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Highly Persistent Time Series

> So far we learned that we need weakly dependent variables
for OLS to be consistent and the standard inference
procedures to be valid.

> On the other hand, it is highly likely that many economic time
series cannot be characterized by weak dependence, but
strong dependence.

» Highly persistent or strongly dependent time series display
high correlation with its past values.

» What happens if we run a regression involving highly
persistent variables?
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Highly Persistent Time Series

» We also learned that that many economic and financial time
series are better characterized by the AR(1) model with p = 1.

y=a+py—1+e, t=12...

As p approaches 1, the more the time series gets persistent.
» When p =1, AR(1) process is called Random Walk.
» A random walk is a special case of what is known as a unit

root process. The name comes from the fact that p = 1 in the
AR(1) model.

> If a time series follows a random walk process then the only
way to make it stationary is to take the first difference.
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Random Walk
Four realizations of random walk process with yo = 0, T" = 1000
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Random Walk
Four realizations of random walk process with yo = 0, T" = 100
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Random Walk

» From a policy perspective, it is often important to know
whether an economic time series is highly persistent or not.
Consider the case of gross domestic product in Turkey. If
GDP is asymptotically uncorrelated, then the level of GDP in
the coming year is at best weakly related to what GDP was,
say, thirty years ago. This means a policy that affected GDP
long ago has very little lasting impact.

» GDP is strongly dependent, then next year's GDP can be
highly correlated with the GDP from many years ago. Then,
we should recognize that a policy which causes a discrete
change in GDP can have persisting and long-lasting effects.

» Effect of shocks are very persistent and lasting in random
walk process.
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Random Walk with Drift

> It is often the case that a highly persistent series also contains
a clear trend.

» One model that leads to this behavior is called the random
walk with drift.

Y=o+ y—1+e,t=12..

» where {e; : t = 1,2,...} and yo satisfy the same properties as
in the random walk model. What is new is the parameter «,
which is called the drift term. Essentially, to generate y;, the
constant « is added along with the random noise et to the
previous value ;1

» We can show that the expected value of y; follows a linear
time trend by using repeated substitution

y=oat+e +e—1+...4+e1+ 1y
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Random Walk with Drift

» Therefore, if yo =0, E(y;) = at : the expected value of y; is
growing over time if & > 0 and shrinking over time if a < 0.
» By reasoning as we did in the pure random walk case, we can
show that
E(yisnlyt) = ah + y

> So the best prediction of y;p at time t is y; plus the drift ah.

The variance of g is the same as it was in the pure random
walk case.

Random Walk with Drift
A single realization of random walk with drift process with yg = 0,
T =100

100
1

80

Random Walk with Drift

Simulated Realizations of Random Walk with Drift, o = 0.5

Y= ¢o + Y1+ €, €~ N(0,1)
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Difference-stationary Process (DSP)

» If a nonstationary process can be made stationary after taking
differences then it is called a difference-stationary process.

» A nonstationary process with a stationary first difference is
called integrated of order one and denoted (1)

> Similarly, if the second difference is stationary then it is called
integrated of order two, I(2).

» Clearly, RW and RWD process are I(1). Their first differences
are I(0), stationary.

Ayr =a+e ~ I(0)

e ~ iid(0, o)




Trend-stationary Process (TSP)

» A TSP fluctuates around a deterministic trend and it has a
tendency to revert back to that trend over time.

> A simple example is
zy = Bo+ Pit +e, €~ wn(0,0?)
» With expected value and variance
pe = E(ze) = Bo + Bt

Yot = Var(e;) = o2

Trend-stationary Process (TSP)

> Its population mean is time-dependent, thus, nonstationary.
But when we remove (or detrend) it we obtain a stationary
process:

xy — Pit = Bo + e ~ 1(0)

» The following graph displays 100 realizations of a DSP and
TSP

» Notice that both series display positive trend. But the trend
in DSP (which is random walk with drift) is stochastic

» Both DSP and TSP have similar sample autocorrelations.
Hence, inspecting correlogram (ACF) alone may not be
sufficient to decide whether a series is DSP or TSP. We need
to use specialized tests for that purpose.

DSP vs. TSP
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Trend-stationary Process

» Correct transformation of a nonstationary time series is
essential

> Detrending a DSP or differencing a TSP may lead to wrong
inference

» For instance detrending a random walk with drift we obtain:

t

y—at=7) e~ I1)

j=1

which is not stationary.

» Similarly, taking the first difference of a deterministic linear
trend process results in a non-invertible MA(1) process:

Axy =ap — 241 = 1+ € — €1
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Regression Analysis with Nonstationary Data

» Classical regression analysis using time series data requires all
variables to be 1(0) and weakly dependent for the asymptotic
properties of OLS estimators to be valid (consistency and
asymptotic normality)

» Using I(1) variables in a regression model may result in
spurious results. Adding a linear trend to the model, or
detrending variables may not work if they are I(1)

» If all variables are I(1) then one may check whether they share
a long-run trend, in other words, if they are cointegrated.

