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1 Sparse machine learning methods

One of the major machine learning discoveries of the last 20 years is the development of
“sparse” learning methods. These are methods for fitting models in cases where there are
a large number of features, perhaps few of them with genuine predictive information about
the outcome. This is particularly true of genome-wide association studies (GWAS) in which
hundreds of thousands of candidate genes might predict some kind of genetic trait. Large
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numbers of features also show up in social science studies since many data collection efforts
(NELS, NCVS, NSDUH, etc.) include over 1000 measurements on respondents.

The mathematics of sparse learning is tied to an absolute value penalty on coefficients, also
known as an 𝐿1 penalty or the LASSO (Least Absolute Shrinkage and Selection Operator).

1.1 𝐿1 penalty and the LASSO

Consider our now familiar linear model 𝑓(x) = 𝛽′x where we want to minimize squared error.

𝐽(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2

Previous we had explored ridge regression that put a squared penalty on the size of the
coefficients.

𝐽(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2 + 𝜆
𝑑

∑
𝑗=1

𝛽2
𝑗

The LASSO replaces the squared penalty, often called an 𝐿2 penalty, with an absolute penalty,
often called an 𝐿1 penalty (Tibshirani 1995).

𝐽(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2 + 𝜆
𝑑

∑
𝑗=1

|𝛽𝑗|

In case you were wondering, there is also an 𝐿0 penalty that is 𝜆 ∑ 𝐼(𝛽𝑗 ≠ 0), which simply
counts how many coefficients are non-zero. This switch to the absolute penalty, at first, seems
arbitrary. It is just another way of measuring the size of the coefficients and penalizing their
size just prevents them from getting too large. Setting 𝜆 = 0 would give the usual OLS solution
while setting 𝜆 = ∞ would set 𝛽0 = ̄𝑦 and set all the other coefficients to 0. This is the same
property as we saw with ridge regression. Where the 𝐿1 penalty differs from ridge regression
is the path the coefficients take between these two end points.

Let’s start with a simulated example. The following code simulates 1,000 observations, each
with four independent features generated from a Normal(0,1) distribution. Then the simulation
generates the outcome as

𝑦𝑖 = −1 + 𝑥𝑖3 + 2𝑥𝑖4 + 𝜖𝑖
𝜖 ∼ 𝑁(0, 1.59)

𝜖 is random noise added to give a signal-to-noise ratio of 2.0.
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set.seed(20240312)
n <- 1000
X <- cbind(1, rnorm(n), rnorm(n), rnorm(n), rnorm(n))

betaTrue <- c(-1,0,0,1,2)
y <- X %*% betaTrue
SNR <- 2
y <- y + rnorm(n, 0, sqrt(var(y)/SNR))

The OLS estimates should be roughly [−1 0 0 1 2], which they are.

lm1 <- lm(y~-1+X)
coef(lm1)

X1 X2 X3 X4 X5
-1.06349997 -0.07795981 -0.05277417 1.05005984 2.00038173

The function L1mse() here computes the mean squared error plus the 𝐿1 penalty. Note that
the 𝐿1 penalty does not include the intercept term, 𝛽0. This function also computes the
gradient vector and Hessian matrix so that we can optimize using Newton-Raphson.

L1mse <- function(beta, y, X, lambda)
{
J <- mean((y - X %*% beta)^2) + lambda*sum(abs(beta[-1]))
attr(J, "gradient") <- (-2/nrow(X))*t(X)%*%(y-X%*%beta) + lambda*c(0,sign(beta[-1]))
attr(J, "hessian") <- (2/nrow(X))*t(X)%*%X
return(J)

}

I will start with an initial guess for 𝛽 with the intercept equal to ̄𝑦 and all of the other
coefficients initialized to 0. Let’s test out the L1mse() function at this starting value for 𝛽
with no 𝐿1 penalty, 𝜆 = 0.

betaHat <- rep(0, length(betaTrue))
betaHat[1] <- mean(y)
L1mse(betaHat, y, X, lambda=0)

[1] 7.733564
attr(,"gradient")

[,1]
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[1,] -1.412204e-16
[2,] 2.317929e-01
[3,] 4.938739e-02
[4,] -2.192318e+00
[5,] -3.997327e+00
attr(,"hessian")

[,1] [,2] [,3] [,4] [,5]
[1,] 2.00000000 -0.15469711 0.0378722854 0.077122868 0.0181676407
[2,] -0.15469711 2.02775250 0.0274503061 -0.098435530 0.0106224389
[3,] 0.03787229 0.02745031 1.8954160639 0.051134547 0.0007496225
[4,] 0.07712287 -0.09843553 0.0511345470 2.094271294 -0.0034268939
[5,] 0.01816764 0.01062244 0.0007496225 -0.003426894 2.0010934097

Remember that nlm() (non-linear minimization) is a general purpose optimization function.
I give it the starting value for 𝛽, and it will optimize L1mse().

nlm1 <- nlm(L1mse,
p=betaHat,
y=y,
X=X,
lambda=0)

nlm1

$minimum
[1] 2.574103

$estimate
[1] -1.06349997 -0.07795981 -0.05277417 1.05005984 2.00038173

$gradient
[1] 2.282619e-16 -3.351208e-16 -1.241229e-16 -1.848743e-15 -3.725575e-15

$code
[1] 1

$iterations
[1] 1

The results show that it converged in 1 iteration, as it should since with 𝜆 = 0 the loss function
is quadratic and Newton-Raphson will solve it exactly. Also note that the solution is identical
to OLS.
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nlm1$estimate

[1] -1.06349997 -0.07795981 -0.05277417 1.05005984 2.00038173

coef(lm1)

X1 X2 X3 X4 X5
-1.06349997 -0.07795981 -0.05277417 1.05005984 2.00038173

What happens when we set 𝜆 = 0.4, penalizing the absolute size of the coefficients.

nlm1 <- nlm(L1mse,
p=betaHat,
y=y,
X=X,
lambda=0.4,
check.analyticals = FALSE)

nlm1

$minimum
[1] 3.736787

$estimate
[1] -1.052841e+00 -5.809961e-07 -1.581168e-07 9.334511e-01 1.875751e+00

$gradient
[1] -2.557954e-16 -2.319637e-01 -3.034838e-01 1.520634e-01 1.520634e-01

$code
[1] 2

$iterations
[1] 40

Note that 𝛽1 and 𝛽2 have been reduced nearly to 0.0000001, essentially 0, while the other
coefficients have been shrunk slightly. This is our first glimpse at why the 𝐿1 penalty is
special. For certain values of 𝜆 it will eliminate some (or many) features.

Let’s try a larger 𝜆.
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nlm1 <- nlm(L1mse,
p=betaHat,
y=y,
X=X,
lambda=4,
check.analyticals = FALSE)

nlm1

$minimum
[1] 7.733564

$estimate
[1] -0.9998063 0.0000000 0.0000000 0.0000000 0.0000000

$gradient
[1] -1.412204e-16 2.317929e-01 4.938739e-02 -2.192318e+00 -3.997327e+00

$code
[1] 3

$iterations
[1] 1

Here we see that when 𝜆 = 4 it sets all of the coefficients (except the intercept) to 0. The next
block of code explores the path each coefficient takes for 𝜆 between 0 and 4.

nIter <- 1000
lambda <- seq(0,4, length.out=nIter)
matBetaHat <- matrix(0, nrow=length(betaHat), ncol=nIter)

matBetaHat[,1] <- coef(lm1)
for(iIter in 2:nIter)
{
nlm1 <- nlm(L1mse,

p=matBetaHat[,iIter-1],
typsize = matBetaHat[,iIter-1],
y=y,
X=X,
lambda=lambda[iIter],
check.analyticals = FALSE)

matBetaHat[,iIter] <- nlm1$estimate
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}

