst or last rows, and more.

R> starwars %>% slice(c(1, 5))

�� # A tibble: 2 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
�� 2 Leia Or… 150 49 brown light brown 19 female femin…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

44 / 94

Other dplyr goodies
slice() : Subset rows by position rather than �ltering by values. There's also slice_sample() to randomly select rows,
slice_head() and slice_tail() to select �rst or last rows, and more.

R> starwars %>% slice(c(1, 5))

�� # A tibble: 2 × 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
�� 2 Leia Or… 150 49 brown light brown 19 female femin…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

pull() : Extract a column from as a data frame as a vector or scalar.

R> starwars %>% filter(gender��"feminine") %>% pull(height)

�� [1] 150 165 150 163 178 184 157 170 166 165 168 213 167 96 178 NA 165

44 / 94

Other dplyr goodies cont.
count() and distinct() : Number and isolate unique observations.

R> starwars %>% count(species) %>% head(6)

�� # A tibble: 6 × 2
�� species n
�� <chr> <int>
�� 1 Aleena 1
�� 2 Besalisk 1
�� 3 Cerean 1
�� 4 Chagrian 1
�� 5 Clawdite 1
�� 6 Droid 6

R> starwars %>% distinct(species) %>% pull() %>% sort() %>% magrittr��extract(1:5)

�� [1] "Aleena" "Besalisk" "Cerean" "Chagrian" "Clawdite"

45 / 94

Other dplyr goodies cont.
count() and distinct() : Number and isolate unique observations.

R> starwars %>% count(species) %>% head(6)

�� # A tibble: 6 × 2
�� species n
�� <chr> <int>
�� 1 Aleena 1
�� 2 Besalisk 1
�� 3 Cerean 1
�� 4 Chagrian 1
�� 5 Clawdite 1
�� 6 Droid 6

R> starwars %>% distinct(species) %>% pull() %>% sort() %>% magrittr��extract(1:5)

�� [1] "Aleena" "Besalisk" "Cerean" "Chagrian" "Clawdite"

You could also use a combination of mutate() , group_by() , and n() , e.g. starwars %>% group_by(species) %>%
mutate(num = n()) .

45 / 94

Other dplyr goodies cont.
where() : Select the variables for which a function returns true.

R> starwars %>% select(where(is.numeric)) %>% names()

�� [1] "height" "mass" "birth_year"

46 / 94

Other dplyr goodies cont.
where() : Select the variables for which a function returns true.

R> starwars %>% select(where(is.numeric)) %>% names()

�� [1] "height" "mass" "birth_year"

across() : Summarize or mutate multiple variables in the same way. More information here.

R> starwars %>%
+ mutate(across(where(is.numeric), scale)) %>%
+ head(3)

�� # A tibble: 3 × 14
�� name height[,1] mass[,1] hair_color skin_color eye_color birth_year[,1] sex
�� <chr> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr>
�� 1 Luke… -0.0678 -0.120 blond fair blue -0.443 male
�� 2 C-3PO -0.212 -0.132 <NA> gold yellow 0.158 none
�� 3 R2-D2 -2.25 -0.385 <NA> white, bl… red -0.353 none
�� # … with 6 more variables: gender <chr>, homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

46 / 94

https://dplyr.tidyverse.org/reference/across.html

Other dplyr goodies cont.
case_when() : Vectorize multiple if_else() (or base R ifelse()) statements.

R> starwars %>%
+ mutate(
+ height_cat = case_when(
+ height < 160 ~ "tiny",
+ height �� 160 & height < 190 ~ "medium",
+ height �� 190 & height < 220 ~ "tall",
+ height �� 220 ~ "giant"
+)
+) %>%
+ pull(height_cat) %>% table()

�� .
�� giant medium tall tiny
�� 5 45 18 13

47 / 94

Other dplyr goodies cont.
case_when() : Vectorize multiple if_else() (or base R ifelse()) statements.

R> starwars %>%
+ mutate(
+ height_cat = case_when(
+ height < 160 ~ "tiny",
+ height �� 160 & height < 190 ~ "medium",
+ height �� 190 & height < 220 ~ "tall",
+ height �� 220 ~ "giant"
+)
+) %>%
+ pull(height_cat) %>% table()

�� .
�� giant medium tall tiny
�� 5 45 18 13

There are also a whole class of window functions for getting leads and lags, ranking, creating cumulative aggregates, etc.
See vignette("window�functions") .

