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1 Introduction

Consider the aim of wanting to compute the probability that an individual is likely to reoffend
(perhaps violently) during some period (e.g., while awaiting trial, in consideration for parole,
or when setting probation terms). In statistical notation, this is 𝑃(𝑌 = 1|x), where 𝑌 is the
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indicator for recidivism, and x is the vector of features associated with the subject. Bayes’
theorem states that:

𝑃(𝑌 = 1|x) = 𝑃(x|𝑌 = 1)𝑃(𝑌 = 1)
𝑃(x)

It is convenient to rewrite the naïve Bayes classifier as the odds that 𝑌 = 1:

𝑃 (𝑌 = 1|x)
𝑃 (𝑌 = 0|x) =

𝑃(x|𝑌 =1)𝑃(𝑌 =1)
𝑃(x)

𝑃(x|𝑌 =0)𝑃(𝑌 =0)
𝑃(x)

= 𝑃(x|𝑌 = 1)𝑃(𝑌 = 1)
𝑃(x|𝑌 = 0)𝑃(𝑌 = 0)

This says that we need to know the rate at which recidivism occurs in the population, 𝑃(𝑌 = 1),
and how often it does not occur, 𝑃(𝑌 = 0). We also need the probability that a recidivist has
the set of features x, and the probability that a non-recidivist has features x.

The difficulty in implementation occurs when the dimension of x is large. In that case, the
naïve Bayes classifier has seen widespread use. It forms the basis of the system described in
Spiegelhalter and Knill-Jones (1984). The naïve Bayes assumption is that

𝑃(x|𝑌 = 𝑦) = 𝑃(𝑥1|𝑌 = 𝑦) ⋯ 𝑃(𝑥𝑑|𝑌 = 𝑦)
In other words, the components of the feature vector x are independent given 𝑦. For example,
the assumption says that given that a person recidivates, knowing that they were being held on
a violent charge gives you no additional information about their employment. Although this
assumption does not always hold, the naïve Bayes model has shown itself to be consistently
robust to violations in the conditional independence assumption.

There are several benefits to using such a model.

• Estimating the components of the model requires a single scan of the dataset
• Prediction for a new subject is linear in the dimension of the feature vector
• The model inferences are transparent through the use of evidence balance sheets. These

devices, explained later, itemize the observed features that have values that favor a
particular decision and in a separate column itemize the observed features that are
against the decision

• Both estimation and prediction can handle missing data without special modifications
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2 Prediction

Prediction for a new subject is efficient. For numerical reasons as well as interpretation, we
often compute the prediction rule on the log-odds scale. On the log-odds scale the prediction
rule is often called the “weight of evidence” (WOE). The following derivation shows that
evidence for 𝑌 accumulates additively on the log-odds scale.

WoE = log 𝑃(𝑌 = 1|x)
𝑃 (𝑌 = 0|x)

= log 𝑃(𝑌 = 1)𝑃(x|𝑌 = 1)
𝑃(𝑌 = 0)𝑃(x|𝑌 = 0)

= log 𝑃(𝑌 = 1)
𝑃(𝑌 = 0) + log 𝑃(x|𝑌 = 1)

𝑃(x|𝑌 = 0)

= log 𝑃(𝑌 = 1)
𝑃(𝑌 = 0) + log 𝑃(𝑥1|𝑌 = 1)

𝑃(𝑥1|𝑌 = 0) + … + log 𝑃(𝑥𝑑|𝑌 = 1)
𝑃(𝑥𝑑|𝑌 = 0)

= 𝑤0 + 𝑤1(𝑥1) + … + 𝑤𝑑(𝑥𝑑)

The 𝑤𝑗 are the weights of evidence described by Good (1965). Madigan, Mosurski, and Almond
(1996) and Becker, Kohavi, and Sommerfield (1997) further discuss and develop the explanatory
strengths of weights of evidence. The prediction rule derivation here shows that the total weight
of evidence is a sum of the weights of evidence of each component. On the log-odds scale, a
positive total weight of evidence equates to 𝑃(𝑌 = 1|x) > 1

2 and a negative total weight of
evidence equates to 𝑃(𝑌 = 1|x) < 1

2 . Computing the prediction requires a sum of 𝑑 + 1
weights each of which can be stored in a lookup table for constant time access. The next
section discusses how to estimate the necessary weights of evidence to utilize this method.

3 Estimation

If we have data then estimation requires a single scan of the dataset. We need to estimate the
prior rate of 𝑌 , 𝑃 (𝑌 = 𝑦), and the conditional probabilities of each of the features, 𝑃(𝑥𝑗|𝑌 = 𝑦).
The usual estimate of 𝑃(𝑌 = 𝑦) is simply the fraction of observations in the dataset for which
𝑌 takes on the value 𝑦, the maximum likelihood estimator for 𝑝.

