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Spurious Regression

I We have seen spurious regression in a variety of contexts so
far.

I In cross-sectional data, for example, results may be spurious if
we ignore an important variable. For example, we may find
that x has a significant impact on y, but when we add a third
variable, z, x becomes insignificant. Thus, the relationship
between x and y is spurious.

I As an example consider the recent news in the media that
says ”going to opera helps people live longer” suggesting a
positive correlation between the two variables. But this may
not be interpreted as a causal statement as there may be
another factor, income level for example, that may be related
to both. People going to opera may be predominantly of
high-income strata and can get high-quality health care that
helps them live longer.
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Spurious Regression

I A similar situation may also arise when we run a regression of
I(0) variables.

I In time series framework, we discussed the possibility of
spurious regression when we have trending variables.

I Ignoring trend may lead to significant relationship when in
fact there is none. This problem is similar to the omitted
variable bias where the omitted variable is just the trend (or
more specifically, the correct specification of trend).

I A similar phenomenon occurs when we have nonstationary
variables in a regression model.

I Even though variables may not have a clear trend, results may
be spurious if they are highly persistent (think of random
walks).
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Spurious Regression

I To be more specific, consider the following independent
random walks:

yt = yt−1 + ε1t,

xt = xt−1 + ε2t

where ε1t and ε2t are two independent white noise processes
with means 0, and variances σ21, and σ22, respectively.

I Note that these two variables do not have a trending mean.
Consider the regression of yt on xt

yt = β0 + β1xt + ut

I In this regression, because yt on xt are independent by
construction, we expect that in the sample regression function

ŷt = β̂0 + β̂1xt

plim(β̂1) = 0.

Spurious Regression

ŷt = β̂0 + β̂1xt

I More specifically, consider the usual significance test where
the null and alternative is given by

H0 : β1 = 0, H1 : β1 6= 0

using α = 0.05 significance level.

I We expect that the t statistic on β̂1 will be significant (i.e.
reject the null hypothesis) 5% of the time and insignificant
95% of the time.

I Granger and Newbold (1974) showed that t statistic is
statistically significant a large percentage of the time, much
larger than the nominal significance level (that is α).

I They called this the spurious regression problem

A simulation of two independent random walks
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A simulation of two independent random walks
Running the regression of y on x we get the following R output

> summary( lm(y~x) )

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.5538 1.0926 5.083 6.07e-06 ***

x 1.3232 0.1602 8.261 8.91e-11 ***

--------

Residual standard error: 3.138 on 48 degrees of freedom

Multiple R-squared: 0.5871,Adjusted R-squared: 0.5785

F-statistic: 68.24 on 1 and 48 DF, p-value: 8.913e-11

The coefficient on x is statistically significant although x and y are
sampled independently. The output above is obtained from a
single simulation. We can repeat the same procedure a large
number of times and inspect the behavior of the t-test. This is
what we will do next.



Simulating the Spurious Regression Problem

ŷt = β̂0 + β̂1xt

1. Generate two independent random walks of size n = 50 and
run the regression of yt on xt.

2. Compute the t-statistic on β̂1 and R2, and save them.

3. Repeat this 10000 times and save t ratios and R2s

4. Compute the fraction of samples in which t ratio leads to the
rejection of the null H0 : β1 = 0

Summary of Results:

I Running the experiment we see that the null is rejected
approximately 66% of the time, instead of 5%

I The t statistic does not follow the usual t distribution.

I R2 tends to be arbitrarily large.

Actual Distribution of the t Statistic

0.0

0.1

0.2

0.3

0.4

−30 −20 −10 0 10 20 30

de
ns

ity

t−ratio
tdist(dof=48)

Spurious Regression Problem

I Why do we find significant t statistics more often than implied
by the 5% significance level?

I The reason is that under the null hypothesis H0 : β1 = 0 we
have

yt = β0 + ut

I Because yt follows a random walk process, ut also follows a
random walk process. This implies the Gauss-Markov
assumptions do not hold.

I The t ratio does not follow the t distribution even
asymptotically. This means that the usual decision rule is
invalid. As n→∞, t statistic increases to ∞

I Also, R2 does not converge to the population R-squared,
1− σ2u/σ2y . So in practice it can be arbitrarily large.

Distribution of R2 Under Spurious Regression
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Spurious Regression Problem

I The spurious regression problem implies that we should be
careful when we have I(1) variables in our regression model.

I A regression model involving I(1) variables may be
informative, i.e., not spurious, under certain conditions.

I In particular, under what conditions the models including
levels of variables (which are nonstationary) provide us
economically meaningful interpretations?

I We learned that when we have I(1) variables we can use first
differences in our regression because they will be stationary.

