
L5 Classification and regression trees
Greg Ridgeway

2025-03-31

Table of contents

1 Introduction to regression trees 1

2 Introduction to classification trees 6

3 Tree size and cross-validation 8
3.1 Cross-validation . 10

4 Analysis of the age at death data using rpart() 11

5 Analysis of the glass data - a classification problem 15

6 Other topics 19

7 CART on the NELS88 data 21
7.1 Practice finding the first split “by hand” . 21
7.2 Using rpart to predict dropout . 23
7.3 Using 10-fold cross-validation to select the tree size 24

8 Summary 33

1 Introduction to regression trees

Refer to Hastie, Tibshirani, and Friedman (2001) Chapter 9.2.

Predicting age at death: During aging, L-aspartic acid transforms into its D-form. Re-
searchers obtained bone specimens from 15 human skulls with known age at death and mea-
sured the ratio of D-aspartic to L-aspartic acid.

1

Ratio of D-aspartic to L-aspartic acid Age
0.040 0
0.070 2
0.070 16
0.075 10
0.080 18
0.085 19
0.105 16
0.110 21
0.115 21
0.130 25
0.140 26
0.150 28
0.160 34
0.165 39
0.170 40

dAge <- data.frame(ratio=c(0.040,0.070,0.070,0.075,0.080,0.085,0.105,0.110,0.115,
0.130,0.140,0.150,0.160,0.165,0.170),

age=c(0,2,16,10,18,19,16,21,21,25,26,28,34,39,40))

Here is a plot of the same data from the table.

plot(age~ratio, data=dAge,
xlab="acid ratio", ylab="age",
pch=19)

2

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

acid ratio

ag
e

Figure 1: Scatterplot of the Ratio of D-aspartic to L-aspartic acid and age at death

Loss function: Let’s find a function, 𝑓(x), that minimizes squared error loss.

̂𝐽 (𝑓) =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(x𝑖))2

Consider a variation on 𝑘-nearest neighbors

1. Rather than fix 𝑘, fix the number of neighborhoods. For computational convenience fix
the number of neighborhoods to two

2. Each neighborhood does not need to have the same number of observations
3. Define a neighborhood on a single variable

This basically fits a piecewise constant function to the data. Partition the dataset into two
groups and predict a constant within each group.

How to split: Let’s find a good split point on the 𝑥 variable “ratio”. To the left of this split
point we will predict one constant value and to the right of this split point we will predict
another. The next table lists all the possible places where we can split the dataset into two
groups. For the left prediction, 𝑦𝐿, we will use the average age of the observations less than
the split point and for the right prediction, 𝑦𝑅, we will use the average of the age of the
observations greater than the split point.

Now our squared-error loss function looks like

̂𝐽 (𝑐, 𝑦𝐿, 𝑦𝑅) =
𝑁

∑
𝑖=1

𝐼(𝑥𝑖 ≤ 𝑐)(𝑦𝑖 − 𝑦𝐿)2 + 𝐼(𝑥𝑖 > 𝑐)(𝑦𝑖 − 𝑦𝑅)2.

3

We just need to find values for 𝑐, 𝑦𝐿, and 𝑦𝑅 that minimize ̂𝐽 (𝑐, 𝑦𝐿, 𝑦𝑅).
Table 1: Choosing split points

Ratio Age Split Left Prediction Right prediction Squared error
0.040 0
0.070 2 ratio ≤ 0.0550 0 22.5 97.2
0.070 16
0.075 10 ratio ≤ 0.0725 6 24.08 72.8
0.080 18 ratio ≤ 0.0775 7 26.09 57.4
0.085 19 ratio ≤ 0.0825 9.2 26.9 59.0
0.105 16 ratio ≤ 0.0950 10.83 27.78 59.8
0.110 21 ratio ≤ 0.1075 11.57 29.25 50.9
0.115 21 ratio ≤ 0.1125 12.75 30.43 50.9
0.130 25 ratio ≤ 0.1225 13.67 32 48.0
0.140 26 ratio ≤ 0.1350 14.8 33.4 51.8
0.150 28 ratio ≤ 0.1450 15.82 35.25 54.8
0.160 34 ratio ≤ 0.1550 16.83 37.67 59.2
0.165 39 ratio ≤ 0.1625 18.15 39.5 76.0
0.170 40 ratio ≤ 0.1675 19.64 40 102.9

Which split point should we choose?

plot(age~ratio, data=dAge, pch=19)
lines(c(0.04,0.1225),c(13.67,13.67))
lines(c(0.1225,0.17),c(32,32))

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

ratio

ag
e

Figure 2: Best single split regression tree using ratio to predict age

4

Equivalently we can look at this as a regression tree. In R, rpart, recursive partitioning,
implements the trademarked CART algorithm.

|ratio< 0.1225

13.67 32

Figure 3: Best single split regression tree using ratio to predict age

What should we do next? Recursive split the nodes.