L1norm <- apply(matBetaHat[-1,], 2, function(x) sum(abs(x)))

plot(L1norm, rep(0,nIter),
type="n",
ylim=c(-0.2,2),
xlab=expression(L[1]),
ylab=expression(beta))

for(i in 2:nrow(matBetaHat))
{
lines(L1norm, matBetaHat[i,], col=i-1, lwd=2)

}

points(rep(max(L1norm), length(betaTrue)-1), coef(lm1)[-1],
col=1:(length(betaTrue)-1),
pch=15)

text(1,1.2,expression(beta[4]))
text(2,0.7,expression(beta[3]))
text(3.1,0.1,expression(beta[2]))
text(3.0,-0.2,expression(beta[1]))
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Figure 1: Path of the coefficients for various values of 𝜆

Notice the following:

1. When 𝜆 = 0 (right side of the plot), we get the OLS solution
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2. When 𝜆 is large (left side of the plot), all the coefficients are 0
3. In between, the coefficients take piecewise linear paths as 𝜆 (and the 𝐿1 penalty) changes
4. For 0 < 𝐿1 < 0.9, only 𝛽4 is non-zero
5. For 0.9 < 𝐿1 < 2.9, only 𝛽3 and 𝛽4 are non-zero

The linear model with 𝐿1 regularization is built into the glmnet package. glmnet() actually
allows the user to mix between ridge regression and the lasso using the 𝛼 parameter, with
𝛼 = 1 indicating all lasso, 𝛼 = 0 all ridge regression, and in between a mixture of the two.

Here I ask glmnet() to try 1000 different values for 𝜆 between 0 and 2 (𝜆 is scaled a little
differently in glmnet()). Note that I’ve dropped the first column from X since glmnet() will
add the intercept term.

library(glmnet)
lasso1 <- glmnet(X[,-1], y,

family="gaussian", # squared error
alpha=1, # 1 - lasso, 0 - ridge regression
lambda=seq(2.02,0,length.out=1000))

Let’s check that no penalty gives us the original OLS estimates.

coef(lasso1, s=0)

5 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) -1.06349997
V1 -0.07795987
V2 -0.05277413
V3 1.05005984
V4 2.00038173

coef(lm1)

X1 X2 X3 X4 X5
-1.06349997 -0.07795981 -0.05277417 1.05005984 2.00038173

glmnet has a plot function that will trace out the coefficient paths. Note that the x-axis is
the value of ∑ |𝛽𝑗| rather than 𝜆. The result still shows a piecewise linear coefficient path.

plot(lasso1)
points(rep(3.18, length(betaTrue)-1), coef(lm1)[-1],

col=1:(length(betaTrue)-1),
pch=15)
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Figure 2: Coefficient path for LASSO penalty from glmnet()

For comparison let’s look at the coefficient paths for ridge regression.

ridge1 <- glmnet(X[,-1], y,
family="gaussian", # squared error
alpha=0) # 1 - lasso, 0 - ridge regression
#lambda=seq(2.02,0,length.out=1000))

plot(ridge1)
points(rep(3.18, length(betaTrue)-1), coef(lm1)[-1],

col=1:(length(betaTrue)-1),
pch=15)
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Figure 3: Coefficient path for ridge penalty from glmnet()

The key distinction to pay attention to here is that or every value of 𝜆 all of the coefficients
are different from 0. Ridge regression offers no variable selection and requires the tracking and
storage of coefficients for all features used in the prediction model.

1.2 Forward stagewise selection

Setting aside the 𝐿1 penalty, let’s try what seems to be a completely different approach. We
will initialize all the coefficients to be 0, except 𝛽0 = ̄𝑦. Then we will take a kind of gradient
descent approach. We will consider changing the coefficient of one feature by a small amount,
like 0.0001. We will choose which coefficient to change by picking the one that offers the
greatest reduction in squared error.

Another way to think of this is that we have an initial model, 𝑓0(x) = ̄𝑦. We would like to
improve that prediction model as

𝑓1(x) = 𝑓0(x) + 𝜆𝑥𝑗∗

where we pick 𝑗∗ to be the one feature that offers the greatest reduction in squared error. Then
we will repeat this again and again like

𝑓𝑘+1(x) = 𝑓𝑘(x) + 𝜆𝑥𝑗∗

always choosing the 𝑥𝑗∗ that offers the greatest reduction in squared error.
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So perhaps after we iterate, say, 8 times our model will look like

𝑓8(x) = ̄𝑦 + 𝜆𝑥4 + 𝜆𝑥4 + 𝜆𝑥1 + 𝜆𝑥3 + 𝜆𝑥4 + 𝜆𝑥2 + 𝜆𝑥2 + 𝜆𝑥4
= ̄𝑦 + 𝜆𝑥1 + 2𝜆𝑥2 + 𝜆𝑥3 + 4𝜆𝑥4

Each iteration is incrementally adding a small amount to each feature’s coefficient. With each
iteration those coefficients grow toward the OLS solution.

This is an example of functional gradient descent. With each iteration we are moving our
prediction function, 𝑓(x), toward a better function, one that has a smaller squared error.

How do we decide which variable is the next one to add to the model? Consider what we are
trying to minimize.

𝐽(𝜆) =
𝑛

∑
𝑖=1

(𝑦𝑖 − (𝑓𝑘(x𝑖) + 𝜆𝑥𝑖𝑗))2

The “directional derivative” of 𝐽 in the direction of 𝑥𝑗 is 𝑑
𝑑𝜆𝐽(𝜆)∣𝜆=0. If we were to nudge

𝑓𝑘(x) in the direction of 𝑥𝑗, the directional derivative tells us the rate at which squared error
will change. We are looking for the steepest decline in squared error, a large negative value.
The directional derivative is

𝑑
𝑑𝜆𝐽(𝜆)∣

𝜆=0
= 𝑑

𝑑𝜆
𝑛

∑
𝑖=1

(𝑦𝑖 − (𝑓𝑘(x𝑖) + 𝜆𝑥𝑖𝑗))2∣
𝜆=0

=
𝑛

∑
𝑖=1

−2(𝑦𝑖 − (𝑓𝑘(x𝑖) + 𝜆𝑥𝑖𝑗))𝑥𝑖𝑗∣
𝜆=0

= −2
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑓𝑘(x𝑖))𝑥𝑖𝑗

All the information about which variable to pick is in −(y−ŷ)′x𝑗 (the 2 is not really important).
We can get everything we need by computing −X′(y − ŷ). This expression is also involved
in computing the correlation between the columns of X and y − ŷ. So you can interpret this
as finding the feature that has the largest correlation with the current prediction error (or
residuals).

Let’s try this on our simulated data.

# reset our betaHat
betaHat <- rep(0, length(betaTrue))
betaHat[1] <- mean(y)

# get predicted values
fx <- X %*% betaHat
dirDeriv <- -t(X) %*% (y-fx)
dirDeriv |> zapsmall()
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[,1]
[1,] 0.0000
[2,] 115.8965
[3,] 24.6937
[4,] -1096.1591
[5,] -1998.6637

Note that the fifth value, which is the one associated with 𝛽4 has the largest negative value.
This means if we increment ̂𝛽4 by just a little bit we can expect a decrease in squared error
that is larger than any decrease we would get by shifting any of the other coefficients.

If the largest directional derivative was a large positive number, it means that subtracting a
little from that coefficient would get a large reduction in squared error. So, we need to pay
attention to the largest absolute directional derivative and its sign to know which coefficient
to adjust and in which direction to adjust it.

Time to run this for real. The next block of code will do 35,000 iterations, compute the
directional derivative, find the feature with the largest directional derivative, and adjust the
associated coefficient in that direction. Along the way we will generate a plot of the entire
coefficient paths.