47 / 94

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Other dplyr goodies cont.
case_when() : Vectorize multiple if_else() (or base R ifelse()) statements.

R> starwars %>%
+ mutate(
+ height_cat = case_when(
+ height < 160 ~ "tiny",
+ height �� 160 & height < 190 ~ "medium",
+ height �� 190 & height < 220 ~ "tall",
+ height �� 220 ~ "giant"
+)
+) %>%
+ pull(height_cat) %>% table()

�� .
�� giant medium tall tiny
�� 5 45 18 13

There are also a whole class of window functions for getting leads and lags, ranking, creating cumulative aggregates, etc.
See vignette("window�functions") .

inner_join() , left_join() , right_join() : Enough already, we'll talk about this in the next session!

47 / 94

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Data tidying with tidyr

48 / 94

tidyr is part of the core tidyverse. There are four key tidyr verbs that you
need to learn.

�. pivot_longer() : Pivot wide data into long format (i.e. "melt").1

�. pivot_wider() : Pivot long data into wide format (i.e. "cast").2

�. separate() : Separate (i.e. split) one column into multiple columns.

�. unite() : Unite (i.e. combine) multiple columns into one.

Key tidyr verbs

1 Updated version of tidyr��gather() .

2 Updated version of tidyr��spread() .

49 / 94

Remember the key philosophy for tidy data?

�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

One of the most common tasks for data scientists is to reshape data from
one form to the other.

There are multiple ways to store the same data in a dataset (or across
multiple tables; but more on that in the next session).

Here, we learn how to shift between

"wider" formats, i.e. data being stored across more columns and
"longer" formats, i.e. data being stored across more rows.

Tidy data in a nutshell

Bene�ts of tidy data

On "longer" and "wider" datasets

50 / 94

From wider to longer
pivot_longer() pivots cols columns, moving column names into a
names_to column, and column values into a values_to column.
Recall a panel study design with multiple observations per unit.
In the classical long format, each row represents one observation.
Note how this is approaching the ideal of tidy data.

From longer to wider
pivot_wider() pivots a names_from and a values_from column into a
rectangular �eld of cells.
In a panel study design, this would allow you to have one variable per
measurement (e.g., pre- and posttreatment outcome variable).
While this is nice for the human eye, it is sometimes not what �ts the
tidyverse work�ow. Also, wenn you have multiple repeated
measurements (think: variables in a population survey), the number of
columns is quickly in�ated. Be ready to pivot_longer() .

pivot_longer()

pivot_wider()

From wide to long to wide

51 / 94

1) tidyr::pivot_longer()
R> stocks = data.frame(�� Could use "tibble" instead of "data.frame" if you prefer
+ time = as.Date('2009-01-01') + 0:1,
+ X = rnorm(2, 0, 1),
+ Y = rnorm(2, 0, 2),
+ Z = rnorm(2, 0, 4)
+)
R> stocks

�� time X Y Z
�� 1 2009-01-01 0.1890718 -0.5036369 -5.172738
�� 2 2009-01-02 -0.1800420 0.2868808 1.193378

52 / 94

1) tidyr::pivot_longer()
R> stocks = data.frame(�� Could use "tibble" instead of "data.frame" if you prefer
+ time = as.Date('2009-01-01') + 0:1,
+ X = rnorm(2, 0, 1),
+ Y = rnorm(2, 0, 2),
+ Z = rnorm(2, 0, 4)
+)
R> stocks

�� time X Y Z
�� 1 2009-01-01 0.1890718 -0.5036369 -5.172738
�� 2 2009-01-02 -0.1800420 0.2868808 1.193378

R> tidy_stocks �� stocks %>% pivot_longer(�time, names_to="stock", values_to="price")
R> tidy_stocks

�� # A tibble: 6 × 3
�� time stock price
�� <date> <chr> <dbl>
�� 1 2009-01-01 X 0.189
�� 2 2009-01-01 Y -0.504
�� 3 2009-01-01 Z -5.17
�� 4 2009-01-02 X -0.180
�� 5 2009-01-02 Y 0.287 52 / 94

2) tidyr::pivot_wider()
R> tidy_stocks %>% pivot_wider(names_from = stock, values_from = price)