» If they are all I(1) but there exists a unique linear combination
is 1(0) then the appropriate model for the short-run behavior is
an error correction model (ECM).

> If they are not cointegrated then the regression model needs
to be re-specified using the first differences
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Unit root tests

> In practice it may be important to decide whether a time
series is DSP or TSP

» Unit root tests may be used for that purpose

» Some of widely used tests: ADF test, PP test, DF-GLS test,
ERS Point-Optimal test, NP test, KPSS test

» Existence of large structural breaks may result in high
persistence. There are many unit root tests that can handle
structural breaks: Perron test, Zivot-Andrews test, Flexible
Fourier ADF tests

» In this lecture, we will only consider Dickey-Fuller (DF) tests
and its extension (ADF).
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Deciding Whether a Time Series Is 1(1) or 1(0)

» How do we know if a time series contains a unit root, i.e., I(1)
process or integrated of order 17

» The natural starting point is to consider the following AR(1)
model
y=a+py—1+e, t=12,...
given an observed initial value yp.

» The error term is assumed to follow

E[et’yt—17yt—27 e 7y0] =0

The error term e; is assumed to be iid with zero mean and
independent of the past information.
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Unit Roots

Yt = @+ pYi—1 + €, t:1527

v

The process {y;} will have a unit root if and only if p =1

> If @ =0 and p =1 we have a random walk process

v

If « # 0 and p =1 we have a random walk with drift process

v

In both cases e; must follow the process mentioned in the
previous slide
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Unit Root Null Hypothesis

yw=a+py—1t+e, t=12...

» It is common to leave « unspecified and focus on the AR(1)
parameter. The null hypothesis of unit root can be stated as

Hg P = 1
> Against the one-sided alternative
Hy: p<l1

> Note that the other alternative Hy : p > 1 is not considered in
practice because in that case the variable will be explosive -
very unrealistic for economic time series.

» Also it is almost always makes sense to expect a positive
AR(1) parameter, 0 < p < 1. So a negative unit root is not
considered.
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Unit Root Null Hypothesis
yw=a+py_1+e, t=12...

» When p < 1 then we have a stable AR(1) process for which
Corr(yr, ye—n) = p" — 0

ash—0
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Dickey-Fuller Test
» Dickey-Fuller unit root tests (Dickey-Fuller (1979) and

Dickey-Fuller (1981) ) use the standard regression approach
and compute the t statistic.

» Subtracting y;—1 from both sides of y; = a + py;—1 + e; and
rearranging we get

Ay = o+ Oyi—1 + ey, (1)

where Ay =y — -1 and § = p— 1. The null and
alternative hypotheses are

Hy:0=0 (p=1),

Hy:0<0 (p<1).

» Notice that the alternative hypothesis is still one-sided, we
only consider the left tail.
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Dickey-Fuller Test
» The DF test statistic is just the t-ratio:
0

DF = —.
s.e.(0)

» DF does not follow the usual t distribution under the null.

» The reason is that, under the null hypothesis the usual
Central Limit Theorem (CLT) does not apply.

» So DF does not follow approximate normal distribution even
in large sample sizes. lts distribution is nonstandard.

» Dickey and Fuller (1979) has computed the asymptotic
distribution and critical values

» The asymptotic distribution of DF test statistic does not have
a closed-form expression. Critical values need to be
approximated using simulations.




Dickey-Fuller vs. Standard Normal Distribution

Dickey—Fuller
[ | Std.Normal

-2.86 -1.65 0 1.65
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Asymptotic distribution of DF test statistic

» Previous graph shows an approximation of DF distribution

» DF distribution is skewed to left as compared to standard
normal distribution. This implies that its critical values are
smaller than the standard normal critical values.

» Critical values for the case of constant but no trend:
Critical Values of DF Test: Constant only, No Trend
Al %5 %10
-3.43 -2.86 -2.57

Critical Values of Standard Normal Distribution
%1 %5 %10
-2.33 -1.645 -1.28
Note that the critical values of DF statistic is larger in
absolute value.

Dickey-Fuller 1% Critical Value (No Trend)

i
-3.43 0

Dickey-Fuller 5% Critical Value (No Trend)

! i
i !
-3.43 -2.86 0




Dickey-Fuller Critical Values (No Trend)

L A0%ev=-257

i i i
-3.43 -2.86-2.57 0
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Dickey-Fuller Test

» DF distribution depends on the deterministic components,
constant term, trend, etc.

