
Introduction to Data Science
Session 2: Version control and project management

Simon Munzert
Hertie School | GRAD-C11/E1339

https://github.com/intro-to-data-science-21

Table of contents
�. Project management1

�. Git and GitHub

�. Getting started

�. Git(Hub) + RStudio

�. Git from the shell

�. Merge con�icts

�. Branches and forking

�. Other tips

�. Summary

1 Much of this lecture draws on materials from Grant McDermott's excellent Data Science for Economists class.

2 / 61

https://github.com/uo-ec607/lectures

Project management

3 / 61

In the data science work�ow there are two sorts of
surprises and cognitive stress:

�. Analytical (often good)
�. Infrastructural (almost always bad)

Analytical surprise is when you learn something from or
about the data.

Infrastructural surprise is when you discover that:

You can't �nd what you did before.
The analysis code breaks.
The report doesn't compile.
The collaborator can't run your code.

Good project management lets you focus on the right
kind of stress.

Taming chaos

4 / 61

Keeping Future-you happy
It’s often tempting to set up a project assuming that you will be the only person working on it, e.g. as homework.
That’s almost never true.
Coauthors and collaborators happen to the best of us.
Even if not, there's someone else who you always have to keep happy: Future-you.
Future-you is really the one you do organize your projects for.
They are who you use version control for (see later).
Most importantly, they are who will enjoy the fruits of your data science labor, or have to �ght back your chaos.
So, be kind to Future-you. Establish a good work�ow. You'll thank yourself later.

5 / 61

Keeping Future-you happy
It’s often tempting to set up a project assuming that you will be the only person working on it, e.g. as homework.
That’s almost never true.
Coauthors and collaborators happen to the best of us.
Even if not, there's someone else who you always have to keep happy: Future-you.
Future-you is really the one you do organize your projects for.
They are who you use version control for (see later).
Most importantly, they are who will enjoy the fruits of your data science labor, or have to �ght back your chaos.
So, be kind to Future-you. Establish a good work�ow. You'll thank yourself later.

5 / 61

Project setup
You should always think in terms of projects.

A project is a self-contained unit of data science work that can be

Shared
Recreated by others
Packaged
Dumped

6 / 61

Project setup
You should always think in terms of projects.

A project is a self-contained unit of data science work that can be

Shared
Recreated by others
Packaged
Dumped

A project contains

Content, e.g., raw data, processed data, scripts, functions, documents and other output
Metadata, e.g., information about tools for running it (required libraries, compilers), version history

6 / 61

Project setup
You should always think in terms of projects.

A project is a self-contained unit of data science work that can be

Shared
Recreated by others
Packaged
Dumped

A project contains

Content, e.g., raw data, processed data, scripts, functions, documents and other output
Metadata, e.g., information about tools for running it (required libraries, compilers), version history

For R projects

Projects are folders/directories.
Metadata is the RStudio project (.Rproj) �les (perhaps augmented with the output of renv for dependency
management) and .git .

6 / 61

https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://rstudio.github.io/renv/articles/renv.html

Structuring your working directory
One folder contains everything inside it.
Directories keep things separate that should be separated.
You decide on the fundamental structure. The project decides on the
details.

Further thoughts
Ideally, your project folder can be relocated without problem.
Keep input separate from output. De�nitely separate raw from
processed data!
Structure should be capable of evolution. More data, cases, models,
output formats shouldn't be a problem.

Credit Chris/r-bloggers.com

Setup: the folder structure

7 / 61

https://www.r-bloggers.com/2018/08/structuring-r-projects/

Good paths
All internal paths are relative.
They are invariant to moving/sharing the project.
Examples:

"preprocessing.R"

"figures/model-1.png"

"��/data/survey.RDa"

Bad paths
Using setwd() is bad practice 99% of the times.
Absolute paths are bad paths. Don't feed functions
with paths like "/Users/me/data/thing.sav" .
Those paths will not work outside your computer (or
maybe not even there, some days/weeks/months
ahead).

Setup: the paths

8 / 61

Good paths
All internal paths are relative.
They are invariant to moving/sharing the project.
Examples:

"preprocessing.R"

"figures/model-1.png"

"��/data/survey.RDa"

Bad paths
Using setwd() is bad practice 99% of the times.
Absolute paths are bad paths. Don't feed functions
with paths like "/Users/me/data/thing.sav" .
Those paths will not work outside your computer (or
maybe not even there, some days/weeks/months
ahead).

The working directory
Set it manually once per session (do Session > Set
Working Directory > Choose Directory). Then all
your good paths will "just work".
Better yet, get it right automatically by opening
RStudio with clicking on the script you want to work
with. This will set the location of the script as
working directory (which should be your working
assumption, too).
Even better yet, have the metadata set it for you:

Open your session by opening (choosing,
clicking on) myproject.Rproj
Then you’ll get the path set for you.

That's probably better than the previous option
because you might not want your code directory to
be the working directory.

Setup: the paths

8 / 61

Setup: the code structure

Naming scripts
Files should have short, descriptive names that indicate their purpose.
I recommend the use of telling verbs.
Names should only include letters and numbers with dashes - or underscores _ to separate words.
Use numbering to indicate the order in which �les should be run:

0-setup.R

1-import�data.R

2-preprocess�data.R

3-describe�uptake.R

4-analyze�uptake.R

5-analyze�experiment.R

9 / 61

Setup: the code structure

Naming scripts
Files should have short, descriptive names that indicate their purpose.
I recommend the use of telling verbs.
Names should only include letters and numbers with dashes - or underscores _ to separate words.
Use numbering to indicate the order in which �les should be run:

0-setup.R

1-import�data.R

2-preprocess�data.R

3-describe�uptake.R

4-analyze�uptake.R

5-analyze�experiment.R

Modularizing scripts
Write short, modular scripts. Every script serves a purpose in your pipeline.
This makes things easier to debug.
At the beginning of a script you might want to document input and output. 9 / 61

Setup: the code structure (cont.)

