
L6 Introduction to Linear Algebra
Greg Ridgeway

2025-03-31

Table of contents

1 Linear models 2

2 Matrix multiplication 2
2.1 Exercises . 3
2.2 Linear model with matrix notation . 5

3 Matrix derivatives 7

4 Matrix inverse 9
4.1 Exercise . 9
4.2 Example . 10

5 Regularization and ridge regression 11
5.1 Demonstration of ridge regression . 12

6 Multivariate Taylor series and gradient descent 16
6.1 Example . 17
6.2 Logistic regression log likelihood . 17
6.3 Newton-Raphson optimization . 19
6.4 Logistic regression gradient and Hessian . 20

7 Iteratively Reweighted Least Squares (IRLS) 21
7.1 IRLS R example . 21

8 Summary 27

1

1 Linear models

Many models involve linear combinations of terms. For example, we already saw that the
naïve Bayes classifier is the sum of weights of evidence. More generally, a naïve Bayes classifier
has the form of a linear combination like

𝑓(x) = 𝛽0 + ℎ1(x) + ℎ2(x) + … + ℎ𝑑(x)

Even decision trees can be written in this form.

𝑓(x) = 𝛽1𝐼(age < 16)𝐼(SES > 2) + 𝛽2𝐼(age < 16)𝐼(SES ≤ 2) + 𝛽3𝐼(age ≥ 16)

The classic linear model is

𝑓(x) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑑𝑥𝑑

This is probably the most widely used model ever.

It gets tiresome to write this equation out each time. This is where linear algebra becomes
handy. Let

𝛽 =
⎡
⎢⎢
⎣

𝛽0
𝛽1
⋮

𝛽𝑑

⎤
⎥⎥
⎦

x =
⎡
⎢⎢
⎣

1
𝑥1
⋮

𝑥𝑑

⎤
⎥⎥
⎦

These are column vectors, stacking all the 𝛽𝑗s on top of each other to form 𝛽 and stacking all
the features of a single observation, the 𝑥𝑗s, to form x. By default, all vectors are assumed to
be column vectors (1 column, multiple rows). Both 𝛽 and x here are (𝑑 + 1) × 1 matrices.

The transpose operator flips rows and columns.

𝛽′ = 𝛽𝑇 = [𝛽0 𝛽1 ⋯ 𝛽𝑑]

2 Matrix multiplication

Two matrices, A and B, can be multiplied if the number of columns in A equals the number
of rows in B. Matrix multiplication proceeds by summing the products of each row of A with
each column in B. We will work across the rows of A and down the columns of B.

2

⎡⎢
⎣

1 2
3 4
5 6

⎤⎥
⎦

[−9 −8
−7 −6] = ⎡⎢

⎣

1 × −9 + 2 × −7 1 × −8 + 2 × −6
3 × −9 + 4 × −7 3 × −8 + 4 × −6
5 × −9 + 6 × −7 5 × −8 + 6 × −6

⎤⎥
⎦

= ⎡⎢
⎣

−23 −20
−55 −48
−87 −76

⎤⎥
⎦

We always use computers for matrix operations. In R, the %*% operator means matrix multi-
plication.

A <- rbind(c(1,2),
c(3,4),
c(5,6))

B <- rbind(c(-9,-8),
c(-7,-6))

A %*% B

[,1] [,2]
[1,] -23 -20
[2,] -55 -48
[3,] -87 -76

2.1 Exercises

Compute AB for the following. First try by hand, then check your answers using R.

1.
A = [−1 1

1 −1] , B = [2 0
1 6]

2.
A = [2 0

1 6] , B = [−1 1
1 −1]

3.

A = ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, B = ⎡⎢
⎣

3 1
2 1
1 3

⎤⎥
⎦

3

4.

A = [1 2 3] , B = ⎡⎢
⎣

1
2
3
⎤⎥
⎦

Here is R code for creating the matrices and multiplying then.

A <- rbind(c(-1,1),c(1,-1))
B <- rbind(c(2,0),c(1,6))
A %*% B

[,1] [,2]
[1,] -1 6
[2,] 1 -6

A <- rbind(c(2,0),c(1,6))
B <- rbind(c(-1,1),c(1,-1))
A %*% B

[,1] [,2]
[1,] -2 2
[2,] 5 -5

A <- diag(1,3) # diagonal, or
A <- diag(c(1,1,1))
B <- cbind(c(3,2,1),c(1,1,3))
A %*% B

[,1] [,2]
[1,] 3 1
[2,] 2 1
[3,] 1 3

A <- matrix(1:3, ncol=3)
B <- t(A)
A %*% B

[,1]
[1,] 14

4

Some things to note from these exercises:

1. Matrix multiplication does not commute, AB ≠ BA

2. The matrix with 1s on the diagonal and 0s everywhere else is the identity matrix, the
matrix equivalent of multiplying by 1. Often denoted as I

3. If you multiply a column vector by its transpose, it is the same as computing the sum
of the squares of the elements, a′a = ∑ 𝑎2

𝑖 .

2.2 Linear model with matrix notation

We can now rewrite the long linear combination of features compactly.

𝛽′ = [𝛽0 𝛽1 ⋯ 𝛽𝑑]
x′ = [1 𝑥1 ⋯ 𝑥𝑑]

𝛽′x = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … + 𝛽𝑑𝑥𝑑

We are going to work through how to select 𝛽 to minimize squared error,

𝐽(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2

where x𝑖 is a column vector containing all the features for observation 𝑖. Instead of having 𝑛
separate vectors x𝑖, stack them all into one matrix, X.

