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Asymptotic Properties of OLS

I In Chapter 10, we saw some cases where the classical linear
model assumptions are not satisfied for certain time series
problems.

I In such cases, we must appeal to large sample properties of
OLS.

I In this section, we state and soften the assumptions and main
results that justify OLS more generally.
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TS.1’ Linearity and Weak Dependence

I TS.1 assumed that the model is linear in β parameters.

I If x variables contain lagged dependent variables, such as
yt−1, yt−2, TS.1 is replaced with:

Assumption TS.1’: Linearity and Weak Dependence

Assumption TS.1’ is the same as TS.1, except we must also
assume that {(xt, yt) : t = 1, 2, ..} is weakly dependent. In other
words, the law of large numbers and the central limit theorem can
be applied to sample averages.
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TS.2’ No Perfect Collinearity

Assumption TS.2’: No Perfect Collinearity

Same as Assumption TS.2

This is the familiar full rank condition (see the matrix algebra
notes).
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TS.3’ Zero Conditional Mean

I Instead of TS.3 (ut is uncorrelated with past, present and
future values of independent variables), we’ll use

Assumption TS.3’: Zero Conditional Mean

For each t, E(ut|xt) = 0.

I ut and the explanatory variables are contemporaneously
uncorrelated.

E(ut) = 0, Cov(xtj , ut) = 0, j = 1, ..., k.
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Consistency

I Under these assumptions, OLS estimators are
consistent.

Theorem 11.1 Consistency of OLS Estimators

Under TS.1’, TS.2’ and TS.3’, OLS estimators are consistent:
plim β̂j = βj , j=0,1,...,k.
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Consistency of OLS Estimators

I There are some key practical differences between Theorems
10.1 and 11.1.

I Theorem 11.1, we conclude that the OLS estimators are
consistent, but not unbiased.

I In Theorem 11.1, we have weakened the sense in which the
explanatory variables (xs) must be exogenous.

I But weak dependence is required in the underlying time series.
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Example

I In our example, zt1 is monthly percentage change in the
money supply and yt is monthly inflation rate.

yt = β0 + β1zt1 + β2zt2 + ut

E(ut|zt1, zt2) = 0.

I Suppose that the change in money supply depends on last
month’s rate of inflation (yt−1).

zt1 = δ0 + δ1yt−1 + vt

I This mechanism generally causes zt1 and ut to be correlated
(as can be seen by plugging in for yt.)

I This kind of feedback is allowed under Assumption TS.3’. We
can use zt1 as an explanatory variable.
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Example

I In the previous model, the consistency of OLS is

E(ut|zt1, zt2) = 0.

I This assumption does not allow the other factors contained in
ut correlated with zt1 and zt2.

I But, the lagged values of random error term may be
correlated with explanatory variables. For example, ut−1 and
zt1 is correlated.

I Just as in cross-sectional regression, misspecified functional
form and measurement errors in explanatory variables cause
TS.3’ to be invalid.
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Example: Finite Distributed Lag Model

I In the finite distributed lag model:

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

I the expected value of ut, given current and all past values of
z, is zero:

E(ut|zt, zt−1, zt−2, zt−3, ...) = 0

I This means that, once zt,zt−1 ve zt−2 are included, no further
lags of z affect E(ut|zt, zt−1, zt−2, zt−3, ...)); if this were not
true, we would put further lags into the equation.

I When we set Xt = (zt, zt−1, zt−2), Assumption TS.3’ is then
satisfied: OLS will be consistent.

I As in the previous example, TS.3’ does not rule out feedback
from y to future values of z.
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Example: First Order Autoregressive Model

I Consider the AR(1) model:

yt = β0 + β1yt−1 + ut

I where the error ut is zero expected value, given all past values
of y:

E(ut|yt−1, yt−2, ...) = 0

I Combining these two equations

E(yt|yt−1, yt−2, ...) = E(yt|yt−1) = β0 + β1yt−1

I It means that, once y lagged one period has been controlled
for, no further lags of y affect the expected value of yt. (This
is where the name “first order” originates). And the
relationship is assumed to be linear.
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Example: AR(1) Model

I In AR(1) model, ut is uncorrelated with yt−1, but ut and yt
are correlated.

I Therefore, a model with a lagged dependent variable
cannot satisfy the strict exogeneity assumption TS.3

I For the weak dependence condition to hold, we must assume
that |ρ1| < 1, as we mentioned. If this condition holds, then
Theorem 11.1 implies that the OLS estimator of AR(1) model
produces consistent estimators.

I Unfortunately, the OLS estimator of AR(1) model is biased
and this bias can be large if the sample size is small or if β1 is
near one (if β1 is near one, there is a severe downward bias).
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Assumptions TS.4’ Homoscedasticity and TS.5’ No Serial
Correlation

Assumption TS.4’ Homoscedasticity

For all t, V ar(ut|Xt) = σ2.

Assumption TS.5’ No Serial Correlation

For all t 6= s, E(utus|Xt, Xs) = 0.

I In TS.4’, note how we condition only on the explanatory
variables at time t (compare to TS.4).

I In TS.5’, we condition only on the explanatory variables in the
time periods coinciding with ut and us.
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Asymptotic Normality of OLS

Theorem 11.2: Asymptotic Normality of OLS

Under TS.1’ through TS.5’, the OLS estimators are asymptotically
normally distributed. Further, the usual OLS standard errors, t
statistics, F statistics, and LM statistics are asymptotically valid.

