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1Yıldız Technical University
Department of Economics

Econometrics II

2

Further Issues in Using OLS with Time Series

I In our previous classes, we discussed the finite sample
properties of OLS for time series data under stronger sets of
assumptions (see ch.10 in the text).

I Under the full set of classical linear model assumptions for
time series, TS.1 through TS.6, OLS has exactly the same
desirable properties that we derived for cross-sectional data.
Likewise, statistical inference is carried out in the same way as
it was for cross-sectional analysis.

I From our cross-sectional analysis, we know that there are
good reasons for studying the large sample properties of OLS.

I For example, if the error terms are not drawn from a normal
distribution, then we must rely on the central limit theorem to
justify the usual OLS test statistics and confidence intervals.
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Further Issues in Using OLS with Time Series

I Even though large time series samples can be difficult to come
by; but we often have no choice other than to rely on large
sample properties.

I As we will show in Section 11.2, models with lagged
dependent variables , such as yt−1, must violate the strict
exogeneity assumption (TS.2).

I For cross-sectional analysis in Chapter 5, we obtained the large
sample properties of OLS in the context of random sampling.

I But in time series, things are more complicated when we allow
the observations to be correlated across time (past and
future).

I The crucial point in time series analysis is whether the
correlation between the variables at different time
periods tends to zero quickly enough.
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Stationary and Nonstationary Time Series

I We need new concepts in order to examine the large sample
properties of OLS estimators in time series regressions.

I These concepts are: stationarity, weak dependence,
non-stationarity, high persistence (strong dependence)

I Historically, the notion of a stationary process has played an
important role in the analysis of time series.

I There are two broad types of stationarity: strict stationarity,
and weak (covariance) stationarity.
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(Strictly) Stationary Stochastic Process

Definition:
The stochastic process {xt : t = 1, 2, ...} is (strictly) stationary if
for every collection of time indices 1 ≤ t1 ≤ t2 ≤ ... ≤ tm, the joint
distribution of (xt1, xt2, ...., xtm) is the same as the joint
distribution of (xt1+h, xt2+h, ...., xtm+h) for all integers h ≥ 1.

I In other words, the sequence {xt : t = 1, 2, ...} is identically
distributed.

I A strictly stationary time series process is one whose
probability distributions are stable over time.

I If we take any collection of random variables in the sequence
and then shift that sequence ahead h time periods, the joint
probability distribution must remain unchanged.

I We still allow them to be correlated but the correlation
structure does not change over time.
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Covariance-Stationary Time Series

It’s almost impossible to show strict stationarity. In practice, we
use a weaker definition of stationarity that is much easier to work
with.

Definition:
If {xt : t = 1, 2, ...} has a finite second moment, (E(x2t ) <∞) for
all t, provided that the following 3 conditions are satisfied, the
stochastic process is called covariance stationary.

1. E(xt) is constant (independent of t).

2. Var(xt) is constant (independent of t).

3. for any t and h ≥ 1, Cov(xt, xt+h) depends only on h and not
on t.
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The Notion of Covariance Stationarity

I Covariance stationarity focuses only on the first two
moments of a stochastic process: the mean and variance of
the process are constant across time.

I And the covariance (of course correlation) between xt and
xt+h depends only on the distance between the two terms, h,
and not on t.

I Covariance stationarity is also called weak stationarity.

I Strict stationarity is a stronger requirement than covariance
stationarity. So we do not focus on the strict stationarity in
this course.

I We will call a series stationary if it satisfies the conditions for
covariance stationarity.

8

The notion of Stationarity

I In regression analysis using time series data, stationarity is of
prime importance.

I Stationarity simplifies statements of the law of large numbers
and the central limit theorem. These theorems can only be
applied to stationary processes.

I In order to understand the relationship between two or more
variables using regression analysis, we need to assume some
sort of stability over time.

I If the relationship between two variables (say, yt and xt)
changes arbitrarily in each time period, then it may not be
possible to learn much about how a change in one variable
affects the other variable if we only have access to a single
time series realization.