X =
⎡
⎢
⎢
⎢
⎣

1 𝑥11 𝑥12 ⋯ 𝑥1𝑑
1 𝑥21 𝑥22 ⋯ 𝑥2𝑑
1 𝑥31 𝑥32 ⋯ 𝑥3𝑑

⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑑

⎤
⎥
⎥
⎥
⎦

In this way X𝛽 is

X𝛽 =
⎡
⎢
⎢
⎢
⎣

1 𝑥11 𝑥12 ⋯ 𝑥1𝑑
1 𝑥21 𝑥22 ⋯ 𝑥2𝑑
1 𝑥31 𝑥32 ⋯ 𝑥3𝑑

⋮
1 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑑

⎤
⎥
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝛽0
𝛽1
⋮

𝛽𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝛽′x1
𝛽′x2

⋮
𝛽′x𝑛

⎤
⎥⎥
⎦

So X𝛽 is a compact way of writing all of the predicted values for every observation in the
dataset.

We can let

y =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥
⎦

5

Then the differences between the actual and predicted values are

y − X𝛽 =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝛽′x1
𝛽′x2

⋮
𝛽′x𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑦1 − 𝛽′x1
𝑦2 − 𝛽′x2

⋮
𝑦𝑛 − 𝛽′x𝑛

⎤
⎥⎥
⎦

Remember in one of the exercises above you saw that

[1 2 3] ⎡⎢
⎣

1
2
3
⎤⎥
⎦

= 12 + 22 + 32

More generally

a′a =
𝑛

∑
𝑖=1

𝑎2
𝑖

That means we can rewrite the sum of squared error as

𝐽(𝛽) = (y − X𝛽)′(y − X𝛽)

To multiply this out we need some additional properties of the matrix transpose.

1. (a − b)′ = a′ − b′

2. (AB)′ = B′A′

Using these properties we can write

𝐽(𝛽) = (y − X𝛽)′(y − X𝛽)
= (y′ − (X𝛽)′)(y − X𝛽)
= (y′ − 𝛽′X′)(y − X𝛽)
= y′(y − X𝛽) − 𝛽′X′(y − X𝛽)
= y′y − y′X𝛽 − 𝛽′X′y + 𝛽′X′X𝛽
= y′y − y′X𝛽 − (𝛽′X′y)′ + 𝛽′X′X𝛽
= y′y − y′X𝛽 − y′X𝛽 + 𝛽′X′X𝛽
= y′y − 2y′X𝛽 + 𝛽′X′X𝛽

Now we would like to find the value 𝛽′ = [𝛽0 𝛽1 ⋯ 𝛽𝑑] that minimizes 𝐽(𝛽). We need to
solve 𝐽 ′(𝛽) = 0.

6

3 Matrix derivatives

𝜕
𝜕xA = 0

𝜕
𝜕xAx = A′

𝜕
𝜕xx′A = A

𝜕
𝜕xx′Ax = (A + A′)x
𝜕

𝜕xx′Ax = 2Ax, if A is symmetric

Example 1. Let’s walk through what it means for 𝜕
𝜕xAx = A′. Let A = [1 2 3] and we

will set x = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

𝜕
𝜕xAx = 𝜕

𝜕x [1 2 3] ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= 𝜕
𝜕x𝑥1 + 2𝑥2 + 3𝑥3

= ⎡
⎢
⎣

𝜕
𝜕𝑥1

𝑥1 + 2𝑥2 + 3𝑥3
𝜕

𝜕𝑥2
𝑥1 + 2𝑥2 + 3𝑥3

𝜕
𝜕𝑥3

𝑥1 + 2𝑥2 + 3𝑥3

⎤
⎥
⎦

= ⎡⎢
⎣

1
2
3
⎤⎥
⎦

= A′

7

Example 2. Let’s work through an example of 𝜕
𝜕xx′Ax to see that this works.

𝜕
𝜕x [𝑥1 𝑥2 𝑥3] ⎡⎢

⎣

3 1 0
2 1 3
1 3 1

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= 𝜕
𝜕x [𝑥1 𝑥2 𝑥3] ⎡⎢

⎣

3𝑥1 + 𝑥2
2𝑥1 + 𝑥2 + 3𝑥3
𝑥1 + 3𝑥2 + 𝑥3

⎤⎥
⎦

= 𝜕
𝜕x [3𝑥2

1 + 𝑥1𝑥2 + 2𝑥1𝑥2 + 𝑥2
2 + 3𝑥2𝑥3 + 𝑥1𝑥3 + 3𝑥2𝑥3 + 𝑥2

3]

= ⎡⎢
⎣

6𝑥1 + 𝑥2 + 2𝑥2 + 𝑥3
𝑥1 + 2𝑥1 + 2𝑥2 + 3𝑥3 + 3𝑥3

3𝑥2 + 𝑥1 + 3𝑥2 + 2𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

6𝑥1 + 3𝑥2 + 𝑥3
3𝑥1 + 2𝑥2 + 6𝑥3
𝑥1 + 6𝑥2 + 2𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

6 3 1
3 2 6
1 6 2

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎛⎜
⎝

⎡⎢
⎣

3 1 0
2 1 3
1 3 1

⎤⎥
⎦

+ ⎡⎢
⎣

3 2 1
1 1 3
0 3 1

⎤⎥
⎦

⎞⎟
⎠

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= (A + A′)x

We can now apply these properties to 𝐽(𝛽).

𝜕
𝜕𝛽 𝐽(𝛽) = 𝜕

𝜕𝛽 y′y − 2y′X𝛽 + 𝛽′X′X𝛽

= −(2y′X)′ + (X′X + (X′X)′)𝛽
= −2X′y + (X′X + X′X)𝛽
= −2X′y + 2X′X𝛽

Now find ̂𝛽 so that 𝐽(̂𝛽) = 0.

