
L10 Neural networks
Greg Ridgeway

2025-04-13

Table of contents

1 Reading 1

2 A simple neural network 2

3 Computing derivatives in networks 3

4 Backpropagation for a neural network with a hidden layer 7

5 Examples in two-dimensions 11
5.1 Classes separated with a curve, but we try a linear neural network 11
5.2 A circular decision boundary in two dimensions 13

5.2.1 Searching for a linear boundary . 13

6 Implementing backpropagation “by hand” for a neural network with a hidden layer 15

7 R’s neuralnet package 29

8 Tensorflow and Keras 32
8.1 Tensorflow Playground . 33
8.2 Installing Tensorflow and Keras . 33
8.3 MNIST postal digits data . 33
8.4 Convolution layers . 41
8.5 A convolutional neural network with Keras . 42

1 Reading

Read Hastie, Tibshirani, and Friedman (2001) Chapter 11.

1

Read James et al. (2021) Chapter 10.

Read Y. LeCun, Y. Bengio, and G. Hinton (2015). “Deep learning,” Nature 521, 436–444.

Section 5.6 of Deisenroth, Faisal, and Ong (2020).

2 A simple neural network

Consider a simple neural network that has two inputs 𝑥1 and 𝑥2 that enter a linear transfor-
mation, which outputs a prediction. Let’s further assume that we wish to minimize squared
error, 𝐽(y, ŷ) = ∑(𝑦𝑖 − ̂𝑦𝑖)2. This is the same as ordinary least squares, but I introduce it
with a neural network framework to move gradually into more complex neural networks. So,
the structure of this model is

x1

x2

β0 + β1x1 + β2x2 ŷ

Figure 1: A linear model as a network

We start with some guess for ̂𝛽, perhaps (0, 0, 0). Then, once we pass our data through the
neural network, we get predicted values and learn the magnitude of our error by computing
∑(𝑦𝑖 − ̂𝑦𝑖)2. Now we can improve our guess for ̂𝛽 by computing the gradient of 𝐽 with respect
to 𝛽. We will chain rule our way to figure out the gradient.

2

𝜕𝐽
𝜕 ̂𝑦𝑖

= −2(𝑦𝑖 − ̂𝑦𝑖)

𝜕 ̂𝑦𝑖
𝜕𝛽0

= 1

𝜕 ̂𝑦𝑖
𝜕𝛽1

= 𝑥𝑖1

𝜕 ̂𝑦𝑖
𝜕𝛽2

= 𝑥𝑖2

𝜕𝐽
𝜕𝛽0

= 𝜕𝐽
𝜕 ̂𝑦1

𝜕 ̂𝑦1
𝜕𝛽0

+ … + 𝜕𝐽
𝜕 ̂𝑦𝑛

𝜕 ̂𝑦𝑛
𝜕𝛽0

= −2(𝑦1 − ̂𝑦1)(1) + … + −2(𝑦𝑛 − ̂𝑦𝑛)(1)
= −2 ∑(𝑦𝑖 − ̂𝑦𝑖)

So, to reduce the loss function 𝐽 we need to adjust ̂𝛽0 as

̂𝛽0 ← ̂𝛽0 − 𝜆 (−2 ∑(𝑦𝑖 − ̂𝑦𝑖))

where 𝜆 is the “learning rate.” Similarly for ̂𝛽1 and ̂𝛽2

𝜕𝐽
𝜕𝛽1

= 𝜕𝐽
𝜕 ̂𝑦1

𝜕 ̂𝑦1
𝜕𝛽1

+ … + 𝜕𝐽
𝜕 ̂𝑦𝑛

𝜕 ̂𝑦𝑛
𝜕𝛽1

= −2(𝑦1 − ̂𝑦1)𝑥11 + … + −2(𝑦𝑛 − ̂𝑦𝑛)𝑥𝑛1

= −2 ∑(𝑦𝑖 − ̂𝑦𝑖)𝑥𝑖1
𝜕𝐽
𝜕𝛽2

= −2 ∑(𝑦𝑖 − ̂𝑦𝑖)𝑥𝑖2

Putting this all together, an algorithm for optimizing this simple neural network would be

⎡
⎢
⎣

̂𝛽0
̂𝛽1
̂𝛽2

⎤
⎥
⎦

← ⎡
⎢
⎣

̂𝛽0
̂𝛽1
̂𝛽2

⎤
⎥
⎦

− 𝜆 ⎡⎢
⎣

−2 ∑(𝑦𝑖 − ̂𝑦𝑖)
−2 ∑(𝑦𝑖 − ̂𝑦𝑖)𝑥𝑖1
−2 ∑(𝑦𝑖 − ̂𝑦𝑖)𝑥𝑖2

⎤⎥
⎦

̂𝛽 ← ̂𝛽 + 𝜆X′(y − ŷ)
where in the last line the 𝜆 absorbed the 2.

3 Computing derivatives in networks

This is a nice example from Deisenroth, Faisal, and Ong (2020) Section 5.6. Let’s say you
want to compute the derivative of

3

𝑓(𝑥) = √𝑥2 + 𝑒𝑥2 + cos (𝑥2 + 𝑒𝑥2)
Using first semester univariate calculus rules, we can compute 𝑓 ′(𝑥) with a little effort.

𝑓 ′(𝑥) = 2𝑥 + 2𝑥𝑒𝑥2

2
√

𝑥2 + 𝑒𝑥2 − sin (𝑥2 + 𝑒𝑥2) (2𝑥 + 2𝑥𝑒𝑥2)

How could we go about turning this into something that a computer could handle? Let’s
restructure the calculation by listing what we need to compute. In the second column I have
compute the derivatives of each of these expressions.

𝑎 = 𝑥2 𝜕𝑎
𝜕𝑥 = 2𝑥

𝑏 = 𝑒𝑎 𝜕𝑏
𝜕𝑎 = 𝑒𝑎

𝑐 = 𝑎 + 𝑏 𝜕𝑐
𝜕𝑎 = 1
𝜕𝑐
𝜕𝑏 = 1

𝑑 = √𝑐 𝜕𝑑
𝜕𝑐 = 1

2√𝑐
𝑒 = cos(𝑐) 𝜕𝑒

𝜕𝑐 = − sin 𝑐
𝑓 = 𝑑 + 𝑒 𝜕𝑓

𝜕𝑑 = 1
𝜕𝑓
𝜕𝑒 = 1

In the last row, the value of 𝑓 is 𝑓(𝑥). We can conceptualize the calculation of 𝑓(𝑥) with the
network shown in Figure 2.

x x2 a + c

b d

e

+ f

exp(a)
c

1
2

cos(c)

Figure 2: An illustration of evaluating a function structured as a network

Our goal is to compute 𝜕𝑓
𝜕𝑥 . We will work backwards through Figure 2. We already have 𝜕𝑓

𝜕𝑒
and 𝜕𝑓

𝜕𝑑 . Let’s move the derivative one step further to get 𝜕𝑓
𝜕𝑐 . There are two paths to get to

𝑐, one through the square root and the other through the cosine. In standard mathematical
notation, we are computing

𝜕𝑓
𝜕𝑐 = 𝜕

𝜕𝑐 (√𝑐 + cos(𝑐))

Clearly the derivative is 1
2√𝑐 − sin(𝑐). Referring to the network, we can see that this means

that we sum over the derivatives associated with the paths through 𝑑 and 𝑒, like

4

𝜕𝑓
𝜕𝑐 = 𝜕𝑓

𝜕𝑑
𝜕𝑑
𝜕𝑐 + 𝜕𝑓

𝜕𝑒
𝜕𝑒
𝜕𝑐

= 1 × 1
2√𝑐 + 1 × − sin(𝑐)

= 1
2√𝑐 − sin(𝑐)

The more general rule is that as we move backwards through the network, the chain rule
translates to

𝜕𝑓
𝜕𝑥𝑖

= ∑
𝑥𝑗∈children(𝑥𝑖)

𝜕𝑓
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑥𝑖

Since 𝑑 and 𝑒 are the “children” of 𝑐, we sum over them.

Let’s move another step back in the network to 𝑏 applying this approach (note that 𝑎 is not a
child of 𝑏). We’ve already done the work to get 𝜕𝑓

𝜕𝑐 , so we can plug that in.

𝜕𝑓
𝜕𝑏 = 𝜕𝑓

𝜕𝑐
𝜕𝑐
𝜕𝑏

= (1
2√𝑐 − sin(𝑐)) × 1

And another step back to 𝑎 (note that 𝑏 and 𝑐 are children of 𝑎).

𝜕𝑓
𝜕𝑎 = 𝜕𝑓

𝜕𝑏
𝜕𝑏
𝜕𝑎 + 𝜕𝑓

𝜕𝑐
𝜕𝑐
𝜕𝑎

= (1
2√𝑐 − sin(𝑐)) × 𝑒𝑎 + (1

2√𝑐 − sin(𝑐)) × 1

And one more step to get us back to 𝑥.

𝜕𝑓
𝜕𝑥 = 𝜕𝑓

𝜕𝑎
𝜕𝑎
𝜕𝑥

= ((1
2√𝑐 − sin(𝑐)) 𝑒𝑎 + (1

2√𝑐 − sin(𝑐))) × 2𝑥

If in Figure 2, we choose a specific value for 𝑥 and propagate it forward through the network,
we obtain all the intermediate values (𝑎, 𝑏, …). As we chain rule backwards we use those values
to obtain the values of the derivatives. By the time we are back to the beginning we can have
already calculated all the necessary terms to obtain our final result.

