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OLS Regression with Time Series Data

Lecture Plan:

▶ What are the finite sample properties of OLS regressions with
time series data? Times Series (TS) regression model
assumptions. Finite sample properties include unbiasedness,
and efficiency.

▶ Gauss-Markov theorem and inference

▶ Dummy variables and functional form

▶ Trends and seasonality revisited
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Finite (Small) Sample Properties of OLS under Classical
Assumptions

▶ In time series analysis, we need three assumptions for OLS
estimators to be unbiased

Assumption TS.1: Linearity in Parameters

The stochastic process, {(xt1, xt2, ..., xtk, yt) : t = 1, 2, ..., n},
follows a model which is linear in parameters

yt = β0 + β1xt1 + ...+ βkxtk + ut

where {ut : t = 1, 2, ..., n} is the sequence of errors or disturbances.
Here, n is the number of observations (or time periods).

▶ This assumption is essentially the same as MLR.1 (the first
cross-sectional assumption).
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Finite (Small) Sample Properties of OLS under Classical
Assumptions

▶ In the notation, xtj , t denotes the time period and
▶ j is a label to indicate one of the k explanatory variables.
▶ In an FDL model, each lag can be defined as a separate

variable:

xt1 = zt, xt2 = zt−1 and xt3 = zt−2

▶ xt denotes the set of all explanatory variables at time t.
▶ Let X denote the collection of all independent variables for all

time periods.
▶ It is useful to think of X as being an array, with n rows and k

columns, as a data matrix.
▶ the tth row of X is xt, consisting of all independent variables

for time period t.
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Assumption TS.2: No Perfect Collinearity

Assumption TS.2: No Perfect Collinearity

In the sample (and therefore in the underlying time series process),
no independent variable is constant or a perfect linear combination
of the others.

▶ No perfect collinearity is the second assumption required for
the OLS estimator to be unbiased.

▶ Assumption TS.2 does allow the explanatory variables, x, to
be correlated, but it rules out perfect correlation in the
sample.

▶ Assumption TS.2 also covers that there should be sample
variability in each explanatory variable.
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Assumption TS.3: Zero Conditional Mean

Assumption TS.3: Zero Conditional Mean (Strict Exogeneity)

For each t, the expected value of the error ut, given the
explanatory variables for all time periods, is zero.

E(ut | X) = 0, t = 1, 2, ..., n.

▶ Assumption TS.3 implies that the error at time t, ut, is
uncorrelated with each explanatory variable in every time
period.

▶ The functional relationship must be correctly specified.

▶ If ut is independent of each column in the matrix X and
E(ut) = 0, then Assumption TS.3 automatically holds. (but,
this is even stronger assumption).

Assumption TS.3: Zero Conditional Mean
▶ We require ut to be uncorrelated with the explanatory

variables, xs’ also dated at time t: in conditional mean terms,

E(ut | xt1, xt2, ..., xtk) = E(ut | xt) = 0

▶ ut and the explanatory variables are contemporaneously
uncorrelated.When the above condition holds, we say that the
xtj are contemporaneously exogenous (or weakly
exogenous).

Contemporaneous Exogeneity

Corr(xtj , ut) = 0, for all j.

▶ Assumption TS.3 requires more than contemporaneous
exogeneity.

▶ ut must be uncorrelated with xsj , even when s ̸= t.
▶ ut at time t must be uncorrelated with each explanatory

variable in every time period
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Assumption TS.3: Zero Conditional Mean

Strict Exogeneity, TS.3

E(ut | X) = 0 implies Corr(xsj , ut) = 0 for s ̸= t

▶ When TS.3 holds, we say that the explanatory variables, x’s
are strictly exogenous.

▶ The contemporaneous exogeneity is sufficient to prove
consistency of the OLS estimator. For OLS to be unbiased,
we need the strict exogeneity assumption.

▶ In the cross-sectional case, we did not explicitly state how ui,
is related to the explanatory variables. The reason this was
unnecessary is due to the random sampling assumption
(MLR.2).

▶ In a time series context, random sampling is not appropriate,
so we must explicitly assume the strict exogeneity.

8

Assumption TS.3: Zero Conditional Mean

▶ Assumption TS.3 puts no restriction on correlation in the
independent variables or in the ut across time.

▶ Assumption TS.3 only says that the average value of ut is
unrelated to the independent variables in all time periods.

▶ Two leading candidates for failure of this assumption are
omitted variables and measurement error.