# reset
betaHat <- rep(0, length(betaTrue))
betaHat[1] <- mean(y)

nIter <- 35000
lambda <- 0.0001

matBetaHatFS <- matrix(0, nrow=length(betaHat), ncol=nIter)
matBetaHatFS[,1] <- betaHat

for(iIter in 2:nIter)
{
fx <- X %*% betaHat
yError <- y - fx

dirDeriv <- -t(X[,-1]) %*% yError
j <- dirDeriv |> abs() |> which.max()

# -lambda because if dirDeriv<0 then we want to increase beta_j
# j+1 because betaHat[1] corresponds to be beta_0
betaHat[j+1] <- betaHat[j+1] - lambda*sign(dirDeriv[j])
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matBetaHatFS[,iIter] <- betaHat
}

plot(1:nIter, rep(0,nIter),
type="n",
ylim=c(-0.2,2),
xlab="Iteration",
ylab=expression(beta))

for(i in 2:nrow(matBetaHatFS))
{
lines(1:nIter, matBetaHatFS[i,], col=i-1, lwd=2)

}

points(rep(nIter, length(betaHat)-1), coef(lm1)[-1],
col=1:(length(betaHat)-1),
pch=15)

0 5000 10000 20000 30000
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0
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Iteration

β

Figure 4: Coefficient path from a forward stagewise model fit

Are you not amazed?!?!? The paths of the coefficients traced out as we iterate look a lot like
the same paths we got when we did the hard optimization of the 𝐿1 penalty. Let’s plot the
two on top of each other just for a check.

plot(lasso1, lwd=5)

L1norm <- apply(matBetaHatFS[-1,], 2, function(x) sum(abs(x)))
for(i in 2:nrow(matBetaHatFS))
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{
lines(L1norm, matBetaHatFS[i,], col=1, lwd=2)

}
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Figure 5: Coefficient path for LASSO penalty

They are identical! In a groundbreaking paper Efron et al. (2004) showed that the entire set
of lasso coefficients could be found with this incremental, forward stagewise approach. They
went on to show that the coefficient paths are exactly linear and that you do not even have to
do this incremental approach. They figured out exactly how long each linear segment would
be until the next coefficient became non-zero. They proposed an algorithm that had the same
computational complexity as OLS, the least angle regression algorithm (LARS).

Since then, there has been a flurry of research on algorithms to make this approach faster and
applicable to more scenarios. For social science, the value of this approach is that it provides a
simple method for building predictive models when you have a large number of features, even
when features are perfectly correlated.

Returning to the forensic window glass dataset, I am going to load the dataset and create a
new feature MgAl that is the sum of Mg and Al. Since there is a linear relationship between this
new feature and other variables, this would cause problems for a standard linear regression
model.

dGlass <- read.csv("data/glass.csv") |>
# make a new variable that is a linear combination of others
mutate(MgAl = Mg+Al,
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window = as.numeric(type==1))

X <- model.matrix(~RI+Na+Mg+Al+Si+K+Ca+Ba+Fe+MgAl, data=dGlass)
X <- X[,-1] # drop the intercept column

Note that X′X will not be invertible because MgAL is a linear combination of Mg and Al.

solve(t(X) %*% X)

Error in solve.default(t(X) %*% X): system is computationally singular: reciprocal condition number = 4.86532e-19

If we try to run lm(), it will still run but gives an NA for MgAl.

lm(dGlass$window~X)

Call:
lm(formula = dGlass$window ~ X)

Coefficients:
(Intercept) XRI XNa XMg XAl XSi
-115.3070 16.3621 0.8402 0.9914 0.6461 0.9305

XK XCa XBa XFe XMgAl
0.9305 0.8598 0.9173 0.1036 NA

Let’s give the lasso a try. We do need to select the optimal value for 𝜆. Naturally, we do
this using 10-fold cross-validation, which conveniently the glmnet package has built in. Here
I have set family="binomial" since we have a 0/1 outcome. This will minimize the negative
Bernoulli log-likelihood instead of trying to minimize squared error.

set.seed(20240312)
lasso1 <- cv.glmnet(X,

dGlass$window,
family="binomial", # logistic regression
alpha=1)

with(lasso1, lambda[which.min(cvm)]) |> log() |> round(1)

[1] -5.1

15



plot(lasso1)
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Figure 6: Cross-validated performance of lasso by 𝜆

The plot shows a range of values for log(𝜆) showing that the optimal value for 𝜆 is 0.006 or
on the log scale -5.1. The numbers along the top of the figure count the number of non-zero
coefficients for different choices of 𝜆.

Within lasso1, the object that cv.glmnet() produces, is a glmnet model fit to the full
dataset. That is, in addition to doing cross-validation, cv.glmnet() also runs glmnet()
against the entire dataset. That means there is no need to fit another glmnet model after
running cv.glmnet(). Just like when we used rpart() to fit decision trees, we simply used
prune() to get the tree that we wanted. No need to rerun the algorithm. All the functions
like coef() and predict() can run directly from lasso1.

For example, coef() extracts the value of ̂𝛽 for a specific value of 𝜆. With s = "lambda.min"
we are asking glmnet to use the 𝜆 that minimized the cross-validated negative Bernoulli log-
likelihood.

coef(lasso1, s = "lambda.min")

11 x 1 sparse Matrix of class "dgCMatrix"
s1

(Intercept) -120.7384861
RI 58.9239738
Na -0.3893883
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Mg 1.2747803
Al -2.6194133
Si 0.4840770
K .
Ca .
Ba .
Fe -1.3511375
MgAl .

We do need to tell the lasso1 object exactly which set of coefficients that we want, since it
has all sets of coefficients for all choices of 𝜆. Simply setting s="lambda.min" will tell coef()
to use the 𝜆 that minimized the cross-validated loss function.

We can also predict using the lasso1 object. Setting s = "lambda.min" insists that the pre-
dictions use the coefficients associated with the 𝜆 that minimized the cross-validated Bernoulli
log-likelihood. By default, when the glmnet model is fit using family="binomial", the pre-
dicted values will be on the log odds scale, that is log 𝑝

1−𝑝 . Setting type="response" transforms
the predictions to the probability scale (using the sigmoid function so you do not have to do
it yourself).

pHat <- predict(lasso1, newx=X, s = "lambda.min", type="response")

Lastly, we can compute the average Bernoulli log-likelihood on the dGlass data if we wish.

mean(ifelse(dGlass$window==1, log(pHat), log(1-pHat)))

[1] -0.4354227

Technically, 𝐿1/lasso is not exactly identical to the incremental forward stagewise selection.
When features are highly correlated, the two methods’ coefficient paths can diverge from
one another. The forward stagewise approach tends to be more stable and more immune to
overfitting. See Hastie, Tibshirani, and Friedman (2001) Chapter 16.2.3 for details.

2 Boosting

2.1 𝐿1 regularization and decision trees

Linear models of the form 𝛽′x are very constrained. They do not allow for non-linear rela-
tionships between features and outcomes. They cannot adapt to important interaction effects,
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such as groups often of interest in social science, like young black male, low SES first genera-
tion college student, or middle-class elderly rural voter. In order to overcome this constraint,
we have to intentionally add non-linear terms and interaction effects. For example,

𝑓(x) = 𝛽0 + 𝛽1age + 𝛽2age2 + 𝛽3ses + 𝛽4 log(ses) + 𝛽5age × ses + 𝛽6age × log(ses) + …

How likely is it that we will pick all the right transformations and all the right interaction
effects in the right structural form to get the best predictive model? Ideally, we want the data
to tell us what form all these features should have. Which features should not be in the model
at all? Which important interaction effects need to be there? Which features have important
saturation and threshold effects?

With 𝐿1 regularization we can derive a large number of new features, adding new data columns
with squared terms and interacted terms. Then we could just lean on the 𝐿1 penalty to
trim away the ones that are unnecessary for getting good predictive performance. The task
remains… how do we enumerate all the possible non-linear terms and interaction terms that
we might want to include.

