
L4 Differential calculus review
Greg Ridgeway

2025-03-31

Table of contents

1 Properties of derivatives 1
1.1 Exercises . 2

2 Optimization 2
2.1 Quadratic . 3
2.2 Minimize squared differences with three values 3
2.3 Minimize squared differences with 𝑛 values . 4
2.4 Estimating a probability . 4
2.5 Exercises . 5

3 Gradient descent 5
3.1 Taylor series and Newton’s method . 7
3.2 Derivatives of multivariate functions . 9
3.3 Multivariate gradient descent . 11

4 Summary 11

1 Properties of derivatives

The derivative measures the slope of the line tangent to the curve 𝑓(𝑥) at 𝑥. There are a lot
of online derivative calculators that will grind out the derivatives should you need to compute
one. Nevertheless, it will be valuable to have some of their basic properties on hand. We will
use derivatives a lot when optimizing machine learning methods.

𝑑
𝑑𝑥𝑓(𝑥) = lim

𝛿→0
𝑓(𝑥 + 𝛿) − 𝑓(𝑥)

𝛿

1

𝑑
𝑑𝑥𝑐 = 0

𝑑
𝑑𝑥𝑥𝑛 = 𝑛𝑥𝑛−1

𝑑
𝑑𝑥𝑒𝑥 = 𝑒𝑥

𝑑
𝑑𝑥 log(𝑥) = 1

𝑥
𝑑

𝑑𝑥𝑐𝑓(𝑥) = 𝑐 𝑑
𝑑𝑥𝑓(𝑥)

𝑑
𝑑𝑥(𝑓(𝑥) + 𝑔(𝑥)) = 𝑑

𝑑𝑥𝑓(𝑥) + 𝑑
𝑑𝑥𝑔(𝑥)

𝑑
𝑑𝑥𝑓(𝑥)𝑔(𝑥) = 𝑓(𝑥) 𝑑

𝑑𝑥𝑔(𝑥) + 𝑔(𝑥) 𝑑
𝑑𝑥𝑓(𝑥) (Product rule)

𝑑
𝑑𝑥

𝑓(𝑥)
𝑔(𝑥) = 𝑔(𝑥) 𝑑

𝑑𝑥𝑓(𝑥) − 𝑓(𝑥) 𝑑
𝑑𝑥𝑔(𝑥)

𝑔(𝑥)2 (Quotient rule)

𝑑
𝑑𝑥𝑓(𝑔(𝑥)) = 𝑑

𝑑𝑔𝑓(𝑔) × 𝑑
𝑑𝑥𝑔(𝑥) (Chain rule)

1.1 Exercises

1. Example: Compute 𝑑
𝑑𝛽 (𝑦 − 𝛽)2

Answer: Use the chain rule where 𝑓(𝑔) = 𝑔2 and 𝑔(𝛽) = 𝑦 − 𝛽.

𝑑
𝑑𝛽 (𝑦 − 𝛽)2 = 2(𝑦 − 𝛽)(−1)

2. Compute 𝑑
𝑑𝛽 ((𝑦1 − 𝛽)2 + (𝑦2 − 𝛽)2 + (𝑦3 − 𝛽)2)

3. Compute 𝑑
𝑑𝛽 ∑𝑛

𝑖=1(𝑦𝑖 − 𝛽)2

4. Compute 𝑑
𝑑𝑝 log(𝑝) + log(1 − 𝑝)

5. Compute 𝑑
𝑑𝑝𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)

6. Compute 𝑑
𝑑𝑥 |𝑥| (Hint: draw a picture of 𝑓(𝑥) = |𝑥|)

7. Compute 𝑑
𝑑𝑥 |𝑎 + 𝑏𝑥|

8. Compute 𝑑
𝑑𝑥

1
1+𝑒−𝑥

2 Optimization

For smooth functions, 𝑓(𝑥), local minima/maxima solve

𝑑
𝑑𝑥𝑓(𝑥) = 0

2

The second derivatives help us determine whether a local extreme value is a maximum or a
minimum.

𝑑2

𝑑𝑥2 𝑓(𝑥max) < 0
𝑑2

𝑑𝑥2 𝑓(𝑥min) > 0

2.1 Quadratic

Find the minimum/maximum for the 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.

𝑑
𝑑𝑥𝑓(𝑥) = 2𝑎𝑥 + 𝑏
2𝑎 ̂𝑥 + 𝑏 = 0

̂𝑥 = − 𝑏
2𝑎

Is it a maximum or a minimum?