5

Let’s make this really concrete. Set 𝑥 = 2 and evaluate 𝑓(2) and 𝑓 ′(2). Using the definition
of 𝑓(𝑥) and our traditional hand-calculated derivative we get:

𝑓(𝑥) = √𝑥2 + 𝑒𝑥2 + cos (𝑥2 + 𝑒𝑥2)
= 7.19433

𝑓 ′(𝑥) = 2𝑥 + 2𝑥𝑒𝑥2

2
√

𝑥2 + 𝑒𝑥2 − sin (𝑥2 + 𝑒𝑥2) (2𝑥 + 2𝑥𝑒𝑥2)

= −182.8698
Now let’s confirm that we indeed get 𝑓(2) = 7.19433 when we propagate forward through the
network and get 𝑓 ′(2) = −182.8698 when we move backwards through the network. In the
forward pass, we can compute all of the intermediate values and derivatives of each intermediate
value with respect to its “parents.”

𝑎 = 𝑥2 = 4 𝜕𝑎
𝜕𝑥 = 2𝑥 = 4

𝑏 = 𝑒𝑎 = 𝑒4 = 54.59815 𝜕𝑏
𝜕𝑎 = 𝑒𝑎 = 54.59815

𝑐 = 𝑎 + 𝑏 = 58.59815 𝜕𝑐
𝜕𝑎 = 1
𝜕𝑐
𝜕𝑏 = 1

𝑑 = √𝑐 = 7.654943 𝜕𝑑
𝜕𝑐 = 1

2√𝑐 = 0.06531727
𝑒 = cos(𝑐) = −0.4606132 𝜕𝑒

𝜕𝑐 = − sin 𝑐 = −0.887601
𝑓 = 𝑑 + 𝑒 = 7.19433 𝜕𝑓

𝜕𝑑 = 1
𝜕𝑓
𝜕𝑒 = 1

In our forward pass we have values computed for every component. Now we move backwards
to get the derivative.

𝜕𝑓
𝜕𝑐 = 𝜕𝑓

𝜕𝑑
𝜕𝑑
𝜕𝑐 + 𝜕𝑓

𝜕𝑒
𝜕𝑒
𝜕𝑐

= 1 × 0.06531727 + 1 × −0.887601
= −0.8222837

𝜕𝑓
𝜕𝑏 = 𝜕𝑓

𝜕𝑐
𝜕𝑐
𝜕𝑏

= −0.8222837 × 1
= −0.8222837

𝜕𝑓
𝜕𝑎 = 𝜕𝑓

𝜕𝑏
𝜕𝑏
𝜕𝑎 + 𝜕𝑓

𝜕𝑐
𝜕𝑐
𝜕𝑎

= −0.8222837 × 54.59815 + −0.8222837 × 1
= −45.71745

𝜕𝑓
𝜕𝑥 = 𝜕𝑓

𝜕𝑎
𝜕𝑎
𝜕𝑥

= −45.71745 × 4
= −182.8698

6

Exactly what we computed by hand. This is the general concept of the backpropagation algo-
rithm for fitting neural networks. We will apply simple transformations to linear combinations
of inputs and pass them forward in a network. Then to compute the gradient so that we can
improve the fit of the model, we do a backwards pass (the backpropagation step). Computers
are very good at keeping track of which nodes are children and which ones are parents and can
efficiently compute the gradients by calculating and storing all of the intermediate calculations
from the forward pass.

You are now ready to apply this to a neural network with hidden layers.

4 Backpropagation for a neural network with a hidden layer

The neural network in the previous section has no better features or capacity than ordinary
least squares. To get more capacity to capture interesting shapes and boundaries we will make
two changes:

1. add a hidden layer of nodes and
2. add non-linear transformations of the input features.

The network in Figure 3 takes two continuous inputs, passes them through a hidden layer of
four nodes, which passes their output to a final output node.

x2

x1

a
[1]
1

a
[1]
2

a
[1]
3

a
[1]
4

a[2] ŷ

input
layer

hidden layers

output
layer

Figure 3: A neural network with a single hidden layer with 4 hidden nodes and a single output

If all the nodes just did linear transformations, then the output node would also just be a linear
transformation of 𝑥1 and 𝑥2, offering no improvement over ordinary least squares. Instead,

7

neural networks apply a non-linear “activation function” to the linear combination of features
from the previous node. With a single hidden layer and a non-linear activation function, a
neural network can capture any shape decision boundary. It is a “universal approximator.”
The success of deep learning comes from how expressive neural networks can be with layers of
these simple functions on top of each other.

The most common activation functions are the sigmoid (also known as the inverse logit trans-
form or expit), the hyperbolic tangent, the rectified linear unit (ReLU… pronounced ray-loo),
and the Heaviside function. Figure 4 shows their shape.

x <- seq(-4,4,length.out=100)
sigmoid, 1/(1+exp(-x))
plot(x, 1/(1+exp(-x)), type="l", lwd=3,

ylab=expression(sigma(x)))
hyperbolic tangent
lines(x, (1+tanh(x))/2, col="red", lwd=3)
Heaviside function, perceptron
lines(x, x>0, col="blue", lwd=4)
ReLU - Rectified Linear Unit
gradient is 0 or 1
lines(x, pmax(0,x), col="orange", lwd=3)
legend(-4,0.8,legend = c("sigmoid","tanh","ReLU","Heaviside"),

col=c("black","red","orange","blue"),
lwd=3)

−4 −2 0 2 4

0.
0

0.
4

0.
8

x

σ(
x)

sigmoid
tanh
ReLU
Heaviside

Figure 4: Four common activation functions

Each node applies one of these activation functions to the linear combination of inputs from
the previous layer. Used in this manner, they are called “ridge” activation functions.

8

Returning to the network in Figure 3, the hidden nodes marked with a [1] superscript in them
all have the form

a[1] =
⎡
⎢⎢⎢
⎣

𝑎[1]
1

𝑎[1]
2

𝑎[1]
3

𝑎[1]
4

⎤
⎥⎥⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜎 (w[1]
1

′x)
𝜎 (w[1]

2
′x)

𝜎 (w[1]
3

′x)
𝜎 (w[1]

4
′x)

⎤
⎥
⎥
⎥
⎥
⎦

In some neural network discussions you will see a constant term separate from the linear
transform of the x, called the “bias”. Instead here we assume that x includes a constant 1 as
its first element so that 𝑤[1]

11, for example, is that constant term.

The output layer will also apply an activation function to the inputs from the hidden layer.
̂𝑦 = a[2] = 𝜎 (w[2]′a[1])

= 𝜎 (𝑤[2]
0 + 𝑤[2]

1 𝑎[1]
1 + 𝑤[2]

2 𝑎[1]
2 + 𝑤[2]

3 𝑎[1]
3 + 𝑤[2]

4 𝑎[1]
4)

In its full, expanded form it can get rather messy.

̂𝑦 = 𝜎 (𝑤[2]
0 + 𝑤[2]

1 𝜎 (w[1]
1

′x) + 𝑤[2]
2 𝜎 (w[1]

2
′x) + 𝑤[2]

3 𝜎 (w[1]
3

′x) + 𝑤[2]
4 𝜎 (w[1]

4
′x))

It gets a lot more complicated when there are several layers and a lot more nodes in each
layer.

Fitting a neural network means optimizing the values of w[1]
𝑗 and w[2]

𝑗 to minimize a loss
function.

This time for a loss function we will minimize the negative Bernoulli log-likelihood (sometimes
referred to as cross-entropy for binary outputs in the neural network literature).

𝐽(y, ŷ) = −
𝑛

∑
𝑖=1

𝑦𝑖 log(̂𝑦𝑖) + (1 − 𝑦𝑖) log(1 − ̂𝑦𝑖)

We will set 𝜎(⋅) to be the sigmoid function. Now we need to compute the gradient with respect
to all the parameters. Let’s start at the output and work backwards. Recall that the derivative
of the sigmoid function is 𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)).