−2X′y + 2X′X ̂𝛽 = 0
X′X ̂𝛽 = X′y

Now it seems like we need to “divide” both sides by X′X.

8

4 Matrix inverse

The inverse of a matrix, A, is the matrix that when multiplied with A yields the identity
matrix 𝐼 . That is,

𝐴−1𝐴 = 𝐼

4.1 Exercise

If 𝐴 = [2 0
1 6], show that A−1 = [

1
2 0

− 1
12

1
6
] by multiplying these two together.

First try to do this by hand. Then you can use R to confirm. R computes the inverse of a
matrix using solve().

A <- rbind(c(2,0), c(1,6))
solve(A)

[,1] [,2]
[1,] 0.50000000 0.0000000
[2,] -0.08333333 0.1666667

confirm it's an inverse
A %*% solve(A)

[,1] [,2]
[1,] 1 0
[2,] 0 1

While we know that division by 0 is a problem, for matrices there are many situations for which
there is no inverse. Specifically, if one row (or column) can be written as a linear combination
of other rows (or columns), then there is no inverse. There are some generalizations of inverses
for these cases.

Now we can finish solving
X′X ̂𝛽 = X′y

(X′X)−1X′X ̂𝛽 = (X′X)−1X′y
̂𝛽 = (X′X)−1X′y

This is the classic solution to the least squares estimation problem. Some variants of this
solution were known to the ancient Chinese and in the Arab world. A clear description of
the problem and solution arrived with Legendre in 1805, but the matrix representation we use
today probably did not appear until the early 1900s. In the last 100 years, this equation and
its variations have driven a lot of scientific efforts.

9

4.2 Example

Let’s use the prediction of age at death from the aspartic acid ratio example to test out our
estimator for ̂𝛽. First, let’s use lm() to see what R’s built in regression function produces.

dAge <- data.frame(ratio=c(0.040,0.070,0.070,0.075,0.080,0.085,0.105,0.110,0.115,
0.130,0.140,0.150,0.160,0.165,0.170),

age=c(0,2,16,10,18,19,16,21,21,25,26,28,34,39,40))
lm(age~ratio, data=dAge)

Call:
lm(formula = age ~ ratio, data = dAge)

Coefficients:
(Intercept) ratio

-9.378 273.680

Now let’s assemble our design matrix X from our dataset. We need to cbind() a column of
1s with the column containing the ratio data.

X <- cbind(1, dAge$ratio)
X

[,1] [,2]
[1,] 1 0.040
[2,] 1 0.070
[3,] 1 0.070
[4,] 1 0.075
[5,] 1 0.080
[6,] 1 0.085
[7,] 1 0.105
[8,] 1 0.110
[9,] 1 0.115
[10,] 1 0.130
[11,] 1 0.140
[12,] 1 0.150
[13,] 1 0.160
[14,] 1 0.165
[15,] 1 0.170

10

Then let’s set y to be our outcome vector

y <- dAge$age
y

[1] 0 2 16 10 18 19 16 21 21 25 26 28 34 39 40

Finally, let’s use R to compute (X′X)−1X′y. Remember that t() is for matrix transpose and
solve() computes the matrix inverse.

compute (X'X)^-1X'y
betaHat <- solve(t(X) %*% X) %*% t(X) %*% y
betaHat

[,1]
[1,] -9.378437
[2,] 273.679616

Excellent! It produces the same estimate for ̂𝛽 as the lm() function.

Want to go down the rabbit hole and learn about all the gory details about how R fits ordinary
least squares? Visit this deep dive.

5 Regularization and ridge regression

We started with a very general functional form for the predictive model

𝑓(x) = 𝛽0 + ℎ1(x) + ℎ2(x) + … + ℎ𝑑(x)

Even if x is univariate, we can let the ℎ𝑗(𝑥) be more complex functions of 𝑥, polynomials, for
example.

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑑𝑥𝑑

If we let 𝑑 get too large relative to the number of observations, then eventually there are
multiple polynomials that can completely connect the dots. The predictive model can also be
wildly fluctuating. Regularization is a key strategy to prevent this.

The simplest regularization is simply to limit the size of 𝑑. Regularization basically limits the
capacity of the model to fit complex shapes. At the extreme end, limiting 𝑑 = 1 results in the
familiar linear model. However, what if there really needs to be an 𝑥4 term but an 𝑥2 term is
less important.

11

https://madrury.github.io/jekyll/update/statistics/2016/07/20/lm-in-R.html

Ridge regression proposes changing the objective function to be

𝐽(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2 + 𝜆
𝑑

∑
𝑗=1

𝛽2
𝑗

This says that we should evaluate 𝛽 by how small it makes the sum of squared error, but
penalize the model if doing so requires very large values for 𝛽. The penalty is sometimes called
a “ridge” penalty or an 𝐿2 penalty. If we set 𝜆 to be a very large number, then this 𝐽 will
be very large if there are any non-zero 𝛽𝑗. There is always a 𝜆 large enough to make exist a
unique 𝛽 that minimizes 𝐽 .

Let us use our linear algebra skills to find a solution for the optimal 𝛽 for a fixed value of 𝜆.