▶ But, the strict exogeneity assumption can also fail for other,
less obvious reasons.
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Assumption TS.3: Zero Conditional Mean

▶ In the simple static regression model

yt = β0 + β1zt + ut

▶ Assumption TS.3 requires not only that ut and zt are
uncorrelated.

▶ But ut is also uncorrelated with past and future values of z:
{zt−1, zt−2, ...} and {zt+1, zt+2, ...}.

▶ This has two implications:

1. z can have no lagged effect on y. If z does have a lagged
effect on y, then we should estimate a distributed lag model.

2. Strict exogeneity excludes the possibility that changes in the
error term today can cause future changes in z. This
effectively rules out feedback from y on future values of z.
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Assumption TS.3: Zero Conditional Mean

▶ For example, consider a simple static model to explain a city’s
murder rate in terms of police officers per capita:

mrdrtet = β0 + β1polpct + ut

▶ It may be reasonable to assume that ut is uncorrelated with
polpct and even with past values of polpct.

▶ For the sake of argument, assume this is the case.

▶ But suppose that the city adjusts the size of its police force
based on past values of the murder rate.

▶ If this is the case, Assumption TS.3 is generally violated.

▶ This means that, say, polpct+1 might be correlated with ut
(since a higher ut leads to a higher mrdrtet).

▶ ut → polpct+1 and mrdrtet → polpct+1.
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Assumption TS.3: Zero Conditional Mean

▶ There are similar considerations in distributed lag models.
Usually we do not worry that ut might be correlated with past
z because we are controlling for past z, {zt−1, zt−2, ...}, in
the model.

▶ But feedback from u to future z is always an issue:

▶ ut → zt+1, zt+2, ....

▶ Explanatory variables that are strictly exogenous cannot react
to what has happened to y in the past.

▶ For example, the amount of rainfall, zt, at time t, is not
influenced by the output during the current or past years,
{Qt, Qt−1, Qt−2, ...}.

▶ It also means that rainfall in any future year, {zt+1, zt+2, ...},
is not influenced by the output during the current or past
years.
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Assumption TS.3: Zero Conditional Mean

▶ But something like the amount of labor input might not be
strictly exogenous, as it is chosen by the farmer, and the
farmer may adjust the amount of labor based on last year’s
yield.

▶ Therefore, the amount of labor is not strictly exogenous.

▶ In the social sciences, many explanatory variables may very
well violate the strict exogeneity assumption.

▶ Policy variables, such as growth in the money supply,
expenditures on welfare, highway speed limits are often
influenced by what has happened to the outcome variable in
the past.



Assumption TS.3: Zero Conditional Mean
▶ Even though Assumption TS.3 can be unrealistic, we begin

with it in order to conclude that the OLS estimators are
unbiased.

▶ Most treatments of static and finite distributed lag models
assume TS.3 by making the stronger assumption that the
explanatory variables are non-random, or fixed in
repeated samples.

▶ The new form of the assumption always guarantees
assumption TS.3.

▶ But, the non-randomness assumption is obviously false for
time series observations, while it isolates the necessary
assumption about how ut and the explanatory variables are
related in order for OLS to be unbiased.

▶ Assumption TS.3 has the advantage of being more realistic
about the random nature of the xtj .

▶ in order for OLS to be unbiased, it brings the strict conditions
how ut and the explanatory variables are related (x ↔ u).
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Unbiasedness of OLS

Theorem 10.1: Unbiasedness of OLS
Under assumptions TS.1− TS.3, the OLS estimators are unbiased
conditional on X, and therefore unconditionally as well:

E(β̂j) = βj , j = 0, 1, 2, . . . , k

▶ The proof of this theorem is essentially the same as that for
Theorem 3.1 in Ch.3 for the cross-sectional data.

▶ Here, the assumption of random sampling is dropped by the
assumption that ’for each t, ut has zero mean given the
explanatory variables at all time periods.’

▶ If this assumption does not hold, OLS cannot be shown to be
unbiased.
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Assumption TS.4: Homoscedasticity and TS.5: No Serial
Correlation

▶ By adding two assumptions let us complete the Gauss-Markov
assumptions for time series regressions: Homoscedasticity
and No serial correlation

Assumption TS.4: Homoscedasticity

Conditional on X, the variance of ut is the same for all t:
V ar(ut|X) = σ2, t = 1, 2, , ..., n.