One of the appeals of decision trees is that they can capture both non-linear relationships and
interaction effects. They also gracefully handle features of different types (numeric, categorical,
ordinal) and even handle missing data well. However, they tend not to have the best predictive
performance.

We are going to combine the nice attributes of decision trees with a linear model with 𝐿1
regularization and explore what we get. Consider creating a model involving all possible
splits on SES in the NELS dataset. There are 2,554 possible single-split decision trees that
could come just from using SES (ses<-2.6, ses<-2.5, …, ses<2.5). When we ran rpart(), the
algorithm searched over all of these and chose the one that offered the greatest improvement
in predictive performance. What if instead we consider a model of the form

𝑓(x) = 𝛽0 + 𝛽1𝑇1(x) + 𝛽2𝑇2(x) + … + 𝛽2554𝑇2554(x)

and used 𝐿1 regularization to pick out the splits that are important. Let’s try this idea on the
NELS dataset predicting dropout.

load("data/nels.RData")

# enumerate all possible splits (midpoints between adjacent values of SES)
sesSplits <- unique(nels0$ses) |> sort()
sesSplits <- sesSplits[-1] - 0.5*diff(sesSplits)

Then we’ll take each student in the NELS dataset and create 2,554 0/1 features about whether
their SES would put them in the left or right branch of the associated decision tree.
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X <- lapply(sesSplits, function(x) as.numeric(nels0$ses < x)) |>
do.call(cbind, args=_)

dim(X)

[1] 11381 2554

For example, 𝑇3(𝑠𝑒𝑠) has a split point at -2.3745. So X[,3] will be 1 for all observations with
SES less than -2.3745 and 0 otherwise. Let’s check.

nels0$ses[X[,3]==1]

[1] -2.519 -2.414 -2.414 -2.875

range(nels0$ses[X[,3]==0])

[1] -2.335 2.560

Sure enough, when X[,3]==1 all SES values are less than the 𝑇3(𝑠𝑒𝑠) split point and all the
SES values are greater than the 𝑇3(𝑠𝑒𝑠) split point when X[,3]==0.

Let’s throw all of these columns into cv.glmnet() to do 10-fold cross-validation to determine
how much to penalize ∑ |𝛽𝑗| to get the best predictive performance. Note that I have set
family=binomial since we have 0/1 outcome. This will use the Bernoulli log-likelihood as the
loss function. I have also set this up to run 10-fold cross-validation in parallel since this will
take many minutes to run.

set.seed(20240312)
library(doParallel)
cl <- makeCluster(10)
registerDoParallel(cl)
timeL1 <- system.time(
{
lasso1 <- cv.glmnet(X,

nels0$wave4dropout,
family="binomial", # logistic regression
alpha=1,
parallel = TRUE)

})
print(timeL1)
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user system elapsed
218.23 6.00 1976.87

stopCluster(cl)

Ten-fold cross-validation with a dataset with 11381 students and 2554 features took my com-
puter 33 minutes. That is a long time to figure out the relationship with a single feature.

Let’s plot the cross-validated error to see how well it worked.

plot(lasso1)

# extract the best coefficients
betaHat <- coef(lasso1, s = "lambda.min") |> as.numeric()
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Figure 7: Cross-validated error for predicting dropout in NELS88

𝐿1 regularization drastically cut down the number of terms from 2,554 to 31.

Finally, let’s examine what this model looks like. We can plot the relationship between SES
and the predicted probability of dropout.

# get predicted probabilities (betahat[1] is the intercept)
pHat <- 1/(1+exp(-(betaHat[1] + X %*% betaHat[-1])))
# or predict(lasso1, newx=X, s="lambda.min", type="response")
# plot the relationship between ses and P(dropout|ses)
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i <- order(nels0$ses)
plot(nels0$ses[i], pHat[i], type="l",

xlab="SES", ylab="P(dropout|ses)")
rug(quantile(nels0$ses, probs = (0:10)/10))
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Figure 8: Relationship between SES and probability of dropout using lasso and all possible
splits on SES

We get a picture similar to those we have seen before showing a strong threshold and saturation
effect with lower levels of SES associated with higher dropout rates and low dropout rates once
SES exceeds 0.

So, this approach seems to “work,” but there are substantial technical hurdles. This was a
complicated model to fit to a dataset with 11381 cases using only a single feature. If we
consider the NELS dataset and all 14 features that we used when experimenting with decision
trees, there are 2631 possible single split trees. To include interaction effects, we need to allow
for decision trees with two splits. There are 6,922,161 possible two-split decision trees! To
code them as 0/1 columns we would need 2 columns in X to code the three terminal nodes.
So, to include all single split trees and all two-split trees we would need to create 13,846,953
columns in X.

Now we are reaching complete impracticality. We cannot possibly include all of them and
run glmnet(). We need an alternative route to use 𝐿1 regularization to trim them down to a
smaller set.
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2.2 Gradient boosted models

As we saw in a previous section, there is an (approximately) equivalent approach to 𝐿1 regu-
larization using an incremental forward stagewise selection process. Previously we examined
an iterative process with which we would add a small amount of one feature to the current
model.

𝑓0(x) = ̄𝑦
𝑓𝑘+1(x) = 𝑓𝑘(x) + 𝜆𝑥𝑗∗

At each iteration we would choose 𝑥𝑗∗ to make the directional derivative −(y − ŷ)′x𝑗 as small
as possible (large negative value). Let’s allow for a little more complexity and find the decision
tree that offers the greatest reduction in squared error.

𝑓0(x) = ̄𝑦
𝑓𝑘+1(x) = 𝑓𝑘(x) + 𝜆𝑇𝑗∗(x)

As before, we can try to find the tree that has the most negative directional derivative.

𝑑
𝑑𝜆𝐽(𝜆)∣

𝜆=0
= 𝑑

𝑑𝜆
𝑛

∑
𝑖=1

(𝑦𝑖 − (𝑓𝑘(x𝑖) + 𝜆𝑇𝑗(x𝑖)))2∣
𝜆=0

=
𝑛

∑
𝑖=1

−2(𝑦𝑖 − (𝑓𝑘(x𝑖) + 𝜆𝑇𝑗(x𝑖)))𝑇𝑗(x𝑖))∣
𝜆=0

= −2
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑓𝑘(x𝑖))𝑇𝑗(x𝑖)

To make the directional derivative large

1. we should try to make the sign of 𝑇𝑗(x) agree with 𝑦𝑖 − 𝑓𝑘(x𝑖)
2. we should make 𝑇𝑗(x) larger when 𝑦𝑖 − 𝑓𝑘(x𝑖) is larger

These two points suggest that 𝑇𝑗(x) should be the decision tree that best predicts 𝑦 − 𝑓𝑘(x),
the errors or residuals of the current model. This makes sense. If we have a current model,
then what should we add to it to make it better? A model that is good at predicting the
current model’s errors.

Friedman (2001) proposed the general gradient boosted machine algorithm as follows for a
generic loss function 𝐽(y, 𝑓) that we are trying to minimize.

1. Initialize ̂𝑓0(x) to be a constant, ̂𝑓0(x) = arg min𝑎 ∑𝑛
𝑖=1 𝐽(𝑦𝑖, 𝑎)

2. For 𝑘 in 1, … , 𝐾 do

a. Compute the negative gradient as the working response 𝑧𝑖 = − 𝜕
𝜕𝑓(x𝑖)𝐽(𝑦𝑖, 𝑓(x𝑖))∣𝑓(x𝑖)= ̂𝑓(x𝑖)

b. Fit a decision tree, 𝑇 (x), predicting 𝑧𝑖 from the covariates x𝑖
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c. Update the current prediction model as 𝑓𝑘(x) ← ̂𝑓𝑘−1(x) + 𝜆𝑇 (x)

At this point note that the final update closely resembles the gradient descent algorithm. We
used gradient descent to improve our estimates of a set of parameters like

̂𝛽 ← ̂𝛽 − 𝜆𝐽 ′( ̂𝛽)

The gradient boosting algorithm is also a gradient descent algorithm only it is optimizing an
entire prediction function rather than parameters used to tune a prediction model. Since the
decision trees, 𝑇 (x), are approximating a derivative, we can think of the gradient boosting
algorithm as an analogous functional gradient descent.

