class: center, middle, inverse, title-slide # Tax evasion and productivity ### Hans Martinez ### May 20, 2022 --- ## Agenda - Revealed P firms: Acceptance rule - pseudo-code: `\(log(U) < \gamma'[g(x,e_{jump})-g(x,e_{r-1})]\)`. - Actual code twice: - chain `\(log (U) < ||g(x,e_{jump})-g(x,e_{r-1}) ||\)` - Optimization `\(log(U) < \gamma'[g(x,e_{jump})-g(x,e_{r-1})]\)` - `\(\gamma\)` - Tax evasion - Can we use an IC as location condition? --- layout: false class: inverse center middle # Tax evasion and productivity in Mexico --- layout: true ### Tax evasion and productivity --- * Firms have incentives to under-report profits to avoid taxes. Productivity estimates are likely to be biased. * Mexico: Non-detected tax evasion up to $10 billion USD per year .small[(Zumaya et al., 2021)] * Assume firms only over-report expenses in flexible input, `\(\Pi(x)=PY-\rho X\)`. * Consequently, once they over-report and reach zero profits, firms don't have incentives to over-report more, `\(\Pi(\tilde x)=0\)`. --- * **Question**: Can we recover productivity estimates in the presence of measurement error by using a micro-founded IC as location condition? * **Data**: INEGI-EMIM, Anonymized tax filings (?) .small[(Zumaya et al., 2021)] * **Approach**: Hu & Schennach (2008), Hu (2021), Hu & Yao (*J. Econom., forthcoming*) --- `$$\begin{aligned} Y&=G(x^*)e^{\omega+\varepsilon} \\ X&=X^*+\Delta X(\theta) \\ \Delta X(\theta) &= \left \{ \begin{array}{ll} 0 & (1-\tau)\Pi(x^*) \ge \Pi(x^*)-\tau\Pi(x)-\kappa Pr(a)-c(\Delta x) \\ \mathbf (0,\tilde x] & otherwise \end{array} \right.\\ &\text{where }\; \Pi(x)=PY-\rho X \\ &\text{and}\; \Pi(\tilde x)=0 \\ \end{aligned}$$` `\(\tau\)`: tax; `\(\kappa\)` cheating fine if the firm is caught by the authority; `\(Pr(a)\)`: probability of getting caught if cheating. --- Can we use a micro-founded IC as location condition? `\(M[f]=x^*\)`, where `\(M[f]\equiv\)` `$$\begin{aligned} \sup\left \{ v: \int^{v}_{x^*} \left \{ \tau [\Pi(x^*)-\Pi(x)]-c(||x-x^*||)\right\} f_{X|X^*}(x|x^*) dx \le\kappa Pr(a) \right\} \end{aligned}$$` Problems: - `\(c(||x-x^*||)\)` is unknown - `\(\implies\)` different mass for every approximation - function of firm characteristics - convex - `\(Pr(a)\)` could be subjective to the firm --- layout: true ### How to estimate? --- `\begin{equation} f(y_{it},x_{it},p_{it}) = \\ f(y_{it},x_{it},p_{it},\omega_{it},\omega_{it-1},x^*_{it})= \\ f(y_{it}| x^*_{it},\omega_{it}) f(p_{it}|x^*_{it},\omega_{it}) f(\omega_{it}|\omega_{it-1}) f(x_{it}|x^*_{it}) f(\omega_{it-1})f(x^*) \end{equation}` --- `\begin{equation} \color{blue}{f(y_{it}| x^*_{it},\omega_{it})} \color{green}{f(p_{it}|x^*_{it},\omega_{it})} \color{violet}{f(\omega_{it}|\omega_{it-1})} \color{red}{f(x_{it}|x^*_{it})} \color{orange}{f(\omega_{it-1})f(x^*_{it})} \end{equation}` `\begin{equation} \color{blue}{ y_{it} = g(x^*_{it})+\omega_{it}+\varepsilon^Y_{it}} \\ \color{green}{ \ln\left(\frac{\rho_t X^*_{it}}{P_{t}Y_{it}}\right)=\ln\left(\frac{G_x(x^*_{it})X^*_{it}}{G(x^*_{it})}\right) - \varepsilon^Y_{it}} \\ \color{violet}{\omega_{it}=\rho\omega_{it-1}+\varepsilon^\omega_{it}} \\ \color{red}{M[f]=x^*} \\ \color{orange}{\text{Flexible input assumption.}} \end{equation}` --- In addition: `$$\begin{aligned}P(cheated)=&\hat P(cheated|Audited)\hat P(Audited)+\\ &P(cheated|Not Audited)\hat P(Not Audited) \end{aligned}$$` Note that `\(P(cheated|Not Audited)\)` and, consequently, `\(P(cheated)\)` are unobserved. --- - [Hu & Yao (Journal of Econometrics,2022)](https://doi.org/10.1016/j.jeconom.2021.05.007) use sieve maximum likelihood estimator (MLE) - Mix ELVIS and sieve MLE (?) --- layout: false class: center, middle <div class="figure"> <img src="NK2022_files/figure-html/unnamed-chunk-1-1.png" alt="Link to slides: Scan me!" width="100%" /> <p class="caption">Link to slides: Scan me!</p> </div> <!-- .center[Link to slides: Scan me!] --> <!-- .footer[ --> <!-- ] --> [hansmartinez.com](hansmartinez.com)