I Under TS.1’ through TS.5’, we now obtain an asymptotic
result that is practically identical to the cross sectional case.

I Even if the classical linear model assumptions do not hold,
OLS is still consistent for large samples, and the usual
inference procedures are valid. Of course, this hinges on TS.1’
through TS.5’ being true.

I In this section, we discuss ways in which the weak dependence
assumption can fail. The problems of serial correlation and
heteroskedasticity are treated in Chapter 12.
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Example 11.4: Efficient Market Hypothesis

I A strict form of the efficient markets hypothesis (EMH) states
that information observable to the market prior to week t
should not help to predict the return during week t. If we use
only past information on y, the EMH is stated as

E(yt|yt−1, yt−2, ...) = E(yt)

I If this information is false, then we could use information on
past weekly returns to predict the current return. The EMH
presumes that such investment opportunities will be noticed
and will disappear almost instantaneously.

r̂eturn = 0.180
(0.081)

+ 0.059
(0.038)

returnt−1

n = 689 R2 = 0.0035 R̄2 = 0.0020
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Efficient Market Hypothesis: AR(2) Model

I For example, an autoregressive model of order two, or AR(2)
model, is:

yt = β0 + β1yt−1 + β2yt−2 + ut

E(ut|yt−1, yt−2, ...) = 0

I To test whether β1 and β2 are jointly significant, our null
hypothesis is

H0 : β1 = β2 = 0

I Adding homoskedasticity assumption
V ar(ut|yt−1, yt−2) = σ2, we can use F statistic to test the
null. If we do not reject H0, we will have evidence in favor of
EMH.

I If we estimate an AR(2) model for returnt, the two lags are
individually insignificant at the %10 level. They are also
jointly insignificant: the F statistic is approximately F = 1.65;
the p-value for this F statistic (with 2 and 685 degrees of
freedom) is about 0.193. Thus, we do no reject at even the
%15 significance level.
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Example 11.5: Expectations Augmented Phillips Curve

I A linear version of the expectations augmented Phillips curve
can be written as:

inft − infet = β1(unemt − µ0) + et

I Where µ0 is the natural rate of unemployment and infet is the
expected rate of inflation formed in year t. This model
assumes that the natural rate of unemployment is constant.

I Under adaptive expectations, the expected value of current
inflation depends on recently observed inflation:

inft − inft−1 = β0 + β1unemt + et

∆inft = β0 + β1unemt + et

I Where ∆inft = inft − inft−1 and β0 = −β1µ0. Therefore,
under adaptive expectations, the expectations augmented
Phillips curve relates the change in inflation to the level of
unemployment and a supply shock, et.
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Example 11.5: Expectations Augmented Phillips Curve

∆̂inft = 3.03
(1.38)

− 0.543
(0.230)

unemt

n = 48 R2 = 0.108 R̄2 = 0.088

I The trade-off between cyclical unemployment and
unanticipated inflation is estimated as a one-point increase in
unem lowers unanticipated inflation by over one half of a
point. The effect is statistically significant (two-sided p-value
0.023).

I An estimate of natural unemployment rate can be obtained
from this regression, µ0 = β0/(−β1):
µ̂0 = β̂0/(−β̂1) = 3.03/0.543 = 5.58

I We estimate the natural rate to be about 5.6, which is well
within the range suggested by macroeconomists (5− 6%).
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Using Highly Persistent Time Series: Example 11.6
(Fertility Equation)

I gfr: fertility rate, pe: dollar value of personal exemption.
The first order autocorrelations for these series are very large:
ρ̂1 = 0.977 for gfr and ρ̂1 = 0.964 for pe.

I These are suggestive of unit root behavior, and they raise
questions about the use of the usual OLS t statistics in
Chapter 10. We now estimate the equations using the first
differences (and dropping the dummy variables for simplicity)

∆̂gfrt = −0.785
(0.502)

− 0.043
(0.028)

∆pet

n = 71 R2 = 0.032 R̄2 = 0.018

∆̂gfrt = −0.964
(0.468)

− 0.036
(0.027)

∆pet − 0.014
(0.028)

∆pet−1 + 0.110
(0.027)

∆pet−2

n = 69 R2 = 0.233 R̄2 = 0.197
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Example 11.7: Wages and Productivity

I The variable hrwage is average hourly wage in the U.S.
economy, and outphr is output per hour. One way to
estimate the elasticity of hourly wage with respect to output
per hour is to estimate the equation:

log(hrwaget) = β0 + β1 log(outphrt) + β2t+ ut

I where the time trend is included because log(hrwage) and
log(outphrt) both display clear, upward, linear trends. The
estimated model with trend:

̂log(hrwaget) = −5.33
(0.37)

+ 1.64
(0.09)

log(outphrt)− 0.018
(0.002)

t

n = 41 R2 = 0.971 R̄2 = 0.970
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Example 11.7: Wages and Productivity

I The regression results must be viewed with caution. Even
after linearly detrending log(hrwage), the first order
autocorrelation is 0.967, and for detrended log(outphr),
ρ̂1 = 0.945. These suggest that both series have unit roots, so
we reestimate the equation in first differences (and we no
longer need a time trend)

̂∆ log(hrwaget) = −0.0036
(0.0042)

+ 0.809
(0.173)

∆ log(outphrt)

n = 40 R2 = 0.364 R̄2 = 0.348


