
L11 Machine learning with text
Greg Ridgeway

2025-03-31

Table of contents

1 Introduction 1

2 Turning text into data with text2vec 4
2.1 Creating a document-term matrix (DTM) . 10
2.2 Term Frequency–Inverse Document Frequency 13

2.2.1 Example . 14

3 Term co-occurrence matrix (TCM) 16

4 Singular value decomposition for text 19

5 Clustering documents 24
5.1 Hartigan’s k-means clustering algorithm . 24
5.2 Exploring Document Clusters with UMAP . 40

6 Document classification 44

7 Sentiment analysis 46
7.1 Lexicon-Based Sentiment Analysis . 47
7.2 Exploring emotion in OIS reports with the NRC lexicon 49

8 Summary 52

1 Introduction

We will use text2vec to explore the language used in a collection of police reports describ-
ing officer-involved shootings (OIS). These reports contain unstructured narrative text. Our
goal is to transform that text into a format we can analyze using tools from natural language

1

processing (NLP). We will walk through a typical text analysis process: tokenizing the re-
ports, building a vocabulary, constructing a document-term matrix, and applying TF-IDF
to highlight the most distinctive terms. Along the way, we will also examine co-occurrence
patterns.

Before we begin, the field of natural language processing is evolving at an extraordinary pace,
particularly with the rise of large language models (LLMs). These models can perform many
text analysis tasks, summarization, classification, sentiment detection, with little or no train-
ing data, often outperforming traditional methods. While these notes focus on classic, inter-
pretable techniques such as tokenization, TF-IDF, and clustering, it is important to recognize
that some of these approaches may eventually be replaced or augmented by access to inexpen-
sive, broadly available LLMs. However, understanding how text is structured, processed, and
represented remains critical to interpreting any model, including LLMs.

To start, we are going to need a couple of R packages to facilitate our work. text2vec will do
most of the work converting the documents into a form of data that we can analyze.

library(kableExtra)
library(ggplot2)

library(dplyr)
library(tidyr)
library(stringr)
library(caret)
library(Matrix)

library(text2vec)
library(tidytext)
library(uwot)

library(glmnet)

As for the source of our documents, the Philadelphia Police Department posts reports on each
officer-involved shooting. I have pulled the data off their website and packaged it into an
.RData file. Loading it will create the data frame ois. Details on how to pull the data off of
the PPD website are part of my R4crim collection of scripts.

load("data/PPD OIS.RData")
ois <- ois |>
mutate(fatal = grepl("1 Killed|^Killed$", subInjury) |> as.numeric())

ois |> select(-text) |> head()

id location

2

https://www.phillypolice.com/accountability/ois/
https://github.com/gregridgeway/R4crim?tab=readme-ov-file

1 24-37 3450 Vista Street, Philadelphia, PA
2 24-36 3250 A Street, Philadelphia, PA
3 24-35 5450 Chancellor Street, Philadelphia, PA
4 24-32 2950 E. Street, Philadelphia, PA
5 24-31 3350 Willits Road, Philadelphia, PA
6 24-30 6150 Lebanon Avenue, Philadelphia, PA

url subInjury date lon
1 https://www.phillypolice.com/ois/24-37/ N/A 2024-12-10 -75.03885
2 https://www.phillypolice.com/ois/24-36/ N/A 2024-11-12 -75.12714
3 https://www.phillypolice.com/ois/24-35/ Killed 2024-11-10 -75.23050
4 https://www.phillypolice.com/ois/24-32/ N/A 2024-10-11 -75.12024
5 https://www.phillypolice.com/ois/24-31/ Killed 2024-10-03 -75.00908
6 https://www.phillypolice.com/ois/ps24-30/ N/A 2024-10-02 -75.24450

lat addrmatch score
1 40.04022 3450 Vista St, Philadelphia, Pennsylvania, 19136 100
2 39.99956 3250 A St, Philadelphia, Pennsylvania, 19134 100
3 39.95692 5450 Chancellor St, Philadelphia, Pennsylvania, 19139 100
4 39.99345 2950 E St, Philadelphia, Pennsylvania, 19134 100
5 40.05383 3350 Willits Rd, Philadelphia, Pennsylvania, 19136 100
6 39.98175 6150 Lebanon Ave, Philadelphia, Pennsylvania, 19151 100

addrtype fatal
1 StreetAddress 0
2 StreetAddress 0
3 StreetAddress 1
4 StreetAddress 0
5 StreetAddress 1
6 PointAddress 0

The data include an incident ID, the date of the shooting, the address and coordinates where
the shooting occurred, and a URL to the incident report. There is also a column called text
containing the full text of the officer-involved shooting report. Some can be long, but here’s
one that hits close to home as an example.

Narrative from OIS Report 16-30

PS#16-30 9/16/16 On Friday, September 16, 2016, at approximately 11:18 P.M., a
uniformed sergeant in a marked police vehicle was seated in her parked vehicle in the
5100 block of Sansom Street, when a male approached and without warning, began to
discharge a firearm, striking the sergeant, as she remained seated in her vehicle. The
offender then began walking east on Sansom Street, stopping at a lounge/bar in the 5100
block of Sansom Street, where he discharged his firearm into the lounge/bar, striking
a female employee and a male security guard. The offender continued walking east on

3

Sansom Street to the 4900 block, where he discharged his firearm into an occupied parked
vehicle, striking one female and one male occupant. Responding uniformed officers, in
marked police vehicles, along with an officer from the University of Pennsylvania police
force, located the offender in an alleyway in the rear of the 4800 blocks of Sansom and
Walnut Streets. While in the 4800 block of Sansom Street the offender discharged his
firearm, striking the University of Pennsylvania Officer as well as a marked police vehi-
cle. Four Officers (one of whom was the University of Pennsylvania Officer) discharged
their firearms, striking the offender. The offender fell to the ground and dropped his
firearm. Fire Rescue responded and pronounced the offender deceased. The offender’s
firearm, a 9MM, semi-automatic pistol, with an obliterated serial number, loaded with
14 live rounds, was recovered at the scene. There were three empty magazines from
the offender’s firearm recovered throughout the scene. The sergeant, the University of
Pennsylvania Officer, along with the four civilians who were all struck by gunfire, were
transported to Penn-Presbyterian Hospital for treatment. The female from the parked
vehicle was later pronounced deceased at Penn-Presbyterian Hospital. *** Information
posted in the original summary reflects a preliminary understanding of what occurred at
the time of the incident. This information is posted shortly after the incident and may
be updated as the investigation leads to new information. The DA’s Office is provided
all the information from the PPD’s investigation prior to their charging decision.

With this set of 133 reports, we will use a variety of data cleaning methods and machine
learning methods to try to make sense of these documents.

2 Turning text into data with text2vec

To transform the text into a form that is better suited for analysis, we need to go through a
number of steps. Part of the reason text2vec is popular is that it can handle large collections
of documents. To make the tasks computational efficient there are a number of steps to work
through in order to get a usable dataset.

We start by creating a “tokenizer,” a process that breaks raw text into individual units like
words, phrases, or symbols (the “tokens”), the basic building blocks for text analysis. The
itoken() function in the text2vec package creates an iterator over a collection of text doc-
uments, preparing them for efficient text processing. Instead of transforming all text at once,
itoken() streams the documents one at a time, making it well-suited for handling large sets of
documents. It “tokenizes” each document using either a built-in default or a custom tokenizer
(which we will do) and produces a structure that can be passed on to other functions that
will tidy up the collection of tokens and convert them into a dataset. Because it does not
store all tokenized text in memory, itoken() enables fast and memory-efficient text analysis
workflows.