�� # A tibble: 2 × 4
�� time X Y Z
�� <date> <dbl> <dbl> <dbl>
�� 1 2009-01-01 0.189 -0.504 -5.17
�� 2 2009-01-02 -0.180 0.287 1.19

53 / 94

2) tidyr::pivot_wider()
R> tidy_stocks %>% pivot_wider(names_from = stock, values_from = price)

�� # A tibble: 2 × 4
�� time X Y Z
�� <date> <dbl> <dbl> <dbl>
�� 1 2009-01-01 0.189 -0.504 -5.17
�� 2 2009-01-02 -0.180 0.287 1.19

R> tidy_stocks %>% pivot_wider(names_from= time, values_from = price)

�� # A tibble: 3 × 3
�� stock `2009-01-01` `2009-01-02`
�� <chr> <dbl> <dbl>
�� 1 X 0.189 -0.180
�� 2 Y -0.504 0.287
�� 3 Z -5.17 1.19

53 / 94

2) tidyr::pivot_wider()
R> tidy_stocks %>% pivot_wider(names_from = stock, values_from = price)

�� # A tibble: 2 × 4
�� time X Y Z
�� <date> <dbl> <dbl> <dbl>
�� 1 2009-01-01 0.189 -0.504 -5.17
�� 2 2009-01-02 -0.180 0.287 1.19

R> tidy_stocks %>% pivot_wider(names_from= time, values_from = price)

�� # A tibble: 3 × 3
�� stock `2009-01-01` `2009-01-02`
�� <chr> <dbl> <dbl>
�� 1 X 0.189 -0.180
�� 2 Y -0.504 0.287
�� 3 Z -5.17 1.19

Note: The second example — which has combined different pivoting arguments — has effectively transposed the data.

53 / 94

3) tidyr::separate()
Sometimes, cell values provide information that should be stored in separate columns. separate() offers one way of
doing this. (Side note: Once you learn regular expressions, you will have an even more powerful tool for this task.)

R> economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
R> economists

�� name
�� 1 Adam.Smith
�� 2 Paul.Samuelson
�� 3 Milton.Friedman

54 / 94

3) tidyr::separate()
Sometimes, cell values provide information that should be stored in separate columns. separate() offers one way of
doing this. (Side note: Once you learn regular expressions, you will have an even more powerful tool for this task.)

R> economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
R> economists

�� name
�� 1 Adam.Smith
�� 2 Paul.Samuelson
�� 3 Milton.Friedman

separate() in action:

R> economists %>% separate(name, c("first_name", "last_name"))

�� first_name last_name
�� 1 Adam Smith
�� 2 Paul Samuelson
�� 3 Milton Friedman

54 / 94

3) tidyr::separate()
Sometimes, cell values provide information that should be stored in separate columns. separate() offers one way of
doing this. (Side note: Once you learn regular expressions, you will have an even more powerful tool for this task.)

R> economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
R> economists

�� name
�� 1 Adam.Smith
�� 2 Paul.Samuelson
�� 3 Milton.Friedman

separate() in action:

R> economists %>% separate(name, c("first_name", "last_name"))

�� first_name last_name
�� 1 Adam Smith
�� 2 Paul Samuelson
�� 3 Milton Friedman

You can also specify the separation character with separate(���, sep=".") . The way sep works also depends on column
typ (character vs. numberic). Check out the function reference. 54 / 94

https://tidyr.tidyverse.org/reference/separate.html

3) tidyr::separate() cont.
A related function is separate_rows() , for splitting up cells that contain multiple �elds or observations (a frustratingly
common occurence with survey data).

R> jobs = data.frame(
+ name = c("Jack", "Jill"),
+ occupation = c("Homemaker", "Philosopher, Philanthropist, Troublemaker")
+)
R> jobs

�� name occupation
�� 1 Jack Homemaker
�� 2 Jill Philosopher, Philanthropist, Troublemaker

55 / 94

3) tidyr::separate() cont.
A related function is separate_rows() , for splitting up cells that contain multiple �elds or observations (a frustratingly
common occurence with survey data).

R> jobs = data.frame(
+ name = c("Jack", "Jill"),
+ occupation = c("Homemaker", "Philosopher, Philanthropist, Troublemaker")
+)
R> jobs

�� name occupation
�� 1 Jack Homemaker
�� 2 Jill Philosopher, Philanthropist, Troublemaker

separate_rows() in action:

R> jobs %>% separate_rows(occupation)

�� # A tibble: 4 × 2
�� name occupation
�� <chr> <chr>
�� 1 Jack Homemaker
�� 2 Jill Philosopher 55 / 94

4) tidyr::unite()
separate() has a complementary function, unite() . Unsurprinsingly, it unites values from multiple columns into one.

