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Heteroskedasticity in Time Series Regressions

I We discussed testing and correcting for heteroskedasticity for
cross-sectional applications.

I Heteroskedasticity can also occur in time series regression
models, and the presence of heteroskedasticity, while not
causing bias or inconsistency, does invalidate the usual
standard errors, t statistics, and F statistics. This is just as in
the cross-sectional case.

I In time series regression applications, heteroskedasticity often
receives little, if any, attention compared to the problem of
serially correlated errors.

I But it may be useful to briefly cover some of the issues that
arise in applying tests and corrections for heteroskedasticity in
time series regressions.
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Heteroskedasticity in Time Series Regressions

I Suppose that Assumptions TS.1’-TS.2’-TS.3’ and TS.5’ do
hold, but TS.4’ is not valid.

I TS.2’ rules out misspecifications such as omitted variables and
certain kinds of measurement error.

I TS.5’ rules out serial correlation in the errors.

I TS.4’ is not valid. Homoskedasticity assumption does not
hold in this case.
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Heteroskedasticity in Time Series Regressions

I As in the cross-sectional data analysis, OLS is still unbiased
and consistent if there is heteroskedasticity in the error term
(assuming that the other assumptions hold).

I The usual OLS standard errors, t statistics, and F statistics
can be adjusted to allow for the presence of heteroskedasticity
of unknown form using heteroskedasticty-robust standard
errors.

I If the only assumption violated is the homoskedasticity
assumption, valid inference is easily obtained in most
econometric packages.



5

Breusch-Pagan Test: Heteroskedasticity in Time Series
Regressions

I The heteroskedasticty tests we covered in Chapter 8 can be
applied directly to time series regression.

I Breusch-Pagan test:
I The first step of this test is to estimate the model using OLS

and obtain the residuals.
I Then, the test(auxiliary) regression is estimated. We simply

regress the squared residuals on the explanatory variables in
the original model.

I Finally, we test the overall significance of the test regression
via F test or LM test.

I If the calculated test statistic is significant, the null hypothesis
of homoskedasticity is rejected in favor of the alternative
hypothesis of heteroskedasticty.

I If the errors of the test regression is serially correlated,
Breusch-Pagan test is not valid.
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White Test: Heteroskedasticity in Time Series Regressions

I We can also use White test for the same purpose.

I The first step of this test is to estimate the model using OLS
and obtain the fitted values of the model.

I Then, the test(auxiliary) regression is estimated. We simply
regress the squared residuals on the fitted values and squared
fitted values of the original model.

I Finally, we test the overall significance of the test regression
via F test or LM test.

I If the calculated test statistic is significant, the null hypothesis
of homoskedasticity is rejected in favor of the alternative
hypothesis of heteroskedasticity If the errors of the test
regression is serially correlated, White test is not valid.
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Heteroskedasticity in Time Series Regressions

I If heteroskedasticity is found in the ut (and the ut are not
serially correlated), then the heteroskedasticity-robust test
statistics can be used. An alternative is to use weighted least
squares (WLS), as in the case of cross sectional regression.

I In recent years, economists have become interested in
dynamic forms of heteroskedasticity.

I Especially, the volatility in financial time series through time
has an autoregressive form.
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Example: Heteroskedasticity in Time Series Regression,
EMH

returnt = β0 + β1returnt−1 + ut

I tβ1 = 1.55. it seems that there is no evidence against EMH !

I The test regression of Breusch-Pagan test:

û2t = 4.66
(0.043)

− 1.104
(0.201)

returnt−1 + residualt

n = 689 R2 = 0.042

I treturnt−1 = −5.5. Strong evidence in favor of
heteroskedasticity.



Plot of Residuals
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Plot of Squared Residuals
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Example: Heteroskedasticity in Time Series Regression,
EMH

û2t = 4.66
(0.043)

− 1.104
(0.201)

returnt−1 + residualt

n = 689 R2 = 0.042

I we have the interesting finding that volatility in stock returns
is lower when the previous return was high, and vice versa.

I Therefore, we have found what is common in many financial
studies: the expected value of stock returns does not depend
on past returns, but the variance of returns does.
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Autoregressive Conditional Heteroskedasticity - ARCH

I Consider a simple static regression model:

yt = β0 + β1zt + ut

I Assume that the following model is valid for error terms:

E(u2t |ut−1, ut−2, ...) = E(u2t |ut−1) = α0 + α1u
2
t−1

u2t = α0 + α1u
2
t−1 + vt ARCH(1) Model

I This model makes sense if α0 > 0, α1 ≥ 0 and α1 < 1.
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Autoregressive Conditional Heteroskedasticity - ARCH

I If Gauss-Markov assumptions hold, OLS estimators are
unbiased and consistent with ARCH errors. The usual
statistical inference procedures are valid.

I If OLS still has desirable properties under ARCH, why should
we care about ARCH type forms of heteroskedasticity in static
and distributed lag models?

I First, it is possible to get consistent (but not unbiased)
estimators that are asymptotically more efficient than the OLS
estimators, e.g. weighted least squares (WLS)

I Second, in the ARCH model, larger magnitude of the error in
the previous time period (u2t−1) was associated with a larger
error variance in the current period. Since variance is often
used to measure volatility, and volatility is a key element in
asset pricing theories, ARCH models have become important
in empirical finance.
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Example: Autoregressive Conditional Heteroskedasticity -
ARCH

I ARCH(1) in stock market returns

û2t = +2.95
(0.44)

+ 0.337
(0.036)

û2t−1 + residualt

n = 688 R2 = 0.114

I The t statistic on û2t−1 is over nine, indicating strong ARCH.
As we discussed earlier, a larger error at time t− 1 implies a
larger variance in stock returns today.

I It is important to see that, while the squared OLS residuals
are autocorrelated, the OLS residuals themselves are not (as is
consistent with the EMH).
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Heteroskedasticity and Serial Correlation in Regression
Models

I Both serial correlation and heteroskedasticity can be present
in time series models.

I A viable option in practice is to model them together and
correct them using a combined weighted least squares
procedure. Consider the following model

yt = β0 + β1xt1 + . . .+ βkxtk + ut

ut =
√
htνt

νt = ρνt−1 + et, |ρ| < 1

where the explanatory variables are independent of et for all t,
and ht is a function of x variables. The process et is serially
uncorrelated and has a constant variance, σ2e .
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Heteroskedasticity and Serial Correlation in Regression
Models

I Under these assumptions, the error term ut is both
heteroskedastic and serially correlated,

Var (ut|xt) = σ2νht

where σ2ν = σ2e/
(
1− ρ2

)
I Because νt = ut/

√
ht follows a stable AR(1) and is

homoskedastic, we can write the transformed model as

yt/
√
ht = β0(1/

√
ht)+β1

(
xt1/

√
ht

)
+. . .+βk

(
xtk/

√
ht

)
+νt

I Because the error term follows an AR(1) process, we can
apply the standard FGLS procedures, such as Prais-Winsten or
Cohcrane-Orcutt.
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Feasible GLS Estimation with AR(1) Serial Correlation and
Heteroskedasticity

1. Estimate the regression model by OLS and save the residuals,
ût

2. Regress log(û2t ) on xt1, xt2, . . . , xtk and obtain the fitted
values, say ĝt

3. Obtain the estimates of ht: ĥt = exp(ĝt)

4. Estimate the transformed equation:

ĥ
−1/2
t yt = ĥ

−1/2
t β0 + β1ĥ

−1/2
t xt1 + . . .+ βkĥ

−1/2
t xtk + errort

by standard Cochrane-Orcutt or Prais-Winsten methods