4

Create an iterator over tokens
tokens does not actually store data
just an efficient means for looping over documents
tokens <- itoken(ois$text,

progressbar = FALSE,
ids = ois$id)

this gets the next batch of documents... for me around 14 documents
a <- tokens$nextElem()
a$ids

[1] "24-37" "24-36" "24-35" "24-32" "24-31" "24-30" "24-29" "24-28" "24-27"
[10] "24-23" "24-22" "24-21" "24-20" "24-18"

a$tokens |> sapply(head)

[,1] [,2] [,3] [,4] [,5]
[1,] "3400" "3200" "5400" "29oo" "3300"
[2,] "block" "block" "block" "block" "Willits"
[3,] "of" "of" "of" "of" "Road\nOn"
[4,] "Vista" "A" "Chancellor" "E." "Thursday,"
[5,] "Street\nOn" "Street\nOn" "Street\nOn" "Street\nOn" "October"
[6,] "Tuesday," "Tuesday," "Sunday," "Friday," "3,"

[,6] [,7] [,8] [,9] [,10]
[1,] "6100" "2600" "3900" "2200" "3000"
[2,] "block" "block" "block" "block" "block"
[3,] "of" "of" "of" "of" "of"
[4,] "Lebanon" "Glenwood" "Whittaker" "S." "Ruth"
[5,] "Avenue\nOn" "Avenue\nThe" "Avenue\nThe" "65th" "Street\nThe"
[6,] "Wednesday," "Philadelphia" "Philadelphia" "Street\nThe" "Philadelphia"

[,11] [,12] [,13] [,14]
[1,] "6100" "3500" "2700" "1500"
[2,] "block" "block" "block" "block"
[3,] "of" "of" "of" "of"
[4,] "West" "F" "North" "North"
[5,] "Columbia" "Street\nA" "6th" "57th"
[6,] "Avenue\nA" "Philadelphia" "Street\nA" "Street\nA"

You can see that so far itoken() has pulled in 14 documents and chopped them up into
individual words. Notice that the collection of words have some undesirable quirks. For
example, there are

5

• numbers that we probably do not really care about
• unimportant words like “of” (known as “stop words”)
• Line feeds \n in between two words

create_vocabulary() and prune_vocabulary() help us to trim down the words to the ones
that we actually care about. create_vocabulary() allows us to provide a list of stop words
to remove. stopwords("en") is just such a list. Here are just a few of the 175 English stop
words

stopwords::stopwords("en") |> head(20)

[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"
[11] "yours" "yourself" "yourselves" "he" "him"
[16] "his" "himself" "she" "her" "hers"

There are lists for several other languages as well, Italian, for example.

stopwords::stopwords("it") |> head(20)

[1] "ad" "al" "allo" "ai" "agli" "all" "agl" "alla" "alle"
[10] "con" "col" "coi" "da" "dal" "dallo" "dai" "dagli" "dall"
[19] "dagl" "dalla"

We can also consider pairs of words in addition to single words (ngram=1:2). This allows word
phrases like “police officer” and “pit bull” to be considered as words.

prune_vocabulary() trims down words from our vocabulary that are probably not particu-
larly useful

• words that few documents use (too rare)
• words that too many documents use (too common)

We can add in some other filters too, like only using words that are at least three letters and
dropping any words that have numbers in them (like 3pm or 9mm).

reset to beginning
tokens <- itoken(ois$text,

progressbar = FALSE,
ids = ois$id)

Build vocabulary

6

these are the collection of words that I care about
skip stopwords (the, of, in, ...)
include two word phrases (2-gram or bigram),
"police officer", "full uniform", "black male", "drop weapon", "pit bull"
skip words that only show up in fewer than 10 documents
skip words that are in the majority of documents (police?, discharged?)
vocab <- tokens |>
create_vocabulary(stopwords = stopwords::stopwords("en"),

ngram = 1:2) |>
prune_vocabulary(term_count_min = 10,

doc_proportion_max = 0.5) |>
filter(nchar(term) >= 3) |>
filter(!grepl("[0-9]", term))

space_tokenizer(), default, keeps a lot of punctuation
vocab

Number of docs: 133
175 stopwords: i, me, my, myself, we, our ...
ngram_min = 1; ngram_max = 2
Vocabulary:

term term_count doc_count
<char> <int> <int>

1: AM, 10 10
2: Avenue\nOn 10 10
3: District_Police 10 10
4: Hospital, 10 9
5: Penn-Presbyterian 10 8

552: firearm 112 63
553: one 116 65
554: posted 120 60
555: vehicle 180 65
556: offender 182 49

Let’s make our own tokenizer instead of using the default. As we see, the default
(space_tokenizer()) often retains punctuation, symbols, or other strange features that
dilute or fragment our vocabulary. Customizing the tokenizer allows us to tailor the cleaning
process to the structure and quirks of the officer-involved shooting reports. The function that
we will create, oisTokenizer(), is a custom tokenizer designed to clean and standardize the
raw text from officer-involved shooting reports before further text analysis. It converts the
text to lowercase, removes common punctuation patterns (like those in abbreviations such as

7

“3 p.m.”), strips out unusual or inconsistent symbols (such as smart quotes, parentheses, and
hash symbols), and splits the text into individual tokens using whitespace as the delimiter.

After tokenization, it will also apply “stemming”. Stemming is a text preprocessing technique
that reduces words to their root or base form by removing common suffixes. For example, “run-
ning”, “runner”, and “runs” might all be reduced to “run”, allowing the model to treat these
variations as the same underlying concept. The SnowballC package has a handy wordStem()
function in it. Let’s test it out on a few words.

c("dog","dogs","office","officer","officers","police","policy","policies") |>
SnowballC::wordStem(language = "en")

[1] "dog" "dog" "offic" "offic" "offic" "polic" "polici" "polici"

Conveniently, it makes both “dog” and “dogs” simply “dog”. However, note that it also makes
“office”, “officer”, and “officers” all simplified to “office”… maybe not ideal. Since our text will
have a lot of “officer” and “officers” and probably very few, if any, “office”, we will need to
remember that this stemming has reduced our “police officers” to “polic_offic”. You may see
terms like “offic_offic” or “offend_offend”. Typically this occurs because officer or offender
was the last word in one sentence and the first non-stop word in the next sentence (e.g. “The
suspect ran from the officer. The officer said ‘stop!’ ”).

our own custom tokenizer
oisTokenizer <- function(text)
{
text |>

tolower() |>
remove abbreviation punctuation (like 3 p.m.)
gsub("([A-z])[,.]+", "\\1", x=_) |>
remove some weird symbols
gsub("[“”()#]", "", x=_) |>
no smart quotes
gsub("’", "'", x=_) |>
split any words with \n, \t, \r between them
strsplit("\\s+") |>
stemming
lapply(SnowballC::wordStem, language = "en")

}

Now we can rerun our documents through our new tokenizer.

8

reset to beginning
now using our oisTokenizer()
tokens <- itoken(ois$text,

tokenizer = oisTokenizer,
progressbar = TRUE,
ids = ois$id)

vocab <- tokens |>
create_vocabulary(stopwords = stopwords::stopwords("en"),

ngram = 1:2) |>
prune_vocabulary(term_count_min = 10,

doc_proportion_min = 0.05,
doc_proportion_max = 0.5) |>

filter(nchar(term) >=3) |>
filter(!grepl("[0-9]", term)) |>
Drop some specific terms that are not useful (e.g. philadelphia)
filter(!term %in% c("philadelphia_polic","philadelphia",

"inform_da","da_offic","incid_inform","inform_ppd",
"inform_post","post","officer-involv",
"officer-involv_shoot"))

vocab

Number of docs: 133
175 stopwords: i, me, my, myself, we, our ...
ngram_min = 1; ngram_max = 2
Vocabulary:

term term_count doc_count
<char> <int> <int>

1: advanc_toward 10 7
2: announc 10 8
3: approach_driver 10 9
4: cartridg 10 9
5: district_place 10 10

514: shoot 102 62
515: door 103 51
516: point 105 54
517: suspect 110 21
518: offend 308 56

Now we have a collection of words and word phrases gathered from our documents. Note that

9

it includes some two-word phrases (bigrams) with the two stemmed words combined with an
underscore between them.

2.1 Creating a document-term matrix (DTM)

Our next destination is to create a “document-term matrix” (DTM). A DTM is a matrix
representation of a collection of text documents, where each row corresponds to a document
and each column corresponds to a unique term (a word or phrase) from the collection of
documents. The values in the matrix typically reflect the number of times each term appears
in each document. A DTM transforms the unstructured text into a format that machine
learning models can work with.

The first step to getting to a DTM with text2vec is to create a “vectorizer”. A vectorizer
translates tokenized text into a numeric matrix format, such as a DTM. vocab_vectorizer()
creates a function that will take batches of documents, compare them to the vocabulary we
built, and produce the associated components of the DTM.

Create a vectorizer
helper function to convert streams of text into DTM
vectorizer <- vocab_vectorizer(vocab)
Let's see what this function looks like!
vectorizer

function (iterator, grow_dtm, skip_grams_window_context, window_size,
weights, binary_cooccurence = FALSE)

{
vocab_corpus_ptr = cpp_vocabulary_corpus_create(vocabulary$term,

attr(vocabulary, "ngram")[[1]], attr(vocabulary, "ngram")[[2]],
attr(vocabulary, "stopwords"), attr(vocabulary, "sep_ngram"))

setattr(vocab_corpus_ptr, "ids", character(0))
setattr(vocab_corpus_ptr, "class", "VocabCorpus")
corpus_insert(vocab_corpus_ptr, iterator, grow_dtm, skip_grams_window_context,

window_size, weights, binary_cooccurence)
}
<bytecode: 0x00000206bdd09118>
<environment: 0x00000206bdd05c78>

It is a little difficult to interpret, but we can see that it is going to take in an iterator over our
tokenized documents and produce something that will (hopefully!) be useful. Let’s give it a
try.