R> gdp = data.frame(
+ yr = rep(2016, times = 3),
+ mnth = rep(1, times = 3),
+ dy = 1:3,
+ gdp = rnorm(3, mean = 100, sd = 2)
+)
R> gdp

�� yr mnth dy gdp
�� 1 2016 1 1 98.81436
�� 2 2016 1 2 97.73040
�� 3 2016 1 3 101.38806

R> �� Combine "yr", "mnth", and "dy" into one "date" column
R> gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-")

�� date gdp
�� 1 2016-1-1 98.81436
�� 2 2016-1-2 97.73040
�� 3 2016-1-3 101.38806

56 / 94

Note that unite() will automatically create a character
variable. You can see this better if we convert it to a
tibble.

R> gdp_u = gdp %>%
+ unite(date,
+ c("yr", "mnth", "dy"),
+ sep = "-") %>%
+ as_tibble()
R> gdp_u

�� # A tibble: 3 × 2
�� date gdp
�� <chr> <dbl>
�� 1 2016-1-1 98.8
�� 2 2016-1-2 97.7
�� 3 2016-1-3 101.

4) tidyr::unite() cont.

57 / 94

Note that unite() will automatically create a character
variable. You can see this better if we convert it to a
tibble.

R> gdp_u = gdp %>%
+ unite(date,
+ c("yr", "mnth", "dy"),
+ sep = "-") %>%
+ as_tibble()
R> gdp_u

�� # A tibble: 3 × 2
�� date gdp
�� <chr> <dbl>
�� 1 2016-1-1 98.8
�� 2 2016-1-2 97.7
�� 3 2016-1-3 101.

If you want to convert it to something else (e.g. date or
numeric) then you will need to modify it using mutate() .
See below for an example, using the lubridate package's
super helpful date conversion functions.

R> library(lubridate)
R> gdp_u %>% mutate(date = ymd(date))

�� # A tibble: 3 × 2
�� date gdp
�� <date> <dbl>
�� 1 2016-01-01 98.8
�� 2 2016-01-02 97.7
�� 3 2016-01-03 101.

4) tidyr::unite() cont.

57 / 94

https://lubridate.tidyverse.org/

Other tidyr goodies
crossing() : Get the full combination of a group of variables.1

R> crossing(side=c("left", "right"), height=c("top", "bottom"))

�� # A tibble: 4 × 2
�� side height
�� <chr> <chr>
�� 1 left bottom
�� 2 left top
�� 3 right bottom
�� 4 right top

1 See ?expand() and ?complete() for more specialized functions that allow you to �ll in (implicit) missing data or variable
combinations in existing data frames. Base R alternative: expand.grid() .

58 / 94

Other tidyr goodies
crossing() : Get the full combination of a group of variables.1

R> crossing(side=c("left", "right"), height=c("top", "bottom"))

�� # A tibble: 4 × 2
�� side height
�� <chr> <chr>
�� 1 left bottom
�� 2 left top
�� 3 right bottom
�� 4 right top

drop_na(data, ���) : Drop rows containing NAs in ��� columns.

1 See ?expand() and ?complete() for more specialized functions that allow you to �ll in (implicit) missing data or variable
combinations in existing data frames. Base R alternative: expand.grid() .

58 / 94

Other tidyr goodies
crossing() : Get the full combination of a group of variables.1

R> crossing(side=c("left", "right"), height=c("top", "bottom"))

�� # A tibble: 4 × 2
�� side height
�� <chr> <chr>
�� 1 left bottom
�� 2 left top
�� 3 right bottom
�� 4 right top

drop_na(data, ���) : Drop rows containing NAs in ��� columns.

fill(data, ���, direction = c("down", "up")) : Fill in NAs in ��� columns with most recent non-NA values.

1 See ?expand() and ?complete() for more specialized functions that allow you to �ll in (implicit) missing data or variable
combinations in existing data frames. Base R alternative: expand.grid() .