plot(age~ratio, data=dAge, pch=19)
lines(c(0.04,0.0775),c(7,7))
lines(c(0.0775,0.1225),c(19,19))
lines(c(0.1225,0.155),c(26.33,26.33))
lines(c(0.155,0.17),c(37.67,37.67))

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

ratio

ag
e

Figure 4: Best depth 2 tree partition of ratio to predict age (plot)

5

|ratio< 0.1225

ratio< 0.0775 ratio< 0.155

7 19 26.33 37.67

Figure 5: Best depth 2 tree partition of ratio to predict age (decision tree)

2 Introduction to classification trees

At crime scenes investigators need to determine whether glass fragments came from a window,
eyeglasses, wine glass, or some other source. In this example we want to discriminate between
window glass and other types of glass based on the samples’ refractive index and sodium
concentration.

Where should we split? The first table shows the data sorted by refractive index and the
second table shows the same data sorted on sodium concentration.

Table 2: Refractive index, sodium concentration, and window glass (sorted by refractive index)

Refractive index (sorted) Na % Window glass
1.51590 13.24 1
1.51613 13.88 0
1.51673 13.30 1
1.51786 12.73 1
1.51811 12.96 1
1.51829 14.46 0
1.52058 12.85 0
1.52152 13.12 1
1.52171 11.56 0
1.52369 13.44 0

6

Table 3: Refractive index, sodium concentration, and window glass (sorted by sodium concen-
tration)

Refractive index Na % (sorted) Window glass
1.52171 11.56 0
1.51786 12.73 1
1.52058 12.85 0
1.51811 12.96 1
1.52152 13.12 1
1.51590 13.24 1
1.51673 13.30 1
1.52369 13.44 0
1.51613 13.88 0
1.51829 14.46 0

The best split on refractive index is between 1.51811 and 1.51829, giving a misclassification rate
of 2/10. The best split on sodium concentration is between 13.30 and 13.44, which also gives a
misclassification rate of 2/10. Splitting on either refractive index or on sodium concentration
gives the identical misclassification rate. In both cases we have two misclassified observations.
The most common way to break such ties is to go with the split that results in more pure
nodes. Splitting on sodium concentration peels off three observations that are not window
glass, creating a pure non-window glass group. Note that this is not the only possible choice,
just a common one.

Here is the best two-split classification tree. It first separates the three non-window glass with
high sodium. Then among the low sodium concentration samples, it peels off the four windows
with low refractive index.

dGlass <- data.frame(ri=c(1.52171,1.51786,1.52058,1.51811,1.52152,1.51590,
1.51673,1.52369,1.51613,1.51829),

na=c(11.56,12.73,12.85,12.96,13.12,13.24,13.30,13.44,
13.88,14.46),

window=c(0,1,0,1,1,1,1,0,0,0))
plot(na~ri, data=dGlass, pch=as.character(dGlass$window),

xlab="Refractive index",
ylab="Na concentration")

a <- par()$usr
rect(a[1], 13.37, a[2], a[4], col="lightblue")
rect(1.51934, a[3], a[2], 13.37, col="lightblue")
text(dGlass$ri, dGlass$na, as.character(dGlass$window))

7

0

1 01 11 1 0
0

0

1.516 1.518 1.520 1.522 1.524

11
.5

12
.5

13
.5

14
.5

Refractive index

N
a

co
nc

en
tr

at
io

n

0

1 01 11 1 0
0

0

Figure 6: Best two split classification tree using sodium concentration and refractive index to
predict window glass (2D plot)

|na>=13.37

ri>=1.519
0

0 1

Figure 7: Best two split classification tree using sodium concentration and refractive index to
predict window glass (decision tree)

3 Tree size and cross-validation

We can continue to recursively partition the data until every observation is predicted as best
as possible. Though, perhaps fitting the data perfectly is not ideal. This tree has 13 terminal
nodes. Perhaps that is too many nodes. Why?

This tree has two terminal nodes. Perhaps that is too few.

8

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

ratio

ag
e

Figure 8: Very deep regression tree predicting age as best as possible

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

ratio

ag
e

Figure 9: Tree partition of ratio to predict age with a single split

9

3.1 Cross-validation

Cross-validation is the standard way for optimizing the choice for tuning parameters in ma-
chine learning methods. For knn, the tuning parameter was the number of neighbors. For
classification and regression trees, the tuning parameter is the number of splits (or number
of terminal nodes). Perhaps we might consider leave-one-out cross-validation as we did for
knn.

1. Leave out the first observation.
2. Fit a tree using the other observations with two terminal nodes, and predict for the left

out observation.
3. Recursively split so the tree now has three terminal nodes and predict for the left out

observation.
4. Recursively split so the tree now has four terminal nodes and predict for the left out

observation.
5. And carry on in this fashion until observation 1 has predictions from all sized trees.

Now put the first observation back in the dataset and remove the second one. Repeat the
process. This leave-one-out procedure simulates what would happen in reality, fitting a tree
to a fixed dataset and then having to predict for a future observation.