̂𝑓(x) ← ̂𝑓(x) + 𝜆𝑇 (x)
≈ ̂𝑓(x) − 𝜆𝐽 ′( ̂𝑓(x))

2.3 Gradient boosting algorithm for squared error

For squared error we have

𝐽(y, 𝑓) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑓(x𝑖))2

Initialize

̂𝑓0(x) = arg min
𝑎

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑎)2

= ̄𝑦

The working response for squared error is

𝑧𝑖 = − 𝜕
𝜕𝑓(x𝑖)

(𝑦𝑖 − 𝑓(x𝑖))2∣
𝑓(x𝑖)= ̂𝑓(x𝑖)

= 2(𝑦𝑖 − 𝑓(x𝑖))|𝑓(x𝑖)= ̂𝑓(x𝑖)

= 2(𝑦𝑖 − ̂𝑓(x𝑖))

Normally we ignore any constants (like the 2 here) since they will just get absorbed into the
tree or into 𝜆.

We have completed the only mathematical work that we needed to do and now we can assemble
an algorithm to do the work for us. Let’s take one step of the gbm algorithm, moving from 𝑓0
to 𝑓1.
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library(rpart)

# set lambda to be a small number
lambda <- 0.01

# initialize to the mean
fxHat <- rep(mean(nels0$wave4dropout), nrow(nels0))

# compute the working response
nels0$z <- nels0$wave4dropout - fxHat

# fit a regression tree to the working response
tree1 <- rpart(z ~ ses,

data=nels0,
method = "anova",
control = rpart.control(xval=0, maxdepth = 1))

# see which tree got selected first
par(xpd=NA)
plot(tree1); text(tree1)

# update to get f_1(x)
fxHat <- fxHat + lambda * predict(tree1, newdata=nels0)

|ses>=−1.133

−0.01635 0.1473

Figure 9: The decision tree selected in the first iteration

After a single iteration we can take a look at 𝑓1.

i <- order(nels0$ses)
plot(nels0$ses[i], fxHat[i], type="l",
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xlab="ses",
ylab=expression(f[1](x)))
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Figure 10: GBM estimate after one iteration

Now let’s let it run for 1,000 total iterations.

for(k in 2:1000)
{
nels0$z <- nels0$wave4dropout - fxHat
tree1 <- rpart(z ~ ses,

data=nels0,
method = "anova",
control = rpart.control(xval=0, maxdepth = 1))

fxHat <- fxHat + lambda * predict(tree1, newdata=nels0)
}
i <- order(nels0$ses)
plot(nels0$ses[i], fxHat[i], type="l",

xlab="ses",
ylab=expression(f[1000](x)))
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Figure 11: GBM estimate after 1,000 iterations

2.4 Gradient boosting algorithm for negative Bernoulli log-likelihood
(LogitBoost)

If our interest is obtaining the best estimates of the probability of dropout, the Bernoulli log-
likelihood is the loss function best designed for good probability estimates. Note that I have
the negative Bernoulli log-likelihood so that we are aiming to minimize this loss function.

𝐽(y, 𝑓) = −
𝑛

∑
𝑖=1

𝑦𝑖𝑓(x𝑖) − log(1 + 𝑒𝑓(x𝑖))

Initialize

̂𝑓0(x) = arg min
𝑎

−
𝑛

∑
𝑖=1

𝑦𝑖𝑎 − log(1 + 𝑒𝑎)

= log ̄𝑦
1 − ̄𝑦

The working response for squared error is

𝑧𝑖 = − 𝜕
𝜕𝑓(x𝑖)

−
𝑛

∑
𝑖=1

𝑦𝑖𝑓(x𝑖) − log(1 + 𝑒𝑓(x𝑖))∣
𝑓(x𝑖)= ̂𝑓(x𝑖)

= 𝑦𝑖 − 1
1 + 𝑒−𝑓(x𝑖) ∣

𝑓(x𝑖)= ̂𝑓(x𝑖)

= 𝑦𝑖 − 1
1 + 𝑒− ̂𝑓(x𝑖)

= 𝑦𝑖 − ̂𝑦𝑖
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Again, this all the mathematical work that we needed to do to assemble the GBM algorithm.
Along the way we have encountered quantities that are not surprising at this point. The
baseline log odds are the initial estimate and the working response is just the difference between
𝑦𝑖 and ̂𝑦𝑖.

# set lambda to be a small number
lambda <- 0.01

# initialize to the baseline log odds
yBar <- mean(nels0$wave4dropout)
fxHat <- rep(log(yBar/(1-yBar)), nrow(nels0))

# compute the working response
nels0$z <- nels0$wave4dropout - 1/(1+exp(-fxHat))

# fit a regression tree to the working response
tree1 <- rpart(z ~ ses,

data=nels0,
method = "anova",
control = rpart.control(xval=0, maxdepth = 1))

# see which tree got selected first
par(xpd=NA)
plot(tree1); text(tree1)

# update to get f_1(x)
fxHat <- fxHat + lambda * predict(tree1, newdata=nels0)

|ses>=−1.133

−0.01635 0.1473

Figure 12: First decision tree selected for LogitBoost

After a single iteration we can take a look at 𝑓1.
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i <- order(nels0$ses)
plot(nels0$ses[i], fxHat[i], type="l",

xlab="ses",
ylab=expression(f[1](x)))
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Figure 13: GBM estimate after 1 iteration of the LogitBoost algorithm

Now let’s let it run for 1,000 total iterations.

for(k in 2:1000)
{
nels0$z <- nels0$wave4dropout - 1/(1+exp(-fxHat))
tree1 <- rpart(z ~ ses,

data=nels0,
method = "anova",
control = rpart.control(xval=0, maxdepth = 1))

fxHat <- fxHat + lambda * predict(tree1, newdata=nels0)
}
i <- order(nels0$ses)
par(mfrow=c(1,2))
plot(nels0$ses[i], fxHat[i], type="l",

xlab="ses",
ylab=expression(f[1000](x)),
main="log odds scale")

plot(nels0$ses[i], 1/(1+exp(-fxHat[i])), type="l",
xlab="ses",
ylab=expression(P[1000](x)),
main="probability scale")
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Figure 14: Prediction model after 1,000 iterations of the LogitBoost algorithm

2.5 AdaBoost algorithm

Freund and Schapire (1997) proposed the first boosting algorithm, the adaptive boosting or
AdaBoost algorithm. Although the paper appeared in 1997, the idea was circulating around
for 1-2 years earlier. It got tremendous attention after Elkan (1997) tried a boosted naïve
Bayes classifier and won the Knowledge Discovery and Data Mining Cup in 1997, a prediction
contest in which his submission outperformed other extremely well-funded teams.

The computer scientists described the approach algorithmically at the time. That is, they
described the recipe for how to do it, but offered only some insight into why it should be
better than other existing methods at the time. Friedman, Hastie, and Tibshirani (2000)
revealed that the algorithm was a gradient descent style algorithm with a particular objective
function.

