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1 Classical Regression Model

The regression model with k parameters can be written for each observation i:

yi = β1 + β2xi2 + β3xi3 + . . . + βkxik + ui, i = 1, . . . , n

where yi is the dependent variable for observation i, and xij, j = 2, 3 . . . , k, is

ith observed value for jth independent variable. ui is the random error term. We
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can also write a system of n equations with k unknowns:
y1
y2
...

yn

 =


1 x12 . . . x1k
1 x22 . . . x2k
... ... . . . ...

1 xn2 . . . xnk



β1
β2
...

βk

 +


u1
u2
...

un


Let us define the following vectors and matrices:

y =


y1
y2
...

yn

 , X =


1 x12 . . . x1k
1 x22 . . . x2k
... ... . . . ...

1 xn2 . . . xnk

 , β =


β1
β2
...

βk

 , u =


u1
u2
...

un


Then we can write the model as below:

y︸︷︷︸
n×1

= X︸︷︷︸
n×k

β︸︷︷︸
k×1

+ u︸︷︷︸
n×1

Another way of writing this model is based on summoning the ith observed values

for independent variables in a k × 1 vector.

xi =
[

1 xi2 xi3 . . . xik
]>
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The regression model in this notational form:

yi = x>i β + ui, i = 1, . . . , n

Assumptions of Classical Regression Model:

1. The model is linear in parameters: y = Xβ + u

2. rank(X) = k, (No perfect collinearity, i.e. The columns of X are indepen-

dent of each other.)

3. E [u|X ] = 0n×1, (Zero conditional mean)

4. V [u|X ] = E
(
uu>

)
= σ2In, (Homoscedasticity and no serial correlation)

5. u|X ∼ N
(
0, σ2In

)
, (the random error is distributed as multivariate nor-

mal.)
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2 OLS Estimator

Sample Regression Function (SRF):

y = Xβ̂ + û

where β̂ is a k×1 vector of OLS estimators , û is a n×1 vector of residuals. The

OLS method chooses β̂ vector by minimizing the sum of squared residuals,(SSR):

β̂ = arg min
b

SSR(b)

The optimization problem is based on finding the b vector by minimizing SSR.

The sum of squared residuals in the above models can be stated with different

notations:

SSR(β̂) =

n∑
i=1

û2i = û>û

or

SSR(β̂) =

n∑
i=1

û2i =

n∑
i=1

(
yi − x>i β̂

)2
With the first notation, the optimization problem is:

min
β̂
SSR(β̂) = û>û
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or with the second notation:

min
β̂
SSR(β̂) =

n∑
i=1

(
yi − x>i β̂

)2
Let us write explicitly the sum of squared residuals to obtain the first order

conditions (FOCs) using the first notation.

SSR(β̂) = û>û

= (y −Xβ̂)>(y −Xβ̂)

= y>y − 2β̂>X>y + β̂>X>Xβ̂

While finding the first derivative of SSR with respect to β̂, note that the second

term in the above expression is a linear combination and the third term is in a

quadratic form. Generally z is a k × 1 vector, A is a k × n matrix and B is a

k × k matrix:
∂(z>A)

∂z
= A,

and
∂(z>Bz)

∂z
= 2Bz
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For example z =
[
z1 z2

]
and

A =

[
0 1 −2

1 2 0

]
, B =

[
2 1

1 2

]
Then

z>A =
[
z1 z2

] [ 0 1 −2

1 2 0

]
=
[
z2 z1 + 2z2 −2z1

]
when we take the first derivatives with respect to z1 and z2

∂(z>A)

∂z1
=
[

0 1 −2
]

and
∂(z>A)

∂z2
=
[

1 2 0
]
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These derivatives can be summoned or arranged in a column vector:

∂(z>A)

∂z
= =

[
∂(z>A)
∂z1

∂(z>A)
∂z2

]

=

[
0 1 −2

1 2 0

]
= A

Now let’s take the derivative of z>Bz term with respect to the elements of z

vector.

z>Bz =
[
z1 z2

] [ 2 1

1 2

] [
z1
z2

]
= 2z21 + 2z1z2 + 2z22
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where the first derivatives are:

∂(z>Bz)

∂z
=

[
∂(z>Bz)

∂z1
∂(z>Bz)

∂z2

]

=

[
4z1 + 2z2
2z1 + 4z2

]
= 2

[
2 1

1 2

] [
z1
z2

]
= 2Bz

Let’s come back to SSR:

SSR(β̂) = y>y − 2β̂>X>y + β̂>X>Xβ̂

where β̂ = z, X>y = A and X>X = B. Then the first order conditions of

OLS problem can be written:

∂SSR(β̂)

∂β̂
= −2X>y + 2X>Xβ̂ = 0k

giving the normal equations:

X>Xβ̂ = X>y
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The second assumption of the classical regression model implies the following rank

condition:

rank(X) = rank(X>X) = k

Therefore X>X is invertible. When we multiply the both sides of the normal

equations by (X>X)−1, we can find the vector of OLS estimators:

β̂ = (X>X)−1X>y

Remember that the optimization problem with the second notation can be written

as:

min
β̂
SSR(β̂) =

n∑
i=1

(
yi − x>i β̂

)2
Here the first order conditions are:

∂SSR(β̂)

∂β̂
= −2

n∑
i=1

xi

(
yi − x>i β̂

)
= 0k

giving the respective normal equations:(
n∑
i=1

xix
>
i

)
β̂ =

n∑
i=1

xiyi
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Hence there are two ways to write the vector of the OLS estimator:

β̂ =

(
n∑
i=1

xix
>
i

)−1 n∑
i=1

xiyi

≡ (X>X)−1X>y

For any i observation, the elements of xix
>
i (k × k) matrix are as follows:

xix
>
i =


1

xi2
...

xik

 [ 1 xi2 . . . xik
]

=


1 xi2 xi3 . . . xik
xi2 x2i2 xi2xi3 . . . xi2xik
xi3 xi3xi2 x2i3 . . . xi3xik
... ... ... . . . ...

xik xikxi2 xikxi3 . . . x2ik


Now we have a matrix sequence with n elements. The sum of these matrices:

n∑
i=1

xix
>
i =


n

∑
xi2

∑
xi3 . . .

∑
xik∑

xi2
∑
x2i2

∑
xi2xi3 . . .

∑
xi2xik∑

xi3
∑
xi3xi2

∑
x2i3 . . .

∑
nxi3xik

... ... ... . . . ...∑
xik

∑
xikxi2

∑
xikxi3 . . .

∑
x2ik

 = X>X
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The resulting matrix is a square, symmetric, positive definite matrix. Along with

the same motivation:

n∑
i=1

xiyi =

n∑
i=1


1

xi2
...

xik

 yi

=


∑
yi∑
xi2yi
...∑
xikyi


= X>y
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Example 2.1. Suppose that there is only an intercept in the model with no

independent variable:

yi = β1 + ui, i = 1, . . . , n

In this case X matrix is a n× 1 vector in which all elements are one. Let’s

call this vector as ı:

ı =
[

1 1 . . . 1
]>

= X

The OLS estimator of β1 can be written as:

β̂ = (X>X)−1X>y = (ı>ı)−1ı>y

ı>ı =
[

1 1 . . . 1
]


1

1
...

1

 = n

and

ı>y =
[

1 1 . . . 1
]

y1
y2
...

yn

 =

n∑
i=1

yi
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then the OLS estimator is

β1 = n−1
n∑
i=1

yi ≡ ȳ
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Example 2.2. Let’s consider regression model with a binary (dummy) vari-

able and an intercept:

yi = δ0 + δ1Di + ui, i = 1, . . . , n

For the sake of simplicity, suppose that the dependent variable consists of

just 5 observations and the dummy variable is defined as follows:

y =


1

2

3

4

5

 , Di =

{
1, if yi ≤ 3

0, otherwise
⇔D =


1

1

1

0

0


In this case, X:

X =


1 1

1 1

1 1

1 0

1 0


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β̂ =
[
δ̂0 δ̂1

]>
Now let us find the OLS estimator

X>X =

[
1 1 1 1 1

1 1 1 0 0

]


1 1

1 1

1 1

1 0

1 0

 =

[
5 3

3 3

]

(X>X)−1 =

[
1/2 −1/2

−1/2 5/6

]
, X>y =

[ ∑
yi∑
yiDi

]
=

[
15

6

]
the vector of OLS estimators:

β̂ =

[
1/2 −1/2

−1/2 5/6

] [
15

6

]
=

[
4.5

−2.5

]
The estimated regression is

ŷi = 4.5− 2.5Di

It is obvious that the intercept term is the mean of the base category (y is

greater than 3) in this simple example ((4 + 5)/2 = 4.5). The mean of the
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other category is 2. And the estimated coefficient of the dummy variable D

is the difference of the means of these two categories (−2.5). In our example,

we can also find the fitted (estimated) values for the dependent variable and

the vector of residuals.