𝜕
𝜕𝛽 𝐽(𝛽) = 𝜕

𝜕𝛽 (
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽′x𝑖)2 + 𝜆
𝑑

∑
𝑗=1

𝛽2
𝑗)

= 𝜕
𝜕𝛽 (y′y − 2y′X𝛽 + 𝛽′X′X𝛽 + 𝜆𝛽′𝛽)

= 𝜕
𝜕𝛽 (y′y − 2y′X𝛽 + 𝛽′X′X𝛽 + 𝜆𝛽′I𝛽)

= 𝜕
𝜕𝛽 (y′y − 2y′X𝛽 + 𝛽′(X′X + 𝜆I)𝛽)

= −2X′y + 2(X′X + 𝜆I)𝛽
̂𝛽ridge = (X′X + 𝜆I)−1X′y

The squared penalty on the 𝛽𝑗s has the effect of adding 𝜆 to the diagonal of the X′X matrix
(this is where the term ridge regression comes from). Even if X′X does not have an inverse,
there is some value of 𝜆 that will make X′X + 𝜆I invertible.

Regularization plays a major role in machine learning. It will take different forms depending
on the machine learning method. For decision trees we controlled the number of terminal
nodes. For linear models we can select the degree of the polynomial or set a ridge penalty to
shrink the capacity of the method to capture complex patterns.

5.1 Demonstration of ridge regression

Here let’s simulate some data with a little bit of curvature in the relationship between 𝑥 and
𝑦.

set.seed(20240225)
x <- seq(0,1,length.out=40)
y <- sin(6*x) + rnorm(length(x),0,0.7)

12

Let’s use least squares to fit a 10-degree polynomial to this pattern. I also threw in a square
root term too. This means that we will estimate 12 coefficients to fit to these 40 observations.
The function I() in the model.matrix() call below is an “inhibitor” function in R. It prevents
R from interpreting formula terms in any other way than just basic math operations. This is
necessary because ^ has a special meaning in R formulas.

X <- model.matrix(~x+I(x^2)+I(x^3)+I(x^4)+I(x^5)+I(x^6)+I(x^7)+I(x^8)+I(x^9)+
I(x^10)+sqrt(x),

data=data.frame(x))

betaHat <- solve(t(X) %*% X) %*% t(X) %*% y
yHat <- X %*% betaHat
plot(x,y)
lines(x, yHat, col="#E69F00", lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

y

Figure 1: Polynomial model fit using OLS without any coefficient penalty

The resulting fit is not bad, but there is a weird bend at the far right. Also weird is the
magnitude of some of the coefficients, with some exceeding 1,000,000.

betaHat

[,1]
(Intercept) -4.284778e-02
x 6.222010e+01
I(x^2) -1.104704e+03
I(x^3) 1.377847e+04

13

I(x^4) -9.347079e+04
I(x^5) 3.650949e+05
I(x^6) -8.647856e+05
I(x^7) 1.263112e+06
I(x^8) -1.111730e+06
I(x^9) 5.405930e+05
I(x^10) -1.115453e+05
sqrt(x) -5.879676e+00

Let’s try a little ridge regression. I’ll plot the originally estimated curve in orange, in teal
green will be a curve with a tiny 𝜆 of 0.0001, blue will have a 𝜆 of 0.05, and in black will be a
curve with 𝜆 set very large at 1000. Note that I have zeroed out the squared penalty on 𝛽0 so
that the squared penalty only applies to the coefficients on terms with 𝑥.

plot(x,y)

the identity matrix... but with a 0 in the top left to avoid a
penalty on beta0
matI <- diag(c(0,rep(1,ncol(X)-1)))
lambda <- 0
betaHat <- solve(t(X) %*% X + lambda*matI) %*% t(X) %*% y
yHat <- X %*% betaHat
lines(x, yHat, col="#E69F00", lwd=3)

lambda <- 0.0001
betaHat <- solve(t(X) %*% X + lambda*matI) %*% t(X) %*% y
yHat <- X %*% betaHat
lines(x, yHat, col="#009E73", lwd=3)

lambda <- 0.05
betaHat <- solve(t(X) %*% X + lambda*matI) %*% t(X) %*% y
yHat <- X %*% betaHat
lines(x, yHat, col="#0072B2", lwd=3)

lambda <- 1000
betaHat <- solve(t(X) %*% X + lambda*matI) %*% t(X) %*% y
yHat <- X %*% betaHat
lines(x, yHat, col="black", lwd=3)

legend(0.7, 2.2,
legend = c(bquote(lambda == 0),

bquote(lambda == .(sprintf("%.4f", 0.0001))),

14

bquote(lambda == 0.05),
bquote(lambda == 1000)),

col=c("#E69F00","#009E73","#0072B2","black"),
lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

y

λ = 0
λ = 0.0001
λ = 0.05
λ = 1000

Figure 2: Polynomial model fits with increasing ridge penalty

As the ridge penalty increases we get a smoother fit, but too much of a penalty will result in
a flat, horizontal line near 𝑦 = 0.

We can trace out what happens to the coefficients as we increase 𝜆. The following plot follows
the paths of the 𝛽s as I change 𝜆 from 0.0001 to 0.1. I’ve run the generation of the 𝜆s on the
square root scale so that we get more 𝜆s near 0.0001 and fewer near 0.1.

lambda <- seq(sqrt(0.0001),sqrt(0.1), length=30); lambda <- lambda^2

betas <- matrix(NA, nrow=length(betaHat), ncol=length(lambda))

for(i in 1:length(lambda))
{
betas[,i] <- solve(t(X) %*% X + lambda[i]*matI) %*% t(X) %*% y

}
plot(lambda,lambda,

ylim=range(betas),
ylab=expression(beta),
xlab=expression(lambda),
type="n")

15

color_palette <- viridis::cividis(11)
for(i in 1:nrow(betas))
{
lines(lambda, betas[i,],

col=color_palette[i],
lwd=2)

}

0.00 0.02 0.04 0.06 0.08 0.10

−
15

−
5

0
5

10

λ

β

Figure 3: Coefficient paths with increasing ridge penalty

In general, you can see that the coefficients are getting squeezed closer to 0 as 𝜆 increases.
Eventually with a large enough value for 𝜆, they will all get squeezed to 0. In this example,
just a modest amount of penalizing the coefficients results in a smoother, more stable fit to
the data.