Consider the following representation of the misclassification error rate

𝐽(y, 𝑓) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(2𝑦𝑖 − 1 ≠ sign(𝑓(x𝑖)))

2𝑦𝑖 − 1 simply takes the {0, 1} outcomes and translates them to be {−1, 1}. Then all we care
about for predictions is the sign on the prediction function 𝑓(x). When 𝑓(x) > 0 then we
predict 𝑦 = 1 and when 𝑓(x) < 0 we predict 𝑦 = 0… or that 2𝑦 − 1 = −1. Another way to

29



represent a classification error instead of 2𝑦𝑖 − 1 ≠ sign(𝑓(x𝑖)) is that (2𝑦𝑖 − 1)(𝑓(x𝑖)) < 0.
That is, the prediction model and 2𝑦 − 1 disagree on signs, then there is a misclassification.

Schapire and Singer (1999) noted that there is a differentiable upper bound on the misclassi-
fication rate.

𝐽(y, 𝑓) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(2𝑦𝑖 − 1 ≠ sign(𝑓(x𝑖)))

≤ 1
𝑛

𝑛
∑
𝑖=1

exp(−(2𝑦𝑖 − 1)𝑓(x𝑖))

To see why this inequality holds, it is helpful to look at the next figure. Misclassification is
represented by the step function in the figure below. Note that the AdaBoost exponential loss
function is always larger than the misclassification indicator function. They only intersect at
(0,1). So the idea of the AdaBoost algorithm is that, since derivatives and optimization of the
misclassification loss function is awkward, use the exponential upper bound and minimize that
instead.

yF <- seq(-2,2, length.out=100)
plot(yF, exp(-yF), type="n", ylim=c(0,4),

xlab=expression((2*y-1)*f(x)),
ylab=expression(J(f)))

i <- exp(-yF)<4
lines(yF[i], exp(-yF)[i], lwd=3)
lines(yF, yF<0, lwd=3)
i <- log(1+exp(-yF)) + (1-log(2)) < 4
lines(yF[i], log(1+exp(-yF[i]))/(log(2)), col="red", lwd=3)
lines(yF, 4*(1-1/(1+exp(-yF)))^2, col="blue", lwd=3)

text(-1.16,3.53,"AdaBoost", adj=0)
text(-1.83,2.3,"Bernoulli",adj=0)
text(-2.0,3.2,"Squared error",adj=0)
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Figure 15: Bounds on the misclassification rate

It also turns out that the negative Bernoulli log-likelihood also is an upper bound on the
misclassification rate. You can show that

1 − 1
1 + 𝑒−𝑓(x) = 1

1 + 𝑒𝑓(x)

So we can write

−𝑦 log 1
1 + 𝑒−𝑓(x) − (1 − 𝑦) log (1 − 1

1 + 𝑒−𝑓(x) ) = − log 1
1 + 𝑒−(2𝑦−1)𝑓(x)

= log(1 + 𝑒−(2𝑦−1)𝑓(x))
And we can show that, with a little rescaling, this too can be an upperbound on misclassifica-
tion.

𝐽(y, 𝑓) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(2𝑦𝑖 − 1 ≠ sign(𝑓(x𝑖)))

≤ 1
𝑛

𝑛
∑
𝑖=1

1
log 2 log(1 + 𝑒−(2𝑦𝑖−1)𝑓(x𝑖))

This bound is shown with the red curve in the figure above.

Also squared error can be an upper bound on misclassification.

𝐽(y, 𝑓) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(2𝑦𝑖 − 1 ≠ sign(𝑓(x𝑖)))

≤ 1
𝑛

𝑛
∑
𝑖=1

4 (𝑦𝑖 − 1
1 + 𝑒−𝑓(x𝑖) )

2

≤ 1
𝑛

𝑛
∑
𝑖=1

4 (1 − 1
1 + 𝑒−(2𝑦𝑖−1)𝑓(x𝑖) )

2
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The figure shows the squared error bound in blue.

2.6 Gradient boosting as an additive model

In our previous experiments with boosting we just tried out the method with a single variable
and trees with single splits. I introduced it this way to keep it simpler and so that we could
easily visualize the result. I will continue to use only single split decision trees but will introduce
additional variables.

Because we are using only single split decision trees, each tree will be a function of only a
single variable. As a result, the prediction function will be of the form

𝑓(x) =𝛽0 + 𝛽1𝑇1(ses) + 𝛽2𝑇2(pctFreeLunch) + 𝛽3𝑇3(ses) + 𝛽4𝑇4(urbanicity)+
𝛽5𝑇5(ses) + 𝛽6𝑇6(ses) + 𝛽7𝑇7(pctFreeLunch) + 𝛽8𝑇8(urbanicity)
+ … + 𝛽1000𝑇1000(famIncome)

Once we are finished with our boosting iterations, we can reorder the terms like

𝑓(x) = 𝛽0+
𝛽1𝑇1(ses) + 𝛽3𝑇3(ses) + 𝛽5𝑇5(ses) + 𝛽6𝑇6(ses)+
𝛽2𝑇2(pctFreeLunch) + 𝛽7𝑇7(pctFreeLunch)+
𝛽4𝑇4(urbanicity) + 𝛽8𝑇8(urbanicity)+
… +
𝛽1000𝑇1000(famIncome)

= 𝛽0 + 𝑓1(ses) + 𝑓2(pctFreeLunch)+
𝑓3(urbanicity) + … + 𝑓14(famIncome)

This is known as an additive model. It is not a linear model in that each of the functions 𝑓𝑗(𝑥)
are not restricted to be linear, but each non-linear function gets added together to form the
final prediction function.

As before we will initialize 𝜆 to be our small step size or learning rate and 𝛽0 to be the baseline
log odds.

# set lambda to be a small number
lambda <- 0.05

# initialize to the baseline log odds
yBar <- mean(nels0$wave4dropout)
beta0 <- log(yBar/(1-yBar))
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Instead of having just one column contain the predictions, I will make a matrix with 14
columns to keep track of the predictions for each of the 14 student features that we will use
in the analysis.

fxHatM <- matrix(0, nrow=nrow(nels0), ncol=14)
colnames(fxHatM) <- c("typeSchool","urbanicity","region","pctMinor",

"pctFreeLunch","female","race","ses","parentEd",
"famSize","famStruct","parMarital","famIncome",
"langHome")

We will run the same boosting algorithm except now allowing 14 student features to be included
in the prediction model. Also, we will be tracking which variable gets split and updating only
that column of fxHatM.

for(k in 1:3000)
{
# compute current prediction function
fxHat <- beta0 + rowSums(fxHatM)
# compute working response
nels0$z <- nels0$wave4dropout - 1/(1+exp(-fxHat))

tree1 <- rpart(z~typeSchool+urbanicity+region+
pctMinor+pctFreeLunch+
female+race+ses+parentEd+famSize+famStruct+parMarital+
famIncome+langHome,

method="anova",
data=nels0,
control=rpart.control(cp=0.0, xval=0, maxdepth=1))

# which variable got split?
varSplit <- rownames(tree1$splits)[1]
# update only the component associated with the split variable
fxHatM[,varSplit] <- fxHatM[,varSplit] + lambda * predict(tree1,newdata=nels0)

}

Since we have all of the individual components separately, we can plot them out separately to
see what patterns the gradient boosted machine learning algorithm uncovered.

par(mfrow=c(5,2), mai=c(0.52,0.25,0.25,0.25))
j <- apply(fxHatM, 2, function(x) any(x!=0))
ylim <- range(fxHatM)

for(xj in names(j[j]))
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{
i <- order(nels0[,xj])
plot(nels0[i,xj], fxHatM[i,xj], type="l",

xlab=xj,
ylab=expression(f(x)),
main="",
ylim=ylim)

}
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Figure 16: Decomposition of functions predicting droput
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SES clearly has the largest impact on dropout prediction. The other factors, such as family
structure, race, and family size have modest effects on the predictions.

3 Using the Generalized Boosted Models (gbm3) package

I wrote the initial version of gbm in 1999 at the time when the use of boosting was really
taking off. Since then, numerous collaborators have added new features, new loss functions,
and made it run in parallel. The current version of gbm has been downloaded almost 3 million
times and about 25,000 times per month. Over 2,000 published scientific articles have used
gbm.

