# Julia code
# See A3.jl
Interpolation Log Fn
Interpolation Square Root Fn
\(\sigma = 2\)
Interpolation CRRA sigma=2 Fn
\(\sigma = 5\)
Interpolation CRRA sigma=5 Fn
\(\sigma = 10\)
Interpolation CRRA sigma=10 Fn
I’m using the Eucledian Norm of the differences between the original function and the interpolation method. Specifically \[ || f(x)-q(x) ||^2 = \left[ \sum_i \left( f(x_i)-q(x_i) \right)^2 \right]^{\frac{1}{2}} \]
Log | n=4 | n=6 | n=11 | n=21 |
---|---|---|---|---|
Newton Basis Polynomials | \(6.286\) | \(2.28\) | \(0.4082\) | \(0.03642\) |
Natural Cubic Splines | \(8.375\) | \(4.379\) | \(1.606\) | \(0.4928\) |
Shape-preserving Schumaker Splines | \(1.176\) | \(0.533\) | \(0.1543\) | \(0.03563\) |
Square Root | n=4 | n=6 | n=11 | n=21 |
---|---|---|---|---|
Newton Basis Polynomials | \(0.579\) | \(0.166\) | \(0.02202\) | \(0.001462\) |
Natural Cubic Splines | \(0.8726\) | \(0.3989\) | \(0.1245\) | \(0.03344\) |
Shape-preserving Schumaker Splines | \(0.098\) | \(0.03925\) | \(0.00975\) | \(0.001983\) |
CES \(\sigma = 2\) | n=4 | n=6 | n=11 | n=21 |
---|---|---|---|---|
Newton Basis Polynomials | \(98.2\) | \(48.55\) | \(13.68\) | \(2.012\) |
Natural Cubic Splines | \(117.2\) | \(73.55\) | \(34.44\) | \(13.26\) |
Shape-preserving Schumaker Splines | \(30.79\) | \(16.31\) | \(5.628\) | \(1.481\) |
CES \(\sigma = 5\) | n=4 | n=6 | n=11 | n=21 |
---|---|---|---|---|
Newton Basis Polynomials | \(3.195 \cdot 10^{5}\) | \(2.074 \cdot 10^{5}\) | \(1.024 \cdot 10^{5}\) | \(3.559 \cdot 10^{4}\) |
Natural Cubic Splines | \(3.592 \cdot 10^{5}\) | \(2.647 \cdot 10^{5}\) | \(1.655 \cdot 10^{5}\) | \(9.166 \cdot 10^{4}\) |
Shape-preserving Schumaker Splines | \(1.419 \cdot 10^{5}\) | \(9.976 \cdot 10^{4}\) | \(5.497 \cdot 10^{4}\) | \(2.357 \cdot 10^{4}\) |
CES \(\sigma = 10\) | n=4 | n=6 | n=11 | n=21 |
---|---|---|---|---|
Newton Basis Polynomials | \(4.805 \cdot 10^{11}\) | \(3.295 \cdot 10^{11}\) | \(1.908 \cdot 10^{11}\) | \(9.752 \cdot 10^{10}\) |
Natural Cubic Splines | \(5.35 \cdot 10^{11}\) | \(4.067 \cdot 10^{11}\) | \(2.748 \cdot 10^{11}\) | \(1.768 \cdot 10^{11}\) |
Shape-preserving Schumaker Splines | \(2.214 \cdot 10^{11}\) | \(1.661 \cdot 10^{11}\) | \(1.08 \cdot 10^{11}\) | \(6.367 \cdot 10^{10}\) |
Interpolation error of differet interpolation methods
Interpolation, differet methods, n=6, log function.
Interpolation, differet methods, n=6, square root function.
Interpolation, differet methods, n=6, CES sigma=2 function.
Interpolation, differet methods, n=6, CES sigma=5 function.
Interpolation, differet methods, n=6, CES sigma=10 function.
Interpolation error of differet methods, varying the curvature of the grid.