> In practice the following specifications may be used:
no constant + no trend : Ay; = Oy, 1 + et

constant + no trend : Ay; = a+ 0y, 1 + €
constant + trend : Ay = a+ St + 0yi—1 + e

where 6 = p — 1 in all cases.

» Also, notice that we assume e; ~ #id(0, 0?). If the residuals
are serially correlated then the tests are invalid.
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Dickey-Fuller Test

Although the theory behind the DF unit root test is highly
complicated, its practical usage is very easy.

Because the test is conducted on the left tail, the critical
values are negative.

If the computed DF statistic is less than the appropriate
critical value at predetermined significance level, then the null
of unit root is rejected.

Asymptotic distribution, hence the critical values, depend on
the deterministic terms (constant, trend, etc.) included in the
AR(1) regression.

In practice, we generally consider two cases: constant only
(no time trend), and constant + trend.

Example: US interest rates (data=intqrt)

3-month treasury bill rates

1960 1965 1970 1975 1980 1985 1000
Time




Example: interest rates
Run the DF test regression without the trend:
Ar3, =0.625 — 0.091 r3,_
(0.261) (.037)
n =123, R%=10.048

From 6 = p — 1 we see that p = 0.909 which is less than 1. But is
it statistically different from 17 Test statistic is simply the t-ratio:

DF — <9A :—0.091:_2'46
se() 0.037
From the critical value table below, we see that ¢ = —2.57 at 10%

level. Because DF > ¢, we fail to reject Hj at 10% level. Thus,
r3 may be characterized as a nonsta-

tionary process. If its first difference is stationary then 73 will be I(1).

TABLE 18.2 Asymptotic Critical Values for Unit Root f Test: No Time Trend
Significance level 1% 2.5% 5% 10%
Critical value —343 —312 —2.86 —2.57

First difference of interest rates
Is the first difference, dr3; = r3; — r3;_1, stationary?

of 3

First difference

Is the first difference stationary?

Let dr3; be the first difference of r3;, i.e., dr3; = r3; — r3;_1.
Running the DF test regression:

Adr3; = 0dr3;_1 + e,
we obtain .
Adr3; =0.045 — 1.116 dr3;—
(0.114) (.091)
n =122, R%*=0.56
Unit root test statistic:

0 ~1.11

- ~12.3
se(d)  0.091

Because DF < —3.43 we reject the null hypothesis at 1% level.
The first difference of interest rate, dr3;, is stationary. Thus,
3-month T-bill rate, r3;, is an I(1) process.
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Constant + Trend

» If a time series has a clear trend, the deterministic
components in the DF test regression need to be modified

> In this case the appropriate specification is the one that
includes a trend

y=a+pt+py1+e, t=1,2,...
or, equivalently,
Ay = a+ Bt + Oyi—1 + ey,

where 6 = p — 1.
» The null and alternative hypotheses are

Hy:0=0 (p=1), Nonstationary
Hy:0<0 (p<1), Trend-stationary

» Note that under the alternative y; follows a trend-stationary
process.




Constant + Trend

Ay = a+ Bt + Oyi—1 + ey,

» The DF test statistic is the same as before. It's just the
t-statistic on the lagged dependent variable.

» The distribution of DF statistic depends on the deterministic
specification as we mentioned before.

» The critical values are different. Because the distribution
shifts to the left, they are smaller than the case without the
trend (see the next graph).

» Decision rule is the same as before. If the DF test statistic is
less than the critical value, we reject Hy and conclude that the
process may be characterized as a trend-stationary process.

> If the DF is larger than the critical value then we do not reject
Hj suggesting that the process is nonstationary. In that case,
the proper transformation to achieve stationarity will be
differencing.

DF 5% CV (Constant + Trend)

constant
|| constant+trend

0.4

density

0.0

-3.41-2.86

Constant + Trend

» When we include a trend in the DF test regression, it becomes
harder to reject the null hypothesis. What's the intuition
behind this behavior?

» Remember that when we include a time trend in a regression,
it's like detrending the series. So when we detrend a unit root
process, it tends to look more like an 1(0) process

» Thus, a larger critical value (in absolute value) is required to
reject the null of nonstationarity.

> As an example, to reject Hy, we need a DF test statistic
(which is just a t-ratio on ) smaller than —3.41 as compared
with —2.86 without a time trend.

Example: interest rates revisited
Re-run the DF test regression with both constant and trend:

Ar3; = 0.53+ 0.03t— 0.15 r3;_;
(0.264) (.0165) (0.048)
n =123, R%*=0.058

Test statistic is simply the t-ratio:

DF — 9A _ —0.148561 _ 307
se(f) 0.0484
From the critical value table below, we see that ¢ = —3.41 at 5%

level. Because DF > ¢, we fail to reject Hj at
5% level. Thus, r3 may be characterized as a nonstationary process.