Assumption TS.5: No Serial Correlation

Conditional on X, the errors in two different time periods are
uncorrelated: Corr(ut, us|X) = 0 for all t ̸= s
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TS.5: No Serial Correlation

Assumption TS.5: No Serial Correlation

Conditional on X, the errors in two different time periods are
uncorrelated: Corr(ut, us|X) = 0 for all t ̸= s

▶ Assumption TS.5 implies that for time t and s, u conditional
on X is uncorrelated.

▶ We can ignore the conditioning on X when X is treated as
non-random.

Corr(ut, us) = 0 for all t ̸= s

▶ When this assumption is not valid, we say that the errors
suffer from serial correlation, or autocorrelation, because
they are correlated across time.



17

Assumption TS.5: No Serial Correlation

▶ Consider the case of errors from adjacent time periods.
▶ Suppose that, when ut−1 > 0 then, on average, the error in

the next time period, ut, is also positive. Then
Corr(ut, ut−1) > 0 and the errors suffer from serial
correlation. The ideal case is that the random errors should be
distributed independently of each other.

▶ Why did we not assume that the errors for different
cross-sectional observations are uncorrelated?

▶ The answer comes from the random sampling assumption:
under random sampling, ui and uh are independent for any
two observations i and h. It can also be shown that this is
true, conditional on all explanatory variables in the sample.
So, serial correlation is generally an issue in time series
regressions.

▶ When random sampling is not reasonable, it is possible that
correlation exists, say, across cities within a state, but as long
as the errors are uncorrelated across those cities.

OLS Sampling Variances

Theorem 10.2: OLS Sampling Variances

Under the time series Gauss-Markov assumptions TS.1 through
TS.5,

Var(β̂j | X) =
σ2

SSTj(1−R2
j )
, j = 1, 2, . . . , k

where

SSTj =
n∑

t=1

(xtj − x̄j)
2

xj is the sample variability of jth independent variable, R2
j is the

R-squared from the regression of xj on the other independent
variables and the intercept term.

It is the exact variance we derived in Chapter 3 under the
cross-sectional regression. Multicollinearity among the explanatory
variables, applies immediately to the time series case.
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Gauss Markov Theorem

Theorem 10.3: Unbiased Estimation of σ̂2

Under Assumptions TS.1− TS5 the estimator σ̂2 = SSR
dof is an

unbiased estimator of σ2, where the degrees of freedom is
df = n− (k + 1)

The usual estimator of the error variance is also unbiased under
Assumptions TS.1 through TS.5, and the Gauss-Markov theorem
holds.

Theorem 10.4: Gauss-Markov Theorem
Under Assumptions TS.1 through TS.5, the OLS estimators are
the best linear unbiased estimators (BLUE) conditional on X.
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Inference Under the Classical Linear Model Assumptions

▶ OLS has the same desirable finite (small) sample properties
under TS.1 through TS.5 that it has under MLR.1 through
MLR.5.

▶ In order to use the usual OLS standard errors, t statistics,
and F statistics, we need to add a final assumption that is
analogous to the normality assumption we used for
cross-sectional analysis.

Assumption TS.6: Normality

The errors ut are independent of X and are independently and
identically distributed as N(0, σ2). That is ut ∼ N(0, σ2).

▶ Assumption TS.6 implies TS.3, TS.4 and TS.5.

▶ In other words, if TS.6 holds, TS.3, TS.4 and TS.5
automatically hold.

▶ But it is stronger because of the independence and normality
assumptions.
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Inference Under the Classical Linear Model Assumptions

Theorem 10.5: Normal Sampling Distributions

Under Assumptions TS.1 through TS.6, the CLM assumptions for
time series, the OLS estimators are normally distributed,
conditional on X. Further, under the null hypothesis, each t
statistic has a t distribution, and each F statistic has an F
distribution. The usual construction of confidence intervals is also
valid.
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Inference Under the Classical Linear Model Assumptions

▶ Theorem 10.5 implies that, when Assumptions TS.1 through
TS.6 hold, everything we have learned about estimation and
inference for cross-sectional regressions applies directly to time
series regressions. Thus, t statistics can be used for testing
statistical significance of individual explanatory variables, and
F statistics can be used to test for joint significance.

▶ The classical linear model assumptions for time series data are
much more restrictive than those for the cross-sectional data.