When the dataset is small, LOOCV is feasible, but it quickly becomes too much computational
effort for large datasets. For large datasets, the most common approach is to use 10-fold cross
validation. Rather than holding out 1 observation at a time, 10-fold cross-validation holds out
10% of the data at a time and uses the remaining 90% of the data for learning the tree.

1. Randomly assign every observation a number between 1 and 10. For example,
mydata$fold <- rep(1:10, length.out=nrow(mydata)) |> sample()

2. Hold out all observations with fold==1
3. Fit a tree with two terminal nodes using the other observations (filter(mydata,

fold!=1)), and predict for the left out observations (predict(mytree, newdata=filter(mydata,fold==1)))
4. Recursively split so the tree now has three terminal nodes and predict for all the held

out observations
5. Recursively split so the tree now has four terminal nodes and predict for all the held out

observations
6. Carry on in this fashion until all observations in fold 1 have predictions from all sized

trees.

Repeat steps 2-6 for fold=2, …, 10. In this way, all observations have predictions from trees
that did not use those observations in the learning process. This is more efficient than LOOCV
in that we only had to fit 10 trees rather than 𝑛 trees.

10

4 Analysis of the age at death data using rpart()

Let’s revisit the problem of predicting age at death.

plot(age~ratio, data=dAge,
xlab="acid ratio", ylab="age",
pch=19)

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

acid ratio

ag
e

Figure 10: Scatterplot of the Ratio of D-aspartic to L-aspartic acid and age at death

In this section we will use rpart() to fit a regression tree. rpart() has a parameter xval that
you can set to the number of folds to use for cross-validation. Here I have set xval=15. Since
the dataset has 15 observations, this is equivalent to LOOCV. method="anova" tells rpart()
that this is a regression problem. minsplit=2 and minbucket=1 tells rpart() that it should
try to split any node that has at least two observations and that every terminal node should
have at least 1 observation. This is the minimum possible. The complexity parameter, cp,
tells rpart() to only consider

load the rpart library
library(rpart)
show all the rpart commands
library(help="rpart")
search for commands with the phrase "rpart"
help.search('rpart')

fit the tree perfectly to the data
minimum obs to split is 2, min obs in node = 1,

11

complexity parameter = 0 --> do not penalize size of tree
set.seed(20240214)
tree1 <- rpart(age~ratio,

data=dAge,
method="anova",
cp=0,
xval=15,
minsplit=2,
minbucket=1)

par(xpd=NA)
plot(tree1, uniform=TRUE, compress=TRUE)
text(tree1)

|ratio< 0.1225

ratio< 0.0775

ratio< 0.055

ratio< 0.0725

ratio< 0.1075

ratio>=0.095

ratio< 0.0825

ratio< 0.155

ratio< 0.145

ratio< 0.135

ratio< 0.1625

ratio< 0.1675
0

9 10 16

18 19

21

25 26

28 34

39 40

Figure 11: Decision tree perfectly fit to the data

The figure below shows the LOOCV estimate of prediction error, which seems to be minimized
with a tree with five terminal nodes (axis at the top of the graph). I have also printed out the
table with the details. Note that the table counts the number of splits rather than the number
of terminal nodes.

compare complexity parameter to leave-one-out cross-validated error
plotcp(tree1)
printcp(tree1)

Regression tree:
rpart(formula = age ~ ratio, data = dAge, method = "anova", cp = 0,

xval = 15, minsplit = 2, minbucket = 1)

12

Variables actually used in tree construction:
[1] ratio

Root node error: 1930/15 = 128.67

n= 15

CP nsplit rel error xerror xstd
1 0.62694301 0 1.000000 1.14796 0.35668
2 0.16580311 1 0.373057 0.55008 0.13547
3 0.09982729 2 0.207254 0.49964 0.16449
4 0.03385147 3 0.107427 0.29321 0.13030
5 0.01044905 4 0.073575 0.26903 0.12294
6 0.00690846 5 0.063126 0.30841 0.14135
7 0.00215889 6 0.056218 0.29543 0.14297
8 0.00034542 8 0.051900 0.28529 0.13292
9 0.00025907 9 0.051554 0.28212 0.13233
10 0.00000000 12 0.050777 0.27824 0.13256

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
0

0.
5

1.
0

1.
5

Inf 0.32 0.058 0.0085 0.00086 0

1 2 3 4 5 6 7 9 10 13

size of tree

Figure 12: Leave-one-out cross-validated error by complexity parameter and number of termi-
nal nodes

Here I’ll display the tree fit to the entire dataset, using the LOOCV estimated optimal number
of terminal nodes.