𝜕𝐽
𝜕 ̂𝑦𝑖

= −𝑦𝑖
̂𝑦𝑖

+ 1 − 𝑦𝑖
1 − ̂𝑦𝑖

= − 𝑦𝑖 − ̂𝑦𝑖
̂𝑦𝑖(1 − ̂𝑦𝑖)

Now we need to move to the next level of parameters, the w[2]. Note that
𝜕 ̂𝑦𝑖

𝜕𝑤[2]
𝑗

= 𝜕
𝜕𝑤[2]

𝑗
𝜎 (w[2]′a[1]

𝑖)

= 𝜎 (w[2]′a[1]
𝑖) (1 − 𝜎 (w[2]′a[1]

𝑖)) 𝑎[1]
𝑖𝑗

= ̂𝑦𝑖(1 − ̂𝑦𝑖)𝑎[1]
𝑖𝑗

9

We can chain rule these together to get the gradient for the output layer weights.
𝜕𝐽

𝜕𝑤[2]
𝑗

= 𝜕𝐽
𝜕 ̂𝑦1

𝜕 ̂𝑦1
𝜕𝑤[2]

𝑗
+ … + 𝜕𝐽

𝜕 ̂𝑦𝑛

𝜕 ̂𝑦𝑛
𝜕𝑤[2]

𝑗

= − 𝑦1 − ̂𝑦1
̂𝑦1(1 − ̂𝑦1) ̂𝑦1(1 − ̂𝑦1)𝑎[1]

1𝑗 − … − 𝑦𝑛 − ̂𝑦𝑛
̂𝑦𝑛(1 − ̂𝑦𝑛) ̂𝑦𝑛(1 − ̂𝑦𝑛)𝑎[1]

𝑛𝑗

= −(𝑦1 − ̂𝑦1)𝑎[1]
𝑖𝑗 − … − (𝑦𝑛 − ̂𝑦𝑛)𝑎[1]

𝑛𝑗

= − ∑(𝑦𝑖 − ̂𝑦𝑖)𝑎[1]
𝑖𝑗

A rather complicated idea becomes a rather simple expression. To adjust the output layer
weights to make the model perform a little better we need to update as

w[2] ← w[2] + 𝜆A[1]′(y − ŷ)
Now that we have the algorithm for updating the output layer parameters, we can move
backwards through the network to update the next layer’s parameters.

Reminders

̂𝑦𝑖 = 𝑎[2]
𝑖 = 𝜎 (w[2]′a[1]

𝑖) = 𝜎 (𝑤[2]
1 𝑎[1]

𝑖1 + … + 𝑤[2]
4 𝑎[1]

𝑖4)

𝑎[1]
𝑖𝑗 = 𝜎 (w[1]

𝑗
′x𝑖) = 𝜎 (𝑤[1]

1 𝑥𝑖1 + 𝑤[1]
2 𝑥𝑖2)

Here we look at layer [1] and adjust the weight on input 𝑘 associated with hidden node 𝑗.

𝜕𝐽
𝜕𝑤[1]

𝑗𝑘
=

𝑛
∑
𝑖=1

𝜕𝐽
𝜕 ̂𝑦𝑖

𝜕 ̂𝑦𝑖
𝜕𝑎[1]

𝑖𝑗

𝜕𝑎[1]
𝑖𝑗

𝜕𝑤[1]
𝑗𝑘

=
𝑛

∑
𝑖=1

− 𝑦𝑖 − ̂𝑦𝑖
̂𝑦𝑖(1 − ̂𝑦𝑖)

̂𝑦𝑖(1 − ̂𝑦𝑖)𝑤[2]
𝑗 𝑎[1]

𝑖𝑗 (1 − 𝑎[1]
𝑖𝑗)𝑥𝑖𝑘

= −𝑤[2]
𝑗

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)𝑎[1]
𝑖𝑗 (1 − 𝑎[1]

𝑖𝑗)𝑥𝑖𝑘

Then we update as

𝑤[1]
𝑗𝑘 ← 𝑤[1]

𝑗𝑘 + 𝜆𝑤[2]
𝑗

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)𝑎[1]
𝑖𝑗 (1 − 𝑎[1]

𝑖𝑗)𝑥𝑖𝑘

The components of this expression were already computed when we passed forward through
the network to make predictions. Now we work backward through the network applying the
chain rule over and over to compute the gradients for each layer’s parameters. This process
of working backwards computing the gradient is the “backpropagation” algorithm (Rosenblatt
1962). The particular nice property of the algorithm is that the gradient is (relatively) easy
to calculate knowing the derivatives from the next layer. So, working backwards to get the
updates results is reasonably efficient optimization.

10

5 Examples in two-dimensions

5.1 Classes separated with a curve, but we try a linear neural network

We are going to be using the sigmoid a lot, so I am going to go ahead and make a helper
function.

sigmoid <- function(x) {1/(1+exp(-x))}

Let’s generate a dataset with a non-linear boundary, one for which a logistic regression model
would not be ideal.

set.seed(20240402)
d <- data.frame(x0=1,

x1=rnorm(1000),
x2=rnorm(1000))

d$y <- as.numeric(d$x2 > 2*(sigmoid(4*d$x1)-0.5))
show class separation
plot(d$x1, d$x2, col=col1and2[d$y+1],

xlab="x1", ylab="x2")

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

x1

x2

Figure 5: Simulated data with a sigmoid separation boundary

We will use the algorithm we developed earlier to fit a “single-layer linear perceptron” model,
like the one shown in Figure 1.

11

set some starting values
beta <- c(0,-1,0)
learnRate <- 0.0001
X <- as.matrix(d[,c("x0","x1","x2")])

par(mfrow=c(2,3))
for(i in 1:100)
{
yPred <- as.matrix(d[,1:3]) %*% beta |> as.numeric()
beta <- beta + learnRate*(t(X) %*% (d$y-yPred))

if(i %in% c(1,2,5,10,50,100))
{

plot(d$x1, d$x2, col=col1and2[(yPred>0.5) + 1],
xlab="x1", ylab="x2",
main=paste("Iteration:",i))

lines(seq(-3,3,length.out=100),
2*(sigmoid(4*seq(-3,3,length.out=100))-0.5))

}
}

−3 −1 1 3

−
3

0
2

Iteration: 1

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 2

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 5

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 10

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 50

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 100

x1

x2

Figure 6: Predicted values from linear perceptron model

In Figure 6, the black curve shows the optimal decision boundary. The blue and orange points

12

show the predicted values. The decision boundary is as best as you can get with a linear
model. With a single-layer perceptron in which all relationships are linear, this is the best we
can do.

5.2 A circular decision boundary in two dimensions

5.2.1 Searching for a linear boundary

Let’s consider a new decision boundary with which a linear neural network will really strug-
gle.

d$y <- with(d, as.numeric(x1^2+x2^2 > 1))
plot(d$x1, d$x2, col=col1and2[d$y+1],

xlab="x1", ylab="x2")

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

x1

x2

Figure 7: Simulated circular classification boundary

And let’s again try the same algorithm

learning algorithm for a single-layer perceptron
beta <- c(0,-1,0)
learnRate <- 0.0001
yPred <- as.matrix(d[,1:3]) %*% beta |> as.numeric()

X <- as.matrix(d[,c("x0","x1","x2")])

par(mfrow=c(2,3))

13

for(i in 1:50)
{
yPred <- as.matrix(d[,1:3]) %*% beta |> as.numeric()
beta <- beta + learnRate*(t(X) %*% (d$y-yPred))

if(i %in% c(1,20,25,30,40,50))
{

plot(d$x1, d$x2, col=col1and2[(yPred>0.5) + 1],
xlab="x1", ylab="x2",
main=paste("Iteration:",i))

lines(cos(seq(0,2*pi,length.out=100)),
sin(seq(0,2*pi,length.out=100)))

}
}

−3 −1 1 3

−
3

0
2

Iteration: 1

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 20

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 25

x1
x2

−3 −1 1 3

−
3

0
2

Iteration: 30

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 40

x1

x2

−3 −1 1 3

−
3

0
2

Iteration: 50

x1

x2

Figure 8: Predicted values from linear perceptron model for circular decision boundary

The mean of y for this simulation is 0.583. The final estimate of 𝛽 is 0.5800297, 0.0052191,
9.2792344 × 10−4. In the end, the linear restrictions we have put on the neural network makes
it abandon trying to separate the blue and the orange and just predicts all points to be in the
majority class, orange.

14

6 Implementing backpropagation “by hand” for a neural network
with a hidden layer

To remedy the problem with the linear neural network, we are going to fit the model shown in
Figure 3, with a hidden layer and using the sigmoid activation function. I borrowed this code
structure from this blog post on Building A Neural Net from Scratch Using R. The code on
the website has several bugs that have been fixed here.

We start by setting up some functions to help us along the way. In this code, the “bias” terms
(the “intercept” terms) b1 and b2 are stored separately from the weights.

a function to get the number of nodes at each level, input, hidden, and output
getLayerSize <- function(X, y, hidden_neurons) {
n_x <- nrow(X)
n_h <- hidden_neurons
n_y <- nrow(y)

return(list(n_x=n_x, n_h=n_h, n_y=n_y))
}

set up some starting values by randomly selecting numbers between -1 and 1
initializeParameters <- function(X, list_layer_size)
{
m <- ncol(X)

n_x <- list_layer_size$n_x
n_h <- list_layer_size$n_h
n_y <- list_layer_size$n_y

W1 <- matrix(runif(n_h * n_x,-1,1),
nrow = n_h, ncol = n_x, byrow = TRUE) #* 0.01

b1 <- matrix(rep(0, n_h), nrow = n_h)
W2 <- matrix(runif(n_y * n_h,-1,1),

nrow = n_y, ncol = n_h, byrow = TRUE) #* 0.01
b2 <- matrix(rep(0, n_y), nrow = n_y)

return(list(W1 = W1, b1 = b1, W2 = W2, b2 = b2))
}

run all the input data forward through the network to get predictions
forwardPropagation <- function(X, params, list_layer_size)
{

15

https://rviews.rstudio.com/2020/07/20/shallow-neural-net-from-scratch-using-r-part-1/

m <- ncol(X)
n_h <- list_layer_size$n_h
n_y <- list_layer_size$n_y

W1 <- params$W1
b1 <- params$b1
W2 <- params$W2
b2 <- params$b2

b1_new <- matrix(rep(b1, m), nrow = n_h)
b2_new <- matrix(rep(b2, m), nrow = n_y)