▶ In particular, the strict exogeneity and no serial correlation
assumptions can be unrealistic. Nevertheless, the CLM
framework is a good starting point for many applications.
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Example 10.1: Static Phillips Curve

▶ To determine whether there is a tradeoff, on average, between
unemployment and inflation

▶ We can test H0 : β1 = 0 against H1 : β1 < 0.

inft = β0 + β1unempt + ut

▶ If the classical linear model assumptions hold, we can use the
usual OLS t statistic.

Static Phillips Curve (1948-1996) PHILLIPS.RAW

înft = 1.42
(1.72)

+ 0.468
(0.289)

unemt

n = 49 R2 = 0.053 R̄2 = 0.033
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Example 10.1: Static Phillips Curve

▶ This equation does not suggest a tradeoff between unem and
inf . Because β̂1 has an unexpected (+) sign.

▶ The static Phillips curve is probably not the best model for
determining whether there is a short-run tradeoff between
inflation and unemployment. The expectations augmented
Phillips curve should be preferred.

▶ Furthermore, the CLM assumptions may not hold in this
model.
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Example 10.2: Effects of Inflation and Deficits on Interest
Rates (US)

▶ i3: the three-month T-bill rate.

▶ inf : the annual inflation rate based on the consumer price
index (CPI).

▶ def : the federal budget deficit as a percentage of GDP.

▶ Time Span: Annual, 1948-1996.

Effects of Inflation and Deficits on Interest Rates
(INTDEF.RAW)

î3t = 1.25
(0.44)

+ 0.613
(0.076)

inft + 0.700
(0.118)

deft

n = 49 R2 = 0.697 R̄2 = 0.683
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Example 10.2:

▶ These estimates show that increases in inflation and the
relative size of the deficit work together to increase short-term
interest rates, both of which are expected from basic
economics.

▶ A ceteris paribus one percentage point increase in the inflation
rate increases i3 by 0.613 points.

▶ Both inf and def are very statistically significant (high
t-ratios), assuming, of course, that the CLM assumptions
hold.
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Functional Form and Dummy Variables

▶ All of the functional forms in cross-sectional regression can be
used in time series regressions.

▶ The most important of these is the natural logarithm: time
series regressions with constant percentage effects appear
often in applied work.
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Example 10.3: Employment and Minimum Wage

▶ prepop: the employment rate in Puerto Rico (ratio of those
working to total population)

▶ mincov = [average minimum wage/average overall wage] ×
[proportion of workers covered by minimum wage law]

▶ mincov measures the importance of the minimum wage
relative to average wages.

▶ usgnp: real U.S. gross national product (in billions of dollars).

▶ Time Span : 1950-1987.

Employment and Minimum Wage (data = prminwge)

̂log(prepop)t = −1.05
(0.77)

− 0.154
(0.065)

log(mincov)t − 0.012
(0.118)

log(usgnp)t

n = 38 R2 = 0.661 R̄2 = 0.641
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Example 10.3: Employment and Minimum Wage

▶ The estimated elasticity of prepop with respect to mincov is
0.154, and it is statistically significant.

▶ Therefore, a higher minimum wage lowers the employment
rate, something that classical economics predicts.

▶ The usngp variable is not statistically significant, but this
changes when we account for a time trend in the next section.
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FDL Model and Logarithmic Functional Form

▶ We can use logarithmic functional forms in finite distributed
lag models, FDL, too.

▶ For example, for quarterly data, suppose that money demand
(M) and gross domestic product (GDP ) are related by

FDL(4)

log(Mt) = α0+δ0log(GDP )t+δ1log(GDP )t−1+δ2log(GDP )t−2

+ δ3log(GDP )t−3 + δ4log(GDP )t−4 + ut

31

FDL Model and Logarithmic Functional Form

▶ The impact propensity in this equation, δ0, is also called the
short-run elasticity: it measures the immediate percentage
change in money demand given a 1% increase in GDP .

▶ The long-run propensity, δ0 + δ1 + δ2 + δ3 + δ4, is sometimes
called the long-run elasticity: it measures the percentage
increase in money demand after four quarters given a
permanent 1% increase in GDP .
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Time Series Analysis and Dummy (Binary) Variables

▶ Binary or dummy independent variables are also quite useful
in time series applications.

▶ Since the unit of observation is time, a dummy variable
represents whether, in each time period, a certain event has
occurred.

▶ For example, for annual data, we can indicate in each year
whether a political party is in power which is unity if an X
party is in power, and zero otherwise.