𝑑2

𝑑𝑥2 𝑓(𝑥) = 2𝑎

It is a maximum if 𝑎 < 0 and a minimum if 𝑎 > 0.

2.2 Minimize squared differences with three values

Assume we have three numbers, 𝑥1, 𝑥2, 𝑥3. What value of 𝜇 minimizes

𝐽(𝜇) = (𝑥1 − 𝜇)2 + (𝑥2 − 𝜇)2 + (𝑥3 − 𝜇)2

𝐽 ′(𝜇) = 2(𝑥1 − 𝜇)(−1) + 2(𝑥2 − 𝜇)(−1) + 2(𝑥3 − 𝜇)(−1)
𝐽 ′(̂𝜇) = 0

2(𝑥1 − ̂𝜇)(−1) + 2(𝑥2 − ̂𝜇)(−1) + 2(𝑥3 − ̂𝜇)(−1) = 0
(𝑥1 − ̂𝜇) + (𝑥2 − ̂𝜇) + (𝑥3 − ̂𝜇) = 0

𝑥1 + 𝑥2 + 𝑥3 − 3 ̂𝜇 = 0
̂𝜇 = 𝑥1 + 𝑥2 + 𝑥3

3

3

2.3 Minimize squared differences with 𝑛 values

Assume we have numbers, 𝑥1, … , 𝑥𝑛. What value or 𝜇 minimizes

𝐽(𝜇) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝑑
𝑑𝜇𝐽(𝜇) = 𝑑

𝑑𝜇
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

=
𝑛

∑
𝑖=1

𝑑
𝑑𝜇 ((𝑥𝑖 − 𝜇)2)

=
𝑛

∑
𝑖=1

2(𝑥𝑖 − 𝜇)(−1)

𝑑
𝑑𝜇𝐽(𝜇)∣

�̂�
= 0

𝑛
∑
𝑖=1

2(𝑥𝑖 − ̂𝜇)(−1) = 0

−2
𝑛

∑
𝑖=1

(𝑥𝑖 − ̂𝜇) = 0
𝑛

∑
𝑖=1

𝑥𝑖 − 𝑛 ̂𝜇 = 0

̂𝜇 = ∑𝑛
𝑖=1 𝑥𝑖
𝑛

2.4 Estimating a probability

We have random variables 𝑌1, … , 𝑌𝑛 that are all either 0 or 1. They are all independent and
have the same probability of equaling 1, 𝑃(𝑌𝑖 = 1) = 𝑝. These are commonly called Bernoulli
random variables. The probability function for Bernoulli random variable is 𝑃(𝑌 = 𝑦) =
𝑝𝑦(1 − 𝑝)1−𝑦.

If 𝑝 is fixed but unknown, what is the probability of observing the sequence 𝑦1, … , 𝑦𝑛? This
is known as the likelihood function for 𝑝.

𝐿(𝑝) = 𝑃(𝑌1 = 𝑦1, … , 𝑌𝑛 = 𝑦𝑛)
= 𝑃(𝑌1 = 𝑦1) ⋯ 𝑃(𝑌𝑛 = 𝑦𝑛)
= 𝑝𝑦1(1 − 𝑝)1−𝑦1 ⋯ 𝑝𝑦𝑛(1 − 𝑝)1−𝑦𝑛

= 𝑝𝑦1+…+𝑦𝑛(1 − 𝑝)1−𝑦1+…+1−𝑦𝑛

= 𝑝∑ 𝑦𝑖(1 − 𝑝)𝑛−∑ 𝑦𝑖

4

This function is a little difficult to optimize. Conveniently, if ̂𝑝 optimizes 𝐿(𝑝) then ̂𝑝 will also
optimize log 𝐿(𝑝) = ℓ(𝑝).

ℓ(𝑝) = log 𝐿(𝑝)
= log (𝑝∑ 𝑦𝑖(1 − 𝑝)𝑛−∑ 𝑦𝑖)
= (∑ 𝑦𝑖) log(𝑝) + (𝑛 − ∑ 𝑦𝑖) log(1 − 𝑝)

ℓ′(𝑝) = (∑ 𝑦𝑖)
1
𝑝 − (𝑛 − ∑ 𝑦𝑖)

1
1 − 𝑝

Find ̂𝑝 that solves ℓ′(𝑝) = 0.