Z1 <- W1 %*% X + b1_new
A1 <- sigmoid(Z1)
Z2 <- W2 %*% A1 + b2_new
A2 <- sigmoid(Z2)

return(list(Z1 = Z1, A1 = A1, Z2 = Z2, A2 = A2))
}

compute the average negative Bernoulli log likelihood
computeCost <- function(X, y, cache)
{
m <- ncol(X)
A2 <- cache$A2
logprobs <- y*log(A2) + (1-y)*log(1-A2)
cost <- -sum(logprobs/m)
return (cost)

}

apply the chain rule working backwards through the network to update weights
backwardPropagation <- function(X, y, cache, params, list_layer_size)
{
m <- ncol(X)

n_x <- list_layer_size$n_x
n_h <- list_layer_size$n_h
n_y <- list_layer_size$n_y

A2 <- cache$A2
A1 <- cache$A1
W2 <- params$W2

16

dZ2 <- A2 - y
dW2 <- 1/m * (dZ2 %*% t(A1))
db2 <- matrix(1/m * sum(dZ2), nrow = n_y)
db2_new <- matrix(rep(db2, m), nrow = n_y)

dZ1 <- (t(W2) %*% dZ2) * (1 - A1^2)
dZ1 <- (t(W2) %*% dZ2) * A1*(1 - A1)
dW1 <- 1/m * (dZ1 %*% t(X))
db1 <- matrix(1/m * rowSums(dZ1), nrow = n_h)
db1_new <- matrix(rep(db1, m), nrow = n_h)

return(list(dW1 = dW1, db1 = db1, dW2 = dW2, db2 = db2))
}

take a gradient descent step
updateParameters <- function(grads, params, learning_rate)
{
W1 <- params$W1
b1 <- params$b1
W2 <- params$W2
b2 <- params$b2

dW1 <- grads$dW1
db1 <- grads$db1
dW2 <- grads$dW2
db2 <- grads$db2

W1 <- W1 - learning_rate * dW1
b1 <- b1 - learning_rate * db1
W2 <- W2 - learning_rate * dW2
b2 <- b2 - learning_rate * db2

return(list(W1 = W1, b1 = b1, W2 = W2, b2 = b2))
}

Now that all those functions are set up, let’s put all the steps in order and do one backpropa-
gation step.

set up the data
X <- as.matrix(cbind(d$x1, d$x2))
y <- as.matrix(d$y, ncol=1)

17

X <- t(X)
y <- t(y)

Step 0. Set up the network

layer_size <- getLayerSize(X, y, hidden_neurons = 4)
layer_size

$n_x
[1] 2

$n_h
[1] 4

$n_y
[1] 1

curr_params <- initializeParameters(X, layer_size)
curr_params

$W1
[,1] [,2]

[1,] 0.1086112 0.3794711
[2,] -0.9294748 -0.7302107
[3,] 0.3111992 0.6331077
[4,] 0.8354082 0.1209820

$b1
[,1]

[1,] 0
[2,] 0
[3,] 0
[4,] 0

$W2
[,1] [,2] [,3] [,4]

[1,] -0.07868139 0.04723443 0.05089913 -0.02138735

$b2
[,1]

[1,] 0

18

Step 1. Make predictions moving forward, storing key intermediate values

fwd_prop <- forwardPropagation(X, curr_params, layer_size)
the linear combinations of inputs
fwd_prop$Z1[,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] -0.4632792 0.001896368 0.3991996 0.05738323 -0.06177666
[2,] 0.1696516 -0.416297471 -2.0773103 0.11969689 -0.21375627
[3,] -0.6426956 0.077616547 0.9022255 0.05421843 -0.04305224
[4,] 0.6545844 0.459247219 1.5823260 -0.23747315 0.35001233

sigmoid transform of the linear combinations of inputs
fwd_prop$A1[,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 0.3862082 0.5004741 0.5984954 0.5143419 0.4845607
[2,] 0.5423115 0.3974031 0.1113218 0.5298885 0.4467635
[3,] 0.3446375 0.5193944 0.7114066 0.5135513 0.4892386
[4,] 0.6580428 0.6128356 0.8295337 0.4409091 0.5866206

linear transform of hidden layer
fwd_prop$Z2[1:5]

[1] -0.001303673 -0.007277098 -0.023363776 0.001269283 -0.004667737

sigmoid transform of linear combo from hidden layer
fwd_prop$A2[1:5]

[1] 0.4996741 0.4981807 0.4941593 0.5003173 0.4988331

Step 2. Evaluate loss function

cost <- computeCost(X, y, fwd_prop)
cost

[1] 0.6933894

Step 3. Compute gradient moving back through the network

19

back_prop <- backwardPropagation(X, y, fwd_prop, curr_params, layer_size)
gradient for the w1
back_prop$dW1

[,1] [,2]
[1,] 2.706173e-04 3.478153e-05
[2,] -1.091090e-04 1.241427e-05
[3,] -1.524197e-04 -1.168966e-05
[4,] 7.629919e-05 -1.840025e-05

gradient for the b1
back_prop$db1

[,1]
[1,] 1.366440e-03
[2,] -5.919621e-05
[3,] -5.751186e-04
[4,] 1.765536e-04

gradient for the w2
back_prop$dW2

[,1] [,2] [,3] [,4]
[1,] -0.04223389 -0.03869427 -0.04296879 -0.04469599

gradient for the b2
back_prop$db2

[,1]
[1,] -0.08326909

Step 4. Gradient descent step

curr_params <- updateParameters(back_prop, curr_params, learning_rate = 0.01)
curr_params

20

$W1
[,1] [,2]

[1,] 0.1086085 0.3794707
[2,] -0.9294737 -0.7302108
[3,] 0.3112008 0.6331078
[4,] 0.8354074 0.1209822

$b1
[,1]

[1,] -1.366440e-05
[2,] 5.919621e-07
[3,] 5.751186e-06
[4,] -1.765536e-06

$W2
[,1] [,2] [,3] [,4]

[1,] -0.07825906 0.04762137 0.05132882 -0.02094039

$b2
[,1]

[1,] 0.0008326909

And that’s one step of the backpropagation algorithm. Repeating Steps 1, 2, 3, and 4 will
push the parameters towards values that improve the fit of the neural network to the data.

It is possible to create marvelously complex neural networks and apply the chain rule like
crazy to tune the parameters of the neural network to fit the data. We use gradient descent,
just like we did for optimizing logistic regression models, to learn the neural network. Most
implementations of backpropagation today use some variation of stochastic gradient descent.
Stochastic gradient descent looks largely the same as described here, except that the gradient is
computed using a subsample of the data rather than the entire dataset. This can greatly speed
up the computation and avoid locally minima, but can require more iterations to converge.

Let’s wrap these gradient steps into a trainModel() function that will iterate for
num_iterations with a learning rate of lr.

trainModel <- function(X, y, num_iteration, hidden_neurons, lr)
{
layer_size <- getLayerSize(X, y, hidden_neurons)
init_params <- initializeParameters(X, layer_size)
cost_history <- rep(NA, num_iteration)
for (i in 1:num_iteration) {

fwd_prop <- forwardPropagation(X, init_params, layer_size)

21

cost <- computeCost(X, y, fwd_prop)
back_prop <- backwardPropagation(X, y, fwd_prop, init_params, layer_size)
update_params <- updateParameters(back_prop, init_params, learning_rate = lr)
init_params <- update_params
cost_history[i] <- cost

if (i %% 10000 == 0) cat("Iteration", i, " | Cost: ", cost, "\n")
}

model_out <- list("updated_params" = update_params,
"cost_hist" = cost_history)

return (model_out)
}

makePrediction <- function(X, y, modNN, hidden_neurons)
{
layer_size <- getLayerSize(X, y,

nrow(modNN$updated_params$W1))
params <- modNN$updated_params
fwd_prop <- forwardPropagation(X, params, layer_size)

return(fwd_prop$A2)
}

Let’s first try fitting the neural net to the “circle” data, first using a network with two hidden
nodes.

train_model <- trainModel(X, y,
hidden_neurons = 2, # are two hidden nodes enough?
num_iteration = 50000, lr = 0.1)

Iteration 10000 | Cost: 0.4590469
Iteration 20000 | Cost: 0.449592
Iteration 30000 | Cost: 0.4373529
Iteration 40000 | Cost: 0.4355029
Iteration 50000 | Cost: 0.4343475

plot(train_model$cost_hist, type="l",
xlab="Iteration", ylab="Negative Bernoulli log likelihood")

22

0 10000 20000 30000 40000 50000

0.
45

0.
55

0.
65

Iteration

N
eg

at
iv

e
B

er
no

ul
li

lo
g

lik
el

ih
oo

d

Figure 9: Negative Bernoulli log likelihood by gradient descent iteration, neural network with
2 hidden nodes

The plot shows the reduction in the negative Bernoulli log likelihood with each iteration. But
did it fit the data well?

y_pred <- makePrediction(X, y, train_model)

plot(X[1,], X[2,], col=col1and2[(y_pred[1,]>0.5) + 1],
xlab="x1", ylab="x2")

lines(cos(seq(0,2*pi,length.out=100)),
sin(seq(0,2*pi,length.out=100)))