▶ Often dummy variables are used to isolate certain periods that
may be systematically different from other periods covered by
a data set such as wars, crisis, earthquakes.

▶ Binary explanatory variables are the key component in what is
called an event study. In an event study, the goal is to see
whether a particular event influences some outcome.
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Example 10.4: Effects Of Personal Tax Exemption on
Fertility Rates, (US, 1913-1984)

▶ gfr: the number of children born to every 1,000 women of
childbearing age

▶ pe: the average real dollar value of the personal tax
exemption when having a child.

▶ ww2: takes on the value unity (1) during the years 1941
through 1945, when the United States was involved in World
War II, otherwise 0

▶ pill: takes on the value unity from 1963 on, when the birth
control pill was made available for contraception.

Tax Exemption and Fertility (FERTIL3.RAW)

ĝfrt = 98.68
(3.21)

+ 0.083
(0.030)

pet − 24.24
(7.46)

ww2t − 31.59
(4.08)

pillt

n = 72 R2 = 0.473 R̄2 = 0.450
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Example 10.4: Tax Exemption and Fertility

▶ Each variable is statistically significant at the 1% level against
a two-sided alternative.

▶ The fertility rate was lower during World War II: given pe,
there were about 24 fewer births for every 1,000 women of
childbearing age, which is a large reduction. (From 1913
through 1984, gfr ranged from about 65 to 127.)

▶ Similarly, the fertility rate has been substantially lower since
the introduction of the birth control pill.

▶ The variable of economic interest is pe. The average pe over
this time period is 100.4 dollars, ranging from zero to 243.83.
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Example 10.4: Tax Exemption and Fertility

▶ The coefficient on pe implies that a 12-dollar increase in pe
increases gfr by about one birth per 1,000 women of
childbearing age ( 12 x 0.083 = 1 ).

▶ The fertility rate may react to changes in pe with a lag.
▶ Estimating a distributed lag model with two lags

Tax Exemption and Fertility: FDL(2)

ĝfrt = 95.87
(3.28)

+ 0.073
(0.126)

pet − 0.0058
(0.1557)

pet−1

+ 0.034
(0.126)

pet−2 − 22.13
(10.73)

ww2t − 31.30
(3.98)

pillt

n = 70 R2 = 0.499 R̄2 = 0.459

▶ n=70 because we lose two when we lag pe twice.
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Example 10.4: Tax Exemption and Fertility

▶ The coefficients on the pe variables are estimated very
imprecisely, and each one is individually insignificant.

▶ It turns out that there is substantial correlation between pet,
pet−1 and pet−2 and this multicollinearity makes it difficult to
estimate the effect at each lag.

▶ However, pet, pet−1 and pet−2 are jointly significant: the F
statistic has a p-value of 0.012.

▶ Thus, pe does have an effect on gfr , but we do not have
good enough estimates to determine whether it is
contemporaneous or with a one or two-year lag (or some of
each).

▶ Actually, pet−1 and pet−2 are jointly insignificant in this
equation (p-value 0.95) So, we would be justified in using the
static model.
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Example 10.4: Tax Exemption and Fertility

▶ But for illustrative purposes, let us obtain a confidence
interval for the long-run propensity in this model.

▶ The long run propensity of the FDL(2) model is
0.073− 0.0058 + 0.034 = 0.101.

▶ To obtain the standard error of the estimated LRP, we use the
trick suggested in Chapter 4.

▶ θ0 = δ0 + δ1 + δ2 is the LRP

▶ Substitute for δ0 = θ0 − δ1 − δ2 in the model

gfrt = α0 + δ0pet + δ1pet−1 + δ2pet−2 + ...

= α0 + (θ0 − δ1 − δ2)pet + δ1pet−1 + δ2pet−2 + ...

= α0 + θ0pet + δ1(pet−1 − pet) + δ2(pet−2 − pet) + ...
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Example 10.4: Tax Exemption and Fertility

▶ Running this last regression gives θ̂0= 0.101 as the coefficient
on pet and stderror(θ̂0) = 0.030. Therefore, the t statistic is
about 3.37, so it is statistically significant.

▶ Even though none of the δ is individually significant, the LRP
is very significant. The 95% confidence interval for the θ0 is
about 0.041 to 0.160.
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Using Trend in Time Series Analysis

▶ Many economic time series have a common tendency of
growing over time.

▶ We must recognize that some time series contain a time
trend in order to draw causal inference using time series data.