13

a little function to extract the best value for cp
bestCP <- function(myTree)
{
cpTable <- myTree$cptable
i <- which.min(cpTable[,"xerror"])
return(cpTable[i,"CP"])

}

"prune" the tree to the optimal size
treeFinal <- prune(tree1, cp=bestCP(tree1))

predict using the tree
generate a sequence, of length 200, over the range of the acid ratio
x <- seq(min(dAge$ratio), max(dAge$ratio), length.out=200)

predict age for the 200 ratios
y <- predict(treeFinal, newdata=data.frame(ratio=x))

plot the actual data
plot(age~ratio,

data=dAge,
xlab="ratio", ylab="age", pch=16)

draw lines for the fitted tree
lines(x,y)

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
10

20
30

40

ratio

ag
e

Figure 13: Decision tree with the number of terminal nodes optimized with cross-validation

14

5 Analysis of the glass data - a classification problem

Note here that I reset minsplit=20 and minbucket=7, their default values. Like this rpart()
will not consider splitting a node unless there are at least 20 observations in it and each
subsequent node must have at least 7 observations. Also note that I have set method="class".
This changes the loss function from least squares to misclassification rate. Misclassification
costs default to equal costs, so the threshold for predicting window glass is 𝑝 > 0.5.

This time we will use the full glass dataset from the UCI machine learning archive. The glass
type variable type can take on seven different values for seven different types of glass. While
the CART algorithm can be used for multiclass classification problems, for simplicity we will
just try to identify glass of type 1, float-processed building window glass (the most typical
window glass made by pouring molten glass on to molten tin…, by the way, four companies
make almost all of the world’s glass). Here is the full list of the

1. building windows, float processed
2. building windows, non-float processed
3. vehicle windows, float processed
4. vehicle windows, non-float processed (none in this database)
5. containers
6. tableware
7. headlamps

If you want to do the full multiclass classification, make sure that type is a factor variable and
set method="class". I will make a new variable window as a 0/1 indicator of float processed
building window glass. Then I will fit the classification tree and try to use cross-validation to
estimate the optimal tree size.

dGlass <- read.csv("data/glass.csv") |>
create 0/1 outcome for float
mutate(window = as.numeric(type==1))

set.seed(20240214)
tree1 <- rpart(window~RI+Na,

data=dGlass,
method="class",
cp=0.0,
minsplit=20, # default
minbucket=7) # default

plotcp(tree1)

15

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.089 0.032 0.013 0

1 3 4 10 12

size of tree

Figure 14: Cross-validated error of glass classification by complexity parameter and tree size

And let’s also take a look at the raw numbers themselves.

printcp(tree1)

Classification tree:
rpart(formula = window ~ RI + Na, data = dGlass, method = "class",

cp = 0, minsplit = 20, minbucket = 7)

Variables actually used in tree construction:
[1] Na RI

Root node error: 70/214 = 0.3271

n= 214

CP nsplit rel error xerror xstd
1 0.1857143 0 1.00000 1.00000 0.098045
2 0.0428571 2 0.62857 0.68571 0.087171
3 0.0238095 3 0.58571 0.75714 0.090208
4 0.0071429 9 0.42857 0.64286 0.085162
5 0.0000000 11 0.41429 0.67143 0.086517

16

The optimal tree size appears to have complexity parameter equal to 0.0071429. We use
prune() to reduce the tree to this optimal size.

treeFinal <- prune(tree1,
cp=bestCP(tree1))

par(xpd=NA)
plot(treeFinal, uniform=TRUE)
text(treeFinal)

|RI< 1.517
RI>=1.518

Na< 13.04
RI< 1.519

Na>=13.24
Na>=14.27

RI>=1.519
RI< 1.521

Na>=13.440

0
0

0

0 1
1

1

0 1

Figure 15: Optimal classification tree for predicting building window glass

Now let’s try running it one more time including all of the glass features in the analysis.

tree1 <- rpart(window~RI+Na+Mg+Al+Si+K+Ca+Ba+Fe,
data=dGlass,
method="class",
cp=0.0,
minsplit=20,
minbucket=7)

plotcp(tree1)

17

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.15 0.099 0.061 0.025 0.01 0

1 3 4 5 6 8 10

size of tree

Figure 16: Cross-validated error of glass classification using all available features by complexity
parameter and tree size

printcp(tree1)

Classification tree:
rpart(formula = window ~ RI + Na + Mg + Al + Si + K + Ca + Ba +

Fe, data = dGlass, method = "class", cp = 0, minsplit = 20,
minbucket = 7)

Variables actually used in tree construction:
[1] Al Ca Fe Mg Na RI

Root node error: 70/214 = 0.3271

n= 214

CP nsplit rel error xerror xstd
1 0.1928571 0 1.00000 1.00000 0.098045
2 0.1142857 2 0.61429 0.82857 0.092891
3 0.0857143 3 0.50000 0.62857 0.084459
4 0.0428571 4 0.41429 0.62857 0.084459
5 0.0142857 5 0.37143 0.61429 0.083739

18

6 0.0071429 7 0.34286 0.62857 0.084459
7 0.0000000 9 0.32857 0.62857 0.084459

treeFinal <- prune(tree1, cp=bestCP(tree1))
par(xpd=NA)
plot(treeFinal, uniform=TRUE)
text(treeFinal)

|Al>=1.42

Mg< 2.56

RI< 1.517

Mg>=3.865

Fe>=0.185

0

0

0

0

0 1

Figure 17: Optimal classification tree using all available features for predicting building window
glass

6 Other topics

1. Missing data. Some tree algorithms allow for a third branch for missing values (like
having a separate branch for each of age<16, age ≥ 16, age missing). Other tree imple-
mentations weight missing observations by what fraction of cases go to a left branch and
what fraction go to the right branch.

