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What is Time Series Data?

I A time series variable can be defined as a sequence of
observations or measurements indexed by time. For example,
yt, t = 1, 2, . . ., where time subscript t is assumed to be
discrete.

I Time series data come with a temporal ordering, usually from
earliest to latest.

I The time intervals between observations can be regular or
irregular (time frequency). We will only focus on regularly
measured time series data (for example, at monthly, annual,
weekly, daily frequency).

I We must not forget that the past can affect the future, but
not vice versa.
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What is Time Series Data?

I The samples were randomly drawn from the appropriate
population in the cross-sectional data.

I Understanding why cross-sectional data should be viewed as
random outcomes is straightforward: a different sample drawn
from the population will generally yield different values of the
independent and dependent variables.

I Therefore, the OLS estimates computed from different
random samples will generally differ, and this is why we
consider the OLS estimators to be random variables.

I How should we think about randomness in time series data?

I We do not know which future values a time series (GDP,
closing prices of BIST 100 index, etc.) will take on. Since the
outcomes of these variables are not foreknown, they should be
clearly be viewed as a random variable.
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Time series Process or Stochastic Process

Definition: Time series Process or Stochastic Process
Stochastic process or time series process is a sequence of
random variables indexed by time (t).

I Stochastic means random.
I When we collect a time series data set, we obtain one possible

outcome, or realization, of the stochastic process.
I We can only see a single realization, because we cannot go

back in time and start the process over again.
I However, if certain conditions in history had been different, we

would generally obtain a different realization for the stochastic
process.

I This is why we think of time series data as the outcome of
random variables. The set of all possible realizations of a time
series process plays the role of the population in
cross-sectional analysis.
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Single Realization of a Time Series

A single realization of a stochastic process can be shown as
{yt : t = 1, 2, . . . , n} or da {yt}nt=1. This can be thought of as a a
subset doubly infinite series given by:

{yt}∞t=−∞ = {. . . , y−1, y0, y1, y2, . . . , yn−1, yn︸ ︷︷ ︸
{yt}nt=1 realization

, yn+1, yn+2, . . .}

I In practice, the time index will always start at 1, but
theoretically it can be any integer (or even continuous real
number, but we will not cover those).

I If the process can be repeated, then this would result in a
different realization (from the same underlying model - or
stochastic process).

I In social sciences, economics, finance, and business, we almost
always work with single realizations of time series.

I Let’s see some examples of time series.
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Annual Real GDP per capita in Turkey 1950-2014
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Annual Real GDP per capita in Turkey 1950-2014

year t GDPt GDPt−1 GDPt−2 GDPt−3
1950 1 3054 NA NA NA
1951 2 3639 3054 NA NA
1952 3 3892 3639 3054 NA
1953 4 4279 3892 3639 3054
1954 5 3823 4279 3892 3639
1955 6 4079 3823 4279 3892
1956 7 4042 4079 3823 4279
1957 8 4838 4042 4079 3823
1958 9 5146 4838 4042 4079

...
...

...
...

...
...

2011 62 17525 16198 14914 15317
2012 63 18382 17525 16198 14914
2013 64 18805 18382 17525 16198
2014 65 19236 18805 18382 17525
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Growth Rate of Real GDP pc (TURKEY)
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Growth Rate (gt) of Real GDP pc, Turkey 1950-2014

year t GDPt gt gt−1 gt−2
1950 1 3053.906 NA NA NA
1951 2 3639.277 19.17 NA NA
1952 3 3892.127 6.95 19.17 NA
1953 4 4279.322 9.95 6.95 19.17
1954 5 3823.493 −10.65 9.95 6.95
1955 6 4079.167 6.69 −10.65 9.95
1956 7 4042.11 −0.91 6.69 −10.65
1957 8 4838.391 19.70 −0.91 6.69
1958 9 5146.153 6.36 19.70 −0.91

...
...

...
...

...
...