6 Multivariate Taylor series and gradient descent

The sum of squared error is a quadratic function of 𝛽. That made it easy to produce a simple
formula for ̂𝛽. Most functionals, 𝐽 , do not have such a simple form.

In univariate calculus you learned about Taylor series.

𝐽(𝑥) = 𝐽(𝑥0) + 𝐽 ′(𝑥0)(𝑥 − 𝑥0) + 1
2𝐽″(𝑥0)(𝑥 − 𝑥0)2 + …

We are going to ignore the … at the end and assume that our 𝐽 can be well approximated by
a quadratic. If we want to optimize this then we can compute 𝑑𝐽

𝑑𝑥 = 0, using our quadratic

16

approximation.

𝑑
𝑑𝑥𝐽(𝑥) = 𝐽 ′(𝑥0) + 𝐽″(𝑥0)(𝑥 − 𝑥0)

̂𝑥 ← 𝑥0 − 𝐽 ′(𝑥0)
𝐽″(𝑥0)

This is “Newton’s method.”

6.1 Example

Find 𝑝 to optimize
𝐽(𝑝) = 𝑥 log(𝑝) + (𝑛 − 𝑥) log(1 − 𝑝)

𝐽 ′(𝑝) = 𝑥
𝑝 − 𝑛 − 𝑥

1 − 𝑝
𝐽″(𝑝) = − 𝑥

𝑝2 − 𝑛 − 𝑥
(1 − 𝑝)2

̂𝑝 ← ̂𝑝 −
𝑥
𝑝̂ − 𝑛−𝑥

1−𝑝̂
− 𝑥

𝑝̂2 − 𝑛−𝑥
(1−𝑝̂)2

(1)

If 𝑥 = 10, 𝑛 = 30, and we initially guess ̂𝑝 = 0.1, then we get the sequence {0.1759036,
0.268295, 0.3246771, 0.3332151, 0.3333333}.

This is a little bit of overkill because we can set 𝐽 ′(𝑝) = 0 and solve that ̂𝑝 = 𝑥
𝑛 . Or if we start

the last line of (1) at ̂𝑝 = 1
2 , then you will get ̂𝑝 = 𝑥

𝑛 on the first iteration. The equation in the
first line of (1) is the log likelihood function for estimating a binomial proportion, naturally
optimized when you count the total number of “successes,” 𝑥, out of 𝑛 trials.

6.2 Logistic regression log likelihood

We observe data of the form (x1, 𝑦1), … , (x𝑛, 𝑦𝑛), where 𝑦𝑖 ∈ {0, 1}. We assume 𝑦𝑖 ∼ Bern(𝑝𝑖)
where, shortly, we will connect 𝑝𝑖 to depend on x𝑖.

The probability of observing a specific sequence of 𝑦𝑖s is

𝑛
∏
𝑖=1

𝑝𝑦𝑖
𝑖 (1 − 𝑝𝑖)1−𝑦𝑖

17

On the log scale

log
𝑛

∏
𝑖=1

𝑝𝑦𝑖
𝑖 (1 − 𝑝𝑖)1−𝑦𝑖 =

𝑛
∑
𝑖=1

𝑦𝑖 log 𝑝𝑖 + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)

=
𝑛

∑
𝑖=1

𝑦𝑖(log 𝑝𝑖 − log(1 − 𝑝𝑖)) + log(1 − 𝑝𝑖)

=
𝑛

∑
𝑖=1

𝑦𝑖 log 𝑝𝑖
1 − 𝑝𝑖

+ log(1 − 𝑝𝑖)

(2)

The log-likelihood has the 𝑦𝑖 multiplied by the log odds. This is the primary reason we model
the probability of an outcome on the log odds scale. The log odds function is known as the
“canonical link function” for logistic regression. Logistic regression assumes that

log 𝑝𝑖
1 − 𝑝𝑖

= 𝛽′x𝑖

We will also need the inverse of the log odds, called the inverse logit function, the standard
logistic function, or the sigmoid function.

𝑝𝑖 = 1
1 + 𝑒−𝛽′x𝑖

Substituting into the last line of (2) we get

ℓ(𝛽) =
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 + log (1 − 1
1 + 𝑒−𝛽′x𝑖

)

=
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 + log (𝑒−𝛽′x𝑖

1 + 𝑒−𝛽′x𝑖
)

=
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 + log (𝑒−𝛽′x𝑖

1 + 𝑒−𝛽′x𝑖

𝑒𝛽′x𝑖

𝑒𝛽′x𝑖
)

=
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 + log (1
1 + 𝑒𝛽′x𝑖

)

=
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 − log (1 + 𝑒𝛽′x𝑖)

There is no closed form solution to ℓ′(𝛽) = 0. Instead, we need a numerical method for finding
the ̂𝛽 that maximizes ℓ(𝛽).

18

6.3 Newton-Raphson optimization

We previously saw that we can use the Taylor series expansion of 𝐽(𝛽) to approximate it and
use Newton’s method to optimize it.