▶ Ignoring the fact that two sequences are trending in the same
or opposite directions can lead us to falsely conclude that
changes in one variable are actually caused by changes in
another variable.

▶ In many cases, two time series processes appear to be
correlated only because they are both trending over time for
reasons related to other unobserved factors.

▶ What kind of statistical models adequately capture trending
behavior?
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Using Trend in Time Series Analysis

▶ One popular model is the linear time trend model.

Linear Time Trend Model

yt = α0 + α1t+ et, t = 1, 2, ...

▶ where (et) is an independent and identically distributed,
iid sequence.

E(et) = 0 V ar(et) = σ2
e

▶ Note how the parameter α1 multiplies time, t, resulting in a
linear time trend.

▶ In this model, holding all other factors (those in et) fixed, α1

measures the change in y from one period to the next due to
the passage of time.



1947-1987 Output per labor hour in the US: 1977=100

An example of linear trend
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Using Trend in Time Series Analysis

▶ When ∆et = 0,
∆yt = yt − yt−1

▶ Another way to think about a sequence that has a linear time
trend is that its average value is a linear function of time:

E(yt) = α0 + α1t.

▶ If α1 > 0, then, on average, yt is growing over time and
therefore has an upward trend.

▶ If α1 < 0, then yt has a downward trend.

▶ The values of yt do not fall exactly on the line due to
randomness, but the expected values are on the line.

▶ For et takes on random values, yt fluctuates around the linear
time trend.
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Using Trend in Time Series Analysis

▶ Unlike the mean, the variance of yt is constant across time:

V ar(yt) = V ar(yt−1) = σ2
e

▶ If {et} is an i.i.d. sequence, then {yt} is an independent,
though not identically, distributed sequence.

▶ A more realistic characterization of trending time series allows
et to be correlated over time, but this does not change the
flavor of a linear time trend.
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Using Trend in Time Series Analysis

▶ Many economic time series are better approximated by an
exponential trend, which follows when a series has the same
average growth rate from period to period.

▶ In practice, an exponential trend in a time series is captured
by modeling the natural logarithm of the series as a linear
trend (assuming that yt > 0):

Exponential Trend Model

yt = exp(β0 + β1t+ et)

▶ β1 is called the growth rate in y from period t− 1 to period t.
Taking the natural logarithm of both sides:

log(yt) = β0 + β1t+ et

∆log(yt) ≈
yt − yt−1

yt−1
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Exponential Trend Model

yt = exp(β0 + β1t+ et)

▶ Taking the natural logarithm of both sides:

log(yt) = β0 + β1t+ et

∆log(yt) ≈
yt − yt−1

yt−1

▶ Setting ∆et = 0,
∆log(yt) = β1

▶ In other words, β1 is approximately the average per period
growth rate in yt.

▶ For example, if t denotes year and β1 = 0.027, then yt grows
about 2.7% per year on average.

An example of exponential trend

Nominal U.S. imports (in billions of U.S. dollars)
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Exponential Trend Example: Turkish Real GDP
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Exponential Trend: Turkish Real GDP

Regression of log(Real GDP) on trend in equation form:

̂log(RealGDP ) = 16.58 + 0.01trend

Interpretation: Average growth rate at each quarter is
approximately 1%. This corresponds to an annual growth rate of
4% on average.
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Exponential Trend: Turkish Real GDP

Residuals from the exponential trend regression
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Using Trend in Time Series Analysis

▶ Although linear and exponential trends are the most common,
time trends can be more complicated.

▶ When the slope of the trend changes over time (increasingly
or decreasingly), t2 can be added as a regressor to the model:

Quadratic Trend Model

yt = α0 + α1t+ α2t
2 + et

▶ If α1 and α2 are positive, the slope of the trend is increasing
with t .

▶ If α1 > 0 and α2 < 0, the trend has a hump shape. The slope
of the trend is decreasing with t.

∆yt
∆t

≈ α1 + 2α2t

51

Using Trending Variables in Regression Analysis

▶ The trending variables in regression analysis do not violate the
assumptions, TS.1 through TS.6.

▶ However, we must be careful to allow for the fact that
unobserved, trending factors that affect yt might also be
correlated with the explanatory variables. This is called the
spurious regression.

▶ Adding a time trend eliminates this problem.

yt = β0 + β1xt1 + β2xt2 + β3t+ ut

▶ Allowing for the trend (t) in this equation recognizes that yt
may be growing (β3 > 0) or shrinking (β3 < 0) over time for
reasons essentially unrelated to xt1 and xt2.

