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Serial Correlation and Heteroskedasticity in Time Series
Regressions

I In our previous classes, we learned that when the dynamics of
a model is correctly specified, the errors will not be serially
correlated.

I However, static and finite distributed lag models often have
serially correlated errors even if there is no underlying
misspecification of the model.

I Therefore, it is important to know the consequences and
remedies for serial correlation for these useful classes of
models.
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Lecture Plan

I The properties of OLS when the errors contain serial
correlation

I Testing for serial correlation

I Correcting for serial correlation under the assumption of
strictly exogenous explanatory variables x

I Generalized Least Squares, Feasible GLS

I Heteroskedasticity in time series regression (ARCH, GARCH
models) (Part II)
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The properties of OLS with serially correlated errors

I The OLS estimator is unbiased under the first three
Gauss-Markov assumptions for time series regressions (TS.1
through TS.3).

I As long as the explanatory variables are strictly exogenous,
OLS estimators are unbiased, regardless of the degree of serial
correlation in the errors.

I Heteroskedasticity in the errors does not cause bias in OLS
estimators.

I In Chapter 11, we relaxed the strict exogeneity assumption
and showed that, when the data are weakly dependent, OLS
estimators are consistent (although not necessarily unbiased).
This result does not depend on any assumption about serial
correlation in the errors.
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Efficiency and Inference

I Since the Gauss-Markov theorem (Theorem 10.4) requires
both homoskedasticity and serially uncorrelated errors, OLS is
no longer BLUE in the presence of serial correlation.

I So the usual OLS standard errors and test statistics are not
valid, even asymptotically.

I We can see this by computing the variance of the OLS
estimator under the first four Gauss-Markov assumptions and
the AR(1) model for the error terms.

ut = ρut−1 + et, t = 1, 2, ..., n (1)

|ρ| < 1 (2)
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Efficiency and Inference

I et is an uncorrelated random variable with mean zero and
constant variance. (also note the stability condition)

I Consider the variance of the slope estimator of β1 in the
simple regression:

yt = β0 + β1xt + ut

I For simplicity, assume that the sample average of the xt is
zero, x̄ = 0. Then the OLS estimator β̂1 of β1 can be written
as

β̂1 = β1 + SST−1
x

n∑
t=1

xtut (3)

where SSTx =
∑n

t=1 x
2
t . Now, to compute the variance of β̂1

(conditional on X), we must account for the serial correlation
in the ut.
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Variance of the slope estimator

Var(β̂1) = SST−2
x Var

(
n∑
t=1

xtut

)

= SST−2
x

 n∑
t=1

x2tVar(ut) + 2
n−1∑
t=1

n−t∑
j=1

xtxt+jE(utut+j)


=

σ2

SSTx
+ 2

(
σ2

SST 2
x

) n−1∑
t=1

n−t∑
j=1

ρjxtxt+j (4)

where σ2 = Var(ut). Note that we use
E(utut+j) = Cov(ut, ut+j) = ρjσ2.

The first term in the equation (4) σ2/SSTx, is the variance of β̂1
when ρ = 0, which is the familiar OLS variance under the
Gauss-Markov assumptions.
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Efficiency and Inference

I The first term in equation (4) is the standard OLS variance
under Gauss Markov assumptions when ρ = 0.

I If we ignore the serial correlation and estimate the variance in
the usual way, the variance estimator will usually be biased
when (ρ 6= 0 ) because it ignores the second term in equation
(4).

I As we will see through later examples, ρ > 0 is most common
for economic time series. Further, the independent variables in
regression models are often positively correlated over time.

I So the usual OLS variance formula underestimates the true
variance of the OLS estimator.
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Efficiency and Inference

I The standard errors of β̂s in the presence of serial correlation
is invalid.

I Therefore, t statistics are no longer valid for testing single
hypotheses.

I Since a smaller standard error means a larger t statistic
(remember the formula for t test), the usual t statistics will
often be too large when ρ > 0.

I Additionally, the usual F and LM statistics for testing multiple
hypotheses are also invalid.

I To sum up, OLS estimator is inefficient and the usual
statistical inference procedures are invalid.

How to detect serial correlation?
I One way to detect the existence of serial correlation is to

estimate the model by OLS and then plot the residuals
against time.

I If there there is no serial correlation we expect the residuals to
be distributed randomly across time, without any detectible
pattern.

I The following graph illustrates residuals without serial
correlation.