𝐽(𝛽) ≈ 𝐽(𝑏) + 𝐽 ′(𝑏)(𝛽 − 𝑏) + 1
2𝐽″(𝑏)(𝛽 − 𝑏)2 (3)

If this approximation is good, that is, 𝐽(𝛽) is well approximated by a parabola, then we can
find the 𝛽 to maximize 𝐽(𝛽). Take a derivative of (3) with respect to 𝛽 and set it equal to 0.

𝐽 ′(𝛽) ≈ 𝐽 ′(𝑏) + 𝐽″(𝑏)(𝛽 − 𝑏)
𝐽 ′(̂𝛽) = 0

𝐽 ′(𝑏) + 𝐽″(𝑏)(̂𝛽 − 𝑏) = 0
̂𝛽 = 𝑏 − 𝐽 ′(𝑏)

𝐽″(𝑏)

(4)

If we initiate 𝑏 as a guess for the 𝛽 that maximizes 𝐽(𝛽), then (4) will produce a better guess
for ̂𝛽… typically. We can iterate (4) several times until convergence to give us the maximizer
of 𝐽(𝛽).
The multivariate Taylor expansion gives a generalization of this approach.

𝐽(𝛽) ≈ 𝐽(b) + (𝛽 − b)′ ⎡
⎢
⎣

𝜕𝐽
𝜕𝛽0
⋮

𝜕𝐽
𝜕𝛽𝑑

⎤
⎥
⎦

+ 1
2(𝛽 − b)′ ⎡

⎢
⎣

𝜕2𝐽
𝜕𝛽2

0
⋯ 𝜕2𝐽

𝜕𝛽0𝜕𝛽𝑑
⋮ ⋮ ⋮

𝜕2𝐽
𝜕𝛽0𝜕𝛽𝑑

⋯ 𝜕2𝐽
𝜕𝛽2

𝑑

⎤
⎥
⎦

(𝛽 − b)

= 𝐽(b) + (𝛽 − b)′G + 1
2(𝛽 − b)′H(𝛽 − b)

= 𝐽(b) + 𝛽′G − b′G + 1
2(𝛽 − b)′H(𝛽 − b)

𝜕
𝜕𝛽 𝐽(𝛽) = 0 + G − 0 + 1

2 ⋅ 2H(𝛽 − b)

= 𝐺 + H(𝛽 − b)
0 = 𝐺 + H(̂𝛽 − b)

−H(̂𝛽 − b) = 𝐺
̂𝛽 − b = −H−1𝐺

̂𝛽 = b − H−1𝐺
̂𝛽 ← ̂𝛽 − H−1G

Where G is a vector of first derivatives (that could be written as ∇𝐽), the score function, and
H is the matrix of second derivatives (could be written as ∇2𝐽), the Hessian or the negative
Fisher information.

19

6.4 Logistic regression gradient and Hessian

The first derivative, or gradient or “score function”, is

𝜕
𝜕𝛽 ℓ(𝛽) = 𝜕

𝜕𝛽
𝑛

∑
𝑖=1

𝑦𝑖𝛽′x𝑖 − log (1 + 𝑒𝛽′x𝑖)

=
𝑛

∑
𝑖=1

𝑦𝑖x𝑖 − 𝑒𝛽′x𝑖

1 + 𝑒𝛽′x𝑖
x𝑖

=
𝑛

∑
𝑖=1

x𝑖 (𝑦𝑖 − 𝑒𝛽′x𝑖

1 + 𝑒𝛽′x𝑖

𝑒−𝛽′x𝑖

𝑒−𝛽′x𝑖
)

=
𝑛

∑
𝑖=1

x𝑖 (𝑦𝑖 − 1
1 + 𝑒−𝛽′x𝑖

)

=
𝑛

∑
𝑖=1

x𝑖(𝑦𝑖 − 𝑝𝑖)

= X′(y − p)

The matrix of second derivatives, or Hessian matrix, is

𝜕2

𝜕𝛽 𝜕𝛽′ ℓ(𝛽) = 𝜕
𝜕𝛽

𝑛
∑
𝑖=1

x𝑖 (𝑦𝑖 − 1
1 + 𝑒−𝛽′x𝑖

)

=
𝑛

∑
𝑖=1

−x𝑖
𝜕

𝜕𝛽 (1 + 𝑒−𝛽′x𝑖)−1

=
𝑛

∑
𝑖=1

x𝑖
1

(1 + 𝑒−𝛽′x𝑖)2 𝑒−𝛽′x𝑖(−x′
𝑖)

= −
𝑛

∑
𝑖=1

x𝑖x′
𝑖

1
1 + 𝑒−𝛽′x𝑖

𝑒−𝛽′x𝑖

1 + 𝑒−𝛽′x𝑖

= −
𝑛

∑
𝑖=1

x𝑖x′
𝑖

1
1 + 𝑒−𝛽′x𝑖

(1 − 1
1 + 𝑒−𝛽′x𝑖

)

= −
𝑛

∑
𝑖=1

x𝑖x′
𝑖𝑝𝑖(1 − 𝑝𝑖)

= −X′WX

where W is an 𝑛 × 𝑛 diagonal matrix with 𝑝𝑖(1 − 𝑝𝑖) on the diagonal.

20

7 Iteratively Reweighted Least Squares (IRLS)

Applying Newton-Raphson to the logistic regression score and Hessian yields

̂𝛽 ← ̂𝛽 − (−X′WX)−1X′(y − p)
= ̂𝛽 + (X′WX)−1X′(y − p)

(5)

Recall that when fitting an ordinary least squares regression, the least squares estimate of
̂𝛽 = (X′X)−1X′y. Relatedly, if you are trying to fit a weighted least squares model to find

the ̂𝛽 to minimize
𝑛

∑
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝛽′x𝑖)2

then the solution is ̂𝛽 = (X′WX)−1X′Wy where 𝑊 is a diagonal matrix with 𝑤𝑖 on the
diagonal. (5) appears to be similar. With a little work we can rewrite (5) as a weighted least
squares solution.