0 = ℓ′(̂𝑝)

= (∑ 𝑦𝑖)
1
̂𝑝 − (𝑛 − ∑ 𝑦𝑖)

1
1 − ̂𝑝

= (∑ 𝑦𝑖) (1 − ̂𝑝) − (𝑛 − ∑ 𝑦𝑖) ̂𝑝
= (∑ 𝑦𝑖) − ̂𝑝 (∑ 𝑦𝑖) − 𝑛 ̂𝑝 + (∑ 𝑦𝑖) ̂𝑝

̂𝑝 = ∑ 𝑦𝑖
𝑛

This shows that the maximum likelihood estimator for 𝑝 is the sample mean of the 𝑦𝑖s, the
same as the commonsense estimate that you would have used.

2.5 Exercises

1. Find ̂𝑥 that optimizes 𝑓(𝑥) = 2𝑥 + 200
𝑥 . Is it a maximum or a minimum?

2. Find ̂𝑥 that optimizes 𝑓(𝑥) = log(𝑥) + log(1 − 𝑥) + 3. Is it a maximum or a minimum?
3. Find ̂𝑡 that optimizes 𝑓(𝑥) = 100 + 800𝑡

𝑡2+90000 . Is it a maximum or a minimum?
4. Find ̂𝑝 that optimizes ℓ(𝑝) = 6 log(𝑝) + 10 log(1 − 𝑝). Is it a maximum or a minimum?

3 Gradient descent

Often we will not be able to directly solve 𝑑
𝑑𝑥𝑓(𝑥) = 0. The best we can do is figure out how

to move a guess for the optimal value of 𝑥 toward the optimal value. Let’s simulate some data
where 𝑥 are a bunch of random standard normal values and 𝑦 = 1

1+exp(−3𝑥) and we will let 𝐽
be squared error.

x <- rnorm(100)
y <- 1/(1+exp(-3*x))

squared error

5

J <- function(b, x, y)
{
yhat <- 1/(1+exp(-b*x))
return(sum((y-yhat)^2))

}

derivative of J with respect to b
dJ <- function(b, x, y)
{
yhat <- 1/(1+exp(-b*x))
return(sum(-2*(y-yhat)*yhat*(1-yhat)*x))

}

b <- seq(0,20, length.out=100)
J0 <- sapply(b, function(beta0) J(beta0,x,y))

plot(b,J0, type="l", xlab=expression(hat(beta)), ylab=expression(J(hat(beta))))
points(c(1,6),c(J(1,x,y),J(6,x,y)))
curve(dJ(1,x,y)*(b-1) + J(1,x,y), add = TRUE, col = 'blue', xname="b",

from=0,to=1.6)
curve(dJ(6,x,y)*(b-6) + J(6,x,y), add = TRUE, col = 'blue', xname="b",

from=2,to=10)

0 5 10 15 20

0
4

8
12

β̂

J(
β̂)

Figure 1: An example 𝐽(𝛽) showing tangent lines at two points

Consider Figure 1. Here we have a loss function that has its minimum around ̂𝛽 = 3 (as it
should since we simulated it to be so). If we evaluate the derivative at ̂𝛽 = 6, then we get a

6

positive slope, telling us that the optimal 𝛽 is smaller than 6. If we evaluate the derivative at
̂𝛽 = 1, then we get a negative slope, telling us that the optimal ̂𝛽 is larger.

This suggests an optimization process that iteratively adjusts our guess for the optimal ̂𝛽 as

̂𝛽 ← ̂𝛽 − 𝜆𝐽 ′(̂𝛽)

where 𝜆 is a small value representing a “step size” or a “learning rate”.

3.1 Taylor series and Newton’s method

For any well-behaved function (smooth, with derivatives), Taylor series approximations can
come in handy.

Theorem 3.1 (Taylor’s Theorem).

𝐽(𝑥) = 𝐽(𝑥0) + 𝐽 ′(𝑥0)(𝑥 − 𝑥0) + 1
2𝐽″(𝑥0)(𝑥 − 𝑥0)2 + … + 1

𝑛!𝐽
(𝑛)(𝑥0)(𝑥 − 𝑥0)𝑛 + …

Typically, we will just use the series up to the quadratic term to approximate 𝐽s that are hard
to analyze otherwise. Let’s say that we have a 𝐽(𝑥) that we want to optimize, but our algebra
tricks do not help us figure out its optimal value. A quadratic Taylor series approximation
is

𝐽(𝑥) ≈ 𝐽(𝑥0) + 𝐽 ′(𝑥0)(𝑥 − 𝑥0) + 1
2𝐽″(𝑥0)(𝑥 − 𝑥0)2

If we have a starting value, 𝑥0, then we can optimize the right-hand side to find a new candidate
for the optimal value. If we take a derivative with respect to 𝑥 (not 𝑥0!) we arrive at

𝐽 ′(𝑥) ≈ 𝐽 ′(𝑥0) + 𝐽″(𝑥0)(𝑥 − 𝑥0)

Now let’s find an 𝑥 that optimizes this expression.