58 / 94

Tidy programming

59 / 94

Tidy programming basics
"Tidy programming" is not a strictly de�ned practice in the tidyverse. However, there are some common programming
strategies that help you keep your code and work�ow tidy. These include:

Pipes (you already know that ✅)
User-generated functions
Functional programming with purrr

60 / 94

Tidy programming basics
"Tidy programming" is not a strictly de�ned practice in the tidyverse. However, there are some common programming
strategies that help you keep your code and work�ow tidy. These include:

Pipes (you already know that ✅)
User-generated functions
Functional programming with purrr

The latter two are extremely helpful - in particular when you are confronted with iterative tasks.

60 / 94

Tidy programming basics
"Tidy programming" is not a strictly de�ned practice in the tidyverse. However, there are some common programming
strategies that help you keep your code and work�ow tidy. These include:

Pipes (you already know that ✅)
User-generated functions
Functional programming with purrr

The latter two are extremely helpful - in particular when you are confronted with iterative tasks.

We will now learn the basics of creating your own functions and functional programming with R. There is much more to
learn about these topics, so we will revisit them as the course progresses.

60 / 94

Creating functions

Why creating functions?
That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

Every data science project is unique. There are problems only you have to solve.
For problems that are repetitive, you'll quickly look for options to automate the task.
Functions are a great way to automate.

61 / 94

Creating functions

Why creating functions?
That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

Every data science project is unique. There are problems only you have to solve.
For problems that are repetitive, you'll quickly look for options to automate the task.
Functions are a great way to automate.

Examples where creating functions makes sense

61 / 94

Creating functions

Why creating functions?
That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

Every data science project is unique. There are problems only you have to solve.
For problems that are repetitive, you'll quickly look for options to automate the task.
Functions are a great way to automate.

Examples where creating functions makes sense
�. You want to scrape thousands of websites. This implies multiple steps, from downloading to parsing and cleaning. All

these steps can be achieved with existing functions, but the �ne-tuning is speci�c to the set of websites. You build
one (or a set of) scraping functions that take the websites as input and return a cleaned data frame ready to be
analyzed.

61 / 94

Creating functions

Why creating functions?
That's a legit question. There are 18,000+ packages on CRAN (and many, many more on GitHub and other repositories)
containing zillions of functions. Why should you create yet another one?

Every data science project is unique. There are problems only you have to solve.
For problems that are repetitive, you'll quickly look for options to automate the task.
Functions are a great way to automate.

Examples where creating functions makes sense
�. You want to scrape thousands of websites. This implies multiple steps, from downloading to parsing and cleaning. All

these steps can be achieved with existing functions, but the �ne-tuning is speci�c to the set of websites. You build
one (or a set of) scraping functions that take the websites as input and return a cleaned data frame ready to be
analyzed.

�. You want to estimate not one but multiple models on your dataset. The models vary both in terms of data input and
speci�cation. Again, based on existing modeling functions you tailor your own, allowing you to run all these models
automatically and to parse the results into one clean data frame.

61 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Basic syntax

1 Yes, a function to create functions. 🤯

62 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

We write functions to apply them later. So, we have
to give them a name. Here, we name it " my_func ".
Also, our function (almost) always needs input, plus
we want to specify how exactly the function should
behave. We can use arguments for this, which are
speci�ed as arguments of the function() function.

Basic syntax

1 Yes, a function to create functions. 🤯

63 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Next, we specify anything we want the function to to.
This comes in between curly brackets, {���} .
Importantly, we can recycle arguments by calling
them by their name.

Basic syntax

1 Yes, a function to create functions. 🤯

64 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Finally, we specify what the function should return.
This could be a list, data.frame, vector, sentence - or
anything else really.

Basic syntax

1 Yes, a function to create functions. 🤯

65 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Oh, and don't forget to close the curly brackets...

Basic syntax

1 Yes, a function to create functions. 🤯

66 / 94

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry.

67 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Our function has an intuitive name.
Also, it takes just one thing as input, which we call
temp_F .

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry.

68 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

We now take up the argument temp_F , do
something with it, and store the output in a new
object, temp_C .
Importantly, that object only lives within the
function. When the function is run, we cannot access
it from the environment.

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry.

69 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:2

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Finally, the output is returned.