▶ Omitting t as a regressor,when necessary, causes the omitted
variable bias.

Example 10.7: Housing Investment and Prices
▶ invpc : real per capita housing investment and price : a

housing price index (1982=1)
▶ There might be a superiors regression. When we add t, the

relationship between the variables disappeared.

Regression Without Trend

̂log(invpc) = −5.50
(0.43)

+ 1.241
(0.382)

log(price)

n = 42 R2 = 0.208 R̄2 = 0.189

Regression With Trend

̂log(invpc) = −0.913
(0.136)

− 0.381
(0.679)

log(price) + 0.0098
(0.0035)

t

n = 42 R2 = 0.341 R̄2 = 0.307



Using Trending Variables in Regression Analysis
▶ Including a time trend in a regression model is the same as

detrending the original data series before using them in
regression analysis. For concreteness, consider the following
three models:
1. yt = α0 + α1t+ ut MODEL A
2. xt1 = θ0 + θ1t+ et MODEL B
3. xt2 = γ0 + γ1t+ ht MODEL C

▶ Regress each of yt, xt1 and xt2 on a constant and the time
trend t and save the residuals of each model (Detrending).

▶ If we regress the residuals of MODEL A on the residuals of
MODEL B and MODEL C, the slope estimates of primary
interest in this model (No intercept is necessary, but including
an intercept affects nothing: the intercept will be estimated to
be zero.)

yt = β0 + β1xt1 + β2xt2 + β3t+ error

▶ are exactly as the same as the slope estimates β̂1 and β̂2
coming from a regression with time trend.

Using Trending Variables in Regression Analysis
▶ R2 in time series regressions are often very high, compared

with typical R2 for cross-sectional data

▶ One reason is that time series data often come in aggregate
form.

▶ Aggregates are often easier to explain than outcomes on
individuals,firms etc. which is often the nature of
cross-sectional data.

▶ Another reason is that R2 for time series regressions can be
high when the dependent variable (y) is trending.

▶ Remember that R2 is a measure of how large the error
variance is relative to the variance of y.

▶ When yt is trending, there is no problem, provided a time
trend is included in the regression.

▶ However, when E(yt) follows a linear time trend , SST
n−1 is no

longer an unbiased or consistent estimator of V ar(yt).

▶ When y has a time trend, see pp.366-367 in your textbook for
the calculation of R2.

Seasonality
▶ If a time series is observed at monthly, quarterly intervals

(even weekly or daily), it may exhibit seasonality.

▶ For example, weather patterns changing with seasons, holiday
weeks (Christmas Effect for December) etc. may create some
kind of systematic seasonal structures in some time series
variables.

▶ The time series that do display seasonal patterns are often
seasonally adjusted.

▶ If we study with seasonally unadjusted raw data, we can
include a set of seasonal dummy variables to account for
seasonality in the dependent variable and the independent
variables, or both.
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Seasonality

▶ When estimating a regression model using monthly data, we
include 11 (not 12. Why?) seasonal dummy variables
indicating whether time period t corresponds to the
appropriate month.

▶ In this framework, January is the base month, and β0 is the
intercept for January.

yt = β0 + δ1febt + δ2mart + ...+ δ11dect

+ β1xt1 + ...+ βkxtk + ut

▶ If there is no seasonality in yt, once the xtj have been
controlled for, then δ1 through δ11 are all zero (the null
hypothesis). This is easily tested via an F test. If the
calculated F statistic is greater than the critical value, it
indicates seasonality in the time series of interest.
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Seasonality

▶ If the data are quarterly, then we would include dummy
variables for 3 of the four quarters, with the omitted category
being the base quarter.

▶ Just as including a time trend in a regression has the
interpretation of initially detrending the data, including
seasonal dummies in a regression can be interpreted as
deseasonalizing the data.
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Seasonality Example: Turkish Quarterly Real GDP

Turkish Real GDP No Seasonal Adjustment
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Seasonality Example: Turkish Quarterly Real GDP

Create four quarterly dummy variables; and then regress
log(RGDP) on trend and three quarter dummies, quarter one will
be the base group. in equation form:

̂log(RealGDP ) = 16.48+0.01 trend+0.07 Q2+0.20 Q3+0.11 Q4
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Seasonality Example: Turkish Quarterly Real GDP
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