How to detect serial correlation?
Positive Autocorrelation:

Negative Autocorrelation:

Example: Static Phillips Curve
Regression of the inflation rate on the unemployment rate
produces the following residuals:
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Inspection of this graph suggests that positive values are generally
followed by positive values, and vice versa. This indicates that
there may be serial correlation in the residuals. But we need to
conduct formal hypothesis tests to diagnose serial correlation.
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Testing for Serial Correlation (Autocorrelation)

I We first consider the case when the regressors are strictly
exogenous. Recall that this requires the error to be
uncorrelated with the regressors in all time periods.

I So, it rules out models with lagged dependent variables.

ut follows AR(1) and xs are strictly exogenous:

I Although there are many ways in which the error terms can be
serially correlated, the most popular model (and the simplest
to work with) is the AR(1) model in equations (1) and (2).

I We will learn two tests: (1) t test and (2) Durbin-Watson
(DW) test.

I In both tests, we assume that the error term follows an AR(1)
process:

ut = ρut−1 + et, et White Noise(0, σ2e)

where |ρ| < 1
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t test with Strictly Exogenous Regressors

I Under the assumption that the explanatory variables are
strictly exogenous: the expected value of ut, given the entire
history of independent variables, is zero. In addition, we must
assume that:

E(et|ut−1, ut−2, ...) = 0 (5)

V ar(et|ut−1) = V ar(et) = σ2e (6)

I The null hypothesis states that there is no autocorrelation:

H0 : ρ = 0. (7)

I The alternative can be two-sided or one-sided. For economic
time series, H1 : ρ > 0, i.e., positive autocorrelation, generally
makes more sense.

15

t test for AR(1) Serial Correlation with Strictly Exogenous
Regressors

1. Run the OLS regression of yt on xt1, ..., xtk and obtain the
OLS residuals, ût, for all t = 1, 2, ..., n.

2. Run the regression of

ût on ût−1 , t = 2, ..., n (8)

3. Obtain the coefficient ρ̂ on ût−1 and its t statistic, tρ̂.

4. Use tρ̂ to test H0 : ρ = 0 against H0 : ρ 6= 0 in the usual way.
(Actually, since ρ > 0 is often expected a priori, the
alternative can be H0 : ρ > 0).

5. Typically, we conclude that serial correlation is a problem to
be dealt with only if H0 is rejected at the 5 percent level. We
can also use and report the p-value for the test.
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Example: Static Phillips Curve

I For the static Phillips curve (see ch.10), the test regression (in
step 2) yields ρ̂ = 0.573 and t = 4.93, p− value = 0.000
(with 48 observations). See the R output below.

I This is very strong evidence of positive, first order serial
correlation. This implies that the standard errors and t
statistics are not valid.

> ttestreg <- dynlm(residual.s ~ L(residual.s))

> coeftest(ttestreg)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.11340 0.35940 -0.3155 0.7538

L(residual.s) 0.57297 0.11613 4.9337 1.098e-05

Note: residual.s is the set of residuals from the static
regression. See the R Lab05 notes.
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Example: Expectations Augmented Phillips Curve

I We also estimated a particular expectations augmented
Phillips curve using the same data (see ch.11).

I By contrast, the test for AR(1) serial correlation in the
expectations augmented curve gives ρ̂ = −0.036 and
t = −0.287, p− value = 0.775 (with 47 observations): there
is no evidence of AR(1) serial correlation in the expectations
augmented Phillips curve.

> reg.ea <- dynlm( d(inf) ~ unem, data=tsdata, end=1996)

> residual.ea <- resid(reg.ea)

> coeftest( dynlm(residual.ea ~ L(residual.ea)) )

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.194166 0.300384 0.6464 0.5213

L(residual.ea) -0.035593 0.123891 -0.2873 0.7752
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The Durbin-Watson Test Under Classical Assumptions

I Another test for AR(1) serial correlation is the
Durbin-Watson test. The Durbin- Watson (DW)
statistic is also based on the OLS residuals:

DW =

∑n
t=2 (ût − ût−1)

2∑n
t=1 û

2
t

(9)

I It can easily be shown that DW and ρ̂ from (13) are closely
linked:

DW ≈ 2(1− ρ̂) (10)

I One reason this relationship is not exact is that ρ̂ has∑n
t=2 û

2
t−1 in its denominator, while the DW statistic has the

sum of squares of all OLS residuals in its denominator. But
even with small samples the approximation is often very good.
Therefore, tests based on DW and the t test based on ρ̂ are
conceptually the same.
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Durbin-Watson Test

I Durbin and Watson (1950), derive the distribution of DW
(conditional on X), something that requires the full set of
classical linear model assumptions, including normality of the
error terms.