2011 62 17525.17 8.19 8.61 −2.63
2012 63 18382.36 4.89 8.19 8.61
2013 64 18804.88 2.30 4.89 8.19
2014 65 19236.12 2.29 2.30 4.89

growth rate is defined as gt = 100 ∗ (GDPt −GDPt−1)

GDPt−1
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Korean GDP growth rate

Compare and contrast with Turkey’s GDP growth rate
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Annual Real GDP per capita in Selected Countries
1950-2014

0
10

00
0

20
00

0
30

00
0

40
00

0
R

ea
l G

D
P

 P
er

 C
ap

ita
 (

20
11

 P
P

P
 U

S
D

ol
la

rs
)

1950 1960 1970 1980 1990 2000 2010 2020
Year

Turkey Mexico
Malaysia Korea

12

Annual Real GDP per capita in Selected Countries
1950-2014
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Number of Tourist Arrivals in Turkey
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Average Temperature in Istanbul
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Total Precipitation in Istanbul
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Water Consumption in Istanbul (average pc per day)

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

W
at

er
 s

up
pl

ie
d 

(c
ub

ic
 m

et
er

s 
pe

r 
da

y)

2000m1 2005m1 2010m1 2015m1



17

Water Consumption in Istanbul (average pc per day)
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Industrial Production Index
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Industrial Production Index
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A Note on Index Numbers

I Index numbers are widely used in macroeconometric and
financial applications. For example, Industrial Production
Index (IPI), Consumer Price Index (CPI).

I Particular values of an index can only be interpreted with the
base value at a year. E.g., if the base year is 2000 and base
value is 100, then values at other time periods can be
interpreted relative to the base period. If the value is 120 in
2003, then we can say that the index increased 20% from
2000 to 2003.

I We can easily change the base period using the following
formula

new indext = 100× old indext
old indexnewbase

where old indexnewbase is the original value of the index in
the new base year
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Twitter and Facebook Stock Prices
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S&P500 Daily Closing Prices
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S&P500 Daily Returns

-1
0

-5
0

5
10

D
ai

ly
 R

et
ur

ns
 o

f S
&

P
50

0,
 %

01jan1990 01jan1995 01jan2000 01jan2005 01jan2010 01jan2015

24

Vostok (South Pole) Ice Core CO2 Data

I Layers of ice formed over long periods of time can be useful to
analyze atmospheric conditions in the past.

I As falling snow becomes part of the ice it entraps chemicals
and particulate matter in the air layer by layer.

I Researchers drill ice to examine these layers which contain
information on the greenhouse gas concentration,
temperature, among other things.

I Ice-cores are drilled at the research locations in the South
Pole. These can be up to 3 kilometers long.

I The following data plots carbon dioxide (CO2) concentrations

I The time scale is measured in years Before Present (BP):
417160 - 2342 years BP. For more information visit:
https://icecores.org/about-ice-cores and
https://cdiac.ess-dive.lbl.gov/trends/co2/vostok.html

https://icecores.org/about-ice-cores
https://cdiac.ess-dive.lbl.gov/trends/co2/vostok.html
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Ice-core Drilling

Figure sources: Wikipedia Commons and icecores.org.
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Vostok Research Station
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Vostok (South Pole) Ice Core CO2 Data
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Measuring Dependence in Time Series

I Time series variables tend to be dependent on its own past.

I The nature of this dependence can be useful in modeling time
series data.

I Autocovariance and autocorrelation are widely used to
measure dependence in time series.

I Let’s start with the definition of the sample autocovariance.
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Sample Autocovariance

Covariance and correlation coefficient measure the linear
association between random variables X and Y . In time series
analysis, we are particularly interested in the correlation between
the value at time t and the value at previous time periods, say
s = t− h. In other words covariance and correlation with itself:

Definition: Sample Autocovariance

γ̂h =
1

n

T∑
t=h+1

(yt − ȳ)(yt−h − ȳ) (1)

where ȳ = 1
n

∑n
t=1 yt is the sample mean.
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Sample Autocovariance

For example, h = 1 is called the first autocovariance

γ̂1 =
1

n

T∑
t=2

(yt − ȳ)(yt−1 − ȳ) (2)

, h = 2 is the second autocovariance, etc. What about h = 0?
This is simply the sample variance:

γ̂0 = V̂ar(yt) =
1

n

T∑
t=1

(yt − ȳ)2 (3)

31

Measuring Dependence: Sample Autocorrelation

Autocorrelation measures the linear relationship between lagged
values of a time series yt. The sample autocorrelation is defined as

Definition: Sample Autocorrelation

ρ̂h =
γ̂h
γ̂0

(4)

Note that this definition is similar to the definition of correlation
coefficient that you learned in statistics classes. It measures the
strength of the relationship between y values that are h-period
apart. h = 1 is called the first autocorrelation, h = 2 is the second
autocorrelation, etc. By computing all autocorrelations up to a
predetermined maximum lag order, we inspect the dependence
structure of a time series. The plot is called the sample
autocorrelation function (ACF or SACF, or correlogram).
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ACF - Correlogram

I The graph (sample) autocorrelations for a set of lags
(h = 1, 2, . . . ,H) is known as (sample) correlogram.