Talk to Future-you
Describe your code, e.g. by starting with a description of what it does. If you comment/describe a lot, consider using
an R Markdown (.Rmd) �le instead of a simple .R script.
Put the setup �rst (e.g., library() and source()).
You might want to outsource the loading of packages to a separate script that is imported in the �rst step
(source("functions.R")) or just declared the �rst script in the pipeline.
Always comment more than you usually do.

10 / 61

Setup: the code structure (cont.)

Talk to Future-you
Describe your code, e.g. by starting with a description of what it does. If you comment/describe a lot, consider using
an R Markdown (.Rmd) �le instead of a simple .R script.
Put the setup �rst (e.g., library() and source()).
You might want to outsource the loading of packages to a separate script that is imported in the �rst step
(source("functions.R")) or just declared the �rst script in the pipeline.
Always comment more than you usually do.

Structuring your code
Even with modularized code, scripts can become long. Structure helps to keep an overview.
Use commented lines as section/subsection heads.
RStudio creates a "table of contents" when you name your code chunks as follows (# followed by title and ���):

R> # Import data --------------
R>
R> dat �� read_csv("dat.csv")

10 / 61

More things to consider
There'd be more to say on how to establish a good
project work�ow, including how to

store/organize raw and derived data,
deal with output in form of graphs and tables,
link everything together from start (project
setup) to �nish (knitting the report)
separate coding for the record and experimental
coding.

But there's limited value in teaching you all that
upfront.
The truth is: You'll likely re�ne your own work�ow
over time. I just saved you some initial pain
(hopefully).
Do check out other people's experiences and
opinions, e.g., here or here or here.

Managing your R project in two simple steps

Setup: the rest

11 / 61

https://www.r-bloggers.com/2018/08/structuring-r-projects/
https://chrisvoncsefalvay.com/2018/08/09/structuring-r-projects/
https://kdestasio.github.io/post/r_best_practices/

Git and GitHub

12 / 61

Why version control?

Credit phdcomics.com 13 / 61

http://phdcomics.com/comics/archive.php?comicid=1531%22%3Ecreativity%3C/a%3E.%3C!--more--%3E%3C/p%3E

Have you ever...

Changed your code, realized it was a mistake and
wanted to revert back?
Lost code or had a backup that was too old?
Wanted to see the difference between different
versions of your code?
Wanted to review the history of some code?
Wanted to submit a change to someone else's code?
Wanted to share your code, or let other people work
on your code?
Wanted to see how much work is being done, when,
and by whom?
Wanted to experiment with but not interfering with
working code?

Credit si618/Stackover�ow

Credit bhimanshukalra/devrant.com

More reasons to do version control

14 / 61

https://stackoverflow.com/questions/1408450/why-should-i-use-version-control
https://devrant.com/rants/1840468/version-control

Git is a distributed version control system.
Imagine if your Dropbox (or Google Drive, or MS
OneDrive for that matter) and the "Track changes"
feature in MS Word had a baby.
In fact, it's even better than that because Git is
optimized for the things that data scientists spend a
lot of time working on - code!
There is a learning curve, but it's worth it.
Being familiar with Git is taken for granted when you
interact with other data scientists.
It is by far not the only version control software, but
certainly the most popular one.
According to StackOver�ow's 2021 Developer Survey,
more than 93% of respondents report to use Git -
more than any other tool.

Git(Hub) solves this problem

15 / 61

https://en.wikipedia.org/wiki/Comparison_of_version-control_software
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-tools-tech

Git is a distributed version control system.
Imagine if your Dropbox (or Google Drive, or MS
OneDrive for that matter) and the "Track changes"
feature in MS Word had a baby.
In fact, it's even better than that because Git is
optimized for the things that data scientists spend a
lot of time working on - code!
There is a learning curve, but it's worth it.
Being familiar with Git is taken for granted when you
interact with other data scientists.
It is by far not the only version control software, but
certainly the most popular one.
According to StackOver�ow's 2021 Developer Survey,
more than 93% of respondents report to use Git -
more than any other tool.

It's important to realize that Git and GitHub are
distinct things.
GitHub is an online hosting platform that allows you
to host your code online.
It relies on Git and makes some of its functionality
more accessible.
Also, it provides many more useful features to
collaborate with others. (Similar platforms include
Bitbucket and GitLab.)
Just like we don't need Rstudio to run R code, we
don't need GitHub to use Git... But it will make our
lives easier.

Git(Hub) solves this problem

15 / 61

https://en.wikipedia.org/wiki/Comparison_of_version-control_software
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-tools-tech

Where does Git come from?

Git was created in 2005 by Linux creator Linus Torvalds.
The initial motivation was to have a non-proprietary version control
system to manage Linux kernel development.
Check out this (quite opinionated) talk by Linus Torvalds on Git two
years after its creation.

What's the meaning of Git ?

Anything, apparently.
Also, it's pronounced [ɡɪt], not [d͡ʒɪt].

How to interact with Git?