I We assume that an intercept is included in the original model.

I There must be no lagged values of the dependent variable as
regressors, yt−1, yt−2, . . . (remember the strict exogeneity
assumption).

I Under these assumptions, the sampling distribution of the DW
statistic is nonstandard: there are two critical values in the
test’s decision rule.

I Upper (dU) and lower(DL) bounds for the critical values
that depend on the desired significance level, the alternative
hypothesis, the number of observations n, and the
number of explanatory variables (k).
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Durbin-Watson Test

I Usually, the DW test is computed for the alternative

H1 : ρ > 0 (11)

I From the approximation in (10), ρ̂ ≈ 0 implies that DW ≈ 2,
and ρ̂ > 0 implies that DW < 2.

I When 0 < DW < 2, this generally implies the existence of
positive autocorrelation but we need to test this formally. Also
2 < DW < 4 may indicate negative serial correlation.

I There are two sets of critical values. These are usually labeled
as dU (for upper) and dL (for lower).
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Durbin-Watson Test Decision Rules

I If DW < dL, then we reject H0 in favor of the alternative
(positive autocorrelation);

I if DW > dU , we fail to reject H0 (no autocorrelation).

I If dL ≤ DW ≤ dU , the test is inconclusive.

I Critical values are found using simulation techniques and
tabulated for reference.

I For example, for n = 50 and k = 2 5% critical values are
dL = 1.4625, dU = 1.6283. So, for this case, any DW value
less than 1.4625 would indicate positive autocorrelation.

I Alternatively, p-value of the DW statistic can be found using
simulation techniques.

See the illustrative graph for the DW decision rules in the next
slide. Note that the inconclusive region may not be that wide as
indicated in the graph.

Durbin-Watson Test

Durbin-Watson Test 5% Critical Values

n=sample size,
k=number of explanatory variables (excluding constant)
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DW Test Example: Phillips Curves

Let’s compute the DW test statistic for the static Phillips Curve
model:

> # DW test for the static Phillips curve

> library(lmtest)

> dwtest(reg.s)

Durbin-Watson test

data: reg.s

DW = 0.8027, p-value = 7.552e-07

From the table, we see that the critical values are dL = 1.5 and
dU = 1.59 at 5% significance level.
Because DW = 0.8027 < 1.5 we reject the null hypothesis of no
serial correlation (ρ = 0) in favor of the positive autocorrelation
ρ > 0. Also notice the p-value is very small implying that the null
can be rejected more decisively.
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DW Test Example: Phillips Curves

Now, compute the DW test statistic for the expectations
augmented Phillips Curve:

> # DW test for the expectations-augmented Phillips curve

data: reg.ea

DW = 1.7696, p-value = 0.1783

For the expectations augmented Phillips curve DW = 1.77,
approximately. And this larger than dU .
Thus, we fail to reject the null hypothesis. Residuals seem to be
serially uncorrelated in this case. Also the p value is 0.18 so we
don’t reject the null cannot even at 10% level.
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Testing for AR(1) Serial Correlation without Strictly
Exogenous Regressors

I When the explanatory variables are not strictly
exogenous, so that one or more xtj is correlated with ut−1,
neither the t test nor the Durbin-Watson test statistic are
valid, even in large samples .

I The leading case of nonstrictly exogenous regressors
occurs when the model contains a lagged dependent variable:
yt−1 and ut−1. are obviously correlated.

I Durbin’s alternative test is used when there are any number of
non-strictly exogenous explanatory variables:

27

Testing for Serial Correlation with General Regressors

1. Run the OLS regression of yt on xt1, ..., xtk and obtain the
OLS residuals, û, for all t = 1, 2, ..., n.

2. Run the regression of

ût on xt1, ..., xtk, ût−1 , t = 2, ..., n (12)

3. Obtain the coefficient ρ̂ on ût−1 and its t statistic, tρ̂.

4. Use tρ̂ to test H0 : ρ = 0 against H0 : ρ 6= 0 in the usual way
(or use a one-sided alternative).

I In the second step, we regress the OLS residuals on all
independent variables, including an intercept, and the lagged
residual. The t statistic on the lagged residual is a valid test.
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Example 12.2: Testing for AR(1) Serial Correlation in the
Minimum Wage Equation

I In this example (from ch.10), we assume that the underlying
stochastic processes are weakly dependent, but we allow them
to contain a linear time trend. Letting ût denote the OLS
residuals, we run the regression of

ût on log(mincovt), log(prgnpt), log(usgnpt), t, ût−1 on,

using 37 observations. Note that we include all x variables in
the test regression.