10

Create the document-term matrix (DTM)
row represents a document
column represents a unique term (word or phrase)
cell contains the count (or weight) of that term in the document
oisDTM <- create_dtm(tokens, vectorizer)
oisDTM[65:74, 415:424] |> as.matrix() |> t()

20-34 20-33 20-32 20-31 20-30 20-29 20-26 20-24 20-23 20-20
affair 0 0 0 0 0 0 0 0 0 0
intern 0 0 0 0 0 0 0 0 0 0
intern_affair 0 0 0 0 0 0 0 0 0 0
offic_offic 0 3 0 0 0 0 0 0 0 1
sever 0 1 0 0 0 0 3 1 0 5
wound 0 0 1 1 0 1 2 0 0 0
complain 0 0 4 0 0 0 23 0 0 0
dure 0 0 1 0 0 1 0 0 0 0
duti 0 0 0 0 0 0 0 0 0 0
park 0 0 0 1 1 2 3 0 0 0

We have a DTM! I have picked a few interesting rows and columns. I also transposed the DTM
so it is more readable, but typically the rows are documents and columns are terms. You can
see a few non-zero counts in this matrix. These indicate which documents include these terms
and how many times that term appears in the document.

Let’s explore further.

number of documents and words
dim(oisDTM)

[1] 133 518

rows represent individual OIS shooting reports
rownames(oisDTM)[1:5]

[1] "24-37" "24-36" "24-35" "24-32" "24-31"

columns are the words/phrases
colnames(oisDTM)[1:10] # feature names

11

[1] "advanc_toward" "announc" "approach_driver" "cartridg"
[5] "district_place" "district_polic" "drop_gun" "due"
[9] "fled_scene" "gave"

how many vocab words in document?
rowSums(oisDTM)

24-37 24-36 24-35 24-32 24-31 24-30 24-29 24-28 24-27 24-23 24-22 24-21 24-20
56 71 118 56 63 63 62 59 43 84 83 84 96

24-18 24-17 24-15 24-14 24-13 24-12 24-10 24-09 24-08 24-07 24-06 24-05 24-04
110 78 101 81 98 150 95 141 116 96 98 184 242

24-03 24-02 24-01 23-33 23-31 23-29 23-27 23-26 23-25 23-24 23-23 23-21 23-14
101 93 105 74 138 79 142 112 97 92 108 108 101

23-13 23-10 23-04 22-27 22-26 22-24 22-22 22-15 22-14 22-10 22-09 22-08 22-07
77 99 159 116 165 114 94 169 130 251 100 105 113

22-06 22-05 22-04 22-03 22-01 21-15 21-14 21-12 21-10 21-09 21-06 21-04 20-34
179 140 89 98 94 93 92 165 163 70 109 174 65

20-33 20-32 20-31 20-30 20-29 20-26 20-24 20-23 20-20 20-15 20-12 20-08 20-07
159 143 105 124 115 292 135 104 204 116 126 139 103

19-23 19-21 19-20 19-14 19-13 19-11 19-09 19-06 19-04 18-28 18-27 18-26 18-25
133 106 166 92 152 118 166 140 131 137 136 136 120

18-22 18-19 18-17 18-16 18-12 18-08 18-02 18-01 17-37 17-36 17-30 17-28 17-25
96 110 133 134 87 92 102 147 145 101 78 78 104

17-23 17-22 17-20 17-19 17-17 17-13 17-03 16-43 16-40 16-38 16-37 16-35 16-34
135 104 93 106 121 114 135 140 150 111 161 137 87

16-33 16-32 16-30 16-29 16-28 16-19 16-18 16-16 16-13 16-12 16-11 16-10 16-07
174 141 143 127 98 92 114 105 109 130 135 129 119

16-03 16-02 16-01
173 131 113

how many documents have these words?
colSums(oisDTM)[1:20]

advanc_toward announc approach_driver cartridg district_place
10 10 10 10 10

district_polic drop_gun due fled_scene gave
10 10 10 10 10

ground_drop hand_offic hospit_critic hospit_polic june
10 10 10 10 10

knock lost notifi offic_drew offic_oper
10 10 10 10 10

12

Most common words?
colSums(oisDTM) |>
sort(decreasing = TRUE) |>
head(10)

offend suspect point door shoot two avenu dog toward patrol
308 110 105 103 102 101 99 93 93 90

2.2 Term Frequency–Inverse Document Frequency

While raw term counts in a document-term matrix tell us how often each word appears, they
do not account for how informative or distinctive those words are across the entire collection of
documents. Common words like “officer” or “incident” may appear frequently in every report,
but they are not useful for distinguishing one document from another. Term frequency-inverse
document frequency (TF-IDF) improves on this by weighting terms based on how frequently
they appear in a specific document and how rare they are across all documents. This highlights
terms that are both common within a document and uncommon elsewhere, making them more
meaningful for identifying the unique content of each report.

Term Frequency-Inverse Document Frequency (TF-IDF) gives weights to words in a document
in a way that balances:

1. Term Frequency (TF): This word must be important in this document

• The more a word appears in a document, the more likely it is to be relevant to the
document’s content

• If the word “shooting” appears 12 times in a police report, it is probably central to that
document

2. Inverse Document Frequency (IDF): But if it appears in every document, it is not very
informative

• Common words like “officer”, “incident”, or “said” might appear everywhere
• IDF downweights those high-frequency but low-discrimination terms
• It prefers terms that help distinguish one document from others

The formula for TF-IDF for document 𝑖 and term 𝑗:

tfidf𝑖𝑗 = TF𝑖𝑗 log
𝑁
DF𝑗

where

13

• TF is the number of times term 𝑗 appears in document 𝑖. It measures the importance
of the term within a document

• 𝑁 = total number of documents
• DF𝑗 = number of documents containing term 𝑗

IDF𝑖𝑗 = log 𝑁
DF𝑗

captures the rarity across documents. Note that if a word appears in all
documents then tfidf𝑖𝑗 = 0. The combination of TF and IDF gives a measure of relevance and
distinctiveness. A high tfidf𝑖𝑗 means a term appears often in document 𝑖, but rarely in other
documents. It gives you terms that define a document. These are the terms that are useful
for classification, clustering, or topic modeling.

2.2.1 Example

Assume there are 𝑁 = 100 documents.

Term TF in Doc A DF across corpus IDF TF-IDF
“weapon” 5 10 2.3 11.5
“officer” 6 95 0.1 0.3
“said” 20 100 0 0

• “weapon” gets a high score, specific and relevant
• “officer” is common, downweighted
• “said” is everywhere, zeroed out

So “weapon” is most distinctive while “said” contributes no distinguishing information.

Let’s create the TFIDF for our OIS reports.

TF-IDF: term frequency–inverse document frequency weights
downweights common words that appear in many documents
upweights rare words that are more informative or distinctive
TF: How often a word appears in a document
IDF: How rare that word is across all documents
TF-IDF = TF × log(N / DF)
N = total number of documents
DF = number of documents containing the term
tfidf_transformer <- TfIdf$new()
oisTFIDF <- tfidf_transformer$fit_transform(oisDTM)

Let’s take a look at those same rows and columns that we did before for the DTM. The matrix
looks largely the same, just everything scaled down.

14

oisTFIDF[65:74, 415:424] |> as.matrix() |> round(2) |> t()

20-34 20-33 20-32 20-31 20-30 20-29 20-26 20-24 20-23 20-20
affair 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00
intern 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00
intern_affair 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00
offic_offic 0 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0 0.01
sever 0 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0 0.04
wound 0 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0 0.00
complain 0 0.00 0.07 0.00 0.00 0.00 0.20 0.00 0 0.00
dure 0 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0 0.00
duti 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00
park 0 0.00 0.00 0.02 0.01 0.03 0.02 0.00 0 0.00

Let’s compare the top features.

View top features by TF
colSums(oisDTM) %>%
sort(decreasing = TRUE) %>%
head(10)

offend suspect point door shoot two avenu dog toward patrol
308 110 105 103 102 101 99 93 93 90

View top features by TF-IDF
colSums(oisTFIDF) %>%
sort(decreasing = TRUE) %>%
head(10)

offend dog suspect shoot knife avenu
3.124350 2.212498 1.819930 1.134967 1.098324 1.087595
driver victim resid polic_vehicl

1.000676 1.000078 0.993729 0.993306

The TF-IDF does change which terms make the top-10 list. We see “knife” and “driver” show
up and “door” and “point” drop off.

15

3 Term co-occurrence matrix (TCM)

There may be some concepts that are not limited to a single word or a few adjacent words.
Term co-occurrence looks for words that tend to appear close to each other in text to possibly
help you expand the vocabulary to additional phrases. A term co-occurrence matrix (TCM)
captures how often pairs of words appear near each other within a given window of text, such
as a sentence or a few neighboring words. Unlike a document-term matrix, which represents
the relationship between documents and individual terms, a TCM focuses on the relationships
between terms themselves. This is useful for uncovering word associations and identifying
common phrases. In our case, we will use the TCM to explore how certain words, such as
“officer,” “suspect,” or “weapon,” tend to co-occur across police shooting reports, revealing
patterns that might not be visible from frequency counts alone.