23

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

x1

x2

Figure 10: Predictions from a neural network with two hidden nodes

Clearly with two hidden nodes, the neural network does not have sufficient complexity or
capacity to capture the elliptical boundary. So, let’s try again with a network with four
hidden nodes.

train_model <- trainModel(X, y,
hidden_neurons = 4,
num_iteration = 50000, lr = 0.1)

Iteration 10000 | Cost: 0.138251
Iteration 20000 | Cost: 0.08347349
Iteration 30000 | Cost: 0.06709865
Iteration 40000 | Cost: 0.05971714
Iteration 50000 | Cost: 0.05542842

plot(train_model$cost_hist, type="l")

24

0 10000 20000 30000 40000 50000

0.
1

0.
3

0.
5

0.
7

Index

tr
ai

n_
m

od
el

$c
os

t_
hi

st

Figure 11: Negative Bernoulli log likelihood by gradient descent iteration, neural network with
4 hidden nodes

We seem to get better predictive performance here since we got the cost much lower. Did we
successfully capture the elliptical boundary?

y_pred <- makePrediction(X, y, train_model)

dAll <- expand.grid(x1=seq(-4.1,4.1,length.out=100),
x2=seq(-4.1,4.1,length.out=100))

dAll$y <- 0
dAll$y_pred <- makePrediction(t(as.matrix(dAll[,1:2])),

matrix(dAll$y,nrow=1),
train_model) |> as.numeric()

plot(dAll$x1, dAll$x2, col=col1and2transparent[(dAll$y_pred>0.5) + 1],
xlab="x1", ylab="x2", pch=15)

points(X[1,], X[2,], col=col1and2[(y[1,]>0.5) + 1])

25

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x2

Figure 12: Predictions from a neural network with four hidden nodes

Yes! With four hidden nodes, our neural network has enough “brain power” to capture the
concept of an elliptical boundary separating the blue and orange points.

Let’s try this out on a more complex shape.

planar_dataset <- function(){
set.seed(set.seed(20240402))
m <- 1000
N <- m/2
D <- 2
X <- matrix(0, nrow = m, ncol = D)
Y <- matrix(0, nrow = m, ncol = 1)
a <- 4

for(j in 0:1){
ix <- seq((N*j)+1, N*(j+1))
t <- seq(j*3.12,(j+1)*3.12,length.out = N) + rnorm(N, sd = 0.2)
r <- a*sin(4*t) + rnorm(N, sd = 0.2)
X[ix,1] <- r*sin(t)
X[ix,2] <- r*cos(t)
Y[ix,] <- j

}

d <- as.data.frame(cbind(X, Y))
names(d) <- c('X1','X2','Y')
d

}

26

df <- planar_dataset()
X <- t(as.matrix(df[,1:2]))
y <- t(df[,3])
plot(X[1,], X[2,], col=col1and2[y[1,] + 1],

xlab="x1", ylab="x2")

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x2

Figure 13: Simulated data with a complex classification boundary

This one has a more complex decision boundary, but let’s see if four hidden nodes are suffi-
cient.

train_model <- trainModel(X, y,
hidden_neurons = 4,
num_iteration = 50000, lr = 0.1)

Iteration 10000 | Cost: 0.2472205
Iteration 20000 | Cost: 0.2308526
Iteration 30000 | Cost: 0.2240359
Iteration 40000 | Cost: 0.220022
Iteration 50000 | Cost: 0.2172622

plot(train_model$cost_hist, type="l")

27

0 10000 20000 30000 40000 50000

0.
2

0.
4

0.
6

Index

tr
ai

n_
m

od
el

$c
os

t_
hi

st

Figure 14: Negative Bernoulli log likelihood by gradient descent iteration, neural network with
4 hidden nodes, “flower shaped” data

y_pred <- makePrediction(X, y, train_model)

dAll <- expand.grid(x1=seq(-4.1,4.1,length.out=100),
x2=seq(-4.1,4.1,length.out=100))

dAll$y <- 0
dAll$y_pred <- makePrediction(t(as.matrix(dAll[,1:2])),

matrix(dAll$y,nrow=1),
train_model) |> as.numeric()

plot(dAll$x1, dAll$x2, col=col1and2transparent[(dAll$y_pred>0.5) + 1],
xlab="x1", ylab="x2", pch=15)

points(X[1,], X[2,], col=col1and2[(y[1,]>0.5) + 1])

28

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x2

Figure 15: Predictions from a neural network with four hidden nodes

Yes! Four hidden nodes are sufficient to capture this pattern too.

7 R’s neuralnet package

Now that we have explored fitting a neural network “by hand,” in this section we will cover
using existing software to fit neural networks.

First, we will walk through using the neuralnet package. There is also a nnet package, but it
allows only one hidden layer. The neuralnet package simply allows for more flexibility. After
that, we will experiment with Keras, a professional grade neural network system regularly used
in scientific analyses.

Start by loading the neuralnet package and revisiting our circular decision boundary dataset.

library(neuralnet)

our circular decision boundary
plot(d$x1, d$x2, col=col1and2[d$y+1],

xlab="x1", ylab="x2")

29

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

x1

x2

Figure 16: Simulated circular classification boundary

Now we will fit a neural net with a single hidden layer with four nodes using squared error
loss and the sigmoid activation function.

nn1 <- neuralnet(y ~ x1+x2,
data=d,
hidden=4,
linear.output = FALSE, # apply sigmoid to output
stepmax = 1000000,
err.fct="sse", # squared error
act.fct="logistic", # sigmoid
lifesign="minimal") # how much detail to print

hidden: 4 thresh: 0.01 rep: 1/1 steps: 199177 error: 0.11367 time: 1.09 mins

The plot function will draw the network graph for us with the coefficients on all of the edges.

plot(nn1,
show.weights = TRUE,
information = FALSE,
col.entry.synapse = col2,
col.out.synapse = col2,
col.hidden = col1,
col.hidden.synapse = "black",
fill = col1,
rep="best") # "best" request plot of single best, rather than all

30

−3.56816

−0.37825
3.

76
59

3

−2
.6

16
19

x2

1.10418
3.79768

−1.57309

−2.59919

x1

−3
69

.5
94

66

411.22146

300.32534

419.71869

y

4.80893
−1.78758

−2.38815

−1.86947

1

−3.15115

1

Figure 17: Neural network estimated with neuralnet()

Create a plot to show the decision boundary.

dAll <- expand.grid(x1=seq(-4.1,4.1,length.out=100),
x2=seq(-4.1,4.1,length.out=100))

dAll$y <- 0
dAll$y_pred <- predict(nn1, newdata = dAll)

plot(dAll$x1, dAll$x2, col=col1and2transparent[dAll$y_pred + 1],
xlab="x1", ylab="x2", pch=15)

points(d$x1, d$x2, col=col1and2[(d$y>0.5) + 1])

31

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x2

Figure 18: Predictions from a neural network from the neuralnet package with four hidden
nodes

8 Tensorflow and Keras

Tensorflow is a Google product for efficient machine learning. It allows for computation with
GPUs, but current GPU functionality on Windows is broken and removed. Keras is a set
of Python tools for communicating what neural network structure you want. It then trans-
lates that structure into a neural network model that can be fit with Tensorflow (or with
PyTorch, Facebook AI group’s Python tools for machine learning). I encourage you to read
the documentation and explore demos available for all of these tools.

A lot of the scientific community using deep learning works in Python. For that reason, you
will find a lot of Python resources for developing neural networks. Since most social science
research is conducted in R, I focused on R for this course. We will still use the R Keras library,
which hooks into Python, which hooks into Keras, which hooks into Tensorflow. With all of
your variations in computers, operating systems, and settings there is a lot of opportunity
for some settings, versions, and options to not be compatible. I will have limited ability to
troubleshoot why Keras, Tensorflow, or Python is giving you errors. In this case you will have
to learn how to learn to figure these things out.

For the most serious deep learning analysis, that work is done directly in Tensorflow. So, if
you really want to learn this area well, start with Keras and then start digging into working
with Tensorflow (or PyTorch).

Tensorflow and Keras are usually behind a version or two of Python. Python 3.13 is the current
version, but Keras/Tensorflow support up to Python 3.12. This constantly changes. I will be
using Python 3.11, because I know it works.

32

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/

8.1 Tensorflow Playground

Visit the Tensorflow Playground. This let’s you freely experiment with datasets with different
shapes for their classification boundaries, change the number of hidden layers and the num-
ber of nodes in each layer, and see the effect on the network’s ability to learn the decision
boundary.

Challenge: Using only 𝑋1 and 𝑋2 as inputs, can you alter the number of the hidden layers
and nodes that will successful learn the spiral pattern?

8.2 Installing Tensorflow and Keras

First, we will do a one-time installation.

install.packages("keras")
library(keras)
March 2024, Keras works with 3.12... sticking with 3.11 for now
install_keras(python_version="3.11")

You will need to restart R one last time after this installation.