ŷ = Xβ̂ =


1 1

1 1

1 1

1 0

1 0


[

4.5

−2.5

]
=


2

2

2

4.5

4.5

 ,

û = y − ŷ =


1

2

3

4

5

−


2

2

2

4.5

4.5

 =


−1

0

1

−0.5

0.5


Another way of including the dummy variable in the model is to add sepa-

rately the dummies for each category by excluding the intercept term. Con-

sider the below model in matrix notation form:

yi = γ0Di1 + δ0Di2 + ui, i = 1, . . . , n
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Now X and X>X :

X =


1 0

1 0

1 0

0 1

0 1

 , X>X =

[
1 1 1 0 0

0 0 0 1 1

]


1 0

1 0

1 0

0 1

0 1

 =

[
3 0

0 2

]

(X>X)−1 =

[
1/3 0

0 1/2

]
, X>y =

[ ∑
yiDi1∑
yiDi2

]
=

[
6

9

]
Then the vector of OLS estimators is

β̂ =

[
γ̂0
δ̂0

]
=

[
1/3 0

0 1/2

] [
6

9

]
=

[
2

4.5

]
The estimated regression function is

ŷi = 2Di1 + 4.5Di2

If we added an intercept term in this model, we would be in a dummy variable

trap . In this case, the model and corresponding data matrix are

yi = β0 + γ0Di1 + δ0Di2 + ui, i = 1, . . . , n
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X =


1 1 0

1 1 0

1 1 0

1 0 1

1 0 1


Clearly seen that the sum of the second and third column of X matrix is the

first column of this matrix. The classical assumption about Rank condition

is violated: rank(X) < 3. Another way of detecting this violation is to

calculate cross product matrix:

X>X =

 5 3 2

3 3 0

2 0 2

 , |X>X |= 0

The sum of the second and third column of this matrix is its first column

and the sum of the second and third row of this matrix is its first row. The

model can not be estimated in this form, because this matrix is singular and

its determinant is 0. The OLS estimator is undefined. So one of the columns

in this matrix is redundant, it should be excluded.
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Example 2.3. Simple regression model: intercept term + one independent

variable:

yi = β1 + β2xi + ui, i = 1, . . . , n

In this model, the cross product matrix and its inverse are as below:

X =


1 x1
1 x2
... ...

1 xn

 , X>X =

[
n

∑
xi∑

xi
∑
x2i

]
,

(X>X)−1 =
1

n
∑
x2i − (

∑
xi)

2

[ ∑
x2i −

∑
xi

−
∑
xi n

]
, X>y =

[ ∑
yi∑
yixi

]
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The OLS estimator:

β̂ =

[
β̂1
β̂2

]
= (X>X)−1X>y

=
1

n
∑
x2i − (

∑
xi)

2

[ ∑
x2i −

∑
xi

−
∑
xi n

] [ ∑
yi∑
yixi

]

=


∑
x2
i

∑
yi−
∑
xi
∑
yixi

n
∑
x2
i−(
∑
xi)2

n
∑
yixi−

∑
xi
∑
yi

n
∑
x2
i−(
∑
xi)2


or

β̂1 =

∑
x2i
∑
yi −

∑
xi
∑
yixi

n
∑
x2i − (

∑
xi)2

β̂2 =
n
∑
yixi −

∑
xi
∑
yi

n
∑
x2i − (

∑
xi)2

The numerator and denominator of the slope parameter can be stated in a
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simpler fashion. Remember that∑
(yi − ȳ)(xi − x̄) =

∑
(yi − ȳ)xi

=
∑

yixi − ȳ
∑

xi

=
∑

yixi −
1

n

∑
yi
∑

xi,

∑
(xi − x̄)2 =

∑
x2i − 2x̄

∑
xi + nx̄2

=
∑

x2i − nx̄2

=
n
∑
x2i − (

∑
xi)

2

n

Based on this, the simplified expression is∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
=

∑
yixi − 1

n

∑
yi
∑
xi

n
∑
x2i−(

∑
xi)2

n

=
n
∑
yixi −

∑
xi
∑
yi

n
∑
x2i − (

∑
xi)2

= β̂2
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3 Unbiasedness of the OLS estimator

Under the three classical assumptions, the OLS estimator β̂ is unbiased of β.

The proof is very simple. In the formula of the OLS estimator, writing the

population regression function instead of the dependent variable and then taking

the expectation conditional on X would be enough to prove the unbiasedness of

the OLS estimator.

β̂ = (X>X)−1X>y

= (X>X)−1X>(Xβ + u)

= (X>X)−1X>Xβ + (X>X)−1X>u

= β + (X>X)−1X>u

E
[
β̂|X

]
= β + E

[
(X>X)−1X>u|X

]
= β +X>X)−1X> E [u|X ]︸ ︷︷ ︸

=0

= β

The OLS estimator is determined as the linear combination of random error terms

about the unknown true value. On average, the random vector of estimator is
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equal to the true parameter vector.

4 Variance-Covariance Matrix of the OLS Es-
timator

The fourth classical assumption is about the covariance matrix of the random

error term:

V(u|X) = E(uu>|X) = σ2In

This assumption implies that the error terms are uncorrelated and homoscedastic.