When scanning through each document, setting skip_grams_window = 5 will treat any two
terms that appear within a window of 5 tokens as co-occurring. For example, if the document
has the phrase “the officer shot the suspect with a weapon” and we set skip_grams_window
= 5, then for the word “shot” it will consider “the”, “officer”, “the”, “suspect”, “with” as
co-occurring terms.

We will use create_tcm() to create a TCM. The (𝑖, 𝑗) element of the TCM will be the number
of times term 𝑖 occurs within 5 terms of term 𝑗.

Create a co-occurrence matrix (Feature Co-occurrence Matrix)
oisTCM <- itoken(ois$text,

tokenizer = oisTokenizer,
progressbar = FALSE,
ids = ois$id) |>

create_tcm(vocab_vectorizer(vocab),
skip_grams_window = 5)

This will be a little easier to visualize if we convert to a long (rather than wide) format.

Convert to triplet format and extract top co-occurring pairs
oisPairs <- Matrix::summary(oisTCM) |>
filter(i != j) |>
rename(feature1 = i, feature2 = j, weight = x) |>
left_join(data.frame(feature1 = 1:nrow(oisTCM),

term1 = colnames(oisTCM)),
by = join_by(feature1)) |>

left_join(data.frame(feature2 = 1:nrow(oisTCM),
term2 = colnames(oisTCM)),

by = join_by(feature2)) |>
select(-feature1, -feature2) |>

16

filter(term1 != term2) |>
filter(!str_detect(term1, fixed(term2)) &

!str_detect(term2, fixed(term1)))

oisPairs |>
arrange(desc(weight)) |>
slice_head(n = 50)

weight term1 term2
1 30.00000 offic_provid provid_inform
2 30.00000 lead_new new_inform
3 30.00000 investig_lead lead_new
4 30.00000 may_updat updat_investig
5 30.00000 incid_may may_updat
6 30.00000 incid_may short_incid
7 30.00000 occur_time time_incid
8 30.00000 occur_time understand_occur
9 30.00000 preliminari_understand understand_occur
10 30.00000 preliminari_understand reflect_preliminari
11 30.00000 reflect preliminari
12 30.00000 reflect_preliminari summari_reflect
13 30.00000 reflect summari
14 30.00000 origin_summari summari_reflect
15 30.00000 summari origin
16 30.00000 origin_summari post_origin
17 30.00000 understand preliminari
18 30.00000 investig_lead updat_investig
19 30.00000 lead new
20 30.00000 post_short short_incid
21 30.00000 investig_prior ppd_investig
22 29.50000 prior_charg charg_decis
23 29.50000 prior_charg investig_prior
24 25.00000 affair intern
25 24.00000 administr duti
26 24.00000 outcom pend
27 24.00000 administr place
28 23.50000 duti_pend administr_duti
29 23.50000 duti pend
30 23.00000 administr_duti place_administr
31 23.00000 duti_pend pend_outcom
32 20.00000 ppd_investig prior
33 20.00000 lead new_inform

17

34 20.00000 investig_lead new
35 20.00000 investig_lead updat
36 20.00000 incid_may updat
37 20.00000 occur_time understand
38 20.00000 reflect_preliminari understand
39 20.00000 preliminari_understand reflect
40 20.00000 summari_reflect preliminari
41 20.00000 reflect_preliminari summari
42 20.00000 summari_reflect origin
43 20.00000 post_origin summari
44 20.00000 origin_summari reflect
45 20.00000 lead updat_investig
46 20.00000 understand_occur preliminari
47 19.86667 charg_decis prior
48 19.66667 prior_charg decis
49 19.25000 mark patrol
50 18.50000 stabl condit

Much of this co-occurrence is due to the template language describing where the department
is in the investigation, referrals to the district attorney, and the report offers preliminary
summary.

Template language on the report

*** Information posted in the original summary reflects a preliminary understanding of
what occurred at the time of the incident. This information is posted shortly after the
incident and may be updated as the investigation leads to new information. The District
Attorney’s Office is provided all the information from the PPD’s investigation prior to
their charging decision.

Further on down the list some term pairs a more interesting.

oisPairs |>
filter(weight >= 8 & weight <=9) |>
arrange(desc(weight))

weight term1 term2
1 9.000000 firearm_strike discharg_firearm
2 9.000000 univers_hospit templ
3 9.000000 driver door
4 9.000000 open door
5 8.999996 duti_pend place

18

6 8.750000 attack dog
7 8.666667 respond_radio call
8 8.666667 affair_officer-involv shoot
9 8.666667 affair_officer-involv intern
10 8.500000 inform_district new_inform
11 8.500000 intern pend
12 8.500000 attorney_offic offic_provid
13 8.500000 inform_district district_attorney
14 8.500000 offic_mark mark_polic
15 8.500000 return fire
16 8.500000 semi-automat pistol
17 8.500000 drop offend
18 8.250000 pend_outcom intern_affair
19 8.250000 outcom_intern duti_pend
20 8.250000 outcom affair
21 8.250000 miss offend
22 8.250000 knife drop
23 8.000001 unmark polic_vehicl
24 8.000000 arriv locat

4 Singular value decomposition for text

We already explored how SVD can be used to compress images and classify emojis. Now we
will explore what SVD does for text.

Since TFIDF matrices can get large, we will use the SVD implementation in the IRLBA pack-
age (Implicitly Restarted Lanczos Bidiagonalization Algorithm). The IRLBA implementation
of SVD allows you to limit the number of singular vectors to compute, ignoring and never
computing the rest.

library(irlba)
oisSVD <- irlba(t(oisTFIDF), nv = 50)
each run of SVD can switch the signs on U and V
this forces sign(v[1,]) = +1, so SVD is unique
oisSVD$u <- sweep(oisSVD$u, 2, sign(oisSVD$v[1,]), `*`)
oisSVD$v <- sweep(oisSVD$v, 2, sign(oisSVD$v[1,]), `*`)

Let’s see how many singular vectors seem important. In Figure 1 we see the first two or three
singular values seem large, but then they decrease quite slowly from there.

19

https://raw.githack.com/gregridgeway/ML4SocialScience/main/L7-svd.html

plot(oisSVD$d,
xlab="Index of the singular value",
ylab="Singular value",
ylim=c(0, max(oisSVD$d)),
pch=16)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index of the singular value

S
in

gu
la

r
va

lu
e

Figure 1: Singular values from SVD of oisTFIDF

The columns of U are our “eigendocuments,” the fundamental building blocks that the actual
documents blend to form their word collections. We will take a look at the first five eigendoc-
uments, highlighting the 10 terms with the highest weight in the left singular vectors. Note
that both large positive and large negative values are important to interpret. I have added
headings to each left singular vector summarizing what kinds of incidents might heavily weight
this column of U.

Stack the top 10 terms from each component into one long table
termsTop10 <- lapply(1:5, function(uCol)
{

data.frame(component = paste0("u",uCol),
term=colnames(oisTFIDF),
u=oisSVD$u[,uCol]) |>

arrange(desc(abs(u))) |>
slice_head(n=10)

}) |>
bind_rows()

20

Table 2: Top 10 Terms for First 5 SVD Components

Offender and dog Dog attack, no offender Suspect/SWAT Knife attacks ?
Term 𝑢1 Term 𝑢2 Term 𝑢3 Term 𝑢4 Term 𝑢5

dog 0.26 dog 0.50 suspect -0.61 knife 0.44 knife -0.53
offend 0.25 offend -0.31 dog 0.33 offic_number -0.32 suspect -0.31

suspect 0.17 attack 0.21 offend 0.20 number -0.30 offic_number -0.24
shoot 0.11 bull 0.16 swat -0.18 suspect -0.28 number -0.20
attack 0.10 pit_bull 0.16 offic_number 0.16 number_one -0.26 drop_knife -0.19
resid 0.10 pit 0.15 attack 0.16 drop_knife 0.19 number_one -0.19

victim 0.09 offic_number -0.12 number 0.14 victim 0.15 offend 0.14
avenu 0.09 number -0.11 swat_offic -0.14 drop 0.12 rear 0.13
knife 0.09 number_one -0.10 number_one 0.13 bedroom 0.11 unmark 0.12

depart 0.09 veteran 0.09 male_suspect -0.13 offend 0.10 area 0.11

termsTop10 |>
group_by(component) |>
mutate(rank = row_number()) |>
ungroup() |>
pivot_wider(names_from = component,

values_from = c(term, u),
names_sep = "_") |>

data.frame() |>
select(term_u1, u_u1, term_u2, u_u2, term_u3, u_u3,

term_u4, u_u4, term_u5, u_u5) |>
kbl(align = "rrrrrrrrrr",

col.names = header_labels,
digits = 2,
escape = FALSE,
booktabs = TRUE) |>

add_header_above(c("Offender and dog" = 2,
"Dog attack, no offender" = 2,
"Suspect/SWAT" = 2,
"Knife attacks" = 2,
"?" = 2),

escape = FALSE) |>
kable_styling(full_width = FALSE,

latex_options = "scale_down")

Note that “dog” shows up with a large absolute value in the first three left singular vectors.
Even if there is a large negative value, that still means the term is important. A report of
shooting a pit bull will have a large negative value for its 𝑣2, signalling a heavy presence of
dog, pit bull, and attack terms, but the absence of the “offender” term. The first left singular

21

vector measures the combined presence of “dog,” “offender,” and “suspect” (or the absence of
all three if a document’s value of 𝑣1 is large and negative.