̂𝛽 ← ̂𝛽 + (X′WX)−1X′(y − p)
= (X′WX)−1X′WX ̂𝛽 + (X′WX)−1X′(y − p)
= (X′WX)−1X′(WX ̂𝛽 + y − p)
= (X′WX)−1X′W(X ̂𝛽 + W−1(y − p))
= (X′WX)−1X′Wz

where 𝑧𝑖 = ̂𝛽′x𝑖 + 𝑦𝑖−𝑝𝑖
𝑝𝑖(1−𝑝𝑖) and is called the “working response.”

The Iteratively Reweighted Least Squares (IRLS) algorithm initiates ̂𝛽 to some reasonable
guess (like all coefficients are 0 except for the intercept), computes 𝑝𝑖 = 1

1+𝑒− ̂𝛽′x𝑖
, sets weights

to 𝑤𝑖 = 𝑝𝑖(1 − 𝑝𝑖), computes the working response 𝑧𝑖, and then runs a standard weighted least
squares procedures to obtain a better estimate of ̂𝛽. Then IRLS recomputes 𝑝𝑖, 𝑤𝑖, and 𝑧𝑖 and
repeats the process until convergences. Typically, IRLS converges in 3-4 iterations.

7.1 IRLS R example

Let’s start by simulating some data where 𝛽 = [−1 1 −1].

set.seed(20240217)
n <- 10000
beta <- c(-1,1,-1)
X <- cbind(1, matrix(runif(n*2), ncol=2))
y <- rbinom(n, 1, 1/(1+exp(-X %*% beta)))

21

Normally we would just run glm() with family=binomial to use R’s built in logistic regression
estimation. Let’s run that now to see what we should get for ̂𝛽. Note that the -1 in the model
formula tells R not to include an intercept term because I have already included a column of
1s in X.

glm1 <- glm(y~-1+X, family = binomial)
glm1

Call: glm(formula = y ~ -1 + X, family = binomial)

Coefficients:
X1 X2 X3

-1.044 1.087 -1.020

Degrees of Freedom: 10000 Total (i.e. Null); 9997 Residual
Null Deviance: 13860
Residual Deviance: 11430 AIC: 11440

Next let’s try to visualize what the 2D surface of the log-likelihood function looks like in the
neighborhood of ̂𝛽.

logitLL <- function(beta, X0, y0)
{

Xbeta <- X0 %*% beta
return(as.numeric(y0 %*% Xbeta - sum(log(1+exp(Xbeta)))))

}

beta0 <- coef(glm1)
bGrid <- expand.grid(beta0=beta0[1],

beta1=beta0[2] + seq(-3,3,length=201),
beta2=beta0[3] + seq(-3,3,length=201))

bGrid$LL <- apply(bGrid[,1:3], 1, logitLL, X0=X, y0=y)

plotLL <- list(x=beta0[2] + seq(-2,2,length=201),
y=beta0[3] + seq(-2,2,length=201),
z=matrix(bGrid$LL, nrow=201))

contour(x=plotLL,
levels=c(pretty(bGrid$LL, 15), floor(max(bGrid$LL))))

points(coef(glm1)[2],coef(glm1)[3])

22

 −14000
 −12000

 −11000

 −10000

 −10000

 −9000

 −9000

 −8000

 −8000

 −7000

 −7000

 −6000

−1 0 1 2 3

−
3

−
2

−
1

0
1

Figure 4: Contour plot of the logistic log-likelihood function in the neighborhood of the maxi-
mum likelihood estimate

Now let’s assume we did not have access to R’s glm() and use our own Newton-Raphson
algorithm to optimize the logistic regression log-likelihood. The orange dot is our current
guess ̂𝛽 = [0 0 0] and the orange line shows where the gradient is telling us we should
head.

starting value intercept only
beta0 <- c(log(mean(y)/(1-mean(y))), 0, 0)
contour(x=plotLL,

levels=c(pretty(bGrid$LL, 15), floor(max(bGrid$LL))))
points(beta0[2], beta0[3], col="#E69F00", pch=16, cex=1.5)
points(coef(glm1)[2], coef(glm1)[3])

(X'WX)^-1 X'(y-p) is the direction where Newton-Raphson tells us we should move
p <- as.numeric(1/(1+exp(-X %*% beta0)))
betaNew <- beta0 + solve(t(X) %*% diag(p*(1-p)) %*% X) %*% t(X) %*% (y-p)
lines(c(beta0[2],betaNew[2]), c(beta0[3],betaNew[3]), col="#E69F00", lwd=2)

beta0 <- betaNew

23

 −14000
 −12000

 −11000

 −10000

 −10000

 −9000

 −9000

 −8000

 −8000

 −7000

 −7000

 −6000

−1 0 1 2 3

−
3

−
2

−
1

0
1

Figure 5: Contour plot of the logistic log-likelihood function showing the first IRLS iteration

In one step we get very close to the maximum. A second step will get us to the top.

contour(x=plotLL,
levels=c(pretty(bGrid$LL, 15), floor(max(bGrid$LL))))

points(beta0[2], beta0[3], col="#E69F00", pch=16, cex=1.5)
points(coef(glm1)[2],coef(glm1)[3])

(X'WX)^-1 X'(y-p) is the direction where Newton-Raphson tells us we should move
p <- as.numeric(1/(1+exp(-X %*% beta0)))
betaNew <- beta0 + solve(t(X) %*% diag(p*(1-p)) %*% X) %*% t(X) %*% (y-p)
lines(c(beta0[2],betaNew[2]), c(beta0[3],betaNew[3]), col="#E69F00", lwd=2)

beta0 <- betaNew

 −14000
 −12000

 −11000

 −10000

 −10000

 −9000

 −9000

 −8000

 −8000

 −7000

 −7000

 −6000

−1 0 1 2 3

−
3

−
2

−
1

0
1

Figure 6: Contour plot of the logistic log-likelihood function showing the second IRLS iteration

After two steps our Newton-Raphson gets us essentially to where glm() would get us.