2. Splits where the variable is ordinal. For ordinal variables (like education), tree algorithms
simply search among all possible ways of splitting the ordinal variable that maintains
the ordering (like [education=less than HS or HS] and [education=some college, BA/BS,
MA/MS, MD/JD/PhD]).

3. Splits where the variable is nominal. For nominal variables, tree algorithms consider all
possible ways of splitting the observations into two groups. For race, this means that
the algorithm needs to consider all possible ways to group five race categories into two
groups.

• [Asian] and [Black, Hispanic, White, Other]

• [Black] and [Asian, Hispanic, White, Other]

19

• [Hispanic] and [Asian, Black, White, Other]

• [White] and [Asian, Black, Hispanic, Other]

• [Other] and [Asian, Black, Hispanic, White]

• [Asian, Black] and [Hispanic, White, Other]

• [Asian, Hispanic] and [Black, White, Other]

• [Asian, White] and [Black, Hispanic, Other]

• [Asian, Other] and [Black, Hispanic, White]

• [Black, Hispanic] and [Asian, White, Other]

• [Black, White] and [Asian, Hispanic, Other]

• [Black, Other] and [Asian, Hispanic, White]

• [Hispanic, White] and [Asian, Black, Other]

• [Hispanic, Other] and [Asian, Black, White]

• [White, Other] and [Asian, Black, Hispanic]

The number of possible splits can get very large. A nominal feature with 𝑚 categories will
have 2𝑚 − 1 possible ways of splitting them. For example, if state is one of your features,
then there are 562,949,953,421,311 possible splits to evaluate. However, it turns out that if
you sort the nominal features by the mean of the outcome, then the optimal split has to have
those with the smaller mean outcome in one node and the larger mean outcome in the other
node. For example, if for some outcome, 𝑦, the race groups are sorted as

Race ̄𝑦
Hispanic 1.7
Asian 2.8
Black 3.2
White 4.1
Other 5.4

then the optimal split has to be one of the following

• [Hispanic] and [Asian, Black, White, Other]
• [Hispanic, Asian] and [Black, White, Other]
• [Hispanic, Asian, Black] and [White, Other]
• [Hispanic, Asian, Black, White] and [Other]

20

Phew! Rather than having to evaluate all 2𝑚 − 1 possibilities we just need to evaluate 𝑚 − 1
possible splits.

4. Interpretability. Part of the appeal of classification and regression trees is that they
present a nice interpretable structure. However, exercise 5 in the homework assignment
asks you to explore this property.

5. Names. There are a variety of tree algorithms. The best known algorithms are CART
(Classification and Regression Tree), C4.5, and C5.0. The name CART is trademarked,
so the R implementation is in the rpart package (recursive partitioning). C5.0 is also
available with the R package C50. They are essentially identical, but they traditionally
use different loss functions. Earlier tree structured models were ID3 and CHAID.

6. Out-of-sample predictive performance. The only way to properly evaluate the perfor-
mance of a machine learning method is to make all the fitting and tuning parameter
selection on one dataset and evaluate its performance on a completely independent test
dataset.

7 CART on the NELS88 data

In this section we will walk through using the CART algorithm on the NELS88 data. We’ll
start by loading some libraries and the dataset.

library(dplyr)
library(tidyr)
load("data/nels.RData")

7.1 Practice finding the first split “by hand”

Let’s find the first split “by hand”. We’ll consider all possible ways of splitting the sample
into two based on ses, predict the dropout percentage to the “left” and to the “right,” and
evaluate in terms of mean squared error. Note that this analysis incorporates F4QWT, which
is the sampling weight. It upweights the kinds of students who are underrepresented in the
sample and downweights those who are overrepresented in the sample.

consider all possible splits on SES
sesSplits <- nels0$ses |> unique() |> sort()
find mid-point between each unique split
sesSplits <- (sesSplits[-1] + sesSplits[-length(sesSplits)])/2

mse <- rep(0, length(sesSplits))

21

for(i in 1:length(sesSplits))
{
note the use of F4QWT (sampling weight)
pred <- nels0 |>

group_by(ses<sesSplits[i]) |>
summarize(p=weighted.mean(wave4dropout, F4QWT))

yPred <- ifelse(nels0$ses<sesSplits[i], pred$p[2], pred$p[1])
mse[i] <- weighted.mean((nels0$wave4dropout - yPred)^2, nels0$F4QWT)

}

Let’s plot the mean squared error by the SES split point and determine which split point
minimizes it.

plot(mse~sesSplits, type="l")

which split point minimizes MSE?
i <- which.min(mse)
c(sesSplits[i], mse[i])

[1] -1.00600000 0.05280747

−2 −1 0 1 2

0.
05

3
0.