I It can be used to display dependence structure in a time series.

I In large sample, using Central Limit Theorem

ρ̂j ∼ N
(

0,
1

n

)
(Note:

√
nρ̂j ∼ N(0, 1)).

I 95% confidence interval around zero can be found by ±1.96√
n

.
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White Noise Process

I As an example of a stochastic process, let us consider the
“white noise” process. Here is the definition:

I If a stochastic process, {εt : t = 1, 2, . . .}, has the following
properties

E[εt] = 0 (5)

γ0 = Var(εt) = σ2 (6)

γt−s = Cov(εt, εs) = 0, t 6= s (7)

Then this process is called the white noise process, denoted
εt ∼ wn(0, σ2).

I Note the white noise process has a zero mean and a constant
variance. Mean and variance do not depend on time.
Additionally, current value, εt, does not depend on past
values, as indicated by zero autocovariances for any time
indices t and s with t 6= s
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White Noise Process

Here is a simulated example of white noise process
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Sample ACF (Correlogram) of a White Noise Process

Note that 95% confidence interval around zero is shown by dotted
lines (±1.96√

n
) which contains zero.
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SACF of Turkish GDP pc
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Note that when the series have a trend, as in the GDP graph
above, SACF values at low lags tend to be large and positive but
declining as lag order (distance) increases.
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SACF of Turkish GDP pc GROWTH RATE
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Autocorrelations of the GROWTH RATE of Turkish GDP pc are
within the 95% confidence band. This implies that they are
uncorrelated.
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SACF of Korean GDP pc GROWTH RATE
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In contrast to Turkish case, Korean SACF values for the lag orders
1,2, 3 seem to be positive and significant.
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SACF of Monthly Temperature in Istanbul
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When the time series variable is seasonal (but no trend) then the
ACF will have peaks at seasonal lags 12,24,etc, and troughs at 6,
18, etc.
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Number of Airline Passengers (monthly)
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The number of airline passengers have an increasing trend and
seasonal variations. SACF has seasonal peaks at the multiples of
12. SACF decreases as lag order increases (due to increasing
trend).



Classical Decomposition of Time Series

Additive Decomposition

yt = Trendt + Seasonalt + Irregulart

Multiplicative Decomposition

yt = Trendt × Seasonalt × Irregulart
or

log(yt) = log(Trendt) + log(Seasonalt) + log(Irregulart)
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Classical Decomposition of Time Series

I Trendt component is the trend-cycle component
(slow-moving long-run and medium-run components including
business cycles),

I Seasonalt component reflects fluctuations that generally
repeats during the same time each year or month (or even
day, hour, etc.)

I Irregulart is the remainder component.

I If the seasonal variations around the trend-cycle component
remain more or less stable then the additive component may
be appropriate.

I Otherwise, the multiplicative component should be used. Take
a look at the time series graph of airline passengers in the
next slide. As time passes, the variability in the seasonal
variations increase. Therefore, a multiplicative decomposition,
or, log-additive decomposition would be more appropriate.

Classical Decomposition of Airline Passengers
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Examples of Time Series Models

Now we discuss some examples of time series model useful in
empirical time series analysis estimated by OLS.

Static Model
Suppose that we have time series data available on two variables,
say y and z dated contemporaneously. A static model relating y to
z is

yt = β0 + β1zt + ut t = 1, 2, ..., n

A static model can also be postulated in first-differences:

∆yt = β1∆zt + ∆ut t = 1, 2, ..., n
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Static Phillips Curve

I The static Phillips curve is an example of the static model,
given by

Static Phillips Curve

inft = β0 + β1unempt + ut

I inft: inflation rate and unempt: unemployment rate

I This form of the Phillips curve assumes a constant natural
rate of unemployment and constant inflationary
expectations.

I It can be used to study the contemporaneous tradeoff
between inft and unempt.
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Finite Distributed Lag Models, FDL models

I In a finite distributed lag model (FDL model) we allow one or
more variable to affect y with a lag. For example, for annual
observations, consider the model

Effect of Tax Exemption on Fertility

gfrt = α0 + δ0pet + δ1pet−1 + δ2pet−2 + ut

I gfrt: Fertility rate, children born per 1000 women.

I pet: The real dollar value of the personal tax exemption
(some kind of incentive to have a child).
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Finite Distributed Lag Models, FDL models

I The fertility rate may depend on on the tax value of a child,
the effect may have a lag. The following model is an FDL of
order two.