There are many Git GUIs, giving you the option to use git without the
shell (often with reduced functionality). A popular choice is GitHub
Desktop, but we will mainly use the Git integration into the RStudio IDE.

Credit Krd (photo), Von Sprat
(crop/extraction), CC BY-SA 4.0.

Git: some background

16 / 61

https://www.youtube.com/watch?v=4XpnKHJAok8
https://en.wikipedia.org/wiki/Git#Naming
https://en.wikipedia.org/wiki/Comparison_of_Git_GUIs
https://desktop.github.com/
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://commons.wikimedia.org/w/index.php?curid=54706023

Where does GitHub come from?

GitHub.com launched in April 2008 by Tom Preston-Werner, Chris
Wanstrath, P.J. Hyett and Scott Chacon.
In 2018, Microsoft acquired the company for more than US$7 billion.

What's the business model?

GitHub offers various subscription plans and has expanded its services
beyond hosting Git-based version control.

Some interesting facts

GitHub's mascot is "Octocat", a human-cat-octopus hybrid with �ve
arms.
There are 56m+ developers on Github, with 60m+ new repositories
created in 2020 alone.
Part of GitHub's history are controversies around issues like harassment
allegations or incidences of censorship.

GitHub: some background

Credit Screenshot

17 / 61

https://productmint.com/github-business-model-how-does-github-make-money/
https://github.com/octocat
https://octoverse.github.com/
https://github.com/octocat3

From software development...

Git and GitHub's role in global software
development is not in question.
There's a high probability that your favourite app,
program or package is built using Git-based tools.
(RStudio is a case in point.)

... to scienti�c research

Data science involves product building,
collaboration, transparency. GH helps with all that.
Journals have increasingly strict requirements
regarding reproducibility and access. GH makes this
easy (DOI integration, off-the-shelf licenses, etc.).
I host most of the code and data for my papers on
GH. My website lives there. And this course does,
too.

Credit "Democratic databases: science on GitHub"
(Perkel, 2016, Nature).

Git(Hub) for scienti�c research

18 / 61

https://simonmunzert.github.io/publications.html
https://simonmunzert.github.io/
https://github.com/intro-to-data-science-21
https://www.nature.com/news/democratic-databases-science-on-github-1.20719

Getting started

19 / 61

Good news: It's free!

Simply go to https://github.com to sign up.

Some things to consider:

As a student, you qualify for a free GitHub Pro
account.
The Pro account comes with a couple of additional
features.
Register for a free account �rst, then pursue the
special offers.
Choose your username wisely. This isn't Instagram,
so maybe avoid puns and "funny" nicknames.

First step: register a GitHub account

20 / 61

https://github.com/
https://education.github.com/discount_requests/student_application
https://docs.github.com/en/get-started/learning-about-github/githubs-products#github-pro
https://happygitwithr.com/github-acct.html

Second step: install Git
Again, Git is an independent piece of software. You need to have it installed on your machine to call it from RStudio or
the command line.

Chances are that that's already the case. Here's how you can check using the command line:

$ which git

�� /usr/bin/git

And here's how you can check the version:

$ git ��version

�� git version 2.30.1 (Apple Git-130)

If you want to install (or update) Git on your Mac/Linux machine, I recommend using Homebrew, "the missing package
manager for macOS (or Linux)":

$ brew install git

To install/update Git for Windows, check out happygitwithr.com. 21 / 61

https://brew.sh/
https://happygitwithr.com/install-git.html

Third step: introduce yourself to Git
This is particularly important when you work with Git but without the GitHub overhead. The idea is to de�ne how your
commits are labelled. Others should easily identify your commits as coming from you.

Have you already introduced yourself to Git? Find it out:

$ git config ��list

Still have to introduce yourself? To that end, we set our user name and email address like this:

$ git config ��global user.name 'simonmunzert'
$ git config ��global user.email 'simon.munzert@example.com'

The user name can be (but does not have to be) your GitHub user name. The email address should de�nitely be the one
associated with your GitHub account.

Check out these setup instructions from Software Carpentry to learn about more con�guration options.

22 / 61

http://swcarpentry.github.io/git-novice/02-setup/
https://software-carpentry.org/about/

Git(Hub) + RStudio

23 / 61

Link a GitHub repo to an RStudio Project
One of the (many) great features of RStudio is how well it integrates version control into your everyday work�ow.

Even though Git is a completely separate program to R, they feel like part of the same "thing" in RStudio.
This next section is about learning the basic Git(Hub) commands and the recipe for successful project integration
with RStudio.

24 / 61

Link a GitHub repo to an RStudio Project
One of the (many) great features of RStudio is how well it integrates version control into your everyday work�ow.

Even though Git is a completely separate program to R, they feel like part of the same "thing" in RStudio.
This next section is about learning the basic Git(Hub) commands and the recipe for successful project integration
with RStudio.

The starting point for our work�ow is to link a GitHub repository (i.e. "repo") to an RStudio Project. Here are the steps
we're going to follow:

�. Create the repo on GitHub and initialize with a README.
�. Copy the HTTPS/SSH link (the green "Clone or Download" button).
�. Open up RStudio.
�. Navigate to File -> New Project -> Version Control -> Git.
�. Paste your copied link into the "Repository URL:" box.
�. Choose the project path ("Create project as subdirectory of:") and click Create Project.

24 / 61

Link a GitHub repo to an RStudio Project
One of the (many) great features of RStudio is how well it integrates version control into your everyday work�ow.

Even though Git is a completely separate program to R, they feel like part of the same "thing" in RStudio.
This next section is about learning the basic Git(Hub) commands and the recipe for successful project integration
with RStudio.