There are newer implementations worth evaluating. lightgbm was developed at Microsoft
Research (Ke et al. 2017). xgboost (extreme gradient boosting) started at the University of
Washington and now has the backing of Nvidia and Intel (Chen and Guestrin 2016). A few
benefits of these newer implementations include the use of GPUs and large distributed systems,
permitting sparse dataset representations, and availability from multiple environments (R,
Python, Julia, etc.).

You are welcome to try lightgbm and xgboost. We are going to use the gbm3. You will need
to install gbm3 from GitHub. You only need to install from GitHub when first using gbm3.

remotes::install_github("gbm-developers/gbm3",
build_vignettes = TRUE, force = TRUE)

Then load the gbm3 package any time you want to use it.

library(gbm3)

Let’s predict dropout from 14 of the student features in the NELS dataset. Although
I ignored them previously to keep the discussion simple, I have included the sampling
weights here, which is the correct approach for these data. Since the outcome is 0/1 we set
distribution=gbm_dist("Bernoulli").

We will run 3,000 iterations and set 𝜆 = 0.003 (shrinkage). The number of iterations and 𝜆
go together. Generally smaller values of 𝜆 result in better predictive performance. However,
models fit with smaller values of 𝜆 will require more iterations. Cutting 𝜆 by a factor of
2 generally requires doubling the number of iterations. I generally try to run about 3,000
iterations and set 𝜆 as small as I can but still get the best number of iterations to be right
around 3,000.

Friedman (2002) showed that fitting the trees to a randomly sampled half of the dataset at
each iteration doubles the computation speed and results in improved predictive performance.
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Setting bag_fraction=0.5 implements this. Some have experimented with randomly sampling
features to consider at each iteration as well, but we will consider all of them by setting
num_features = 14.

gbmt() allows you to give it both a training and test set, but here we are going to ask gbmt()
to learn from the entire NELS dataset by setting num_train = nrow(nels0).

We are going to allow up to three-way interactions by setting interaction_depth = 3. This
limits the number of splits that any of the decision trees can have to 3. So, every new tree
added to the prediction function involves at most 3 distinct student features.

Lastly, we will do 10-fold cross-validation and use up to 12 cores to fit the model.

set.seed(20240316)
gbm1 <- gbmt(wave4dropout~typeSchool+urbanicity+region+

pctMinor+pctFreeLunch+female+race+
ses+parentEd+famSize+famStruct+parMarital+
famIncome+langHome,

data=nels0,
weights=nels0$F4QWT,
distribution=gbm_dist("Bernoulli"),
train_params = training_params(

num_trees = 3000, # number of trees
shrinkage = 0.003, # lambda
bag_fraction = 0.5, # fit trees to random subsample
num_train = nrow(nels0),
min_num_obs_in_node = 10,
interaction_depth = 3, # number of splits
num_features = 14), # number of features

cv_folds=10,
par_details=gbmParallel(num_threads=12),
is_verbose = FALSE) # don't print progress

Once complete, we can check in on the 10-fold cross-validation to determine the optimal
number of iterations.

bestNTree <- gbmt_performance(gbm1, method="cv")
plot(bestNTree)
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Figure 17: Training and cross-validated performance by number of iterations

The figure shows that the optimal number of iterations occurs after 2014 iterations. The green
line shows the cross-validated negative Bernoulli log-likelihood, while the black line shows
the negative Bernoulli likelihood on the training dataset. The performance will always look
better and better on the training dataset with each iteration, but this is because the model is
very flexible and can start fitting unusual random quirks of the training dataset. Because the
green curve is quite flat, the specific choice for the optimal number of iterations is not very
sensitive. Choosing any value between 1500 and 3000 in this example would still result in a
very reasonable model fit.

To use the model to predict on a dataset, there is a predict() method for the GBM object.

pHat <- predict(gbm1, newdata=nels0, n.trees = bestNTree, type = "response")

It may take some effort to determine a good choice for shrinkage. Remember that these
models tend to work best when shrinkage (that is, 𝜆) is small. But setting it too small means
that the model will learn very slowly and require a lot more iterations (trees) to get to the
optimal number of iterations. You might run 3,000 iterations and the performance plot still
shows that the cross-validated error is still declining. You have two choices 1) increase the
number of iterations, which will require more computation time, or 2) increase shrinkage so
that the model learns a little faster. In general, small datasets will require small values of
shrinkage (like 0.001) and larger datasets can get good performance with larger values of
shrinkage like 0.1. Let’s try running this with a shrinkage that is too small.

set.seed(20240316)
gbm2 <- gbmt(wave4dropout~typeSchool+urbanicity+region+

pctMinor+pctFreeLunch+female+race+
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ses+parentEd+famSize+famStruct+parMarital+
famIncome+langHome,

data=nels0,
weights=nels0$F4QWT,
distribution=gbm_dist("Bernoulli"),
train_params = training_params(

num_trees = 3000, # number of trees
shrinkage = 0.0003, # lambda
bag_fraction = 0.5, # fit trees to random subsample
num_train = nrow(nels0),
min_num_obs_in_node = 10,
interaction_depth = 3, # number of splits
num_features = 14), # number of features

cv_folds=10,
par_details=gbmParallel(num_threads=12),
is_verbose = FALSE) # don't print progress

gbmt_performance(gbm2,method="cv") |> plot()
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Figure 18: Training and cross-validated performance by number of iterations with 𝜆 set too
small

Here you see that the GBM model with the lowest cross-validated error requires 3,000 iterations,
but that the loss function is still declining at 3,000 iterations. Clearly more iterations are
needed to reach that minimum… or we can increase shrinkage so that gbmt() takes larger
learning steps at each iteration so it learns a little faster.

What happens if we err in the other direction and have gbmt() try to learn quickly with few
iterations. Here I have set 𝜆 = 0.03.
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set.seed(20240316)
gbm3 <- gbmt(wave4dropout~typeSchool+urbanicity+region+

pctMinor+pctFreeLunch+female+race+
ses+parentEd+famSize+famStruct+parMarital+
famIncome+langHome,

data=nels0,
weights=nels0$F4QWT,
distribution=gbm_dist("Bernoulli"),
train_params = training_params(

num_trees = 3000, # number of trees
shrinkage = 0.03, # lambda
bag_fraction = 0.5, # fit trees to random subsample
num_train = nrow(nels0),
min_num_obs_in_node = 10,
interaction_depth = 3, # number of splits
num_features = 14), # number of features

cv_folds=10,
par_details=gbmParallel(num_threads=12),
is_verbose = FALSE) # don't print progress

gbmt_performance(gbm3,method="cv") |> plot()
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Figure 19: Training and cross-validated performance by number of iterations with 𝜆 set too
large

It does indeed reach a minimum quickly with many fewer iterations than the last two models
we fit. However, it does not perform nearly as well. The best model we fit stored in gbm1
had a 𝜆 = 0.003 and had an average negative Bernoulli log-likelihood of 0.3927299. The best
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performance we could get out of the fast learning model with 𝜆 = 0.03 is 0.3911301. Therefore,
when fitting gradient boosted models, set shrinkage to be as small as possible while still being
able to fit the model in a reasonable amount of computer time.

3.1 Relative influence

Friedman (2001) also developed an extension of a variable’s “relative influence”. If our loss
function is squared error, then every split included in a decision tree is reducing that squared
error. We can look across all the splits on SES, for example, in every tree and total up all
the associated reductions in squared error. This would give us an idea about how much of the
reduction in squared error is attributable to splits on SES. We would do the same process for
all of the features used in the model.