I Although one can follow this strategy, differencing leads to
throwing out valuable information regarding the relationship
between the levels of the variables. Thus, always differencing
may limit the type of questions we can answer.

14

Cointegration

I The concept of cointegration was introduced by Engle and
Granger (1987) (They shared the Nobel prize in economics in
2003 for their contributions to time series econometrics)

I When variables in a regression model are all I(1), i.e., their
first differences are stationary, then there may be a meaningful
relationship among I(1) variables if they are cointegrated
(share a common trend).

I To fix ideas, let {yt : t = 1, 2, . . .} and {xt : t = 1, 2, . . .} be
two I(1) variables.

I If there is a nonzero β parameter such that yt − βxt is
stationary then we say the they are cointegrated. In other
words,

yt − βxt ∼ I(0), β 6= 0

I β is called the cointegration parameter.
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Cointegration

yt − βxt ∼ I(0), β 6= 0

I It is possible to write xt − (1/β)yt which is also I(0).

I This implies that the linear combination of yt and xt is not
unique.

I To prevent this, we fix the parameter on yt to unity so that
cointegration relationship is unique. Note that the parameter
vector is (1, − β)>

I If I(1) variables are related in such a way that the regression
reflects long-run relationship, in other words, if they are
cointegrated, we can be sure that we do not have spurious
regression.

16

Cointegration

yt − βxt ∼ I(0), β 6= 0

I The cointegration relationship can be interpreted as reflecting
a long run equilibrium relationship.

I Cointegrated variables tend to move together

I In the short run, there will be deviations from the economic
equilibrium relationship but they will be temporary and
short-lived and equilibrium relationship will be attained at a
certain speed.

I Examples: The Law of One Price (LOP), Purchasing Power
Parity (PPP)
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Engle-Granger Cointegration Test

I How do we know if two series are cointegrated?

I Engle-Granger suggested a simple regression-based test for
this

I Both yt and xt must be I(1) variables. This can be checked
by ADF test before the Engle-Granger cointegration test.

I In the first step we apply OLS to estimate the following model

ŷt = α̂+ β̂xt

I If they are cointegrated then the residual ût = yt − α̂− β̂xt
must be I(0).

I Thus, in the second step, we apply ADF test on the residual
to see if it is stationary.
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Engle-Granger Cointegration Test

I The null hypothesis states that

H0 : ut is nonstationary (NO COINTEGRATION)

against the alternative

H1 : ut is stationary (COINTEGRATION)

I Note that under the null hypothesis we have a spurious
regression.

I If we reject H0, we say that yt and xt are cointegrated.
Otherwise, we have spurious regression. In that case, we
should take the first differences of variables.

Distribution of the Engle-Granger Cointegration Test

I Can we use the usual ADF critical values in our decision?

I The answer is NO. The fact that we first estimated the
parameter vector and then apply the unit root test
complicates the asymptotic distribution.

I It can be approximated using simulation. Critical values
depend on whether the model has a trend or not as shown in
the following tables.

ŷt = α̂+ β̂xt

Note that these critical values are larger in absolute value than
their ADF counterparts. The decision rule is the same as ADF’s.

Distribution of the Engle-Granger Cointegration Test

I When the cointegration relationship includes a time trend we
have the following relationship in the first step:

ŷt = α̂+ η̂ t+ β̂xt

I In this case, the appropriate table of critical values are given
in the table below.
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Cointegration Example: Fertility Equation

I Consider the following static regression

gfrt = α+ γt+ βpet + ut

gfr: gross fertility rate, pe: personal tax exemption

I We have seen this model in our previous classes. Now the
question is are they cointegrated? Or, to put it differently, is
the relationship spurious or genuine?

I Running the ADF tests we see that both gfrt and pet are
nonstationary, i.e., I(1) variables (see the R Lab notes)

I Because the regression above involves I(1) variables there may
be a potentially spurious relationship.

I We can apply the Engle-Granger cointegration test to sort this
out.

Gross Fertility Rate (GFR) and Personal Exemptions (PE)
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Cointegration Example: Fertility Equation

I Running the regression using OLS we obtain the following
results

gfrt = 109.9− 0.91t+ 0.19pet + ût

I The Engle-Granger (EG) cointegration test statistic is simply
the ADF unit root test statistic for the residuals. The ADF
test regression is

∆̂ût =− 0.18− 0.12ût−1 + 0.24∆ût−1

(0.671) (.049) (.117)

EG =
−0.12

0.049
= −2.43

I From Table 18.5 we see that the 10% critical value is −3.50.
Because EG is larger than the critical value we fail to reject
the null hypothesis. There is no cointegration.

Plot of residuals from the regression of gfr on pe
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Cointegration Example: Fertility Equation

I The EG test suggests that the gross fertility rate and personal
tax exemptions are not cointegrated.