05
5

sesSplits

m
se

Figure 18: Mean squared error by SES split point

If splitting only on SES, then split at -1.006 is optimal. If we wished to involve other student
features, then we would need to repeat the process on all other features to see if any split
exists that gives an MSE less than 0.0528075.

22

7.2 Using rpart to predict dropout

tree1 <- rpart(wave4dropout~ses+famIncome,
method="anova",
data=nels0,
weights=nels0$F4QWT,
control=rpart.control(cp=0.011, xval=0))

A few notes on this call to rpart(). Setting method="anova" is equivalent to telling rpart() to
minimize squared error. The other most common option is method="class". When selecting
method="class" you can set misclassification costs using parms=list(loss=rbind(c(0,1),c(9,0))).
cp=0.011 sets the “complexity parameter” to 0.011. rpart() will continue recursively par-
titioning the data as long as the reduction in the loss function is at least cp. Typically,
you would want this to be a little bigger than 0 so that the algorithm does not consider
branches that do not really improve predictive performance. For now, we will just let the tree
grow. Setting xval=0 tells rpart() not to do any cross-validation. We will change this in a
moment.

Let’s take a look at the resulting tree. When uniform=FALSE, the lengths of the branches are
drawn in proportion to the reduction in the loss function attributable to the split.

par(xpd=NA)
plot(tree1, uniform=FALSE)
text(tree1, minlength = 20, cex=0.5)

|
ses>=−1.006

ses>=−0.1875 ses>=−1.494

famIncome=None,<$1k,$1k−$3k,$3k−$5k,$5k−$7.5k
0.01475 0.07532

0.1688

0.316 0.6921

Figure 19: Decision tree predicting dropout risk from SES and family income

Now let’s get some predicted values from the fitted tree.

23

get predicted values
nels0$yPred <- predict(tree1, newdata=nels0)

And let’s see how the tree has carved up the 2D space.

plot(nels0$famIncome, nels0$ses,
xlab="Family income", ylab="SES")

abline(h=c(-1.006, -0.1875, -1.494))
lines(c(5.5,5.5), c(-3,-1.494))
a <- nels0 |>
group_by(yPred = round(yPred,3)) |>
summarize(famIncome = mean(as.numeric(famIncome), na.rm=TRUE),

ses = mean(ses))
text(a$famIncome, a$ses, a$yPred, col="#3D2C8D", cex=1.5)

None $3k−$5k $15k−$20k $50k−$75k

−
2

−
1

0
1

2

Family income

S
E

S

0.015

0.075
0.169

0.316 0.692

7.3 Using 10-fold cross-validation to select the tree size

In the previous section, I fixed the complexity parameter to limit the size of the tree. In
this section, we will use 10-fold cross-validation (a more appropriate method) to find the tree
depth (or equivalently the complexity parameter) that results in a tree with the best predictive
performance.

Ten-fold cross-validation proceeds by

1. hold out 10% of the data
2. fit a regression tree of depth 1, 2, 3, … on the remaining 90%
3. predict the trees of each depth on the held out 10%

24

4. repeat 1-3 for each of the 10 holdout sets
5. evaluate predictive performance

In this way, every observation’s predicted value was produced by a model that did not include
that observation in its model fitting stage.

Let’s give this a try to figure out the optimal sized tree for predicting wave4dropout from
ses.

Note that the first step that I do is to fix the random number generator seed. This is because
right at the beginning I randomly assign each observation to a “fold”. Setting the random
number generator seed makes it so that if we rerun the same code, we will get the same answer
again.

set.seed(20240214)
compute baseline MSE
pred0 <- nels0 |>
summarize(weighted.mean(wave4dropout, F4QWT)) |>
pull()

mse0 <- nels0 |>
summarize(weighted.mean((wave4dropout - pred0)^2,

F4QWT)) |>
pull()

for storing the results
mseCV <- c(mse0, rep(NA,10))

assign each observation to a random number 1 to 10
iFold <- sample(rep(1:10, length.out=nrow(nels0)))
for storing predicted values
nels0$yPred <- rep(0, nrow(nels0))

consider trees of size 1 to 10
for(iDepth in 1:10)
{
loop through each fold
for(iCV in 1:10)
{

fit tree to those observations *not* in fold iCV
tree1 <- rpart(wave4dropout~ses,

method="anova",
exclude the 10% held out
data=subset(nels0, iFold!=iCV),
weights=nels0$F4QWT[iFold!=iCV],

25

control=rpart.control(maxdepth=iDepth, cp=0.0, xval=0))

predict for the held out 10%
nels0$yPred[iFold==iCV] <- nels0 |>
filter(iFold==iCV) |>
predict(tree1, newdata = _)

}
mseCV[iDepth+1] <- nels0 |>

summarize(weighted.mean((wave4dropout - yPred)^2, F4QWT)) |>
pull()

}

Now let’s have a look at the results and assess what tree depth minimizes mean squared
error.

plot(0:10, mseCV, xlab="Tree depth", ylab="10-fold CV MSE",
pch=19)

0 2 4 6 8 10

0.
05

4
0.