The starting point for our work�ow is to link a GitHub repository (i.e. "repo") to an RStudio Project. Here are the steps
we're going to follow:

�. Create the repo on GitHub and initialize with a README.
�. Copy the HTTPS/SSH link (the green "Clone or Download" button).
�. Open up RStudio.
�. Navigate to File -> New Project -> Version Control -> Git.
�. Paste your copied link into the "Repository URL:" box.
�. Choose the project path ("Create project as subdirectory of:") and click Create Project.

Let's see how that works in practice.

24 / 61

Link a GitHub repo to an RStudio Project

25 / 61

Make some local changes
Look at the Environment panel in your RStudio IDE. Do you see the "Git" tab?

�. Click on it.
�. Look what's in there. There should already be some �les in there, which we'll ignore for the moment.
�. Now open up the README �le (see the "Files" tab in the bottom-right panel).
�. Add some text like "Hello World!" and save the README.
�. Have you noticed the changes in the "Git" panel?

Again, see the GIF walkthrough on the next slide...

26 / 61

Make some local changes

27 / 61

Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the four main Git operations.

�. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions, deletions, etc.)

�. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

�. Push
Push any (committed) local changes to the GitHub repo.

�. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either by your collaborators or you on
another machine.

28 / 61

Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the four main Git operations.

�. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions, deletions, etc.)

�. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

�. Push
Push any (committed) local changes to the GitHub repo.

�. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either by your collaborators or you on
another machine.

For the moment, it will be useful to group the �rst two operations and last two operations together. (They are often
combined in practice too, although you'll soon get a sense of when and why they should be split up.)

28 / 61

Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the four main Git operations.

�. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions, deletions, etc.)

�. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

�. Push
Push any (committed) local changes to the GitHub repo.

�. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either by your collaborators or you on
another machine.

For the moment, it will be useful to group the �rst two operations and last two operations together. (They are often
combined in practice too, although you'll soon get a sense of when and why they should be split up.)

Ready for more GIFs?

28 / 61

Stage and Commit

29 / 61

Push and Pull

30 / 61

Recap
Here's a step-by-step summary of what we just did.

Made some changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected here, but good practice).
Pushed our changes to the GitHub repo.

31 / 61

Recap
Here's a step-by-step summary of what we just did.

Made some changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected here, but good practice).
Pushed our changes to the GitHub repo.

🦊 Always pull from the upstream repo before you push any changes. Seriously, do this even on solo projects; making it a
habit will save you headaches down the road.

31 / 61

Recap
Here's a step-by-step summary of what we just did.

Made some changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected here, but good practice).
Pushed our changes to the GitHub repo.

🦊 Always pull from the upstream repo before you push any changes. Seriously, do this even on solo projects; making it a
habit will save you headaches down the road.

🤓 You were likely challenged for your GitHub credentials at some point. Learn how to cache these here. Note that the
classical username/password authentication was recently removed. Instead, you have to use your personal access token
(PAT). I recommend usethis��create_github_token() in combination with gitcreds��gitcreds_set() .

31 / 61

https://happygitwithr.com/credential-caching.html

Recap
Here's a step-by-step summary of what we just did.

Made some changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected here, but good practice).
Pushed our changes to the GitHub repo.

🦊 Always pull from the upstream repo before you push any changes. Seriously, do this even on solo projects; making it a
habit will save you headaches down the road.

🤓 You were likely challenged for your GitHub credentials at some point. Learn how to cache these here. Note that the
classical username/password authentication was recently removed. Instead, you have to use your personal access token
(PAT). I recommend usethis��create_github_token() in combination with gitcreds��gitcreds_set() .

🤓 Speaking of credentials, another approach is to switch to SSH. You might want to consider doing this when you feel
comfortable with the main Git operations.

31 / 61

https://happygitwithr.com/credential-caching.html
https://happygitwithr.com/ssh-keys.html

Why this work�ow?
Creating the repo on GitHub �rst means that it will always be "upstream" of your (and any other) local copies.

In effect, this allows GitHub to act as the central node in the distributed VC network.
Especially valuable when you are collaborating on a project with others — more on this later — but also has
advantages when you are working alone.
If you would like to move an existing project to GitHub, my advice is still to create an empty repo there �rst, clone it
locally, and then copy all your �les across.

32 / 61

Why this work�ow?
Creating the repo on GitHub �rst means that it will always be "upstream" of your (and any other) local copies.

In effect, this allows GitHub to act as the central node in the distributed VC network.
Especially valuable when you are collaborating on a project with others — more on this later — but also has
advantages when you are working alone.
If you would like to move an existing project to GitHub, my advice is still to create an empty repo there �rst, clone it
locally, and then copy all your �les across.

RStudio Projects are great.

Again, they interact seamlessly with Git(Hub), as we've just seen.
They also solve absolute vs. relative path problems, since the .Rproj �le acts as an anchor point for all other �les in
the repo.1

1 You know that calling �les from YourComputer/YourName/Documents/Special-Subfolder/etc in your scripts is one of the deadly
sins of programming, right?

32 / 61

Git from the shell

33 / 61

The GitHub + RStudio Project combo is ideal for new
users.

RStudio's Git integration and built-in GUI cover all
the major operations.
RStudio Projects FTW.