𝐽 ′(𝑥0) + 𝐽″(𝑥0)(̂𝑥 − 𝑥0) = 0

̂𝑥 = 𝑥0 − 𝐽 ′(𝑥0)
𝐽″(𝑥0)

(1)

This implies that if we have a guess, 𝑥0, for the optimal value, then we should be able to get
a better guess by calculating (1). We will need to repeat this several times until it converges
on a final answer. This is known as Newton’s method.

7

Example In a previous exercise we optimized ℓ(𝑝) = 6 log(𝑝) + 10 log(1 − 𝑝) directly. Let’s
pretend it was too hard and try Newton’s method on this one instead.

ℓ(𝑝) = 6 log(𝑝) + 10 log(1 − 𝑝)

ℓ′(𝑝) = 6
𝑝 − 10

1 − 𝑝
ℓ″(𝑝) = − 6

𝑝2 − 10
(1 − 𝑝)2

̂𝑝 = 𝑝0 − ℓ′(𝑝0)
ℓ″(𝑝0)

= 𝑝0 −
6

𝑝0
− 10

1−𝑝0

− 6
𝑝2

0
− 10

(1−𝑝0)2

= 𝑝0 + 𝑝0(1 − 𝑝0)(3 − 8𝑝0)
3 − 6𝑝0 + 8𝑝2

0

There are plenty of examples where Newton’s method does not work well (slow to converge)
or at all (diverges or converges to a local maximum/minimum). For example, if we started
with 𝑝0 = 0 or 𝑝0 = 1, then for this problem ̂𝑝 would get stuck at 0 or 1 and never move to a
better value. Also note that if we started at 𝑝0 = 3

8 then it also does not change, but that is
because 3

8 is the right answer!

Running this in R shows that it converges to the exact answer in just a few steps

p <- 0.1
newton iterations
for(i in 1:6)
{
p <- p + p*(1-p)*(3-8*p)/(3-6*p+8*p^2)
print(p)

}

[1] 0.1798387
[1] 0.2854885
[1] 0.3608183
[1] 0.3747613
[1] 0.3749999
[1] 0.375

R has built-in optimization functions that you can use for any similar optimization problem.
You just need to specify the function, the first derivative (also called the gradient), and the
second derivative (also called the Hessian), and then pass those functions to nlm(). Note
that nlm() only solves minimization problems. So, if you have a maximization problem, just
multiply all your functions and derivatives by -1 to make it a minimization problem.

8

f <- function(p)
{
res <- -(6*log(p)+10*log(1-p))
attr(res, "gradient") <- -(6/p - 10/(1-p))
attr(res, "hessian") <- 6/p^2 + 10/(1-p)^2
return(res)

}
nlm(f, 0.1)

$minimum
[1] 10.58501

$estimate
[1] 0.3749999

$gradient
[1] -4.155613e-06

$code
[1] 1

$iterations
[1] 5

3.2 Derivatives of multivariate functions

Machine learning models never have a single parameter. The latest ones in the news have
trillions of parameters. We will end up optimizing functions of many parameters, so we need
some tools to compute derivatives of functions with many parameters.

If 𝐽(𝛼, 𝛽) then there are two partial derivatives

𝜕
𝜕𝛼𝐽(𝛼, 𝛽) = 𝑑𝐽

𝑑𝛼∣
𝛽

𝜕
𝜕𝛽 𝐽(𝛼, 𝛽) = 𝑑𝐽

𝑑𝛽 ∣
𝛼

In each of these, the parameter that is not the focus of the derivative is treated as a fixed
constant.

We will encounter models with many parameters with derivatives requiring a rather deep level
of using the chain rule, especially when we get to backpropagation in neural networks. For

9

example,

𝐽(𝛽0, 𝛽1, … , 𝛽𝑑) =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

̂𝑦𝑖 = 1
1 + 𝑒−𝑧𝑖

𝑧𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + … + 𝛽𝑑𝑥𝑑𝑖

To figure out the “direction” to move 𝛽 in order to optimize 𝐽 we need to work through several
levels of derivatives.