Now we can get busy with Keras by loading the library. If all is installed correctly, then this
line will run with no errors.

library(keras)

8.3 MNIST postal digits data

We are going to experiment with the NIST postal digits data (MNIST database). Why?
Because it seems to be a rite of passage for anyone working on neural networks. Everyone
has to run the MNIST problem at some point. It is a set of 60,000 28x28 grayscale images
handwritten digits. There is also a test set of 10,000 images. The Keras library comes with
the MNIST database. We can load the dataset and print out one of the images.

numData <- dataset_mnist()

xTrain <- numData$train$x
yTrain <- numData$train$y

xTest <- numData$test$x
yTest <- numData$test$y

33

https://playground.tensorflow.org
https://en.wikipedia.org/wiki/MNIST_database

i <- 3
img <- t(apply(xTrain[i,,], 2, rev))
image(1:28, 1:28, img,

col = gray((255:0) / 255),
axes = FALSE,
xlab="",ylab="",
main=yTrain[i])

4

Figure 19: An example number 4 from the MNIST data

That gives us a rough image of a handwritten number 4. Let’s take a look at a number of
other handwritten digits to get an idea of what these images look like.

par(mfrow=c(5,5), mai=0.02+c(0,0,0.5,0))
for(i in 1:25+25)
{
img <- t(apply(xTrain[i,,], 2, rev))
image(1:28, 1:28, img,

col = gray((255:0) / 255),
xaxt = 'n', yaxt = 'n',
xlab="",ylab="",
mar=c(0,0,4,0)+0.01,
main=yTrain[i])

}

34

2 4 3 2 7

3 8 6 9 0

5 6 0 7 6

1 8 7 9 3

9 8 5 9 3

Figure 20: 25 examples from the MNIST data

We need to do a little restructuring of the dataset. Much like we did with the emoji data, we
are going to stretch these data out wide, but we need to pay attention to how R stores array
data.

I am going to make a little array with three “images.” The first image will have the numbers
1 to 4, the second 5 to 8, and the third 9 to 12.

a <- array(NA, dim=c(3,2,2))
a[1,,] <- matrix(1:4, ncol=2,byrow=TRUE)
a[2,,] <- matrix(5:8, ncol=2,byrow=TRUE)
a[3,,] <- matrix(9:12,ncol=2,byrow=TRUE)
a

, , 1

[,1] [,2]
[1,] 1 3
[2,] 5 7
[3,] 9 11

, , 2

35

[,1] [,2]
[1,] 2 4
[2,] 6 8
[3,] 10 12

When we print out a three dimensional array in R, it prints it out so that the last index changes
the “fastest.” It first shows a[,,1] and then a[,,2]. To work with Keras, when we stretch
the array out wide we need to put the array in “C” format in which the last index changes the
fastest.

array_reshape(a, c(3, 2*2), order="C") # C = last index changes fastest

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Now we can apply this reformatting to our MNISt data.

dim(xTrain)

[1] 60000 28 28

xTrain <- array_reshape(xTrain, c(60000, 28*28)) / 255
xTest <- array_reshape(xTest, c(10000, 28*28)) / 255

We also need to convert our outcome values to be 0/1 indicators. So, rather than the outcome
being “4,” we are going to create a vector with 10 numbers, all which are 0 except for the
fourth one, which we will set to 1.

converts outcome to 0/1 coding
yTrain <- to_categorical(yTrain)
yTest <- to_categorical(yTest)

Now we will set up the neural network, describing our input data, the number of nodes in
the hidden layer (512), setting the activation function (ReLU), and insist that the output
predictions sum to one (softmax) so that we have a probability for each number of each
image.

36

keras1 <- keras_model_sequential(input_shape = 28*28) |>
512 hidden nodes
layer_dense(units = 512, activation = "relu") |>
randomly set 20% of nodes to 0, supposedly reduces overfitting
layer_dropout(0.2) |>
softmax makes sure outputs sum to 1
layer_dense(units = 10, activation = "softmax")

We can ask Keras to describe the model we are about to fit.

summary(keras1)

Model: "sequential"
__
Layer (type) Output Shape Param #
==
dense_1 (Dense) (None, 512) 401920
dropout (Dropout) (None, 512) 0
dense (Dense) (None, 10) 5130

==
Total params: 407050 (1.55 MB)
Trainable params: 407050 (1.55 MB)
Non-trainable params: 0 (0.00 Byte)
__

Then we tell Keras about how we want it to optimize the model and evaluate its performance.
rmsprop is Root Mean Square Propagation. It is a popular variant of backpropagation that
regularly adjusts the learning rate parameter. Categorical cross-entropy is the multinomial
generalization of the negative Bernoulli log likelihood. We can also have Keras track other
metrics, like here I ask it to track accuracy.

compile(keras1,
optimizer = "rmsprop",
loss = "categorical_crossentropy",
metrics = "accuracy")

Ready to go! It’s now time to tell Keras to actually fit the model. The batch_size is the
number of training observations used in one forward and backward pass through the neural
network. This is called “mini-batch gradient descent.” epochs is the number of full passes
through the dataset. Since there are 60,000 images, and we are using 80% of them for training

37

and 20% for validation, and we have a batch size of 128, you will see each epoch require 375
(= 60000*0.8/128) updates within each epoch.

fitHx <- fit(keras1,
xTrain,
yTrain,
epochs = 20,
batch_size = 128,
validation_split = 0.2

)

Epoch 1/20
375/375 - 4s - loss: 0.3105 - accuracy: 0.9100 - val_loss: 0.1596 - val_accuracy: 0.9548 - 4s/epoch - 11ms/step
Epoch 2/20
375/375 - 3s - loss: 0.1386 - accuracy: 0.9592 - val_loss: 0.1185 - val_accuracy: 0.9654 - 3s/epoch - 9ms/step
Epoch 3/20
375/375 - 4s - loss: 0.0943 - accuracy: 0.9718 - val_loss: 0.1090 - val_accuracy: 0.9671 - 4s/epoch - 10ms/step
Epoch 4/20
375/375 - 4s - loss: 0.0723 - accuracy: 0.9781 - val_loss: 0.0814 - val_accuracy: 0.9755 - 4s/epoch - 10ms/step
Epoch 5/20
375/375 - 3s - loss: 0.0579 - accuracy: 0.9828 - val_loss: 0.0770 - val_accuracy: 0.9772 - 3s/epoch - 9ms/step
Epoch 6/20
375/375 - 3s - loss: 0.0478 - accuracy: 0.9854 - val_loss: 0.0765 - val_accuracy: 0.9769 - 3s/epoch - 9ms/step
Epoch 7/20
375/375 - 3s - loss: 0.0392 - accuracy: 0.9883 - val_loss: 0.0754 - val_accuracy: 0.9780 - 3s/epoch - 9ms/step
Epoch 8/20
375/375 - 3s - loss: 0.0321 - accuracy: 0.9905 - val_loss: 0.0740 - val_accuracy: 0.9804 - 3s/epoch - 9ms/step
Epoch 9/20
375/375 - 3s - loss: 0.0273 - accuracy: 0.9915 - val_loss: 0.0723 - val_accuracy: 0.9806 - 3s/epoch - 9ms/step
Epoch 10/20
375/375 - 3s - loss: 0.0235 - accuracy: 0.9928 - val_loss: 0.0798 - val_accuracy: 0.9789 - 3s/epoch - 9ms/step
Epoch 11/20
375/375 - 3s - loss: 0.0198 - accuracy: 0.9943 - val_loss: 0.0789 - val_accuracy: 0.9800 - 3s/epoch - 9ms/step
Epoch 12/20
375/375 - 3s - loss: 0.0168 - accuracy: 0.9950 - val_loss: 0.0763 - val_accuracy: 0.9793 - 3s/epoch - 9ms/step
Epoch 13/20
375/375 - 3s - loss: 0.0151 - accuracy: 0.9953 - val_loss: 0.0735 - val_accuracy: 0.9818 - 3s/epoch - 8ms/step
Epoch 14/20
375/375 - 3s - loss: 0.0131 - accuracy: 0.9964 - val_loss: 0.0746 - val_accuracy: 0.9821 - 3s/epoch - 8ms/step
Epoch 15/20
375/375 - 3s - loss: 0.0116 - accuracy: 0.9965 - val_loss: 0.0754 - val_accuracy: 0.9809 - 3s/epoch - 8ms/step
Epoch 16/20

38

375/375 - 3s - loss: 0.0096 - accuracy: 0.9971 - val_loss: 0.0794 - val_accuracy: 0.9818 - 3s/epoch - 8ms/step
Epoch 17/20
375/375 - 3s - loss: 0.0089 - accuracy: 0.9975 - val_loss: 0.0803 - val_accuracy: 0.9813 - 3s/epoch - 8ms/step
Epoch 18/20
375/375 - 3s - loss: 0.0083 - accuracy: 0.9977 - val_loss: 0.0752 - val_accuracy: 0.9816 - 3s/epoch - 9ms/step
Epoch 19/20
375/375 - 3s - loss: 0.0070 - accuracy: 0.9980 - val_loss: 0.0789 - val_accuracy: 0.9818 - 3s/epoch - 8ms/step
Epoch 20/20
375/375 - 3s - loss: 0.0062 - accuracy: 0.9983 - val_loss: 0.0805 - val_accuracy: 0.9827 - 3s/epoch - 8ms/step

We can plot the “learning curves,” tracing out how much better the neural network became
after each epoch.

library(ggplot2)
fitHx |>
plot() +
geom_point(size = 3) +
geom_line(linetype = "dashed")

lo
ss

ac
cu

ra
cy

5 10 15 20

0.0

0.1

0.2

0.3

0.925

0.950

0.975

1.000

epoch

data

training

validation

Figure 21: Loss function and accuracy on training and validation MNIST data

We can predict on xTest, the held out test dataset and create a confusion matrix to see how
our neural network performed.