However, there are some bene�ts of the shell:

The shell is more powerful and �exible. It lets you
do things that the RStudio Git GUI can't.
Working in the shell is potentially more appropriate
for projects that aren't primarily based in R.
Knowing the basic Git commands in the shell is
generally a good thing for a data scientist.
We're going to cover the shell in more detail in a
later session, so this is a sneak preview.

Why bother with the shell?

34 / 61

Main Git shell commands
Clone a repo into current directory.

$ git clone REPOSITORY-URL

See the commit history (hit spacebar to scroll down or q to exit). You need to be in a git repo to see something.

$ git log

What has changed?

$ git status

35 / 61

Main Git shell commands (cont.)
Stage ("add") a �le or group of �les.

$ git add NAME-OF-FILE-OR-FOLDER

You can use wildcard characters to stage a group of �les (e.g. sharing a common pre�x). There are a bunch of useful �ag
options too:

Stage all �les.

$ git add -A

Stage updated �les only (modi�ed or deleted, but not new).

$ git add �u

Stage new �les only (not updated).

$ git add .

36 / 61

https://ryanstutorials.net/linuxtutorial/wildcards.php

Main Git shell commands (cont.)
Commit your changes.

$ git commit �m "Helpful message"

Pull from the upstream repository (i.e. GitHub).

$ git pull

Push any local changes that you've committed to the upstream repo (i.e. GitHub).

$ git push

37 / 61

Merge con�icts

38 / 61

When things don't match up

The context
While version control also makes sense when you work alone, it becomes essential when you collaborate with
others.
When multiple people work on the same code simultaneously on different machines, this can lead to problems.
One way to avoid these problems is to simply not work on code simultaneously. This is an option in small teams, but
not in bigger projects.

39 / 61

When things don't match up

The context
While version control also makes sense when you work alone, it becomes essential when you collaborate with
others.
When multiple people work on the same code simultaneously on different machines, this can lead to problems.
One way to avoid these problems is to simply not work on code simultaneously. This is an option in small teams, but
not in bigger projects.

The problem
Merge con�icts occur when Git cannot resolve differences in the code between two commits.
Not all code differences result in merge con�icts. When changes in code occur on different lines or in different �les,
Git will successfully merge commits.
The fact that merge con�icts can occur is not a bug, but a key feature of Git! It gives you the agency to address them
properly.

39 / 61

A hypothetical example

Think of two collaborators, C1 and C2. You are C1.
C1: You invite C2 to join you as a collaborator on the "test" GitHub repo that you created earlier. (See the Settings tab
of your repo, then → Manage access.)

C2: Clones C1's repo to their local machine. Makes some edits to the README (e.g., deletes lines of text and adds their
own). Stages, commits and pushes these changes.

C1: You make your own changes to the README on your local machine. Stage, commit and then try to push them
(after pulling from the GitHub repo �rst).

C1 encounters a merge conflict error that needs to be �xed.

40 / 61

A hypothetical example

Think of two collaborators, C1 and C2. You are C1.
C1: You invite C2 to join you as a collaborator on the "test" GitHub repo that you created earlier. (See the Settings tab
of your repo, then → Manage access.)

C2: Clones C1's repo to their local machine. Makes some edits to the README (e.g., deletes lines of text and adds their
own). Stages, commits and pushes these changes.

C1: You make your own changes to the README on your local machine. Stage, commit and then try to push them
(after pulling from the GitHub repo �rst).

C1 encounters a merge conflict error that needs to be �xed.

🤓 Note what Git is doing here: It protects your contribution by refusing to merge. It wants to make sure that you don't
accidentally overwrite all of your changes by pulling C2's version of the modi�ed �le.

40 / 61

A hypothetical example

Think of two collaborators, C1 and C2. You are C1.
C1: You invite C2 to join you as a collaborator on the "test" GitHub repo that you created earlier. (See the Settings tab
of your repo, then → Manage access.)

C2: Clones C1's repo to their local machine. Makes some edits to the README (e.g., deletes lines of text and adds their
own). Stages, commits and pushes these changes.

C1: You make your own changes to the README on your local machine. Stage, commit and then try to push them
(after pulling from the GitHub repo �rst).

C1 encounters a merge conflict error that needs to be �xed.

🤓 Note what Git is doing here: It protects your contribution by refusing to merge. It wants to make sure that you don't
accidentally overwrite all of your changes by pulling C2's version of the modi�ed �le.

🦊 In toy examples like these, the source of the problem is obvious. In bigger projects, git status can provide a helpful
summary to see which �les are in con�ict.

40 / 61

Interpreting merge con�icts
Let's see what's happening here by opening up the README �le in RStudio/your preferred text editor. You should see
something like:

README
Some text here.
<<<<<<< HEAD
Text added by Collaborator 2.
=======
Text added by Collaborator 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

41 / 61

Interpreting merge con�icts
Let's see what's happening here by opening up the README �le in RStudio/your preferred text editor. You should see
something like:

README
Some text here.
<<<<<<< HEAD
Text added by Collaborator 2.
=======
Text added by Collaborator 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

What do these symbols mean?

41 / 61

Interpreting merge con�icts
Let's see what's happening here by opening up the README �le in RStudio/your preferred text editor. You should see
something like:

README
Some text here.
<<<<<<< HEAD
Text added by Collaborator 2.
=======
Text added by Collaborator 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

What do these symbols mean?

<<<<<<< HEAD Indicates the start of the merge con�ict.

41 / 61

Interpreting merge con�icts
Let's see what's happening here by opening up the README �le in RStudio/your preferred text editor. You should see
something like:

README
Some text here.
<<<<<<< HEAD
Text added by Collaborator 2.
=======
Text added by Collaborator 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

What do these symbols mean?