FDL model of order two

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut

I suppose that z is a constant, equal to c, in all time periods
before time t. At time t, z increases by one unit to c+ 1 and
then reverts to its previous level at time t+ 1. ( the increase
in z is temporary.)

..., zt−2 = c, zt−1 = c, zt = c+ 1, zt+1 = c zt+2 = c, ...

I To focus on the ceteris paribus effect of z on y, we set the
error term in each time period to zero. The ceteris paribus
effect on y is called the impact multiplier or impact
propensity.
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Calculating Impact Multiplier

I Calculating the impact multiplier of FDL model of order 2:

yt−1 = α0 + δ0c+ δ1c+ δ2c,

yt = α0 + δ0(c+ 1) + δ1c+ δ2c,

yt+1 = α0 + δ0c+ δ1(c+ 1) + δ2c,

yt+2 = α0 + δ0c+ δ1c+ δ2(c+ 1),

yt+3 = α0 + δ0c+ δ1c+ δ2c,

I From the first two equations, yt − yt−1 = δ0.

I δ0 is the immediate change in y due to the one-unit increase
in z at time t.

I δ0 is usually called the impact propensity or impact multiplier.
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Calculating Impact Multiplier

I Similarly, yt+1 − yt−1 = δ1 is the change in y one period after
the temporary change,

I And yt+2 − yt−1 = δ2 is the change in y two periods after the
change.

I At time t+ 3, y has reverted back to its initial level:
yt+3 = yt−1

I This is because we have assumed that only two lags of z
appear in the FDL model of order 2.

I When we graph the δj as a function of j, we obtain the lag
distribution,which summarizes the dynamic effect that a
temporary increase in z has on y
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Long Run Propensity, LRP

I We are also interested in the change in y due to a permanent
increase in z.

I Before time t, z equals the constant c. At time t, z increases
permanently to c+ 1.

I Again, setting the errors to zero, we have

yt−1 = α0 + δ0c+ δ1c+ δ2c,

yt = α0 + δ0(c+ 1) + δ1c+ δ2c,

yt+1 = α0 + δ0(c+ 1) + δ1(c+ 1) + δ2c,

yt+2 = α0 + δ0(c+ 1) + δ1(c+ 1) + δ2(c+ 1),
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Long Run Propensity, LRP

I With the permanent increase in z, after one period, y has
increased by δ0 + δ1, and after two periods, y has increased by
δ0 + δ1 + δ2. There are no further changes in y after two
periods.

I This shows that the sum of the coefficients on current and
lagged z,δ0 + δ1 + δ2, is the long-run change in y given a
permanent increase in z. and is called the long-run propensity
(LRP) or long-run multiplier.

I This effect is called the long run multiplier or long run
propensity.

I The LRP is often of interest in distributed lag models.
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Long Run Propensity, LRP

Effect of Tax Exemption on Fertility

gfrt = α0 + δ0pet + δ1pet−1 + δ2pet−2 + ut

I In this model, δ0, measures the immediate change in fertility
due to a one-dollar increase in pe. There are reasons to
believe that δ0, is very small or zero.

I But δ1 and δ2 or both, might be positive. If pe permanently
increases by one dollar, then, after two years, gfr will have
changed by δ0 + δ1 + δ2.

I This model assumes that there are no further changes after
two years. Whether or not, this is actually the case is an
empirical matter.
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FDL model of order q

I A finite distributed lag model of order q is written as

FDL(q)

yt = α0 + δ0zt + δ1zt−1 + ...+ δqzt−q + ut

I The FDL models is useful for testing whether there are lagged
effects of independent variable z on dependent variable y.

I The impact propensity is always the coefficient on the
contemporaneous zt, δ0.

I The long-run propensity, LRP is the sum of all coefficients of
zt−j .

LRP = δ0 + δ1 + ...+ δq
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FDL model of order q, FDL(q)

I Because of the often substantial correlation in z at different
lags due to multicollinearity, it can be difficult to obtain
precise estimates of the individual δj . Interestingly, even when
the δj cannot be precisely estimated, we can often get good
estimates of the LRP.

I We can have more than one explanatory variable appearing
with lags, or we can add contemporaneous variables to an
FDL model.

I Question: In an equation for annual data, suppose that

FDL(2)

întt = 1.6 + 0.48inft − 0.15inft−1 + 0.32inft−2

I where int is an interest rate and inf is the inflation rate,
what are the impact and long-run propensities?