39

yPredVal <- predict(keras1, xTest) |> k_argmax() |> as.numeric()

313/313 - 1s - 701ms/epoch - 2ms/step

yTestVal <- apply(yTest, 1, which.max)-1
table(yPredVal, yTestVal)

yTestVal
yPredVal 0 1 2 3 4 5 6 7 8 9

0 972 0 3 1 0 2 4 0 1 2
1 0 1129 2 0 0 0 2 6 0 2
2 1 3 1016 4 5 0 0 10 3 0
3 1 0 1 993 0 10 1 1 6 5
4 1 0 1 0 964 0 1 0 1 8
5 1 0 0 4 0 872 4 0 2 1
6 2 1 1 0 3 3 945 0 3 0
7 1 1 4 2 1 0 0 1004 5 6
8 1 1 4 2 0 2 1 2 951 2
9 0 0 0 4 9 3 0 5 2 983

For the most part we observe very high counts along the diagonal indicating that the neural
network gets a lot of the classifications correctly. We do see a fair number of off diagonal
elements as well. For example, note that for 8 images that were actually 9s, the neural
network classified them as 4s. That is probably the most common mistake a human would
make as well.

Let’s examine 12 randomly selected digits that we have misclassified.

set.seed(20240408)
iError <- which(yPredVal != yTestVal) |> sample(size=12)

par(mfrow=c(3,4), mai=0.02+c(0,0,0.5,0))
for(i in iError)
{
img <- matrix((xTest[i,]), nrow=28)[,28:1]
image(1:28, 1:28, img,

col = gray((255:0) / 255),
xaxt = 'n', yaxt = 'n',
xlab="",ylab="",
mar=c(0,0,4,0)+0.1,
main=paste("Prediction:",yPredVal[i]))

}

40

Prediction: 2 Prediction: 9 Prediction: 1 Prediction: 2

Prediction: 8 Prediction: 9 Prediction: 7 Prediction: 9

Prediction: 8 Prediction: 3 Prediction: 0 Prediction: 9

Figure 22: Examples of errors from our neural network. Heading of each image shows the
predicted value

evaluate() extracts measures of performance on the test dataset.

evaluate(keras1, xTest, yTest)

313/313 - 1s - loss: 0.0653 - accuracy: 0.9829 - 748ms/epoch - 2ms/step

loss accuracy
0.06530951 0.98290002

8.4 Convolution layers

Convolutional layers are the main building block for Convolution Neural Networks (CNNs),
primarily used in processing data with a grid-like shapes, like images. The utility of convo-
lutional layers comes from their ability to efficiently handle and process spatial information.
Unlike layers that treat input data as a flat array, as we did previously, convolutional layers
preserve the spatial relationships between pixels or data points by applying filters (or kernels)
that scan over the input. This approach enables the network to capture local patterns such as
edges, textures, or shapes within the input data. Convolutional layers can significantly reduce
the size of networks needed to get good predictive performance, making the training process

41

faster and less prone to overfitting. Convolutional layers learn feature representations, making
them especially powerful for tasks involving images, video, and time-series data.

Let X be an 𝑟 × 𝑐 greyscale image where the element X𝑖𝑗 is between 0 and 1, denoting
the greyscale range from black to white. The convolution layer involves a 𝑚 × 𝑚 matrix of
parameters, K, that the network will need to estimate from data. Typically, in practice 𝑚 is
small, like 2, 3, or 4.

Assume 𝑚 = 2 so that X is a 2 × 2 matrix of the form [𝑎 𝑏
𝑐 𝑑]. The convolution layer will

transform every 2 × 2 section of X to create a new matrix that will feed into the next layer.

Consider a small greyscale image in the shape of an “X’ ’ that we will conveniently call our
X

X = ⎡⎢
⎣

0.9 0.0 0.8
0.0 0.7 0.0
0.8 0.0 0.9

⎤⎥
⎦

We run every 2 × 2 adjacent submatrix of X this through the convolution layer by multiplying
the elements of the submatrix X(𝑖,𝑗) by K and adding up the elements. This is equivalent to
computing tr(K′X(𝑖,𝑗)), where the trace of a matrix is the sum of the diagonal elements.

⎡
⎢
⎢
⎢
⎣

tr([𝑎 𝑏
𝑐 𝑑]

′
[0.9 0

0 0.7]) tr([𝑎 𝑏
𝑐 𝑑]

′
[0 0.8
0.7 0])

tr([𝑎 𝑏
𝑐 𝑑]

′
[0 0.7
0.8 0]) tr([𝑎 𝑏

𝑐 𝑑]
′
[0.7 0

0 0.9])

⎤
⎥
⎥
⎥
⎦

→ [0.9𝑎 + 0.7𝑑 0.8𝑏 + 0.7𝑐
0.7𝑏 + 0.8𝑐 0.7𝑎 + 0.9𝑑]

Then the components of the result are simply treated as a vector of the form

[0.9𝑎 + 0.7𝑑 0.8𝑏 + 0.7𝑐 0.7𝑏 + 0.8𝑐 0.7𝑎 + 0.9𝑑]′

and sent into the next layer of the neural network, now accepting 4 new inputs rather than
the original 9 inputs.

The convolution kernel 𝐾 can vary by size and shape and “stride,” the spacing between each
application of the convolution. Also, the input may be a three-dimensional tensor input with
the third dimension being a 3-level color channel, the mixture of red, green, and blue, for
example. For such cases, we use a 3D kernel for the convolution layer. This transforms both
the spatial image and the local color structure to an input vector.

8.5 A convolutional neural network with Keras

Keras easily allows you to add a convolution layer to the neural network. First, we need to
reorganize our dataset so that we do not flatten out the images into one long vector of grayscale
values, but instead retain their two dimensional structure.

42

xTrain <- numData$train$x
xTest <- numData$test$x

60000 28x28 images with 1 scale color (greyscale)
xTrain <- array_reshape(xTrain, c(60000,28,28,1))
xTest <- array_reshape(xTest, c(10000,28,28,1))

Next, we need to describe through Keras how to structure the layers of the neural network.
We need to indicate the input_shape (28x28). We need to indicate the kernel_size (3x3).
We can have the model consider several kernels so that one might capture lines while another
captures a curve of a particular type. Here I set filters=32 so the neural network will consider
32 different kernels. padding="same" adds 0s around the edges of the image so that the image
does not shrink due to the image boundary. It lets the kernel straddle the edges of an image.

Note that I have added a second convolution layer after the first convolution layer. In CNNs,
stacking multiple convolutional layers is a useful strategy to increase the neural network’s
ability to identify complex features within the image. The first layer typically learns simple
features, such as edges and lines, while subsequent layers combine these to detect more sophis-
ticated patterns. The layered approach expands the “receptive field,” allowing the network to
perceive larger portions of the input data, but allows the model to capture non-linearity. The
approach also uses parameters more efficiently, reducing the risk of overfitting by leveraging
spatial hierarchies rather than relying on a vast number of parameters. Deeper convolutional
layers improve the neural network’s generalization capabilities, making it more adept at rec-
ognizing a wide range of features at different levels of complexity.

The maximum 2D pooling layer carves up the inputs from the second convolution layer into
a bunch of 2x2 grids and just passes the largest value on to the next layer. This reduces the
number of features passed on to the next layer, highlights the most significant features by
taking their maximum values, and contributes to the model’s efficiency and reduces the risk
of overfitting.

layer_flatten() turns the 2D inputs into one long vector containing all the features from the
previous layer. These go into a hidden layer wih 1000 nodes with the ReLU activation function.
layer_dropout(0.5) randomly sets half of the inputs to 0 during training. This is believed to
reduce the risk of overfitting and encourage the optimizer to explore other “versions” to find
parameters that perform well. When predicting on future observations, all nodes are activated.
The final layer, layer_dense(10, activation = "softmax"), is the output layer set to 10
nodes, one for each of the digits we are trying to predict. softmax forces the output values to
sum to 1 so that they represent a probability distribution over the possible predictions.

kerasCNN <- keras_model_sequential() |>
layer_conv_2d(filters = 32,

kernel_size = c(3, 3),

43

padding = "same",
input_shape = c(28, 28, 1)) |>

layer_activation("relu") |>
layer_conv_2d(filters = 16,

kernel_size = c(2, 2),
dilation_rate = c(1,1),
activation = "softplus",
padding = "same") |>

layer_max_pooling_2d(pool_size=c(2, 2)) |>
layer_flatten() |>
layer_dense(1000, activation = "relu") |>
layer_dropout(0.5) |>
layer_dense(10, activation = "softmax")

summary(kerasCNN)

Model: "sequential_1"
__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 28, 28, 32) 320
activation (Activation) (None, 28, 28, 32) 0
conv2d (Conv2D) (None, 28, 28, 16) 2064
max_pooling2d (MaxPooling2D) (None, 14, 14, 16) 0
flatten (Flatten) (None, 3136) 0
dense_3 (Dense) (None, 1000) 3137000
dropout_1 (Dropout) (None, 1000) 0
dense_2 (Dense) (None, 10) 10010

==
Total params: 3149394 (12.01 MB)
Trainable params: 3149394 (12.01 MB)
Non-trainable params: 0 (0.00 Byte)
__

As before, we then compile the model to optimize the cross-entropy.

compile(kerasCNN,
loss = "categorical_crossentropy",
optimizer = "rmsprop",
metrics = "accuracy")

Then we train the model as before and observe its predictive performance over iterations.