<<<<<<< HEAD Indicates the start of the merge con�ict.
======= Indicates the break point used for comparison.

41 / 61

Interpreting merge con�icts
Let's see what's happening here by opening up the README �le in RStudio/your preferred text editor. You should see
something like:

README
Some text here.
<<<<<<< HEAD
Text added by Collaborator 2.
=======
Text added by Collaborator 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

What do these symbols mean?

<<<<<<< HEAD Indicates the start of the merge con�ict.
======= Indicates the break point used for comparison.
>>>>>>> <long string> Indicates the end of the lines that had a merge con�ict.

41 / 61

Fixing merge con�icts

How merge con�icts are �xed
Fixing these con�icts is a matter of (manually) editing the README �le.
Delete the lines of the text that you don't want.
Then, delete the special Git merge con�ict symbols.
Once that's done, you should be able to stage, commit, pull and �nally push your changes to the GitHub repo
without any errors.

42 / 61

Fixing merge con�icts

How merge con�icts are �xed
Fixing these con�icts is a matter of (manually) editing the README �le.
Delete the lines of the text that you don't want.
Then, delete the special Git merge con�ict symbols.
Once that's done, you should be able to stage, commit, pull and �nally push your changes to the GitHub repo
without any errors.

Caveats
C1 gets to decide what to keep because they �xed the merge con�ict.
But: The full commit history is preserved, so C2 can always recover their changes if desired.
A more elegant and democratic solution to merge con�icts (and repo changes in general) is provided by Git
branches. We'll get there next.

42 / 61

Aside: Line endings and different OSs

Problem
During your collaboration, you may have encountered a situation where Git is highlighting differences on seemingly
unchanged sentences.

If that is the case, check whether your partner is using a different OS to you.

The "culprit" is the fact that Git evaluates an invisible character at the end of every line. This is how Git tracks changes.

For Linux and MacOS, that ending is "LF".
For Windows, that ending is "CRLF".
Check out this Wikipedia article for valuable cocktail party knowledge about where these terms come from.

43 / 61

https://help.github.com/articles/dealing-with-line-endings/
https://en.wikipedia.org/wiki/Newline

Aside: Line endings and different OSs

Problem
During your collaboration, you may have encountered a situation where Git is highlighting differences on seemingly
unchanged sentences.

If that is the case, check whether your partner is using a different OS to you.

The "culprit" is the fact that Git evaluates an invisible character at the end of every line. This is how Git tracks changes.

For Linux and MacOS, that ending is "LF".
For Windows, that ending is "CRLF".
Check out this Wikipedia article for valuable cocktail party knowledge about where these terms come from.

Solution
Open up the shell and enter

$ git config ��global core.autocrlf input

(Windows users: Change input to true). 43 / 61

https://help.github.com/articles/dealing-with-line-endings/
https://en.wikipedia.org/wiki/Newline

Branches and forking

44 / 61

Branches are cool.
Think of your repo as a growing tree.
Branches allow you to take a snapshot of your existing repo and try out
a whole new idea without affecting your main (formerly "master")
branch.
Only once you (and your collaborators) are 100% satis�ed, would you
merge it back into the master branch.1

This is how most new features in modern software and apps are
developed.
It is also how bugs are caught and �xed.
But researchers can easily use it to try out new ideas and analysis
(e.g. robustness checks, revisions, etc.).

If you aren't happy, then you can just delete the experimental branch
and continue as if nothing happened.

Credit noble desktop

What are branches and why use them?

1 As with real trees, you can actually have branches of branches (of branches). But let's not get ahead of ourselves.

45 / 61

https://www.nobledesktop.com/learn/git/git-branches

Create a new branch in RStudio

46 / 61

Branch shell commands
Create a new branch on your local machine and switch to it:

$ git checkout �b NAME-OF-YOUR-NEW-BRANCH

Push the new branch to GitHub:

$ git push origin NAME-OF-YOUR-NEW-BRANCH

List all branches on your local machine:

$ git branch

Switch back to (e.g.) the main branch:

$ git checkout main

Delete a branch

$ git branch �d NAME-OF-YOUR-FAILED-BRANCH
$ git push origin �NAME-OF-YOUR-FAILED-BRANCH 47 / 61

Merging branches + Pull requests
You have two options:

48 / 61

Merging branches + Pull requests
You have two options:

1. Locally
Commit your �nal changes to the new branch (say we call it "new-idea").
Switch back to the master branch: $ git checkout master
Merge in the new-idea branch changes: $ git merge new�idea
Delete the new-idea branch (optional): $ git branch �d new�idea

48 / 61

Merging branches + Pull requests
You have two options:

1. Locally
Commit your �nal changes to the new branch (say we call it "new-idea").
Switch back to the master branch: $ git checkout master
Merge in the new-idea branch changes: $ git merge new�idea
Delete the new-idea branch (optional): $ git branch �d new�idea

2. Remotely (i.e. pull requests on GitHub)
PRs are a way to notify collaborators — or yourself! — that you have completed a feature.
You write a summary of all the changes contained in the branch.
You then assign suggested reviewers of your code — including yourself potentially — who are then able to approve
these changes ("Merge pull request") on GitHub.