Basic syntax

1 Yes, a function to create functions. 🤯 2 Courtesy of Software Carpentry.

70 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit
https://swcarpentry.github.io/r-novice-inflammation/02-func-R/

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Now, let's try out the function:

Basic syntax

1 Yes, a function to create functions. 🤯

71 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Now, let's try out the function:

R> fahrenheit_to_celsius(451)

�� [1] 232.7778

Basic syntax

1 Yes, a function to create functions. 🤯

71 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit

Writing your own function in R is easy with the
function() function1. The basic syntax is as follows:

R> my_func �� function(ARGUMENTS) {
+ OPERATIONS
+ return(VALUE)
+ }

Let's try it out with a simple example function - one that
converts temperatures from Fahrenheit to Celsius:

R> fahrenheit_to_celsius �� function(temp_F) {
+ temp_C �� (temp_F - 32) * (5/9)
+ return(temp_C)
+ }

Now, let's try out the function:

R> fahrenheit_to_celsius(451)

�� [1] 232.7778

Pretty hot, isn't it?

Basic syntax

1 Yes, a function to create functions. 🤯

71 / 94

https://en.wikipedia.org/wiki/Conversion_of_scales_of_temperature#Fahrenheit

Let's make the function a bit more complex, but also
more fun.

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

72 / 94

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

73 / 94

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {���} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

74 / 94

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {���} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

75 / 94

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {���} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.
We else() we specify what to do if the if()
condition is not met.

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

76 / 94

Let's make the function a bit more complex, but also
more fun.

By giving from a default value ("f"), we ensure that
the function returns valid output when only the key
input, temp , is provided.
if() {���} allows us to make conditional
statements. Here, we test for the validity of the input
for argument from .
If the condition is not met, the function breaks and
prints a message.
We else() we specify what to do if the if()
condition is not met.
Make R more talkative with message() . Future-You
will like it!

R> temp_convert ��
+ function(temp, from = "f") {
+ if (!(from %in% c("f", "c"))){
+ stop("No valid input
+ temperature specified.")
+ }
+ if (from �� "f") {
+ out �� (temp - 32) * (5/9)
+ } else {
+ out �� temp * (9/5) + 32
+ }
+ if((from �� "c" & temp > 30) |
+ (from �� "f" & out > 30)) {
+ message("That's damn hot!")
+ }else{
+ message("That's not so hot.")
+ }
+ return(out) # return temperature
+ }

Functions: default argument values, if(), else()

77 / 94

Functional programming
R is a functional language. It encourages to use and build your own functions to solve problems. Often, this implies
decomposing a large problem into small pieces, and solving each of them with independent functions.

There is much more to learn about functions and functional programming. Useful resources include:

The chapter on functions in R for Data Science.
The section on functional programming in Advanced R.
The R packages book, which we will turn to later in more detail. In a way, bundling functions in a package is
sometimes the next logical step.

78 / 94

https://en.wikipedia.org/wiki/Functional_programming
https://r4ds.had.co.nz/functions.html
https://adv-r.hadley.nz/fp.html
https://r-pkgs.org/

Iteration

The ubiquity of iteration
Often we have to run the same task over and over again, with minor variations. Examples:

Standardize values of a variable
Recode all numeric variables in a dataset
Running multiple models with varying covariate sets

A bene�t of scripting languages in data (as opposed to point-and-click solutions) is that we can easily automate the
process of iteration

79 / 94

Iteration

The ubiquity of iteration
Often we have to run the same task over and over again, with minor variations. Examples:

Standardize values of a variable
Recode all numeric variables in a dataset
Running multiple models with varying covariate sets

A bene�t of scripting languages in data (as opposed to point-and-click solutions) is that we can easily automate the
process of iteration

Ways to iterate
A simple approach is to copy-and-paste code with minor modi�cations (→ "duplicate code", → "copy-and-paste
programming"). This is lazy, error-prone, not very ef�cient, and violates the "Don't repeat yourself" (DRY) principle.
In R, vectorization, that is applying a function to every element of a vector at once, already does a good share of
iteration for us.
for() loops are intuitive and straightforward to build, but sometimes not very ef�cient.
Finally, we learned about functions. Now, we learn how to unleash their power by applying them to anything we
interact with in R at scale.

79 / 94

https://en.wikipedia.org/wiki/Duplicate_code
https://en.wikipedia.org/wiki/Copy-and-paste_programming
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://adv-r.hadley.nz/perf-improve.html#vectorise
https://r4ds.had.co.nz/iteration.html

The tidyverse way to iterate
For real functional programming in base R, we can use the �apply()
family of functions (lapply() , sapply() , etc.). See here for an excellent
summary.
In the tidyverse, this functionality comes with the purrr package.
At its core is the map�() family of functions.