44

fitHx <- fit(kerasCNN,
xTrain,
yTrain,
epochs = 20,
batch_size = 128,
validation_split = 0.2)

Epoch 1/20
375/375 - 41s - loss: 2.9843 - accuracy: 0.8914 - val_loss: 0.0798 - val_accuracy: 0.9761 - 41s/epoch - 109ms/step
Epoch 2/20
375/375 - 40s - loss: 0.1131 - accuracy: 0.9689 - val_loss: 0.0991 - val_accuracy: 0.9758 - 40s/epoch - 106ms/step
Epoch 3/20
375/375 - 37s - loss: 0.0773 - accuracy: 0.9785 - val_loss: 0.0887 - val_accuracy: 0.9784 - 37s/epoch - 99ms/step
Epoch 4/20
375/375 - 38s - loss: 0.0634 - accuracy: 0.9831 - val_loss: 0.1463 - val_accuracy: 0.9772 - 38s/epoch - 101ms/step
Epoch 5/20
375/375 - 37s - loss: 0.0550 - accuracy: 0.9856 - val_loss: 0.0617 - val_accuracy: 0.9883 - 37s/epoch - 99ms/step
Epoch 6/20
375/375 - 37s - loss: 0.0487 - accuracy: 0.9873 - val_loss: 0.0535 - val_accuracy: 0.9876 - 37s/epoch - 97ms/step
Epoch 7/20
375/375 - 37s - loss: 0.0416 - accuracy: 0.9896 - val_loss: 0.0552 - val_accuracy: 0.9873 - 37s/epoch - 98ms/step
Epoch 8/20
375/375 - 38s - loss: 0.0393 - accuracy: 0.9902 - val_loss: 0.0779 - val_accuracy: 0.9796 - 38s/epoch - 100ms/step
Epoch 9/20
375/375 - 37s - loss: 0.0346 - accuracy: 0.9915 - val_loss: 0.0705 - val_accuracy: 0.9860 - 37s/epoch - 98ms/step
Epoch 10/20
375/375 - 38s - loss: 0.0339 - accuracy: 0.9923 - val_loss: 0.0743 - val_accuracy: 0.9890 - 38s/epoch - 100ms/step
Epoch 11/20
375/375 - 38s - loss: 0.0297 - accuracy: 0.9925 - val_loss: 0.0983 - val_accuracy: 0.9868 - 38s/epoch - 102ms/step
Epoch 12/20
375/375 - 40s - loss: 0.0284 - accuracy: 0.9935 - val_loss: 0.0987 - val_accuracy: 0.9876 - 40s/epoch - 106ms/step
Epoch 13/20
375/375 - 39s - loss: 0.0323 - accuracy: 0.9931 - val_loss: 0.0705 - val_accuracy: 0.9883 - 39s/epoch - 105ms/step
Epoch 14/20
375/375 - 39s - loss: 0.0272 - accuracy: 0.9938 - val_loss: 0.0867 - val_accuracy: 0.9872 - 39s/epoch - 103ms/step
Epoch 15/20
375/375 - 37s - loss: 0.0282 - accuracy: 0.9934 - val_loss: 0.0928 - val_accuracy: 0.9884 - 37s/epoch - 98ms/step
Epoch 16/20
375/375 - 37s - loss: 0.0265 - accuracy: 0.9939 - val_loss: 0.0808 - val_accuracy: 0.9877 - 37s/epoch - 98ms/step
Epoch 17/20
375/375 - 37s - loss: 0.0247 - accuracy: 0.9941 - val_loss: 0.0697 - val_accuracy: 0.9871 - 37s/epoch - 99ms/step
Epoch 18/20

45

375/375 - 37s - loss: 0.0252 - accuracy: 0.9948 - val_loss: 0.0756 - val_accuracy: 0.9871 - 37s/epoch - 98ms/step
Epoch 19/20
375/375 - 36s - loss: 0.0255 - accuracy: 0.9948 - val_loss: 0.1155 - val_accuracy: 0.9876 - 36s/epoch - 97ms/step
Epoch 20/20
375/375 - 37s - loss: 0.0199 - accuracy: 0.9953 - val_loss: 0.0978 - val_accuracy: 0.9880 - 37s/epoch - 98ms/step

plot(fitHx)

lo
ss

ac
cu

ra
cy

5 10 15 20

0

1

2

3

0.900

0.925

0.950

0.975

1.000

epoch

data

training

validation

Figure 23: Loss function and accuracy on training and validation MNIST data with a convo-
lution layer

Lastly, we predict on the test dataset.

predict on test dataset
yPredVal <- predict(kerasCNN, xTest) |> k_argmax() |> as.numeric()

313/313 - 3s - 3s/epoch - 10ms/step

yTestVal <- yTest |> k_argmax() |> as.numeric()
table(yPredVal, yTestVal)

46

yTestVal
yPredVal 0 1 2 3 4 5 6 7 8 9

0 977 0 6 0 1 1 6 0 4 3
1 0 1134 2 1 2 2 2 1 0 5
2 1 1 1015 0 0 0 0 4 1 0
3 0 0 0 1004 0 5 0 0 1 3
4 0 0 1 0 963 0 1 0 1 3
5 0 0 0 2 0 880 5 0 1 2
6 1 0 1 0 4 1 943 0 1 0
7 1 0 7 2 1 2 0 1023 2 6
8 0 0 0 1 1 1 1 0 960 3
9 0 0 0 0 10 0 0 0 3 984

Again, we can check to see what kind of errors the model makes. Frankly, they would be quite
difficult for a human to distinguish too.

iError <- which(yPredVal != yTestVal) |> sample(size=12)

par(mfrow=c(3,4), mai=0.02+c(0,0,0.5,0))
for(i in iError)
{
img <- matrix(xTest[i,,,], ncol=28, byrow=TRUE)[,28:1]
image(1:28, 1:28, img,

col = gray((255:0) / 255),
xaxt = 'n', yaxt = 'n',
xlab="",ylab="",
mar=c(0,0,4,0)+0.1,
main=paste("Prediction:",yPredVal[i]))

}

47

Prediction: 1 Prediction: 3 Prediction: 6 Prediction: 7

Prediction: 9 Prediction: 1 Prediction: 0 Prediction: 0

Prediction: 1 Prediction: 1 Prediction: 0 Prediction: 0

Figure 24: Examples of errors from our neural network with a convolution layer. Heading of
each image shows the predicted

Let’s check the overall performance.

evaluate(kerasCNN, xTest, yTest)

313/313 - 2s - loss: 0.0940 - accuracy: 0.9883 - 2s/epoch - 7ms/step

loss accuracy
0.09395789 0.98830003

We have squeezed out just a tiny bit more predictive performance with this model. However,
this model had 3149394 parameters while our simpler one without convolution layers had
407050 parameters. We had to spend a lot of additional parameters to get a tiny gain in
predictive performance. And when we check what we are getting wrong, we are at the stage
where humans would have a hard time getting them correct. For comparison, today’s large
language models have over 100,000,000,000 (100 billion) parameters. GPT4 weights in at
1,800,000,000,000 (1.8 trillion) parameters.

Developing a neural network is more an art than a science. There are no general theories that
tell us what the right way of combining layers are, how best to use convolutional layers, or
how best to optimize parameters to minimize generalization error. In practice, we try a range

48

of layers, parameters, and alterations to our dataset to see which one might get us some better
performance. There are a variety of rules-of-thumb that have been adopted and I have used
a lot of those here, but there is no reason to think that these are the best choices, and they
certainly are not the best for all applications. With this I hope you have a start on how to
use Keras to assemble a neural network for whatever problem you want to try to solve.

Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. 2020. Mathematics for Machine
Learning. Cambridge University Press. https://mml-book.com/.

Hastie, T., R. Tibshirani, and J. H. Friedman. 2001. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction
to Statistical Learning: With Applications in r. 2nd ed. Springer Texts in Statistics. New
York, NY: Springer. https://www.statlearning.com/.

Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Cornell Aeronautical Laboratory. Report No. VG-1196-g-8. Spartan Books.
https://books.google.com/books?id=7FhRAAAAMAAJ.

49

https://mml-book.com/
https://www.statlearning.com/
https://books.google.com/books?id=7FhRAAAAMAAJ

	Reading
	A simple neural network
	Computing derivatives in networks
	Backpropagation for a neural network with a hidden layer
	Examples in two-dimensions
	Classes separated with a curve, but we try a linear neural network
	A circular decision boundary in two dimensions
	Searching for a linear boundary

	Implementing backpropagation ``by hand'' for a neural network with a hidden layer
	R's neuralnet package
	Tensorflow and Keras
	Tensorflow Playground
	Installing Tensorflow and Keras
	MNIST postal digits data
	Convolution layers
	A convolutional neural network with Keras