I The estimated coefficient on ût−1 is ρ̂ = 0.481 with t = 2.89,
p-value= 0.007. Therefore, there is strong evidence of AR(1)
serial correlation in the errors, which means the t statistics for
the β̂j that we obtained before are not valid for inference.
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Testing for Higher Order Serial Correlation

I The previous test can easily extended to higher orders of serial
correlation. For example, in the AR(2) model

ut = ρ1ut−1 + ρ2ut−2 + et

I suppose that we wish to test the null hypothesis:

H0 : ρ1 = 0, ρ2 = 0 (13)

I This alternative model of serial correlation allows us to test
for second order serial correlation. As always, we estimate the
model by OLS and obtain the OLS residuals, ût. Then, we
can run the regression of

ût on xt1, ..., xtk, ût−1, ût−2 , t = 3, ..., n
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Testing for Higher Order Serial Correlation

I To obtain the F test for joint significance of ût−1 and ût−2. If
these two lags are jointly significant at a small enough level,
say 5 percent, then we reject the null hypothesis and conclude
that the errors are serially correlated.

I More generally, we can test for serial correlation in the
autoregressive model of order q:

ut = ρ1ut−1 + ρ2ut−2 + ...+ ρqut−q + et (14)

I The null hypothesis is

H0 : ρ1 = 0, ρ2 = 0, ..., ρq = 0 (15)
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Steps of Testing for AR(q) Serial Correlation

1. Run the OLS regression of yt on xt1, ..., xtk and obtain the
OLS residuals, û, for all t = 1, 2, ..., n.

2. Run the regression of

ût on xt1, ..., xtk, ût−1, ût−2, ..., ût−q , t = (q + 1), ..., n
(16)

3. Compute the F test for joint significance of ût−1, ût−2,...,ût−q.

I The test requires the homoskedasticity assumption:

V ar(ut|xt, ut−1, ..., ut−q) = σ2 (17)
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LM Test for AR(q) Serial Correlation

I An alternative to computing the F test is to use the Lagrange
multiplier (LM) form of the statistic. (We covered the LM
statistic for testing exclusion restrictions in Chapter 5 for
cross-sectional analysis.) The LM statistic for testing no serial
correlation is simply:

LM = (n− q)R2
û (18)

I where R2
û is just the usual R-squared from the test regression

(in the second step). Under the null hypothesis, LM statistic
follows χ2

q . This is usually called the Breusch-Godfrey test
for AR(q) serial correlation. The LM statistic also requires
homoscedasticity, but it can be made robust to
heteroskedasticity.
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Correcting for Serial Correlation with Strictly Exogenous
Regressors

I When the errors ut follow the AR(1) model and our variables
are strictly exogenous, we can correct the test statistics.

I For simplicity, consider the case with a single explanatory
variable:

yt = β0 + β1xt + ut, t = 1, 2, ..., n

I Since the problem in this equation is serial correlation in the
ut, it makes sense to transform the equation to eliminate the
serial correlation. For t ≥ 2, we write

yt−1 = β0 + β1xt−1 + ut−1

yt = β0 + β1xt + ut
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Correcting for Serial Correlation

I Now, if we multiply this first equation by ρ and subtract it
from the second equation, we get

yt − ρyt−1 = (1− ρ)β0 + β1(xt − ρxt−1) + et, t ≥ 2

where we have used the fact that et = ut − ρut−1.
I We can write this as

ỹt = (1− ρ)β0 + β1x̃t + et, t ≥ 2 (19)

where
ỹt = yt − ρyt−1, x̃t = xt − ρxt−1 (20)

are called the quasi-differenced data.
I When ρ = 1, these are differenced data (not quasi anymore),

but remember we are assuming ρ < 1. The error terms in (19)
are serially uncorrelated; in fact, this equation satisfies all of
the Gauss-Markov assumptions.
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Correcting for Serial Correlation

I If we knew ρ, we could estimate β0 and β1 by regressing ỹt on
x̃t, provided we divide the estimated intercept by (1− ρ).

I Adding more regressors changes very little. For t ≥ 2, we use
the equation

ỹt = (1− ρ)β0 + β1x̃t1 + ...+ βkx̃tk + et, (21)

where x̃tj = xtj − ρxt−1,j .