05
8

0.
06

2

Tree depth

10
−

fo
ld

 C
V

 M
S

E

Figure 20: 10-fold cross-validation predicting dropout from SES

Having determined that a tree of depth 2 is best, let’s fit a tree to the entire dataset limiting
the depth to 2.

tree1 <- rpart(wave4dropout~ses,
method="anova",
data=nels0, # using entire dataset here
weights=F4QWT,

26

control=rpart.control(maxdepth=2,
cp=0.0, xval=0))

par(xpd=NA)
plot(tree1, uniform=TRUE, compress=TRUE)
text(tree1, minlength = 20)

|ses>=−1.006

ses>=−0.1875 ses>=−1.494

0.01475 0.07532 0.1688 0.3789

Figure 21: Decision tree selected using 10-fold cross-validation to predict dropout from SES

And let’s see what the shape of this model is in how it relates ses to wave4dropout.

Trees fit piecewise constant functions
yPred <- predict(tree1, newdata=nels0)
plot(nels0$ses, yPred,

xlab="SES", ylab="Dropout probability")
abline(v=tree1$splits[,"index"], col="grey")

−3 −2 −1 0 1 2

0.
1

0.
2

0.
3

SES

D
ro

po
ut

 p
ro

ba
bi

lit
y

Figure 22: Predicted probability of dropout from a tree of depth 2

27

Recall that when we used a knn model, we got a shape that had a similar pattern: high rate
of dropout with low SES with a decreasing dropout rate as SES increased, with evidence of
threshold and saturation effects.

Fortunately, rpart() has built in functionality to do cross-validation. By default, the param-
eter xval is set to 10, but you can increase it or decrease it. Ten is by far the most common
choice. Let’s test this out using two student features this time around.

Again, as a first step I set the random number generator seed. This is because rpart() will
use the random number generator to conduct the 10-fold cross-validation. Setting the random
number generator seed will produce the same results if we run the code again with the same
seed.

set.seed(20240214)
tree1 <- rpart(wave4dropout~ses+famIncome,

method="anova",
data=nels0,
weights=nels0$F4QWT,
control=rpart.control(cp=0.001, xval=10))

plotcp() shows a plot of the relationship between the complexity parameter, cp, and the
cross-validation error (normalized so that the tree of depth 0 has a loss of 1.0). There is
an equivalence between the complexity parameter and the number of terminal nodes in the
tree, which the plot includes at the top. The plot also adds ±1 standard deviation “whiskers”
around each error estimate.

plotcp(tree1)

28

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

1.
0

1.
4

Inf 0.0074 0.0029 0.002 0.0015 0.0011

1 4 10 14 20 29 37 48 72 78

size of tree

Figure 23: Plot of complexity parameter (or number of terminal nodes) versus the relative
cross-validated error

You can also just get a table showing the same information that is in the plot.

printcp(tree1)

Regression tree:
rpart(formula = wave4dropout ~ ses + famIncome, data = nels0,

weights = nels0$F4QWT, method = "anova", control = rpart.control(cp = 0.001,
xval = 10))

Variables actually used in tree construction:
[1] famIncome ses

Root node error: 7.3193/11381 = 0.00064311

n= 11381

CP nsplit rel error xerror xstd
1 0.0702856 0 1.00000 1.00088 0.32519
2 0.0195618 1 0.92971 0.96542 0.30148
3 0.0128936 2 0.91015 0.93521 0.29285

29

4 0.0119385 3 0.89726 0.93584 0.29265
5 0.0078416 4 0.88532 0.93422 0.29081
6 0.0070295 6 0.86964 1.01972 0.30191
7 0.0055358 9 0.84855 1.03058 0.30483
8 0.0041741 10 0.84301 1.03366 0.30586
9 0.0040727 11 0.83884 1.03807 0.30598
10 0.0040471 12 0.83477 1.04733 0.30822
11 0.0037835 13 0.83072 1.04559 0.30827
12 0.0030054 15 0.82315 1.04138 0.30711
13 0.0028358 16 0.82015 1.04388 0.30694
14 0.0027899 17 0.81731 1.04311 0.30697
15 0.0027203 19 0.81173 1.04315 0.30696
16 0.0026523 25 0.79541 1.04441 0.30716
17 0.0022532 26 0.79276 1.04380 0.30772
18 0.0022413 27 0.79050 1.05026 0.30841
19 0.0020084 28 0.78826 1.05239 0.30920
20 0.0019737 31 0.78224 1.05666 0.31008
21 0.0019389 32 0.78026 1.05690 0.31004
22 0.0019042 33 0.77833 1.05827 0.31034
23 0.0018545 36 0.77261 1.06101 0.31065
24 0.0017236 38 0.76890 1.06816 0.31185
25 0.0016473 39 0.76718 1.06601 0.31137
26 0.0014097 41 0.76389 1.07831 0.31309
27 0.0013250 47 0.75384 1.09819 0.31579
28 0.0013236 58 0.73434 1.09877 0.31590
29 0.0013097 61 0.73037 1.09878 0.31592
30 0.0012880 64 0.72644 1.10464 0.31688
31 0.0011600 71 0.71647 1.10593 0.31702
32 0.0011531 72 0.71531 1.10708 0.31715
33 0.0011088 73 0.71415 1.10611 0.31712
34 0.0011080 75 0.71194 1.10616 0.31712
35 0.0010958 77 0.70972 1.10667 0.31712
36 0.0010886 78 0.70862 1.10667 0.31712
37 0.0010327 81 0.70536 1.11010 0.31733
38 0.0010000 82 0.70433 1.10843 0.31721