I This implies that the static OLS regression in levels suffers
from the spurious regression problem. Thus, the results
cannot be trusted.

I In such cases, we can always estimate a model after taking
the first differences of variables. Because each variable is I(1),
their first differences will be I(0).

I However, the new model must be interpreted accordingly (in
terms of changes or growth rates).

I For example, we can estimate an FDL(2) model in first
differences (see ch.11 for details):

∆̂gfrt = −0.964
(0.468)

− 0.036
(0.027)

∆pet − 0.014
(0.028)

∆pet−1 + 0.110
(0.027)

∆pet−2

n = 69 R2 = 0.233

Example: Are 3-month and 6-month interest rates
cointegrated?

I r6t annualized interest rate for six-month T-bills (at the end
of quarter t)

I r3t annualized interest rate for three-month T-bills. (These
are also known as ”bond equivalent yields”)

I Both r6t and r3t are I(1) variables (according to ADF tests)

I Let sprt = r6t − r3t be the spread between the two rates.

I Because of the simple arbitrage relationship, sprt will not
wander away from its mean value. In other words it will be an
I(0) variable.

I If sprt continues to grow then investors would shift away from
three-month and toward six-month T-bills. The price of
six-month T-bills will go up. But because interest rates are
inversely related to price, this would lower r6 and increase r3,
until the spread is reduced.

Example: Are 3-month and 6-month interest rates
cointegrated?

I The arbitrage argument implies that r6t and r3t will be
cointegrated in the long run.

I The relationship can be written as

r6t = α+ β r3t + ut

I Economic theory suggests that they are cointegrated (ut is
I(0)) with β = 1

Plots of r6t and r3t
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Plot of spread sprt = r6t − r3t

−0.5

0.0

0.5

1.0

1.5

1950 1955 1960 1965 1970 1975 1980
Time

sp
r

Are they cointegrated?
I The regression of r6t on r3t produces the following R output

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.135374 0.054867 2.467 0.015

r3 1.025899 0.007709 133.081 <2e-16

in equation form

r̂6t = 0.135 + 1.03r3t

I The coefficient on r3t is very close to unity, suggesting a
one-to-one relationship as expected.

I Applying the EG test we have

∆̂ût =− 0.004− 0.632ût−1 − 0.146∆ût−1

(0.023) (.112) (.091)

EG =
−0.632

0.112
= −5.64

This is less than the 1% critical value from Table 18.4, thus
we reject the null hypothesis. The two series are cointegrated.
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Error Correction Model (ECM)

I Let’s assume that yt and xt are I(1) but they are not
cointegrated.

I In that case, we may estimate a dynamic model in first
differences. For example,

∆yt = α0 + α1∆yt−1 + γ0∆xt + γ1∆xt−1 + ut

where ut is mean zero given all right hand side variables.

I This is an example of autoregressive distributed lag model of
order 1 in first differences.

I Because all variables are I(0), OLS estimation poses no
problems.

I On the other hand, if yt and xt are cointegrated, we can
estimate richer dynamic models. In particular, we can
augment the FDL by deviations (errors) from the long run
equilibrium relationship.
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Error Correction Model (ECM)

I Now assume that yt and xt are I(1) and they are cointegrated.
I Furthermore, assume that the cointegration relationship is

given by
st = yt − βxt ∼ I(0)

where st is stationary by definition.
I Now we can add the first lag of st into our dynamic model:

∆yt = α0 + α1∆yt−1 + γ0∆xt + γ1∆xt−1 + δst−1 + ut

= α0 + α1∆yt−1 + γ0∆xt + γ1∆xt−1 + δ (yt−1 − βxt−1) + ut

I This model is called ECM. The term δ (yt−1 − βxt−1) is
called the error correction term.

I The EC parameter, δ < 0, is also known as the speed of
adjustment parameter.

I In some EC model, the contemporaneous variables (∆xt) may
be excluded (in forecasting models, for example).
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Error Correction Model (ECM)

I For simplicity, assume that there are no lagged terms:

∆yt = α0 + γ0∆xt + δ (yt−1 − βxt−1) + ut

where δ < 0

I The novelty of ECM is that the EC parameter δ governs how
yt responds to deviations from the long run equilibrium
relationship. Some people prefer using Equilibrium Correction
instead of Error Correction.

I If yt−1 is larger than βxt−1, that is st−1 > 0, then because
δ < 0, yt will be forced to return back to the equilibrium.
Note that ∆yt < 0 in that case.

I In the opposite case where yt−1 < βxt−1, or st−1 < 0, error
correction occurs in the opposite direction. This will induce a
positive change in yt, again, pushing it back to the
equilibrium.
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Engle-Granger Two-Step Procedure

I In practice, the cointegration parameter β is rarely known.