I Stationarity also implies that the βj parameters do not change
over time.
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Weakly Dependent Time Series

I Stationarity is related to the joint distributions of a process as
it moves through time.

I Another concept is weak dependence which places restrictions
on how strongly related the random variables xt and xt+h can
be as the time distance between them, h, gets large.

Definition: Weakly Dependent Time series

A stationary time series process is said to be weakly dependent if
xt and xt+h are almost independent as h increases without bound,
i.e. asymptotically uncorrelated:

As h→∞ , Corr(xt, xt+h)→ 0
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Weakly Dependent Time Series

As h→∞ , Corr(xt, xt+h)→ 0

I In practice, covariance stationary sequences can be
characterized in terms of correlations: a covariance stationary
time series is weakly dependent if the correlation between xt
and xt+h goes to zero sufficiently quickly as h gets large.

I Weak dependence replaces the assumption of random
sampling in implying that the law of large numbers (LLN) and
the central limit theorem (CLT) hold.

I The central limit theorem for time series data requires
stationarity and weak dependence: thus, stationary, weakly
dependent time series are ideal for use in multiple
regression analysis.
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Weakly Dependent Time Series

I The simplest example of a weakly dependent time series is an
independent, identically distributed (i.i.d) sequence : a
sequence that is independent is trivially weakly dependent.

I A series randomly drawn from a normal distribution is a an
example.

I A time series sequence of 100 drawn from the standard
normal distribution is graphed below.
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White Noise Process

Definition: White Noise Process
A stochastic process, {et : t = 1, 2, . . .}, is called white noise
process if this process satisfies the following conditions.

E[et] = 0

Var(et) = σ2e

Cov(et, es) = 0, t 6= s

We denote white noise process as et ∼ wn(0, σ2e).

I If {et}Tt=1 also follows a Normal (Gaussian) distribution with
mean 0, variance σ2e , this process is called Normal (Gaussian)
White Noise process. Notation: et ∼ GWN(0, σ2e). If this
process is i.i.d., the notation is et ∼ iid N(0, σ2e).
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Example: Moving Average(MA) Process

MA(1)

I A more interesting example of a weakly dependent sequence is
called a moving average process of order one, MA(1).

xt = et + α1et−1, t = 1, 2, ...

et is an iid white noise process.

I xt is a weighted average of et and et−1.
I Why is an MA(1) process weakly dependent? Adjacent x

terms in the sequence are correlated.
I For example, if we rewrite the above model for t+ 1:

xt+1 = et+1 + α1et.

I The (unconditional) expected value of this process:

E(xt) = E(et + α1et−1)

= E(et) + α1E(et−1) = 0 ≡ µ
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MA(1) Process

I The variance of MA(1) process:

Var(xt) = E[(xt − E(xt))
2] = E(x2t )

= E((et + α1et−1)
2)

= E(e2t ) + α2
1E(e2t−1)

= σ2e + α2
1σ

2
e = (1 + α2

1)σ
2
e

I The first autocovariance:

Cov(xt, xt−1) = E[(xt − µ)(xt−1 − µ)]

= E[(et + α1et−1)(et−1 + α1et−2)]

= E[etet−1 + α1etet−2 + α1e
2
t−1 + α2

1et−1et−2]

= E(etet−1) + α1E(etet−2) + α1E(e2t−1)

+α2
1E(et−1et−2)

= 0 + 0 + α1E(e2t−1) + 0

= α1σ
2
e
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MA(1) Process

I The first autocorrelation:

ρ1 = Corr(xt, xt−1) =
Cov(xt, xt−1)

Var(xt)
=

α1

1 + α2
1

I The sign of the first autocorrelation depends on the sign of α1.

I For example, if α1 = 0.5 , Cor[xt, xt−1] = 0.40.

I The maximum positive correlation occurs when α1 = 1; in
which case, Cor[xt, xt−1] = 0.50.