So let’s extract the optimal value of cp and reduce the tree, using prune(), so that the tree
size matches the one with the best cross-validated error. It is more efficient to prune back the
larger tree than to refit the tree.

tree2 <- prune(tree1, cp = bestCP(tree1))

30

par(xpd=NA)
plot(tree2, uniform=TRUE, compress=TRUE)
text(tree2, minlength = 20, cex=0.7)

|
ses>=−1.006

ses>=−0.1875 ses>=−1.494

famIncome=None,<$1k,$1k−$3k,$3k−$5k,$5k−$7.5k

0.01475 0.07532 0.1688

0.316 0.6921

Figure 24: Decision tree selected using rpart’s 10-fold cross-validation to predict dropout from
SES and family income

Note that this tree is similar to the one we saw earlier. This time around we included family
income and used 10-fold cross-validation to arrive at the optimal tree.

Let’s push this a little further using more student features.

set.seed(20240214)
tree1 <- rpart(wave4dropout~typeSchool+urbanicity+region+pctMinor+pctFreeLunch+

female+race+ses+parentEd+famSize+famStruct+parMarital+
famIncome+langHome,

method="anova",
data=nels0,
weights=nels0$F4QWT,
control=rpart.control(cp=0.001, xval=10))

Let’s get the information on how the 10-fold cross-validation evaluates the different choices for
cp.

plotcp(tree1)

31

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

1.
0

1.
4

Inf 0.0082 0.0038 0.0025 0.0019 0.0014 0.001

1 4 7 20 24 34 41 49 56 79 89 98 112

size of tree

Figure 25: Plot of complexity parameter (or number of terminal nodes) versus the relative
cross-validated error for tree with many student features

Again, we will use the value of cp that gets us the lowest cross-validated error, prune the tree
back to that size, and see what it looks like.

tree2 <- prune(tree1, cp = bestCP(tree1))
par(xpd=NA)
plot(tree2, uniform=TRUE, compress=TRUE)
text(tree2, minlength = 20)

|ses>=−1.006

ses>=−1.494

famStruct=Mom,Mom & Dad,Other

0.03624

0.1688

0.2952 0.7611

Figure 26: Decision tree selected using rpart’s 10-fold cross-validation to predict dropout from
all available features

32

Here we learn something potentially interesting. For low SES there is a high dropout risk, but
that risk seems to be reduced if the family structure includes mom, mom and dad, or another
relative (not dad alone, not mom and step-dad, not dad and step-mom).

8 Summary

We explored the principles and applications of classification and regression trees, focusing on
their versatility in handling prediction problems of different kinds, such as having continuous
or discrete outcomes and having continuous or categorical features.

1. We learned how trees partition data into meaningful subgroups to optimize predictive
accuracy for both classification and regression problems

2. Using the glass and NELS88 examples, we went step-by-step through creation and eval-
uation of decision trees, emphasizing their interpretability and the trade-offs between
depth and performance

3. Selecting the optimal tree size is a critical part of decision tree models. The optimal tree
size balances bias and variance. Cross-validation is the key method for figuring out how
much to prune overly complex trees, ensuring generalization to unseen or future cases

The final thing you should know about decision trees is that they are not very good at pre-
dicting. They are essentially never the best method for getting good predictive performance.
However, trees provide a foundation for advanced ensemble methods like gradient boosting,
which we will study later. Boosting builds upon the strengths of decision trees while mitigating
limitations such as overfitting and lack of smoothness

Hastie, T., R. Tibshirani, and J. H. Friedman. 2001. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag.

33

	Introduction to regression trees
	Introduction to classification trees
	Tree size and cross-validation
	Cross-validation

	Analysis of the age at death data using rpart()
	Analysis of the glass data - a classification problem
	Other topics
	CART on the NELS88 data
	Practice finding the first split ``by hand''
	Using rpart to predict dropout
	Using 10-fold cross-validation to select the tree size

	Summary