How purrr works
The idea is always to apply a function to x, where x can be a list, vector,
data.frame, or something more complex.
The output is then returned as output of a pre-de�ned type (e.g., a list).
The set of map() -style functions is quite comprehensive; see this cheat
sheet for an overview.

Iteration with purrr

80 / 94

https://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/
https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf

Iteration with purrr: map()
The map�() functions all follow a similar syntax:

We use it to apply a function .f to each piece in .x . Additional arguments to .f can be passed on in ��� .

map(. x, . f, ...)

81 / 94

Iteration with purrr: map()
The map�() functions all follow a similar syntax:

We use it to apply a function .f to each piece in .x . Additional arguments to .f can be passed on in ��� .

For instance, if we want to identify the object class of every column of a data.frame, we can write:

R> map(starwars, class)

�� $name
�� [1] "character"
��
�� $height
�� [1] "integer"
��
�� $mass
�� [1] "numeric"
��
�� $hair_color
�� [1] "character"
��
�� $skin_color

map(. x, . f, ...)

81 / 94

Iteration with purrr: map() cont.
By default, map() returns a list. But we can also use other map�() functions to give us an atomic vector of an indicated
type (e.g., map_int() to return an integer vector) or a data.frame created by row- or column-binding (map_dfr() ,
map_dfc()).

The purrr function set is quite comprehensive. Be sure to check out the cheat sheet and the tutorials. You'll survive
without purrr but you probably don't want to live with it. Together with dplyr it's easily the most powerful package for
data wrangling in the tidyverse. If you master it, it will save you a lot of time and headaches.

82 / 94

https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf
https://jennybc.github.io/purrr-tutorial/index.html

Coding style

83 / 94

Coding style: the basics

Why adhering to a particular style of coding?
It reduces the number of arbitrary decisions you have to consciously make during coding. We make an arbitrary
decision (convention) once, not always ad hoc.
It provides consistency.
It makes code easier to write.
It makes code easier to read, especially in the long term (i.e. two days after you've closed a script).

84 / 94

Coding style: the basics

Why adhering to a particular style of coding?
It reduces the number of arbitrary decisions you have to consciously make during coding. We make an arbitrary
decision (convention) once, not always ad hoc.
It provides consistency.
It makes code easier to write.
It makes code easier to read, especially in the long term (i.e. two days after you've closed a script).

What are questions of style?
Questions of style are a matter of opinion.
We will mostly follow Hadley Wickham’s opinion as expressed in the "tidyverse style guide".
We'll consider how to

name,
comment,
structure, and
write.

84 / 94

https://style.tidyverse.org/

"There are only two hard things in Computer Science:
cache invalidation and naming things." - Phil Karlton

Credit karlton.org

Credit Mashable

Naming things
Surprisingly many things can go wrong with naming...

85 / 94

https://www.karlton.org/2017/12/naming-things-hard/
https://in.mashable.com/tech/13755/elon-musk-announces-the-birth-of-his-baby-in-the-most-elon-musk-way-possible

Naming �les
Code �le names should be meaningful and end in .R .
Avoid using special characters in �le names. Stick with numbers, letters, dashes (-), and underscores (_).
Some examples:

Good
fit_models.R
utility_functions.R

Bad
fit models.R
foo.r
stuff.r

If �les should be run in a particular order, pre�x them with numbers:

00_download.R
01_explore.R
���
09_model.R
10_visualize.R

86 / 94

There are various conventions of how to write
phrases without spaces or punctuation. Some of
these have been adapted in programming, such as
camelCase, PascalCase, or snake_case.
The tidyverse way: Object and variable names
should use only lowercase letters, numbers, and
underscores.
Examples:

Good
day_one # snake_case
day_1 # snake_case

Less good
dayOne # camelCase
DayOne # PascalCase
day.one # dot.case

Dysfunctional
day�one # kebab�case

Credit cassert24/Reddit

Naming objects and variables

87 / 94

https://en.wikipedia.org/wiki/Camel_case
https://techterms.com/definition/pascalcase
https://en.wikipedia.org/wiki/Snake_case
https://style.tidyverse.org/syntax.html#object-names
https://www.reddit.com/r/ProgrammerHumor/comments/cj5g0f/any_pascalcase_supports_out_there/

Naming functions
In addition to following the general advice for object names, strive to use verbs for function names:

Good
add_row()
permute()

Bad
row_adder()
permutation()

Also, try avoiding function names that already exist, in particular those that come with a loaded package.
This often implies a trade-off between shortness and uniqueness. In any case, you would try to avoid situations that
force you disambiguate functions with the same name (as in dplyr��select ; see "R packages").
Check out this Wikipedia page or this Stackover�ow post for more background on naming conventions in
programming!