24

cbind(beta0, coef(glm1))

[,1] [,2]
X1 -1.043583 -1.044113
X2 1.085888 1.086881
X3 -1.019002 -1.019929

I showed that we can rewrite the Newton-Raphson algorithm as a weighted least squares
problem. Let’s test our own version of IRLS.

IRLS
starting value
beta0 <- c(log(mean(y)/(1-mean(y))), 0, 0)

for(i in 1:4)
{
p <- as.numeric(1/(1+exp(-X %*% beta0)))
z <- X %*% beta0 + (y-p)/(p*(1-p))
w <- p*(1-p)
beta0 <- coef(lm(z~-1+X, weights = w))
print(beta0)

}

X1 X2 X3
-1.0020325 1.0501040 -0.9854366

X1 X2 X3
-1.043583 1.085888 -1.019002

X1 X2 X3
-1.044113 1.086880 -1.019929

X1 X2 X3
-1.044113 1.086881 -1.019929

compare with `glm()`
cbind(beta0, coef(glm1))

beta0
X1 -1.044113 -1.044113
X2 1.086881 1.086881
X3 -1.019929 -1.019929

25

The negative Hessian matrix is called the Fisher information matrix. Its inverse turns out to
equal the variance-covariance matrix of the parameters.

Fisher information, -X'WX
t(X) %*% diag(p*(1-p)) %*% X

[,1] [,2] [,3]
[1,] 1928.1009 1044.0486 888.1389
[2,] 1044.0486 720.4256 485.6353
[3,] 888.1389 485.6353 565.8811

inverse of Fisher information
solve(t(X) %*% diag(p*(1-p)) %*% X)

[,1] [,2] [,3]
[1,] 0.003668802 -0.003405379 -0.002835638
[2,] -0.003405379 0.006454061 -0.000194159
[3,] -0.002835638 -0.000194159 0.006384257

compare with the variance-covariance matrix from glm()
vcov(glm1)

X1 X2 X3
X1 0.003668802 -0.0034053781 -0.0028356373
X2 -0.003405378 0.0064540606 -0.0001941591
X3 -0.002835637 -0.0001941591 0.0063842564

extract the diagonals and compute the square root
solve(t(X) %*% diag(p*(1-p)) %*% X) |> diag() |> sqrt()

[1] 0.06057064 0.08033717 0.07990155

compare with the standard errors form glm()
summary(glm1)

Call:
glm(formula = y ~ -1 + X, family = binomial)

26

Coefficients:
Estimate Std. Error z value Pr(>|z|)

X1 -1.04411 0.06057 -17.24 <2e-16 ***
X2 1.08688 0.08034 13.53 <2e-16 ***
X3 -1.01993 0.07990 -12.77 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13863 on 10000 degrees of freedom
Residual deviance: 11430 on 9997 degrees of freedom
AIC: 11436

Number of Fisher Scoring iterations: 4

Almost all statistical methods use a process of optimizing the likelihood as shown here.
All of the generalized linear models (e.g. Poisson regression, negative binomial models,
Cox/proportional hazards models) specifically use the IRLS algorithm. A broad range of
statistical methodology involves developing a likelihood function that plausibly characterizes
the process that generated the data and then devising an efficient optimization method for
extracting parameter estimates and standard error estimates.

8 Summary

This covers the foundational concepts of linear algebra and their role in modeling and analysis.
Linear algebra is an entire branch of mathematics and here we just covered the basic operations
(addition, subtraction, multiplication, and inverse) as well as matrix derivatives, which are not
that different from the simple derivatives from univariate calculus.

Many predictive models, such as the naïve Bayes classifier, trees, and decision trees can be
reformulated into linear forms, demonstrating the flexibility of linear algebra in simplifying
complex structures. Once we can characterize our machine learning goals with matrix algebra,
a range of computational tools become available to us.

We reformulated ridge regression as a matrix algebra problem and saw how we can fit flexible
models without overfitting. Placing a penalty on the size of ∑ 𝛽2

𝑗 prevents any one coefficient
from getting too large. This kind of “regularization” is a key concept in machine learning,
indexing the complexity of the model by a single value. Here it is 𝜆 but for knn it was 𝑘, the
number of neighbors.

27

While OLS has a closed form matrix algebra solution, other important models, like logistic
regression, do not. However, the multivariate version of Taylor series allowed us to squeeze
the logistic regression problem into a weighted OLS problem.

28

	Linear models
	Matrix multiplication
	Exercises
	Linear model with matrix notation

	Matrix derivatives
	Matrix inverse
	Exercise
	Example

	Regularization and ridge regression
	Demonstration of ridge regression

	Multivariate Taylor series and gradient descent
	Example
	Logistic regression log likelihood
	Newton-Raphson optimization
	Logistic regression gradient and Hessian

	Iteratively Reweighted Least Squares (IRLS)
	IRLS R example

	Summary