16

MA(1) Process

I When we look at variables in the sequence that are two or
more time periods apart, these variables are uncorrelated
because they are independent.

I For example, xt+2 = et+2 + α1et+1 is independent of xt
I Because because et is independent across t.

I Due to the identical distribution assumption on the et, xt is
actually stationary.

I Its mean, variance and autocovariance are independent of t.

I So, an MA(1) is a stationary, weakly dependent sequence, and
the law of large numbers and the central limit theorem can be
applied.
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Example: Autoregressive Process of Order One, AR(1)

AR(1)

yt = ρ1yt−1 + et, t = 1, 2, ...

I The starting point in the sequence is y0 (at t = 0), and
et : t = 1, 2, ... is an i.i.d. sequence with zero mean and
variance σ2e (white noise). We also assume that the et are
independent of y0 and that E(y0) = 0 0.

I The crucial assumption for weak dependence of an AR(1)
process is the stability condition |ρ1| < 1. Then we say that yt
is a stable AR(1) process.

I For a stable AR(1) process ( |ρ1| < 1),

σ2y = σ2e/(1− ρ21)
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AR(1) Process

I Since σy is the standard deviation of both yt and yt+h, we can
easily find the correlation between them for any h ≥ 1:

Corr(yt, yt+h) = Cov(yt, yt+h)/(σyσy) = ρh1

I In particular, Corr(yt, yt+1) = ρ1 and so ρ1 is the correlation
coefficient between any two adjacent terms in the sequence.

I It shows that, while yt ve yt+h are correlated for any h ≥ 1,
this correlation gets very small for large h.

Since |ρ1| < 1 , ρh1 → 0 as h→∞

I For example, if ρ1 = 0.9 ,then Corr(yt, yt+20) = 0.122

I Hence, a stable AR(1) model is weakly dependent.
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Trend-Stationary Process

I A trending series can not be weakly dependent.

I A series that is stationary about its time trend, as well as
weakly dependent, is often called a trend-stationary process.

I After detrending, if the remaining part of the trending series is
stationary, these series are trend-stationary, weekly dependent.

I Deterministic linear trend process:

yt = β0 + β1t+ εt, εt ∼ wn(0, σ2)
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Example: Deterministic linear trend process

yt = β0 + β1t+ εt, εt ∼ wn(0, σ2)

Graph: Two linearly trending series with different slopes
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Highly Persistent Time Series

I We need weakly dependent variables for OLS to be
consistent. In that case, the standard inference procedures will
still be valid.

I However, many economic time series cannot be characterized
by weak dependence, but strong dependence.

I Highly persistent or strongly dependent time series display
high correlation with its past values.

I Let’s see some examples of highly persistent or strongly
dependent time series.
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Highly Persistent Time Series

I Many economic time series are strongly dependent or highly
persistent series. For example, inflation rate, budget deficit
etc.

I Using time series with strong dependence in regression
analysis poses no problem, if the TS assumptions hold (see
ch.10 in text).

I But the usual inference procedures are not valid when the
data are not weakly dependent. The reason is that CLT and
LLN do not apply.

I In the AR(1) model , the assumption |ρ1| < 1 is crucial for
the series to be weakly dependent.

I It turns out that many economic time series are better
characterized by the AR(1) model with ρ1 = 1. As ρ1
approaches 1, the more the time series gets persistent.

I When ρ1 = 1, AR(1) process is called Random Walk.

23

Random Walk

I When ρ1 = 1, AR(1) model can be written

yt = yt−1 + et, t = 1, 2, ...

I {et : t = 1, 2, ...} is independent and identically distributed
with mean zero and variance σ2e . We assume that the initial
value, y0, is independent of et for all t ≥ 1.