Remember that the columns of V tell us how a particular report mixes together the eigen-
documents (columns of U) to form their TFIDF weighted terms. I am curious to explore
documents involving dog attacks (u2) and documents with knife attacks (u4). The code below
creates an interactive 2D map of documents on their values of 𝑣2 and 𝑣4. For each document,
the code extracts the 10 most heavily weighted TF-IDF terms to use as hover text, giving a
quick sense of the content. It also assigns each document to a category, “Likely dog attack,”
“Likely knife attack,” or “Other,” based on thresholds of 𝑣2 and 𝑣4. plotly() produces an
interactive scatterplot where each point is a document, colored by category and annotated
with its key terms. This visualization allows us to explore thematic variation in the reports
and visually distinguish different types of incidents based on the language used.

library(plotly)

collect the 10 terms with the highest weight in each document
i <- apply(oisTFIDF, 1, order, decreasing=TRUE)
hovertext <- apply(i, 2,

function(j)
{
colnames(oisTFIDF)[j[1:10]] |>

paste(collapse = "\n")
})

label some document types
group <- case_when(oisSVD$v[,2] > 0.1 ~ "Likely dog attack",

oisSVD$v[,4] > 0.1 ~ "Likely knife attack",
TRUE ~ "Other")

groupCols <- c("Likely dog attack" = "red",
"Likely knife attack" = "orange",
"Other" = "steelblue")

make a plot with hovertext
plot_ly(x = oisSVD$v[,2],

y = oisSVD$v[,4],
type = "scatter",
mode = "markers",
text = hovertext,
hoverinfo = "text",
color = group,
colors = groupCols,
marker = list(size = 6)) |>

22

layout(xaxis = list(title = "V2 - Dog attack measure"),
yaxis = list(title = "V4 - Knife attack measure"))

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

V2 - Dog attack measure

V
4

-
K
ni

fe
 a

tt
ac

k
m

ea
su

re

Figure 2: Plot of how documents weigh 2nd and 4th singular vectors

23

5 Clustering documents

5.1 Hartigan’s k-means clustering algorithm

Hartigan’s k-means algorithm (Hartigan 1975; Hartigan and Wong 1979) is an iterative method
for partitioning data into 𝑘 clusters by minimizing the total within-cluster sum of squares. It
begins with randomly chosen cluster centers (centroids) and alternates between two steps:

1. assigning each data point to the nearest centroid based on Euclidean distance
2. updating each centroid to be the mean of the points currently assigned to it

These steps repeat until the assignments no longer change significantly, indicating convergence.
The algorithm is greedy and locally optimal. That is, it always reduces the the within cluster
sum of squares at each iteration, but it can converge to different solutions depending on the
initial centroids. Multiple runs with different random starts are often used to find a better
overall solution.

Let’s look at a little 2D demonstration before we run this on documents, which can be a little
abstract. I have created three clusters with centers at (0,0), (3,3), and (5,5). Then I have R
code that reassigns points to their nearest centroids, recomputes the cluster centroids, plots
the points colored by their cluster assignment, checks for convergence, and repeats if needed.

set.seed(20250325)

Simulate data from 3 clusters
df <- data.frame(x=rnorm(180, mean=c(0,3,5)),

y=rnorm(180, mean=c(0,3,5)))

find three clusters
k <- 3

pick three random points to start
old_centroid <- df |>
slice_sample(n=k) |>
select(x,y)

Function to assign points to nearest center
compare each point to each of the three centers
assign the point to its closest center
assign_clusters <- function(df, centers)
{

apply(df, 1, function(point)
{

24

which.min(colSums((t(centers) - point)^2))
})

}

iter <- 1
repeat
{
Assign points to nearest cluster
df$cluster <- assign_clusters(df[,c("x","y")],

old_centroid)

get centroids of newly assigned clusters
new_centroid <- df |>

group_by(cluster) |>
summarize(x=mean(x), y=mean(y))

plot showing old and new centroids
plotKmeans <- ggplot(df, aes(x = x, y = y, color = factor(cluster))) +

geom_point(size = 2) +
geom_point(data = old_centroid, aes(x = x, y = y),

shape = 21, size = 5, stroke = 2, color = "black") +
geom_point(data = new_centroid, aes(x = x, y = y, fill=factor(cluster)),

shape = 21, size = 5, stroke = 2, color = "black") +
geom_segment(
data = bind_cols(old_centroid, new_centroid),
aes(x = x...1, y = y...2, xend = x...4, yend = y...5),
arrow = arrow(length = unit(0.15, "inches")),
color = "black"

) +
ggtitle(paste("K-Means Iteration", iter)) +
labs(color="Cluster") +
guides(fill = "none") +
theme_minimal()

print(plotKmeans)

new_centroid <- new_centroid |> select(-cluster)

check if converged
if(all(abs(new_centroid - old_centroid) < 0.001))
{

break
}

25

old_centroid <- new_centroid
iter <- iter + 1

}

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 1

Figure 3: Demonstration of Hartigan’s k-means algorithm

26

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 2

Figure 4: Demonstration of Hartigan’s k-means algorithm

27

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 3

Figure 5: Demonstration of Hartigan’s k-means algorithm

28

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 4

Figure 6: Demonstration of Hartigan’s k-means algorithm

29

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 5

Figure 7: Demonstration of Hartigan’s k-means algorithm

30

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 6

Figure 8: Demonstration of Hartigan’s k-means algorithm

31

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 7

Figure 9: Demonstration of Hartigan’s k-means algorithm

32

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

K−Means Iteration 8

Figure 10: Demonstration of Hartigan’s k-means algorithm

After 8 iterations, the centroids of the clusters do not change. That means the cluster as-
signments for each point will no longer change. The k-means algorithm has converged after 8
iterations. Indeed k-means seems to have figured out the three clusters that I simulated. In
practice we never really know how many real clusters there are. We need to come up with some
measures that help us decide whether the number of clusters and their centroids adequately
capture the data points.

The plot in Figure 11 illustrates the total sum of squares (TSS), which measures the overall
variability in the dataset. It shows each data point connected to the grand centroid, the
average of all points in the data. The total sum of squares is calculated by summing the
squared distances from each point to this overall centroid. This serves as a baseline measure
of dispersion before we run our clustering algorithm.

tot_centroid <- df |>
select(x, y) |>
colMeans() |>
t() |>
data.frame()

plotTotCentroid <- ggplot(df, aes(x = x, y = y,

33

color = factor(cluster))) +
geom_point(size = 2) +
geom_segment(

data = bind_cols(tot_centroid |>
slice(rep(1,180)),

df |>
select(x,y)),

aes(x = x...1, y = y...2, xend = x...3, yend = y...4),
color = "black"

) +
labs(color="Cluster") +
theme_minimal()

print(plotTotCentroid)

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

Figure 11: Total sum of squares calculation. TSS sums all the squared distances between each
point and the single centroid of the entire dataset

In contrast, Figure 12 depicts the within-cluster sum of squares (WCSS). Each point is now
connected to its respective cluster centroid, rather than the overall centroid. The sum of
squared distances from each point to its assigned cluster center quantifies how compact each
cluster is.

34

new_centroid$cluster <- 1:3

plotWithinCentroid <- ggplot(df, aes(x = x, y = y,
color = factor(cluster))) +

geom_point(size = 2) +
geom_segment(

data = df |>
left_join(new_centroid, by=join_by(cluster)),

aes(x = x.x, y = y.x, xend = x.y, yend = y.y),
color = "black"

) +
labs(color="Cluster") +
theme_minimal()

print(plotWithinCentroid)

−3

0

3

6

−2.5 0.0 2.5 5.0 7.5
x

y

Cluster

1

2

3

Figure 12: Within cluster sum of squares calculation. WCSS sums the squared distances be-
tween each point and the center of its associated centroid

A useful measure of clustering quality is the proportion of variance explained by the clustering,
computed as 𝑅2 = 1− 𝑊𝐶𝑆𝑆

𝑇 𝑆𝑆 . This tells us how much of the total variability has been accounted
for by the clustering structure. A higher value indicates better clustering. If this proportion
is low, it may suggest that the three clusters is insufficient to capture the underlying structure
of the data.