48 / 61

Merging branches + Pull requests
You have two options:

1. Locally
Commit your �nal changes to the new branch (say we call it "new-idea").
Switch back to the master branch: $ git checkout master
Merge in the new-idea branch changes: $ git merge new�idea
Delete the new-idea branch (optional): $ git branch �d new�idea

2. Remotely (i.e. pull requests on GitHub)
PRs are a way to notify collaborators — or yourself! — that you have completed a feature.
You write a summary of all the changes contained in the branch.
You then assign suggested reviewers of your code — including yourself potentially — who are then able to approve
these changes ("Merge pull request") on GitHub.

Let's see how that works in practice.

48 / 61

Your �rst pull request

Enter new branch
First, operate in the new branch.
Switch over to it if you haven't already.
Remember: $ git checkout new�idea (or just click on the branches tab in RStudio)

49 / 61

Your �rst pull request

Enter new branch
First, operate in the new branch.
Switch over to it if you haven't already.
Remember: $ git checkout new�idea (or just click on the branches tab in RStudio)

Make edits
Make some local changes and then commit + push them to GitHub.
For a start, the changes themselves don't really matter. Add text to the README, add some new �les, whatever.

49 / 61

Your �rst pull request

Enter new branch
First, operate in the new branch.
Switch over to it if you haven't already.
Remember: $ git checkout new�idea (or just click on the branches tab in RStudio)

Make edits
Make some local changes and then commit + push them to GitHub.
For a start, the changes themselves don't really matter. Add text to the README, add some new �les, whatever.

Create pull request
After pushing these changes, head over to your repo on GitHub.
You should see a new green button with "Compare & pull request". Click it.
Add a meta description of what this PR accomplishes. You can also change the title if you want.
Click "Create pull request".
(Here's where you or your collaborators would review all the changes.)
Once satis�ed, click "Merge pull request" and then con�rm. 49 / 61

Your �rst pull request (cont.)

50 / 61

Forks

What are forks?
Git forks lie somewhere between cloning a repo and branching from it.
In fact, if you fork a repo then you are really creating a copy of it.

51 / 61

Forks

What are forks?
Git forks lie somewhere between cloning a repo and branching from it.
In fact, if you fork a repo then you are really creating a copy of it.

How does it work?
Forking a repo on GitHub is very simple; just click the "Fork" button in the top-right corner of said repo.
This will create an independent copy of the repo under your GitHub account.

51 / 61

https://help.github.com/articles/fork-a-repo/

Forks

What are forks?
Git forks lie somewhere between cloning a repo and branching from it.
In fact, if you fork a repo then you are really creating a copy of it.

How does it work?
Forking a repo on GitHub is very simple; just click the "Fork" button in the top-right corner of said repo.
This will create an independent copy of the repo under your GitHub account.

What to do with a forked repo?
Once you fork a repo, you are free to do anything you want to it. (It's yours.) However, forking — in combination with
pull requests — is actually how much of the world's software is developed. For example:

Outside user B forks A's repo. She adds a new feature (or �xes a bug she's identi�ed) and then issues an
upstream pull request.
A is noti�ed and can then decide whether to merge B's contribution with the main project.

If the original repo is still under active development, you might want to stay up to date. Learn more about syncing a
fork here. 51 / 61

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://help.github.com/articles/syncing-a-fork/

Other tips

52 / 61

README

Why README?
README �les are special in GitHub because they act as repo landing pages.
They're the �rst thing viewers of your repo see and should therefore communicate what the repo is about.

53 / 61

README

Why README?
README �les are special in GitHub because they act as repo landing pages.
They're the �rst thing viewers of your repo see and should therefore communicate what the repo is about.

Where README?
For a project tied to a research paper, this is where you should be explicit about the goal of the research paper, the
software requirements, how to run the analysis, and so forth (e.g. here).
On the other end of the scale, many GitHub repos are basically standalone README �les. Think of these as version-
controlled blog posts (e.g. here).
R packages that are published on GitHub often provide more useful information in the README (and in the repo in
general) than on CRAN (if they're published there at all). See, e.g., here vs. here.

53 / 61

https://github.com/grantmcdermott/bycatch
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/saschagobel/legislatoR
https://cran.r-project.org/web/packages/legislatoR/index.html

README

Why README?
README �les are special in GitHub because they act as repo landing pages.
They're the �rst thing viewers of your repo see and should therefore communicate what the repo is about.

Where README?
For a project tied to a research paper, this is where you should be explicit about the goal of the research paper, the
software requirements, how to run the analysis, and so forth (e.g. here).
On the other end of the scale, many GitHub repos are basically standalone README �les. Think of these as version-
controlled blog posts (e.g. here).
R packages that are published on GitHub often provide more useful information in the README (and in the repo in
general) than on CRAN (if they're published there at all). See, e.g., here vs. here.

How README?
READMEs should be written in Markdown, which GH automatically renders.
You'll learn more about Markdown (and its close relation, R Markdown) during the course of our homework
assignments. 53 / 61

https://github.com/grantmcdermott/bycatch
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/saschagobel/legislatoR
https://cran.r-project.org/web/packages/legislatoR/index.html
https://www.markdownguide.org/
https://rmarkdown.rstudio.com/

What is .gitignore?
A .gitignore �le tells Git what to ignore.
This is especially useful if you want to exclude whole folders or a class
of �les (e.g. based on size or type).
Proprietary data �les should be ignored from the beginning if you
intend to make a repo public at some point.
Very large individual �les (>100 MB) exceed GitHub's maximum
allowable size and should be ignored regardless. See here and here.

Credit RulerD/reddit.com

.gitignore

54 / 61

https://help.github.com/articles/working-with-large-files/
https://help.github.com/articles/versioning-large-files/
https://www.reddit.com/r/ProgrammerHumor/comments/bfanuc/version_control/

.gitignore (cont.)