I In that case, we can first estimate it in the first step, then
obtain the cointegration vector and use it in the second step
to estimate the ECM.

I This is known as the Engle-Granger Two-Step Procedure

I The general model now can be written as

∆yt = α0+δ
(
yt−1 − β̂xt−1

)
+

p∑
j=1

αj∆yt−j+

q∑
j=0

γj∆xt−j+ut

I The lag lengths p and q can be chosen using data-dependent
information criteria (such as AIC or BIC)

Example: Tomato prices in Antalya and Istanbul

I Law of One Price (LOP) states that due to spatial arbitrage,
prices of a homogenous product in two different locations will
be the same after accounting for the transaction costs.

I LOP is only valid if there are no restrictions on free trade,
markets are perfectly competitive (no market power so that
prices are freely determined)

I As stated, LOP implies that prices at two locations will not
diverge from each other.

I Although there may be deviations from the long run
equilibrium, market participants will recognize the arbitrage
opportunity and will drive prices to equilibrium.

I In this application, we will examine a (more or less)
homogenous agricultural product (tomato) and test if the
prices in two different locations are cointegrated.

Example: Tomato prices in Antalya and Istanbul

I As a representative of the producer region we will use Antalya
prices.

I Antalya region is one of the biggest producers of tomato in
Turkey. The region supplies tomatoes and many other fresh
agricultural products to several locations.

I Producer prices for tomato in Antalya and consumer prices for
Istanbul were obtained from Turkish Statistical Institute. The
data set is monthly and covers 2011.01-2019.12

I As can be inspected in the next plot, Istanbul prices are
always above Antalya prices. The difference reflects various
transaction costs including transport cost, insurance, profits
and commissions of intermediaries, taxes and fees, etc.



Tomato prices in Antalya and Istanbul
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Cointegration Equation

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.303658 0.031171 9.742 2.33e-16 ***

trend 0.070355 0.006603 10.656 < 2e-16 ***

lantalya 0.787020 0.062464 12.600 < 2e-16 ***

I The regression of log(istanbul) on log(antalya) produced the
R output above (together with time trend).

̂log(istanbul)t = 0.304 + 0.787 log(antalya)t + 0.070t

I According to these results the elasticity of Istanbul tomato
prices with respect to Antalya producer prices is about 0.79%.
If Antalya prices increases 10% then Istanbul prices are
predicted to increase by 7.87%

I This interpretation is only valid if the regression above is not
spurious. In other words, if the two price series are
cointegrated.

Plot of the residuals
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Tomato Prices: EG Test

I The Engle-Granger cointegration test statistic is EG = −5.75
which is smaller than the critical value at 1% level.

I Thus, Istanbul and Antalya prices are cointegrated and the
regression in levels reflect a long run equilibrium relationship.

I The ECM estimates are

̂∆ log(istanbul)t =0.006− 0.52ŝt−1 + 0.08∆ log(antalya)t−1

(0.020) (.138) (.087)

where ŝt−1 =
log(istanbul)t−1−0.304−0.787 log(antalya)t−1−0.070(t−1)

I The error correction parameter (speed of adjustment) is
−0.52 and statistically significant.

I If istanbul price is above the equilibrium relationship by 1
percentage point then istanbul price falls by 0.52 percentage
point in the next month. About half of the deviation from the
equilibrium relationship will be corrected within a month.



Generalization of Cointegration to Multiple Variables

Let Yt =
[
y1t y2t · · · ykt

]>
be k × 1 vector of I(1)

variables. If there exists k × 1 nonzero vector
β =

[
β1 β2 . . . βk

]>
such that

β>Yt = β1y1t + β2y2t + . . .+ βkykt ∼ I(0)

then these variables are cointegrated. Normalized with respect to
y1t it can be written as:

y1t = β2y2t + β3y3t + . . .+ βkykt + ut

Defining the cointegrating vector as β =
[
1 −β2 . . . −βk

]>
the long run relationship can be written as:

β>Yt = y1t − β2y2t − β3y3t − . . .− βkykt = ut ∼ I(0)

There may be 0 < r < k linearly independent cointegration vectors.
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Cointegration with Multiple Variables

I If the variables are cointegrated then their short run behavior
can be modeled using a Vector Error Correction model
(VEC)

I A VEC is a special case of Vector Autoregression (VAR)
models.

I In multiple time series contexts, there are other ways testing
and estimating cointegration relationships.

I One of the popular methods is Johansen’s approach in which
the variables are modeled using a VAR in levels

I The Johansen’s cointegration tests are developed within the
Maximum Likelihood framework.

I For technical details of these tests see more advanced texts
such as Hamilton (1994) and Lutkepohl (2005).