35

Let’s put all this to work on our officer-involved shooting reports. We will define documents by
their first 10 right singular vectors (columns of V). We will actually cluster on VΣ. Remember
that SVD normalizes all the columns in V (and those in U as well) to have length 1. That
has the effect of making differences between documents based on their values of 𝑣30 just as
large as differences on 𝑣1. The singular values in Σ tell us how to weight each column based
how much variance it captures in the original TF-IDF matrix. Without this weighting, each
dimension would contribute equally to distance calculations during clustering, even though
some components may be far more informative than others. By using VΣ, our clustering
algorithm will more accurately group documents based on their underlying thematic content.

R has a built-in kmeans() function in the default stats package that will do all the work for
us. First, we need to decide on how many clusters we should use. The code below explores
the relationship between the number of clusters, 𝑘, and 𝑅2. This is a key part of the “elbow
method,” a common strategy for selecting an appropriate number of clusters. By running
k-means repeatedly with increasing values of 𝑘 (from 1 to 40 in this case), and recording the
corresponding 𝑅2, we can visualize how much the clustering improves as 𝑘 increases. A plot
of 𝑅2 versus 𝑘 typically shows a steep increase initially and then levels off. The “elbow” point,
where the rate of improvement sharply slows, is often a good choice for the number of clusters.
It represents a balance between underfitting and overfitting the structure in the data. Another
common method is to consider more and more clusters until 𝑅2 reaches 0.80 (or 0.90).

design <- data.frame(k=1:40, R2=NA)
for(i in 2:nrow(design))
{
multiply by the singular values to incorporate the importance of each
km <- kmeans(oisSVD$v[,1:10] %*% diag(oisSVD$d[1:10]),

centers = design$k[i],
nstart = 5)

design$R2[i] <- ifelse(i==1, 1,
1 - km$tot.withinss/km$totss)

}
plot(R2~k, data=design, pch=16,

xlab=expression(k),
ylab=expression(R^2),
ylim=0:1)

abline(h=0.8, col="red")
kSelect <- design |>
filter(R2 > 0.8) |>
slice_min(R2) |>
pull(k)

36

0 10 20 30 40

0.
0

0.
4

0.
8

k

R
2

Figure 13: Relationship between 𝑘 and 𝑅2

In Figure 13 I have marked where the 𝑅2 reaches 80%. That happens when we set 𝑘 to 13.
With 𝑘 set to 13, the clustering captures 80% of the variation in the first seven right singular
vectors.

run kmeans on first 10 right singular vectors (scaled by Sigma)
clusters similar documents
set.seed(20250325)
oisKmeans <- kmeans(oisSVD$v[,1:10] %*% diag(oisSVD$d[1:10]),

centers = kSelect,
nstart = 5) # try 5 random starting points

Let’s add the cluster label to our original OIS data frame so we can see if themes are identifiable
from their incident descriptions.

add the cluster labels to the dataset
ois$cluster <- oisKmeans$cluster
ois |>
select(id,location,date,cluster) |>
head()

id location date cluster
1 24-37 3450 Vista Street, Philadelphia, PA 2024-12-10 5
2 24-36 3250 A Street, Philadelphia, PA 2024-11-12 11
3 24-35 5450 Chancellor Street, Philadelphia, PA 2024-11-10 2
4 24-32 2950 E. Street, Philadelphia, PA 2024-10-11 5

37

5 24-31 3350 Willits Road, Philadelphia, PA 2024-10-03 2
6 24-30 6150 Lebanon Avenue, Philadelphia, PA 2024-10-02 5

We need to craft some labels or definitions for these clusters. For each cluster I will compute
the average of their TFIDF weights for each term in the vocabulary. I will paste together the
top ten terms as cluster labels.

hovertext <- as.matrix(oisTFIDF) |>
as.data.frame() |>
mutate(cluster = ois$cluster) |>
group_by(cluster) |>
average the TFIDF values within each cluster
summarize(across(everything(), mean), .groups = "drop") |>
select(-cluster) |>
find the top 10 TFIDF weighted terms by cluster
apply(1, function(w)
{

i <- order(w, decreasing = TRUE)
colnames(oisTFIDF)[i[1:10]]

}) |>
t() |>
paste together the top 10 terms
apply(1, paste, collapse=", ") |>
data.frame(terms = _) |>
cbind(size = oisKmeans$size,

cluster = 1:kSelect) |>
arrange(desc(size))

Let’s examine the top 10 terms for these clusters.

hovertext |>
kable(escape = FALSE,

col.names = c("Top Terms", "Size", "Cluster")) |>
kable_styling(full_width = FALSE,

position = "left",
bootstrap_options = c("striped", "hover"))

Top Terms Size Cluster
south, prior, saw, charg_decis, decis, incid_may, investig_lead, investig_prior, lead, lead_new 25 3
offend, polic_vehicl, offend_offend, mark_polic, properti, offic_mark, injuri_result, pm_uniform, result, miss_offend 21 13

38

passeng, driver, rear, point, unmark, black, area, door, gun, side 16 7
shoot, victim, room, place, depart, unknown, duti, polic_district, unit, veteran 12 2
dog, attack, bull, pit_bull, pit, owner, year, year_old, anim, old 11 11
suspect, male_suspect, robberi, depart, off-duti, depart_assign, dure, graze, veteran, vehicl_offic 10 8
offend, victim, gun, handgun, black, right, sever, area, observ_offend, involv 8 1
swat, properti, swat_offic, unit, announc, door, detect, floor, insid, knock 8 12
dog, resid, narcot, retreat, polic_depart, secur, encount, veteran_philadelphia, veteran, depart 7 5
knife, drop_knife, offend, bedroom, drop, toward_offic, arm, move, toward, male_drop 7 9
offic_number, number, number_one, two, offend, plaincloth_offic, plaincloth, pistol, three, firearm_offic 4 6
detect, offend, unmark, plaincloth, observ_offend, car, treat_releas, chase, drew_firearm, discharg_firearm 3 10
suspect, swat_offic, swat, femal, properti, male_suspect, complain, road, point, white 1 4

From the list of terms we can get a sense of what kinds of incidents fall into these clusters. You
can see incidents surrounding a vehicle (driver, passenger, door), incidents involving SWAT
Special Weapons and Tactics), incidents involving someone with a knife, and shootings of dogs,
commonly pit bulls.

Let’s plot these out based on the values of each document’s first two right singular vectors (𝑣1
and 𝑣2). I will color them based on their clustering and add the top 10 terms as hovertext
so we have some idea about the themes. Explore the clusters in the plot and see if you can
extract some of those themes.

plot_ly(
x = oisSVD$v[,1],
y = oisSVD$v[,2],
type = "scatter",
mode = "markers",
color = ois$cluster,
hoverinfo = "text", # don't show the coordinates, only hoverinfo
text = hovertext$terms[ois$cluster] |>

gsub(", ", "\n", x=_),
marker = list(size = 6)

) |>
layout(

xaxis = list(title = "SVD Dimension 1"),
yaxis = list(title = "SVD Dimension 2"),
title = "K-Means Clustering of OIS Reports"

)

39

0.06 0.07 0.08 0.09 0.1 0.11
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

K-Means Clustering of OIS Reports

SVD Dimension 1

S
V
D

 D
im

en
si

on
 2

Figure 14: Plot of document by first two right singular vectors, colored by cluster

5.2 Exploring Document Clusters with UMAP

UMAP (Uniform Manifold Approximation and Projection) is another approach to visualizing
document clusters (McInnes et al. 2018). Unlike SVD, which finds linear axes of variation,
UMAP attempts to preserve both local neighborhood structure and global relationships, mak-
ing it especially useful for discovering clusters or themes in high-dimensional data like TF-IDF

40

matrices. UMAP aims to find a low dimensional (like 2D) arrangement of points where dis-
tances between points in that low dimensional space is close to the distances in the higher
dimensional space.

We will apply UMAP to the TF-IDF representation of the reports.

set.seed(20250330)
oisUMAP <- umap(as.matrix(oisTFIDF),

n_neighbors = 15, # default 15
min_dist = 0.1) # default 0.01

Setting min_dist = 0.01 (default) tends to produce very tight clusters, often leading to visual
“clumping,” points getting packed very close together, even if they are semantically a bit
different. This can look prettier, but may overemphasize local separation and distort the
global structure. min_dist = 0.1 loosens up the compression slightly. This spreads clusters
out a bit more, helping you see more of the global relationships between them. It is often
better for exploratory visualization, especially when you are trying to understand document
similarity.