Multiple ways to create a .gitignore
A .gitignore �le was automatically generated if you cloned your repo with an RStudio Project.
You could also have the option of adding one when you �rst create a repo on GitHub.
Or, you can create one with your preferred text editor. (Must be saved as " .gitignore ".)

55 / 61

.gitignore (cont.)

Multiple ways to create a .gitignore
A .gitignore �le was automatically generated if you cloned your repo with an RStudio Project.
You could also have the option of adding one when you �rst create a repo on GitHub.
Or, you can create one with your preferred text editor. (Must be saved as " .gitignore ".)

How to specify rules in the .gitignore �le
To ignore a single a �le: FILE-I-WANT-TO-IGNORE.csv
To ignore a whole folder (and all of its contents, subfolders, etc.): FOLDER-NAME/**
The standard shell commands and special characters apply.

E.g., ignore all CSV �les in the repo: *.csv
E.g., ignore all �les beginning with "test": test�
E.g., don't ignore a particular �le: !somefile.txt

55 / 61

GitHub Issues

What is a GitHub Issue?
GitHub Issues are another great way to interact with your collaborators and/or package maintainers.
They are a genuine feature of GitHub (not Git).
Think of it as a communication board where you can �ag bugs, request new features, suggest changes, etc.
Repo maintainers can keep the issues as a to do list (and close issues that have been "solved"), but also
communicate with people who brought up the issue.

56 / 61

https://guides.github.com/features/issues/

GitHub Issues

What is a GitHub Issue?
GitHub Issues are another great way to interact with your collaborators and/or package maintainers.
They are a genuine feature of GitHub (not Git).
Think of it as a communication board where you can �ag bugs, request new features, suggest changes, etc.
Repo maintainers can keep the issues as a to do list (and close issues that have been "solved"), but also
communicate with people who brought up the issue.

How to deal with issues?
Before �ling an issue, you should check the list of open (and maybe also closed) issues.
If you spot any problems with these lecture notes, feel free to �le an issue here!

56 / 61

https://guides.github.com/features/issues/
https://github.com/Fall2021-GRAD-C11-Intro-to-DS/lectures/issues

Summary

57 / 61

Recipe (shell commands in grey)
�. Create a repo on GitHub and initialize with a README.

�. Clone the repo to your local machine. Preferably using an RStudio Project, but as you wish. (E.g. Shell command: $
git clone REPOSITORY-URL)

�. Stage any changes you make: $ git add -A

�. Commit your changes: $ git commit �m "Helpful message"

�. Pull from GitHub: $ git pull

�. (Fix any merge con�icts.)

�. Push your changes to GitHub: $ git push

58 / 61

Recipe (shell commands in grey)
�. Create a repo on GitHub and initialize with a README.

�. Clone the repo to your local machine. Preferably using an RStudio Project, but as you wish. (E.g. Shell command: $
git clone REPOSITORY-URL)

�. Stage any changes you make: $ git add -A

�. Commit your changes: $ git commit �m "Helpful message"

�. Pull from GitHub: $ git pull

�. (Fix any merge con�icts.)

�. Push your changes to GitHub: $ git push

Repeat steps 3—7 (but especially steps 3 and 4) often.

58 / 61

Q: When should I use version control with Git? Is
DropBox/OneDrive/Google Docs not enough?

A: It's not evil to use these tools.

Depending on the size and complexity of a project,
version history of cloud storage services might seem
suf�cient (and more convenient to use!).
But as an aspiring data scientist, Git/GitHub is going
to become part of your work�ow. And it will be less
painful the more experience you have.

Q: Should I try to work in the shell, or are convenient
GUIs as given by RStudio, GitHub Desktop etc. �ne, too?

A: Again, it's not evil to use these tools.

Start simple and stay within the RStudio IDE.
Return to the shell once you've learned more.

Q: When should I commit (and push) changes?

A: Early and often.

It's not quite as important as saving your work
regularly, but it's a close second.
You should certainly push everything that you want
your collaborators to see.

Q: Do I need branches if I am working on a solo project?

A: You don't need them, but they offer big advantages in
maintaining a sane work�ow.

Experiment without any risk to the main project!
If you combine them with pull requests, then you
can compress signi�cant additions to your project
(which may comprise many small edits) into a single
branch.

FAQ

59 / 61

Q: What's the difference between cloning and forking a
repo?

A: Cloning directly ties your local version to the original
repo, while forking creates a copy on your GitHub (which
you can then clone).

Cloning makes it easier to fetch updates (and is
often the best choice for new GitHub users), but
forking has advantages too.

Q: What happens when something goes wrong?

A: Think: "Oh shit, Git!" and check out
http://ohshitgit.com/.

Q: What happens when something goes horribly wrong?

A: Burn it down and start again.

http://happygitwithr.com/burn.html
This is a great advantage of Git's distributed nature.
If something goes horribly wrong, there's usually an
intact version somewhere else.

FAQ (cont.)

60 / 61

http://happygitwithr.com/clone.html
http://happygitwithr.com/fork.html
http://ohshitgit.com/
http://happygitwithr.com/burn.html

Coming up

Get the course materials
If you haven't done so already, now is a good time to clone/fork the course materials to your local computer.

The �rst assignment
Now that you've learned the necessary basics, Mock Assignment 0 is up on GitHub Classroom. Check it out to learn how
to work on and submit assignments!

Next lecture
R and the tidyverse, and: good coding style!

61 / 61