I For t = 1, we have ỹ1 = (1− ρ2)0.5y1, x̃1j = (1− ρ2)0.5x1j
and the intercept is (1− ρ2)0.5β0.
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Generalized Least Squares (GLS)

I For a given ρ, it is easy to transform the data and to run OLS.

I GLS estimation = Transforming the model as outlined and
then using OLS to estimate the transformed model

I Unless ρ = 0, the GLS estimator will generally be different
from the original OLS estimator.

I The GLS estimator is BLUE, and, since the errors in the
transformed equation are serially uncorrelated and
homoskedastic, t and F statistics from the transformed
equation are at least asymptotically valid if et is normally
distributed.

I To be able to apply GLS in case of AR(1) errors, we need to
know the true value of ρ which is generally unknown in
practice. Estimating ρ first and applying GLS ⇒ Feasible GLS
(FGLS).
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Feasible GLS Estimation with AR(1) Errors

I The problem with the GLS estimator is that ρ is rarely known
in practice.

I Consistent estimation of ρ: regress the OLS residuals on their
lagged counterparts.

I Next, we use this estimate, ρ̂, in place of ρ to obtain the
quasi-differenced variables.

I We then use OLS on the equation

ỹt = β0x̃t0 + β1x̃t1 + ...+ βkx̃tk + errort, (22)

where x̃t0 = (1− ρ̂) for t ≥ 2, and x̃10 = (1− ρ̂)0.5.

I This results in the feasible GLS (FGLS) estimator of the βj .
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Steps in Feasible GLS Estimation with AR(1) Errors

1. Run the OLS regression of yt on xt1, ..., xtk and obtain the
OLS residuals, ût, t = 1, 2, ..., n.

2. Run the regression ût on ût−1 and obtain ρ̂.

3. Apply OLS to equation (22) to estimate β0, β1, ..., βk. The
usual standard errors, t statistics, and F statistics are
asymptotically valid.

FGLS estimator is consistent and statistical inference procedures
are valid asymptotically.
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Feasible GLS Estimation with AR(1) Errors

I FGLS estimator is not unbiased, so it is not BLUE.

I But it is asymptotically more efficient than the OLS estimator
when the AR(1) model for serial correlation holds, the
explanatory variables are strictly exogenous, and all the time
series are weakly dependent.

I In the econometrics litarature, there are several names for
FGLS estimation of the AR(1) model that depend on different
methods of estimating ρ and different treatment of the first
observation.

I Cochrane-Orcutt (CO) estimation omits the first
observation in estimating ρ̂.

I Prais-Winsten (PW) estimation uses the first observation
in the previously suggested way. Asymptotically, these two
methods are equivalent but they may differ in small samples.
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Example 12.5: Static Phillips Curve

Comparison of OLS and Prais-Winsten (PW) estimation:

See the R lab for estimation details. The Cochrane-Orcutt (CO)
estimation yields −0.67 on the unem variable. This example
highlights that the OLS and FGLS (PW or CO) can be markedly
different. Here, because PW result is consistent with the
inflation-unemployment tradeoff, we may ignore the OLS estimates
and focus on the FGLS results. Notice that the AR(1) coefficient
on the residuals is fairly high, ρ̂ = 0.781
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Differencing and Serial Correlation

I Consider the simple regression model with AR(1) errors:

yt = β0 + β1xt + ut, ut ∼ AR(1), t = 1, 2, ..., n (23)

I The usual OLS inference procedures are invalid if yt and xt
are integrated of order one, or I(1), e.g. random walk.

I If the error term ut follows a random walk process, i.e.,
ut = ut−1 + et, the equation above makes no sense because,
among other things, the variance of ut grows with t
(nonstationary). In this case, we need to difference the
equation:

∆yt = β1∆xt + ∆ut, t = 2, ..., n (24)

I If ut follows a random walk, then et ≡ ∆ut has zero mean, a
constant variance, and is serially uncorrelated. Thus,
assuming that et and ∆xt are uncorrelated, we can estimate
the differenced model above by OLS, where we lose the first
observation.
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Serial Correlation-Robust Standard Errors

I We derived the heteroskedasticity-robust standard errors for
cross-sectional regression.

I In a similar fashion, we can compute the serial
correlation-robust standard errors of OLS estimators.

I In fact, it is possible to make standard errors robust to both
serial correlation and heteroskedasticity.

I In the literature, these are known as Heteroskedasticity and
Autocorrelation Consistent (or, HAC) standard errors (see the
discussion in Section 12.5 in the text)