𝜕𝐽
𝜕 ̂𝑦𝑖

= −2(𝑦𝑖 − ̂𝑦𝑖)

𝜕 ̂𝑦𝑖
𝜕𝑧𝑖

= 𝑒−𝑧𝑖

(1 + 𝑒−𝑧𝑖)2

= 1
1 + 𝑒−𝑧𝑖

𝑒−𝑧𝑖

1 + 𝑒−𝑧𝑖

= 1
1 + 𝑒−𝑧𝑖

1 + 𝑒−𝑧𝑖 − 1
1 + 𝑒−𝑧𝑖

= 1
1 + 𝑒−𝑧𝑖

(1 + 𝑒−𝑧𝑖

1 + 𝑒−𝑧𝑖
− 1

1 + 𝑒−𝑧𝑖
)

= 1
1 + 𝑒−𝑧𝑖

(1 − 1
1 + 𝑒−𝑧𝑖

)

= ̂𝑦𝑖(1 − ̂𝑦𝑖)
𝜕𝑧𝑖
𝜕𝛽𝑗

= 𝑥𝑗𝑖

If we want to know how changes in a particular 𝛽𝑗 change the value of 𝐽 then we chain all the
derivatives together.

𝜕𝐽
𝜕𝛽𝑗

= 𝜕𝐽
𝜕 ̂𝑦1

𝜕 ̂𝑦1
𝜕𝑧1

𝜕𝑧1
𝜕𝛽𝑗

+ … + 𝜕𝐽
𝜕 ̂𝑦𝑛

𝜕 ̂𝑦𝑛
𝜕𝑧𝑛

𝜕𝑧𝑛
𝜕𝛽𝑗

=
𝑛

∑
𝑖=1

−2(𝑦𝑖 − ̂𝑦𝑖) ̂𝑦𝑖(1 − ̂𝑦𝑖)𝑥𝑗𝑖

The gradient is the collection of derivatives assembled into a single vector and is usually
denoted as ∇𝐽 (spoken as “gradient of 𝐽” or “del 𝐽”).

∇𝐽 = ⎡
⎢
⎣

𝜕𝐽
𝜕𝛽0
⋮

𝜕𝐽
𝜕𝛽𝑑

⎤
⎥
⎦

10

3.3 Multivariate gradient descent

The gradient “points” in the direction that we need to move our current choice of 𝛽 to optimize
𝐽(𝛽). That is, if we have a current guess for ̂𝛽, then we can find an improved guess (one that
makes 𝐽(𝛽) even smaller), by adjusting our guess as

̂𝛽 ← ̂𝛽 − 𝜆 ⎡
⎢
⎣

𝜕𝐽
𝜕𝛽0
⋮

𝜕𝐽
𝜕𝛽𝑑

⎤
⎥
⎦

= ̂𝛽 − 𝜆∇𝐽

for some 𝜆 that is sufficiently small.

We will get more into this when we pick up some linear algebra skills and matrix derivatives.

4 Summary

We have complete a quick review of differential calculus concepts essential for understanding
optimization and machine learning algorithms.

1. Properties of Derivatives:

• Important derivative rules (power rule, product rule, quotient rule, chain rule)
• Analyzed and optimized functions

2. Optimization:

• Found local maxima and minima using first and second derivatives
• Solved common optimization problems (minimizing squared differences, estimating

probabilities for Bernoulli random variables)

3. Gradient Descent:

• Reviewed Taylor series approximations for analyzing complex functions
• Used gradient descent as an iterative optimization method for finding minima when

direct solutions are infeasible

4. Multivariate Gradient Descent:

• Extended calculus principles to multivariate functions, introducing partial deriva-
tives and gradients

• Introduced gradient descent for multivariate functions

11

One important innovation in recent decades is efficient “auto-differentiation” algorithms, “au-
todiff” for short. The methods can take computer code that evaluates a model’s performance
and automatically write additional code to compute the gradients. These autodiff methods
have become essential in scientific computing (such as Hamiltonian Markov Chain integra-
tion) and in learning neural networks. Common neural network software, like TensorFlow and
PyTorch, rely on autodiff methods to efficiently compute gradients necessary for optimizing
neural networks. Advances have been particularly large on using GPUs (graphical processing
units) to run autodiff methods.

12

	Properties of derivatives
	Exercises

	Optimization
	Quadratic
	Minimize squared differences with three values
	Minimize squared differences with n values
	Estimating a probability
	Exercises

	Gradient descent
	Taylor series and Newton's method
	Derivatives of multivariate functions
	Multivariate gradient descent

	Summary