I The expected value of yt can be found by the method of
repeated substitution:

yt = et + et−1 + et−2 + ...+ e1 + y0

I Taking the expectation of both sides gives

E(yt) = E(et) + E(et−1) + E(et−2) + ...+ E(e1) + E(y0)

E(yt) = E(y0)

I The expected value of random walk process does not depend
on t (independent of time). If the initial value is assumed as
y0 = 0, E(yt) = 0 is true for all t ≥ 1.
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Method of Repeated Substitution): yt = yt−1 + et

I y1 = y0 + e1

I y2 = y1 + e2 = y0 + e1 + e2

I y3 = y2 + e3 = y0 + e1 + e2 + e3

I ............................

I yt = y0 + e1 + e2 + ....+ et−1 + et = y0 +
∑t

t=1 et
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Random Walk

I By contrast, the variance of a random walk does change with
t. To compute the variance of a random walk, for simplicity
we assume that y0 is nonrandom so that V ar(y0) = 0. This
does not affect any important conclusions. Then, by the i.i.d.
assumption for et:

V ar(yt) = V ar(et) + V ar(et−1) + ...+ V ar(e1) = σ2e t

I A random walk displays highly persistent behavior in the sense
that the value of y today is significant for determining the
value of y in the very distant future. To see this, write for h
periods hence

yt+h = et+h + et+h−1 + ...+ et+1 + yt

I Now, suppose at time t, we want to compute the expected
value of yt+h given the current value yt. Since the expected
value of et+j , given yt, is zero for all j ≥ 1,

E(yt+h|yt) = yt for all h ≥ 1
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Random Walk

I This means that, no matter how far in the future we look, our
best prediction of yt+h is today’s value, yt.

I We can contrast this with the stable AR(1) case, where a
similar argument can be used to show that

E(yt+h|yt) = ρh1yt, for all h ≥ 1

I If |ρ1| < 1 , this expectation approaches to zero as h→∞ .

I We can also see that the correlation between yt and yt+h is
close to 1 for large t when yt follows a random walk. If
V ar(y0) = 0, it can be shown that,

Corr(yt, yt+h) =
√
t/(t+ h)

I So, a random walk process is a nonstationary process.
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Random Walk

Four realizations of random walk process with y0 = 0, T = 100
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Random Walk

Four realizations of random walk process with y0 = 0, T = 1000
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Random Walk

I A random walk is a special case of what is known as a unit
root process. The name comes from the fact that ρ1 = 1 in
the AR(1) model.

I A more general class of unit root processes can be generated
by defining various et processes.

I But, et is now allowed to be a general, weakly dependent
series. For example, et could itself follow an MA(1) or a
stable AR(1) process.

I When et is not an i.i.d. sequence, the properties of the
random walk we derived earlier no longer hold.
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Random Walk

I From a policy perspective, it is often important to know
whether an economic time series is highly persistent or not.
Consider the case of gross domestic product in Turkey. If
GDP is asymptotically uncorrelated, then the level of GDP in
the coming year is at best weakly related to what GDP was,
say, thirty years ago. This means a policy that affected GDP
long ago has very little lasting impact.

I GDP is strongly dependent, then next year’s GDP can be
highly correlated with the GDP from many years ago. Then,
we should recognize that a policy which causes a discrete
change in GDP can have persisting and long-lasting effects.

I Effect of shocks are very persistent and lasting in random
walk models.
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Random Walk with Drift

I It is often the case that a highly persistent series also contains
a clear trend.

I One model that leads to this behavior is called the random
walk with drift.

yt = α0 + yt−1 + et, t = 1, 2, ...

I where {et : t = 1, 2, ...} and y0 satisfy the same properties as
in the random walk model. What is new is the parameter α0,
which is called the drift term. Essentially, to generate yt, the
constant α0 is added along with the random noise et to the
previous value yt−1

I We can show that the expected value of yt follows a linear
time trend by using repeated substitution

yt = α0t+ et + et−1 + ...+ e1 + y0
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Random Walk with Drift

I Therefore, if y0 = 0, E(yt) = α0t : the expected value of yt is
growing over time if α0 > 0 and shrinking over time if α0 < 0.