TABLE 18.3 Asymptotic Critical Values for Unit Root  Test: Linear Time Trend
Significance level 1% 2.5% 5% 10%

Critical value —3.96 —3.66 -3H -3.12




Serial Correlation in DF test regression

>

In both constant and constant-trend cases, one of the
important assumptions underlying the DF test was the error
term e; must be serially uncorrelated. The error term is
assumed to follow a white noise process with mean 0 and a
constant, nonzero, finite variance.

For many economic and financial time series, the assumption
is very likely to fail in practice.

Note that if there is serial correlation then the DF test results
will be invalid. Thus the inference will be misleading.

The solution is to correct for the serial correlation by adding
appropriate number of lags of the dependent variable (say, p
lags).

That is, we just need to augment the test regression by
adding Ayi—1, Ay, ..., Ay, as explanatory variables.

Augmented Dickey-Fuller (ADF) Test

>

Adding p lags of the dependent variable and then computing
the DF test statistic as usual is known as the Augmented
Dickey-Fuller (ADF) test.

For example, suppose that when we add the first lag the
residuals are serially uncorrelated in the following test
regression:

Ays = a+ Bt + O0ys—1 + 1 Ayi—1 + e,
ADF test statistic is defined as the same as DF:

0

What's the distribution of the ADF test statistic?

It is exactly the same as the DF test; adding lagged terms
does not alter the critical values. So the decision rule is the
same as before (but pay attention to the deterministic part!).

Augmented Dickey-Fuller (ADF) Test

Consider the following test regression:

Ay = a+ 0yi—1 + 11Ay—1 + ey,

When the null hypothesis is true Hy : # = 0 and |y1| < 1 then
the first difference follows a stable AR(1) process, i.e.,

Ay~ AR(1)

It can be shown that under the alternative hypothesis

H,:0 <0, y; follows a stable AR(2) process.

More generally, to compute the ADF test statistic we first run
the regression of
Ay on yi—1, Ayr—1, Ayra, ..., Ay

And then compute the t-statistic on the coefficient of ;1

Augmented Dickey-Fuller (ADF) Test

P
Ayp=a+0y1 + Z ViAY—; + e,
=1

Adding p lags of the dependent variable Ay is intended to
obtain residuals that are serially uncorrelated.

In practice, adding appropriate number of lags is important.
If too few lags are included the test results will be misleading
because the the critical values will not be valid. In this case,
we may incorrectly decide that the series is stationary.

If too many lags are included the variance of the test
regression will increase and the power of the test suffers.




Augmented Dickey-Fuller (ADF) Test

p
Ayr =+ 0y 1+ Y Ay + e,
i=1

» There are several methods to choose p. For example we may
use the Akaike Information Criterion (AIC) to select p. Over a
pre-selected number of maximum lags, the one with the
minimum AIC is preferred.

» Another method is to use sequential t tests on the lagged
terms. Starting with the maximum number of lags, we
sequentially apply t-test and include the highest lag that is
significant at, say, 10% level.

» The frequency of the time series is also important in selecting
the number of lags.

» For annual data, usually 1 or 2 lags suffice.
» For monthly data we may try 12 lags.

> Similarly, for quarterly data considering 4 lags is a good idea.

Example: Is inflation nonstationary?
According to AIC, p = 1. The ADF test regression is

Ainf, = 1.36 — 0.31 inf,_; + 0.138Ainf,_,
(0.517) (.103)  (0.126)
n =47, R?*=0.172

Test statistic is simply the t-ratio on inf;_1:

From the critical value table (see previous slides), we see that

¢ = —2.86 at 5% level. Because ADF < c, we reject Hy at 5%
level. Thus, there is a strong evidence against a unit root process
for inflation.

Question: What is the estimate of p?

Is Turkish Real GDP Nonstationary?

Turkish Real GDP

2000 2005 2010 2015 2020

Is Turkish Real GDP Nonstationary?

To answer this question we compute the ADF test. We take
natural log of the real GDP. We use AIC to select the lag order.
Optimal lag order is chosen as 1. Also, because there is a clear
positive trend in the series, we add a trend term in the test
regression:

—

Alog(GDP), = 4.18 —0.162 log(GDP); 1 + 0.008t + 0.20Alog(GDP), _,
(1.279) (0.05) (0.0012) (0.104)
n =85, R?=0.14

The ADF test statistic is ADF = —3.24. Critical value at 5% is
—3.41. Because ADF is above the critical value, we fail to reject
the null hypothesis.

Thus, Real GDP series may be characterized as a nonstationary

process. This implies that shocks to GDP are permanent.




Is the Growth Rate of Turkish Real GDP Nonstationary?

Growth Rate of Turkish Real GDP

ADF = —5.95. What's your decision?