Let us take a closer look at the covariance matrix. Note that all expectations are

conditional on X :
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E(uu>) = E



u1
u2
...

un

 [ u1 u2 . . . un
]


= E




u21 u1u2 . . . u1un
u2u1 u22 . . . u2un

... ... . . . ...

unu1 unu2 . . . u2n




=


E(u21) E(u1u2) . . . E(u1un)

E(u2u1) E(u22) . . . E(u2un)
... ... . . . ...

E(unu1) E(unu2) . . . E(u2n)



=


σ2 0 . . . 0

0 σ2 . . . 0
... ... . . . ...

0 0 . . . σ2



= σ2


1 0 . . . 0

0 1 . . . 0
... ... . . . ...

0 0 . . . 1


= σ2In



Under this assumption, let us derive the variance-covariance matrix of the

OLS estimator β̂:

V(β̂) = E

[(
β̂ − E(β̂)

)(
β̂ − E(β̂)

)>]
= E

[(
β̂ − β

)(
β̂ − β

)>]
= E

[(
(X>X)−1X>u

) (
(X>X)−1X>u

)>]
= E

[
(X>X)−1X>uu>X(X>X)−1

]
= (X>X)−1X> E(uu>)︸ ︷︷ ︸

σ2In

X(X>X)−1

= σ2(X>X)−1X>InX︸ ︷︷ ︸
X>X

(X>X)−1

= σ2 (X>X)−1X>X︸ ︷︷ ︸
Ik

(X>X)−1

= σ2(X>X)−1

In this formula the error variance σ2 is unknown, hence it should be estimated
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by using the given data. An unbiased estimator of σ2 can be found as follows:

s2 =
1

n− k
SSR

=
1

n− k
û>û

=
1

n− k
(y −Xβ̂)>(y −Xβ̂)

It can be shown that E(s2) = σ2. Therefore the variance-covariance matrix of

the OLS estimator is written below.

V̂(β̂) = s2(X>X)−1

This matrix is a dimension of k×k, symmetric, square and positive definite. The

diagonal elements shows the variances of the OLS estimators, and the off-diagonal

elements shows the covariances.
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GAUSS-MARKOV THEOREM: Under the first four classical as-

sumptions, the OLS estimators are the best (minimum variance) linear un-

biased estimators among all the competing linear unbiased estimators. (Best

Linear Unbiased Estimator - BLUE).

If any of the first four assumptions fails, then the Gauss-Markov theorem no

longer holds. For example, if heteroscedasticity exists, (the violation of the forth

assumption) the variance-covariance matrix that we have just derived will not be

valid and the OLS estimators are not BLUE any more. For the Gauss-Markov

theorem to be valid, the random error terms does not need to follow the nor-

mal distribution (the fifth classical assumption).The classical assumption of the

normally distributed random error terms is required only to derive the sampling

distributions of the OLS estimators and to conduct t and F tests in small (finite)

samples.

Example 4.1. Now let us give a numerical example by using a simple re-

gression model. Our data set is as follows:
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y =



3

8

18

3

2

6

6

11

6

6

1

16

10

20

12

10

18

10

5

15



, X =



1 1

1 4

1 8

1 0

1 1

1 2

1 2

1 6

1 3

1 2

1 0

1 7

1 4

1 9

1 5

1 4

1 8

1 5

1 2

1 7


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To find the OLS estimator, firstly calculate the required quantities:

X>X =

[
20 80

80 468

]
, (X>X)−1 =

[
0.1581 −0.0270

−0.0270 0.0068

]
, X>y =

[
186

1042

]

β̂ =

[
β̂1
β̂2

]
= (X>X)−1X>y

=

[
0.1581 −0.0270

−0.0270 0.0068

] [
186

1042

]
[
β̂1
β̂2

]
=

[
1.2459

2.0135

]
The sample regression function:

ŷ = 1.2459 + 2.0135x

SSR = û>û = 20.173, s2 =
1

18
SSR = 1.1207

The variance-covariance matrix:

V(β̂) = s2(X>X)−1 = 1.1207

[
0.1581 −0.0270

−0.0270 0.0068

]
=

[
0.1772 −0.0303

−0.0303 0.0076

]
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Then,

V(β̂1) = 0.1772, V(β̂2) = 0.0076, Cov(β̂1, β̂2) = −0.0303

Standard Errors:

se(β̂1) =
√

0.1772 = 0.4209

se(β̂2) =
√

0.0076 = 0.087

t-ratios:

tβ̂1 =
β̂1

se(β̂1)
=

1.2459

0.4209
= 2.9599

tβ̂2 =
β̂2

se(β̂2)
=

2.0135

0.087
= 23.1386
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