I By reasoning as we did in the pure random walk case, we can
show that

E(yt+h|yt) = α0h+ yt

I So the best prediction of yt+h at time t is yt plus the drift
α0h. The variance of yt is the same as it was in the pure
random walk case.
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Random Walk

A single realization of random walk with drift process with y0 = 0,
T = 100
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Transformations on Highly Persistent Time Series

I Using time series with strong persistence of the type
displayed by a unit root process in a regression equation can
lead to very misleading results if the CLM assumptions are
violated.

I We will study the spurious regression problem in more detail
in Chapter 18.

I But for now we must be aware of potential problems.
Fortunately, simple transformations are available that render a
unit root process weakly dependent.

I Weakly dependent processes are said to be integrated of
order zero, denoted by I(0). Practically, this means that
nothing needs to be done to such series before using them in
regression analysis: averages of such sequences already satisfy
the standard limit theorems.
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Transformations on Highly Persistent Time Series

I Unit root processes, such as a random walk (with or without
drift), are said to be integrated of order one, or I(1). This
means that the first difference of the process is weakly
dependent (and often stationary).

I Let us consider a random walk(RW) process: yt = yt−1 + et.
Subtracting yt−1 from both sides gives the first difference:

∆yt = yt − yt−1 = et, t = 2, 3, ...

I ∆yt is weakly dependent, I(0).
I Many economic time series yt that are strictly positive are

such that log(yt) is I(1).
I In this case, we can use the first difference in the logs in

regression analysis,

∆ log yt = log yt − log yt−1

I log(yt) is I(1) and the growth rate of yt, ∆yt, is I(0).
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Transformations on Highly Persistent Time Series

I Differencing time series before using them in regression
analysis has another benefit: it removes any linear time trend.
This is easily seen by writing a linearly trending variable as:

yt = γ0 + γ1t+ vt

I Writing yt for t− 1 gives

yt−1 = γ0 + γ1(t− 1) + vt−1

I The first difference is

∆yt = yt − yt−1 = γ1 + ∆vt

I The expected value of the final expression

E[∆yt] = γ1 + E[∆vt] = γ1

I As seen, E[∆yt] is equal to a constant. It implies that the
mean of the first difference of the trending series is a constant
and we can use this stationary series in regression analysis.
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Deciding Whether a Time Series Is I(1) or I(0)

I Some statistical tests (unit root tests) can be used for this
purpose, we provide an introductory treatment in Chapter 18.

I There are informal methods that provide useful guidance
about whether a time series process is roughly characterized
by weak dependence.

I A very simple tool is motivated by the AR(1) model: if ρ1 is
absolutely less than 1, then the process is I(0), but it is I(1) if
ρ1 is 1.

I we know that ρ1 = corr(yt, yt−1) and the correlation, ρ1,
between yt and yt−1 can be estimated.

I This sample correlation coefficient is called the first order
autocorrelation of yt; we denote this by ρ̂1.

I When |ρ1| < 1, ρ̂1 is a consistent but biased estimator of ρ1.

I We can use the value of ρ̂1 to help decide whether the process
is I(1) or I(0).
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Deciding Whether a Time Series Is I(1) or I(0)

I Ideally, we could compute a confidence interval for ρ1 to see if
it excludes the value ρ1 = 1, but this turns out to be rather
difficult: the sampling distributions of the estimator of ρ̂1 are
extremely different when ρ1 is close to one and when ρ1 is
much less than one.

I In fact, when ρ1 is close to one, ρ1 can have a severe
downward bias.

I We can only use ρ̂1 as a rough guide for determining whether
a series needs to be differenced.

I Most economists think that differencing is warranted if ρ̂1 is
greater than 0.90. Some would difference when ρ̂1 is greater
than 0.80.

I When the series has an trend, it makes more sense to obtain
the first order autocorrelation after detrending. If the data are
not detrended, the autoregressive correlation tends to be
overestimated, which biases toward finding a unit root in a
trending process.