Add UMAP coordinates back to our data
ois <- ois |>
mutate(UMAP1 = oisUMAP[, 1],

UMAP2 = oisUMAP[, 2])

We can now visualize the results. Each point represents a report, plotted based on its 2D
UMAP coordinates. We will color the points based on whether the incident was fatal to
explore whether fatal shootings tend to group together in text space.

ggplot(ois, aes(x = UMAP1, y = UMAP2, color = fatal)) +
geom_point(size = 2, alpha = 0.7) +
labs(color = "Fatal?") +
theme_minimal()

41

−7.5

−5.0

−2.5

0.0

2.5

−3 −2 −1 0 1 2
UMAP1

U
M

A
P

2
Fatal?

0.00

0.25

0.50

0.75

1.00

Figure 15: UMAP projection of officer-involved shooting reports

Figure 15 shows how reports with similar language tend to cluster together. If fatal and non-
fatal incidents form distinct regions in the UMAP space, that suggests the language used in
the reports captures meaningful differences between these types of incidents. This insight can
guide further modeling, such as classification or clustering.

Let’s add a little more context by tagging each point with its most important terms. Figure 16
allows you to hover over each point to get additional details about the incident.

For each document, get top 10 TF-IDF terms
topTerms <- apply(oisTFIDF, 1,

function(row)
{

iTop <- order(row, decreasing = TRUE)[1:10]
colnames(oisTFIDF)[iTop] |>
paste(collapse = ", ")

})

ois <- ois |>
mutate(topTerms = topTerms)

plot_ly(ois,
x = ~UMAP1,

42

y = ~UMAP2,
type = "scatter",
mode = "markers",
color = ~fatal,
colors = c("steelblue", "firebrick"),
text = ~paste("ID:", id,

"
Fatal:", fatal,
"
Top terms:
", topTerms),

hoverinfo = "text",
marker = list(size = 6)) |>

layout(xaxis = list(title = "UMAP 1"),
yaxis = list(title = "UMAP 2"))

43

−3 −2 −1 0

−8

−6

−4

−2

0

2

UMAP 1

U
M

A
P

2

Figure 16: UMAP projection of the TFIDF matrix of OIS reports

6 Document classification

We can now explore whether the text in the officer-involved shooting narratives helps us predict
whether the subject was fatally shot in the incident. We will base our predictions directly on
the DTM, the word frequency count in the text. I will use glmnet() to fit an L1 regularized
logistic regression model, a logistic regression model with a penalty on the sum of the absolute

44

values of the coefficients. The intention is that this will select out those particular terms that
signal a fatal shooting.

Fit logistic regression with L1 penalty
set.seed(20250329)
oisLasso <- cv.glmnet(as.matrix(oisDTM),

ois$fatal,
family = "binomial",
alpha = 1,
nfolds = 10)

Table 4 shows the terms with the largest coefficients.

coef(oisLasso, s = "lambda.min") |>
as.matrix() |>
as.data.frame() |>
tibble::rownames_to_column("Term") |>
arrange(desc(s1)) |>
slice_head(n = 10) |>
kable(digits = 2,

col.names = c("Term", "LASSO Coefficient")) %>%
kable_styling(full_width = FALSE,

bootstrap_options = c("striped", "hover"),
position = "left")

Table 4: Top 10 terms with the largest coefficients

Term LASSO Coefficient
pronounc 1.51
hospit_pronounc 1.19
pronounc_deceas 0.90
assist 0.62
addit 0.19
femal 0.16
deceas 0.06
advanc_toward 0.00
announc 0.00
approach_driver 0.00

Quite sensibly we see terms associated with the subject being “pronounced deceased” and is
variations. Only 7 terms have non-zero coefficients.

45

Let’s see how it performs in terms of misclassification. I will use 10-fold cross-validation to get
out-of-fold predicted probabilities for each document.

set.seed(20250329)
iFold <- rep(1:10, length.out=nrow(ois)) |> sample()
oofPred <- rep(NA, nrow(ois))

for (i in 1:10)
{
fit <- cv.glmnet(oisDTM[iFold!=i,],

ois$fatal[iFold!=i],
family = "binomial",
alpha = 1,
nfolds = 10)

oofPred[iFold==i] <- predict(fit,
newx = oisDTM[iFold==i,],
s = "lambda.min",
type = "response")

}

Let's use a 0.25 probability cut-off (about 28% are fatal)
table(oofPred>0.25, ois$fatal)

0 1
FALSE 91 5
TRUE 4 33

Overall predictive performance seems reasonably good. There is a lot of information in the
terms to separate most fatal incidents from the non-fatal ones.

7 Sentiment analysis

Sentiment analysis is a natural extension of our text mining toolkit. It helps us quantify the
emotional tone of a document, whether it is positive, negative, fearful, angry, etc. In this
section, we will apply a lexicon-based approach to compute sentiment scores for OIS reports
and explore how they vary across incidents.

46

7.1 Lexicon-Based Sentiment Analysis

In this approach, we rely on a pre-defined dictionary (lexicon) of words labeled with emotional
values. The most common sentiment lexicons in R include:

• Bing: Binary classification of words as positive or negative
• AFINN: Words scored on a numeric scale from -5 (very negative) to +5 (very positive)
• NRC: Tags words with broader emotions (e.g., anger, fear, trust, joy)

We will start with the Bing lexicon for a straightforward positive/negative breakdown. We
first need to tokenize the text into individual words and join with the sentiment lexicon.
unnest_tokens() breaks every document into its list of words.

oisTokens <- ois |>
select(id, text) |>
unnest_tokens(word, text)

head(oisTokens)

id word
1 24-37 3400
2 24-37 block
3 24-37 of
4 24-37 vista
5 24-37 street
6 24-37 on

get_sentiments("bing") provides a list of 6786 words and their associated quality (positive
or negative). We can join these sentiment qualities directly to oisTokens.

oisSentiment <- oisTokens |>
inner_join(get_sentiments("bing"),

by = "word") |>
count(id, sentiment) |>
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) |>
mutate(net_sentiment = positive - negative)

head(oisSentiment)

A tibble: 6 x 4
id negative positive net_sentiment
<chr> <int> <int> <int>

1 16-01 8 4 -4
2 16-02 4 1 -3

47

3 16-03 5 3 -2
4 16-07 9 2 -7
5 16-10 10 2 -8
6 16-11 15 2 -13

Now for each document we have a net sentiment score, the number of positive words minus
the number of negative ones.

We can now examine how sentiment differs across incidents—particularly between fatal and
non-fatal events. We can attached new columns containing our sentiment measures to our
original ois data frame.

ois <- ois |>
left_join(oisSentiment, by = join_by("id"))

ggplot(ois, aes(x = ifelse(fatal==1, "Fatal", "Non-fatal"),
y = net_sentiment)) +

geom_boxplot() +
labs(title = "",

y = "Net Sentiment (Positive - Negative)",
x = "Was the shooting fatal?")

−30

−20

−10

0

Fatal Non−fatal
Was the shooting fatal?

N
et

 S
en

tim
en

t (
P

os
iti

ve
 −

 N
eg

at
iv

e)

Figure 17: Net Sentiment of OIS Reports by Fatality

48

This plot shows that fatal incidents are described slightly more negatively than non-fatal
ones.

7.2 Exploring emotion in OIS reports with the NRC lexicon

In addition to binary positive/negative sentiment, we can use the NRC lexicon (Mohammad
and Turney 2013) to examine a broader range of emotions, such as fear, anger, trust, and
sadness. This gives us a more nuanced view of how OIS reports are framed.

The NRC lexicon associates individual words with up to 8 emotions (anger, anticipation,
disgust, fear, joy, sadness, surprise, trust) and 2 sentiments (positive and negative).

oisNRC <- oisTokens |>
same word may appear multiple times in document
and same word may have multiple entries in NRC
many-to-many will include all of them
inner_join(get_sentiments("nrc"),

by = "word",
relationship = "many-to-many") |>

count(id, sentiment) |>
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0)

head(oisNRC)

A tibble: 6 x 11
id anger anticipation disgust fear negative positive sadness surprise
<chr> <int> <int> <int> <int> <int> <int> <int> <int>

1 16-01 8 8 6 16 13 23 9 2
2 16-02 4 8 3 13 10 21 4 2
3 16-03 2 11 2 25 9 33 10 2
4 16-07 7 7 7 11 13 10 9 3
5 16-10 13 8 8 18 17 20 12 3
6 16-11 17 10 12 25 21 20 17 3
i 2 more variables: trust <int>, joy <int>

Each row now contains the number of words in a report associated with each NRC emotion.
Now we can inspect emotional content across the dataset, for example, which incidents con-
tain the most fear, trust, or anger. Let’s start with the kinds of emotional language that
distinguishes fatal and non-fatal incidents.