The relative influence of a feature 𝑥𝑗 is

𝑅𝐼𝑗 = ∑
splits on 𝑥𝑗

𝐼2
𝑡

where 𝐼2
𝑡 is the empirical improvement in tree 𝑡 by splitting on 𝑥𝑗 at that point. gbmt()

normalizes the relative influence so that they sum to 100 so that they represent the fraction
of predictive performance that is attributable to each feature.

Here we see that SES is the primary predictor of dropout with family features (structure,
income, parent’s marital status, and size) mattering to a more modest degree.

par(mar=0.1+c(5,7,4,2))
relInf <- summary(gbm1, num_trees=bestNTree)

typeSchool
female

parentEd
pctFreeLunch

region
famSize

famStruct

Relative influence

0 10 20 30 40

Figure 20: Relative influence of student features on dropout risk
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We can also show the table with the same information that is in the figure.

relInf

var rel_inf
ses ses 42.7479024
famStruct famStruct 11.7912548
famIncome famIncome 8.7639783
famSize famSize 6.4373210
parMarital parMarital 6.3303950
region region 5.6741448
race race 5.1268490
pctFreeLunch pctFreeLunch 4.3914581
pctMinor pctMinor 3.2686709
parentEd parentEd 2.6661309
urbanicity urbanicity 1.7141224
female female 0.7765825
langHome langHome 0.3111900
typeSchool typeSchool 0.0000000

Since we fit this model to minimize the negative Bernoulli log-likelihood, these numbers approx-
imate the percentage reduction in that loss function attributable to each student feature.

3.2 Partial dependence plots

The relative influence describes which features are the most important in the prediction func-
tion, but does not describe their shape or even whether the relationship is positive or negative.
The partial dependence plot offers some insight into these relationships.

Let’s say we are interested in one specific feature 𝑥𝑗. We will call all the other features x−𝑗.
GBM then produces a prediction function ̂𝑓(𝑥𝑗, x−𝑗). Partial dependence fixes a value for 𝑥𝑗
and then averages out over all the combinations of x−𝑗 observed in the dataset.

̂𝑓𝑗(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

̂𝑓(𝑥𝑗 = 𝑥, x−𝑗 = x𝑖,−𝑗)

If we limit the trees to have at most a single split, then we get an additive model like we saw
before and the partial dependence plots can be computed by just predicting using the decision
trees that split on 𝑥𝑗. In our NELS example we allowed for up to three-way interactions (three
splits) so that in most trees 𝑥𝑗 will be interacted with other student features.
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gbm3 has a plot() method that will show partial dependence plots. See ?plot.GBMFit for
details about the fitting and various options. Here are the partial dependence plots for the
top nine most important predictors of dropout.

par(mfrow=c(3,3), mai=c(0.7,0.6,0.1,0.1))
for(xj in relInf$var[1:9])
plot(gbm1, var_index = xj, num_trees = bestNTree)
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Figure 21: Partial dependence of student features on dropout risk

Again, SES shows strong threshold and saturation effects. You can extract the specific numbers
used in the plots to get more details.

plot(gbm1, var_index = "famStruct", return_grid = TRUE, num_trees = bestNTree)

famStruct y
1 Dad -3.057205
2 Dad & Fem Guard -2.856864
3 Mom -3.275981
4 Mom & Dad -3.369352
5 Mom & Male Guard -3.147131
6 Other -3.146190
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The highs and lows in the plots seem to be striking, but note that the vertical scale is on
the log odds scale. For example, the range of values for pctMinor is from -3.38 to -3.32, a
difference of 0.06. This implies that the odds of dropout for the lowest category is 6% smaller
(𝑒−0.06 −1 = −0.058) than the dropout rate for the highest category. To avoid overinterpreting
the changes in the vertical scale, the following plot makes the vertical scales identical in all
nine figures.

par(mfrow=c(3,3), mai=c(0.7,0.6,0.1,0.1))
ylim <- plot(gbm1, var_index="ses", return_grid = TRUE,

num_trees = bestNTree)$y |>
range()

for(xj in relInf$var[1:9])
plot(gbm1, var_index = xj, ylim=ylim, num_trees = bestNTree)
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Figure 22: Partial dependence of student features on dropout risk, common vertical scale

plot() also allows the user to examine two-way relationships. The same partial dependence
idea holds, but just fixes two feature values at a time.

̂𝑓𝑗1𝑗2
(𝑥1, 𝑥2) = 1

𝑛
𝑛

∑
𝑖=1

̂𝑓(𝑥𝑗1
= 𝑥1, 𝑥𝑗2

= 𝑥2, x−𝑗1,−𝑗2
= x𝑖,(−𝑗1,−𝑗2))

We can examine whether how the relationship between SES and dropouts varies by family
structure.
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plot(gbm1, var_index = c("ses","famStruct"), num_trees = bestNTree)
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Figure 23: Partial dependence of the SES and family structure interaction on dropout risk

gbm can also compute Friedman-Popescu’s 𝐻-statistic to measure the size of an interaction
effect for these complex non-linear models (Friedman and Popescu 2008).

𝐻2
𝑗𝑘 =

∑𝑛
𝑖=1 ( ̂𝑓𝑗𝑘(𝑥𝑖𝑗, 𝑥𝑖𝑘) − ̂𝑓𝑗(𝑥𝑗) − ̂𝑓𝑘(𝑥𝑘))

2

∑𝑛
𝑖=1

̂𝑓2
𝑗𝑘(𝑥𝑖𝑗, 𝑥𝑖𝑘)

This captures the fraction of variance of ̂𝑓𝑗𝑘(𝑥𝑖𝑗, 𝑥𝑖𝑘) that is not captured by ̂𝑓𝑗(𝑥𝑗) + ̂𝑓𝑘(𝑥𝑘).
Values near 0 mean no/little interaction effect. Note that interact() returns the value 𝐻
and not 𝐻2.

gbm1$variables$var_names

[1] "typeSchool" "urbanicity" "region" "pctMinor" "pctFreeLunch"
[6] "female" "race" "ses" "parentEd" "famSize"
[11] "famStruct" "parMarital" "famIncome" "langHome"

interact(gbm1, data=nels0, var_indices = c(8,11),
num_trees = bestNTree)

[1] 0.07980591
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4 Summary

We have covered key concepts for “sparse” machine learning, focusing on 𝐿1 regularization
and boosting algorithms.

1. 𝐿1 Regularization and Sparse Models:

• 𝐿1 regularization penalizes the absolute size of coefficients to promote the selection
of only the most important features

• LASSO eliminates irrelevant features while preserving predictive accuracy
• The coefficient paths appear to be linear segments the weight on the 𝐿1 penalty (𝜆)

changes

2. Forward Stagewise Selection:

• We can incrementally build models by iteratively adding features that most reduce
the prediction error

• The coefficient path was exactly the same as the LASSO, but with a much more
computational efficient approach. This equivalency is best exemplified with the
Least Angle Regression (LARS) algorithm

3. Boosting Algorithms:

• Gradient boosting is a flexible method using regression trees as basis functions and
using a forward stagewise approach to get 𝐿1-like sparsity

• LogitBoost uses the Bernoulli log-likelihood for classification tasks
• AdaBoost was the original boosting algorithm that minimized an exponential loss

function acting as an upper bound on misclassification rates

4. Generalized Boosted Models (gbm3):

• Used the gbm3 package to test out boosting on real datasets
• Use cross-validation to select the shrinkage and the number of iterations
• Measured the relative influence of individual features
• Examine partial dependence plots to show relationships between features and the

outcome

Since about 2005, the use of 𝐿1 penalties has become a widespread method for fitting machine
learning data involving a large collection of candidate predictors. Boosting is one of the best off-
the-shelf prediction models, requiring little to no tuning to get strong predictive performance.
More recent implementations are worth exploring such as xgboost.

Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
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Machinery. https://doi.org/10.1145/2939672.2939785.
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