88 / 94

https://r-pkgs.org/namespace.html
https://en.wikipedia.org/wiki/Naming_convention_(programming
https://stackoverflow.com/questions/17326185/what-are-the-different-kinds-of-cases

Why commenting at all?
It’s often tempting to set up a project assuming that
you will be the only person working on it, e.g. as
homework. But that's almost never true.
You have project partners, co-authors, principals.
Even if not, there's someone else who you always
have to keep happy: Future-you.
Comment often to make Future-you happy about
Past-you by document what Present-You is
doing/thinking/planning to do.

Past-you

Present-you

Future-you

Commenting on things

89 / 94

General advice
Each line of a comment should begin with the
comment symbol and a single space: #
Use comments to record important �ndings and
analysis decisions.
If you need comments to explain what your code is
doing, consider rewriting your code to be clearer.
But: comments can work well as "sub-headlines".
If you discover that you have more comments than
code, consider switching to R Markdown.
(Longer) comments generally work better if they get
their own line.

Giving structure
Use commented lines together with dashes to break
up your �le into easily readable chunks.
RStudio automatically detects these chunks and
turns them into sections in the script outline.

R> # Input/output ---------------------
R>
R> # input
R> c("data/survey2021.csv")
R>
R> # output
R> c("survey_2021_cleaned.RData",
+ "resp_ids.csv")
R>
R> # Load data ------------------------
R>
R> # Plot data ------------------------

Commenting on things cont.

R> # define job status
R> dat$at_work �� dat$job %in% c(2, 3)
R> dat$at_work �� dat$job %in% c(2, 3) # define job s

90 / 94

Use spaces generously, but not too generously.
Always put a space after a comma, never before, just
like in regular English.
Use �� , not = , for assignment.
For logical operators, prefer TRUE and FALSE over
T and F .
To facilitate readability, keep your lines short. Strive
to limit your code to about 80 characters per line.
If a function call is too long to �t on a single line,
use one line each for the function name, each
argument, and the closing bracket.
Use pipes. When you use them, they should always
have a space before it, and should usually be
followed by a new line.

Spacing

R> # Good
R> mean(x, na.rm = TRUE)
R> height �� (feet * 12) + inches
R>
R> # Bad
R> mean(x,na.rm=TRUE)
R> mean (x, na.rm = TRUE)
R> height��feet�12�inches

Piping

R> babynames %>%
+ filter(name %>% equals("Kim")) %>%
+ group_by(year, sex) %>%
+ summarize(total = sum(n)) %>%
+ qplot(year, total, color = sex, data = .,
+ geom = "line") %>%
+ add(ggtitle('People named "Kim"')) %>%
+ print

Other stuff

91 / 94

Summary

92 / 94

Q: How much time should I invest to learn the
tidyverse?

A: A week clearly is not enough. You will automatically
practice more over the course of the semester. Coding is
also self-learning, though. Look out for other tidyverse
packages that sound interesting, and practice them!

Q: Should I still learn base R?

A: You are going to, automatically. All I've done is to
nudge you to a certain preference. But base R is not evil.
It's just a bit less accessible.

Q: Does the tidyverse also work for Big Data

A: Sure! However, when dealing with large datasets, you
might want to consider the data.table package as an
alternative to dplyr . Or just use dtplyr , a data.table
backend for dplyr that allows you to write dplyr code
that is automatically translated to the equivalent, but
usually much faster, data.table code.

Q: What from the tidyverse should I learn next?

R> sample(tidyverse_packages(), 1)

FAQ

93 / 94

https://rdatatable.gitlab.io/data.table/
https://github.com/tidyverse/dtplyr

Coming up

The �rst real assignment
Now we get serious: Assignment 2 is up on GitHub Classroom. Check it out and solve problems with the tidyverse.

Next lecture
Relational databases and SQL. Buckle up and bring coffee, because it'll get both exciting and tedious at the same time.

94 / 94