49

ois |>
left_join(oisNRC, by=join_by(id)) |>
pivot_longer(cols = c(anger, fear, trust, sadness, joy,surprise),

names_to = "emotion", values_to = "count") |>
ggplot(aes(x = ifelse(fatal==1,"Fatal","Non-fatal"),

y = count)) +
geom_boxplot() +
facet_wrap(~ emotion, scales = "free_y") +
labs(title = "",

x = "Was the shooting fatal?", y = "Word Count") +
theme_minimal()

sadness surprise trust

anger fear joy

Fatal Non−fatal Fatal Non−fatal Fatal Non−fatal

0

1

2

3

4

5

0

10

20

30

40

50

0

10

20

30

40

50

0

5

10

0

10

20

30

40

0

10

20

30

Was the shooting fatal?

W
or

d
C

ou
nt

Figure 18: Emotion counts by whether the incident was fatal

Let’s extract the full-text reports that show the strongest expression of each emotion.

The when with the most “fear” was the awful mass shooting on South Street in 2022 involving
four shooters, three who died. Eleven other people were shot and survived. This incident also
has the most surprise, anger, sadness, and anticipation.

Narrative from OIS report with the most fear

400 block of South Street On Saturday, June 4, 2022, at approximately 11:31 p.m., Officer
#1, along with another Officer, was in full uniform, assigned to a foot beat detail on South
Street. The Officers were in the area of 200 South Street and heard several gunshots

50

coming from the area of 400 South Street. The Officers proceeded to the area from
where the gunshots were emanating and observed several civilians suffering from gunshot
wounds lying on the sidewalk and on the street. As the officers began rendering first
aid, Officer #1 observed an unknown black male on the southwest corner of South and
American Streets firing a handgun into a large crowd. Officer #1 drew his weapon and
fired several times in the direction of the unknown male. The unknown male dropped his
handgun on the sidewalk and ran southbound on 600 American Street. The male was lost
in the area. It is unknown whether Officer #1 struck the male. There were no injuries to
police. This Officer-Involved Shooting occurred concurrently, and in response to, a Mass
Casualty Shooting Incident that took place at the above date, time, and locations. The
OISI Unit and the Homicide Unit are conducting a joint investigation. As per protocol,
the discharging officer (Officer #1) has been placed on administrative duty pending the
outcome of the OISI and Internal Affairs investigations. The Mass Casualty Incident
(MCI) is under investigation by the Philadelphia Police Department’s Homicide Unit.
The individuals listed below were injured as a result of the MCI. Decedent #1: 34/B/M
Pronounced at 12:05 AM at Presbyterian Hospital. Decedent #2: 27/B/F Pronounced
at 11:49 PM at Jefferson Hospital. Decedent #3: 22/B/M, Pronounced at 11:49 PM at
Jefferson Hospital. Shooting Victim #1: 23/B/M. Shot multiple times about the torso
area. Critical condition. Shooting Victim #2: 18/B/M. Shot one time in the right hand.
Shooting Victim #3: 18/B/M. Shot one time in his left buttocks. Shooting Victim #4:
20/B/M. Shot one time in his left forearm. Shooting Victim #5: 17/B/M. Shot one
time right chest area. Shooting Victim #6: 69/W/M. Shot one time in his left calf area.
Shooting Victim #7: 43/B/M. Shot one time right ankle. Shooting Victim #8: 17/B/F.
Shot one time in her left leg. Shooting Victim #9: 19/B/F. Shot one time in her left leg.
Shooting Victim #10: 20/B/M. Shot one time in his left shoulder. Shooting Victim #11:
17/B/F. Shot one time left shoulder. Non-shooting victim #1: 49/B/F. Victim struck
by shattered glass

Longer reports may have higher raw sentiment counts. Part of what makes the South Street
shooting rate highly on several emotional dimensions is that it is a rather long report. We
might prefer to normalize the emotion count by the total number of words so that we get a
percentage of words that fall into a particular emotion category.

countWords <- oisTokens |> count(id)

oisNRCpct <- oisTokens |>
same word may appear multiple times in document
and same word may have multiple entries in NRC
many-to-many will include all of them
inner_join(get_sentiments("nrc"),

by = "word",
relationship = "many-to-many") |>

51

count(id, sentiment) |>
left_join(countWords, by = join_by(id)) |>
mutate(pct = n.x/n.y) |>
select(id, sentiment, pct) |>
pivot_wider(names_from = sentiment, values_from = pct, values_fill = 0)

head(oisNRCpct)

A tibble: 6 x 11
id anger anticipation disgust fear negative positive sadness surprise
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 16-01 0.0305 0.0305 0.0229 0.0611 0.0496 0.0878 0.0344 0.00763
2 16-02 0.0141 0.0282 0.0106 0.0458 0.0352 0.0739 0.0141 0.00704
3 16-03 0.00462 0.0254 0.00462 0.0577 0.0208 0.0762 0.0231 0.00462
4 16-07 0.0282 0.0282 0.0282 0.0444 0.0524 0.0403 0.0363 0.0121
5 16-10 0.0489 0.0301 0.0301 0.0677 0.0639 0.0752 0.0451 0.0113
6 16-11 0.0440 0.0259 0.0311 0.0648 0.0544 0.0518 0.0440 0.00777
i 2 more variables: trust <dbl>, joy <dbl>

Turns out, even when measured by a percentage of words, the South Street mass shooting still
tops the list.

Narrative from OIS report with the most fear

400 block of South Street On Saturday, June 4, 2022, at approximately 11:31 p.m., Officer
#1, along with another Officer, was in full uniform, assigned to a foot beat detail on South
Street. The Officers were in the area of 200 South Street and heard several gunshots
coming from the area of 400 South Street. The Officers proceeded to the area from
where the gunshots were emanating and observed several…

8 Summary

We have explored how to transform unstructured text data, specifically officer-involved shoot-
ing reports, into a structured format suitable for analysis and modeling. Using the text2vec
package, we walked through the full text processing pipeline:

1. tokenization
2. vocabulary construction
3. creation of a document-term matrix (DTM)
4. TF-IDF weighting to highlight distinctive terms

52

We then used dimensionality reduction techniques like singular value decomposition (SVD) and
UMAP to visualize documents in a low-dimensional space, revealing thematic clusters such as
reports involving dog shootings or knife attacks. We used k-means clustering to group similar
documents and we a built classification model to predict whether an incident was fatal based
on the text content. Throughout, we emphasized the importance of preprocessing choices,
like stopword removal, stemming, and n-gram inclusion, and how they shape downstream
analysis.

Key Ideas to Remember

• Tokenization is the process of breaking raw text into meaningful units like words or
phrases

• A document-term matrix (DTM) represents word counts across documents and is
the foundation of most text modeling

• TF-IDF weighting highlights terms that are important to a document but uncommon
across the corpus

• Stemming reduces related words to a common root but may reduce interpretability
(e.g., “office” and “officer” both become “offic”)

• Singular Value Decomposition (SVD) compresses the DTM and reveals major axes
of variation in word usage

• K-means clustering helps uncover groups of thematically similar documents in low-
dimensional spaces

• UMAP is a nonlinear method for visualizing document similarity and capturing both
local and global structure

• Interpretation of models and clusters is enriched by examining top-weighted terms for
each dimension or group

• Sentiment analysis uses predefined lexicons to quantify emotional tone (e.g., positive,
negative, fear, trust) in text. The NRC lexicon allows you to analyze specific emotions,
helping reveal how reports differ in framing and tone

• Text preprocessing decisions can significantly affect model outcomes. Make sure to in-
spect the documents directly to make sure you understand the context

Hartigan, John A. 1975. Clustering Algorithms. New York: John Wiley & Sons.
Hartigan, John A., and Manchek A. Wong. 1979. “Algorithm AS 136: A k-Means Clustering

Algorithm.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 28 (1):
100–108. https://doi.org/10.2307/2346830.

McInnes, Leland, John Healy, Nathaniel Saul, and Lukas Großberger. 2018. “UMAP: Uniform
Manifold Approximation and Projection.” Journal of Open Source Software 3 (29): 861.
https://doi.org/10.21105/joss.00861.

Mohammad, Saif M., and Peter D. Turney. 2013. “Crowdsourcing a Word-Emotion Associa-
tion Lexicon.” Computational Intelligence 29 (3): 436–65. https://doi.org/10.1111/j.1467-
8640.2012.00460.x.

53

https://doi.org/10.2307/2346830
https://doi.org/10.21105/joss.00861
https://doi.org/10.1111/j.1467-8640.2012.00460.x
https://doi.org/10.1111/j.1467-8640.2012.00460.x

	Introduction
	Turning text into data with text2vec
	Creating a document-term matrix (DTM)
	Term Frequency–Inverse Document Frequency
	Example

	Term co-occurrence matrix (TCM)
	Singular value decomposition for text
	Clustering documents
	Hartigan's k-means clustering algorithm
	Exploring Document Clusters with UMAP

	Document classification
	Sentiment analysis
	Lexicon-Based Sentiment Analysis
	Exploring emotion in OIS reports with the NRC lexicon

	Summary