We can estimate the remaining terms as

̂𝑃 (𝑥𝑗 = 𝑥|𝑌 = 𝑦) = ∑(𝑥𝑖𝑗 = 𝑥)(𝑦𝑖 = 𝑦)
∑(𝑦𝑖 = 𝑦) (1)

When the dataset is small or there are some values of 𝑥 that rarely occur, analysts frequently
use the Laplace-corrected frequency.

̂𝑃 (𝑥𝑗 = 𝑥|𝑌 = 𝑦) = 1 + ∑(𝑥𝑖𝑗 = 𝑥)(𝑦𝑖 = 𝑦)
𝑚𝑗 + ∑(𝑦𝑖 = 𝑦)
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where 𝑚𝑗 is the number of possible values that 𝑥𝑗 can have. For example, if 𝑥𝑗 is a 0/1 variable
then 𝑚𝑗 = 2.

This estimation step is machine learning. As new observations accumulate, we can update the
probabilities in (1), which directly feed into the weights of evidence.

The naïve Bayes classifier is particularly easy to estimate and update. It is certainly the
simplest machine learning approach that we will encounter. It is particularly useful to start
our exploration of machine learning with the naïve Bayes classifier because it sets up the issues
that we will regularly encounter.

Characteristic Naïve Bayes
What is the structure of the
machine learning method?

Additive on the log odds scale

What is the objective? Produce good probabilities of class labels
How does it learn from data? Simple calculation of probabilities like (1)
How computationally difficult is it
to learn from data?

Easy, involving a single scan of the dataset

Is the method interpretable? Yes. Simple addition of weights of evidence
Can it handle different types of
data sources?

Limited to categorical data. Continuous features need
to be discretized. Easily handles missing values

Can it uncover the “true”
relationship?

No. It can only get to a close linear approximation on
the log odds scale

4 Example: NIJ Recidivism Challenge

We will demonstrate the naïve Bayes classifier using data on Georgia parolees. These data were
used as part of the National Institute of Justice’s recidivism prediction challenge. The recidi-
vism outcome, Recidivism_Within_3years takes the value true if the parolee is arrested for
a new felony or misdemeanor crime within three years of the supervision start date. Everyone
in the dataset has been released on parole, but Georgia parole officers need to decide how
much supervision each parolee needs. The parole officers have a number of features about the
parolees that may be informative about who is at risk of reoffending.

We will start by loading some necessary R packages and the dataset.

library(dplyr)
library(tidyr)
library(kableExtra)
datRecid <- read.csv("data/NIJ_s_Recidivism_Challenge_Full_Dataset.csv")
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4.1 Estimating weights of evidence

We compute the prior weight of evidence, 𝑤0, as log 𝑃(𝑌 =1)
𝑃(𝑌 =0) .

w0 <- mean(datRecid$Recidivism_Within_3years=="true")
w0 # P(Y=1)

[1] 0.5768918

w0 <- log(w0/(1-w0))
w0

[1] 0.3100268

Since 𝑤0 is positive, this suggests that without any other information, the evidence indicates
that Georgia parolees are more likely to recidivate than not.

Let’s now compute the weights of evidence for Gender. Since this feature takes on two values,
we will need to compute two weights of evidence, 𝑤Gender(𝑀) = log 𝑃(𝑀|𝑌 =1)

𝑃(𝑀|𝑌 =0) and 𝑤Gender(𝐹) =
log 𝑃(𝐹|𝑌 =1)

𝑃(𝐹|𝑌 =0) .

# 1. create a 2x2 table Y and Gender
wGender <- with(datRecid, table(Recidivism_Within_3years, Gender))
wGender

Gender
Recidivism_Within_3years F M

false 1725 9206
true 1442 13462

# 2. make the rows sum to 1
wGender <- wGender/rowSums(wGender)
wGender

Gender
Recidivism_Within_3years F M

false 0.15780807 0.84219193
true 0.09675255 0.90324745
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# 3. convert to log relative risk, log of 2nd row/1st row
wGender <- log(wGender[2,]/wGender[1,])
wGender

F M
-0.48922286 0.06998861

Knowing that parolee is female decreases the evidence in favor of reoffending, while knowing
a parolee is male slightly increases the evidence for reoffending.

The same calculations we did for Gender we can apply to Age_at_Release.

wAge <- with(datRecid, table(Recidivism_Within_3years, Age_at_Release))
wAge

Age_at_Release
Recidivism_Within_3years 18-22 23-27 28-32 33-37 38-42 43-47 48 or older

false 579 1738 1920 1826 1408 1294 2166
true 1487 3438 3062 2445 1585 1326 1561

wAge <- wAge/rowSums(wAge)
wAge

Age_at_Release
Recidivism_Within_3years 18-22 23-27 28-32 33-37 38-42

false 0.05296862 0.15899735 0.17564724 0.16704785 0.12880798
true 0.09977187 0.23067633 0.20544820 0.16404992 0.10634729

Age_at_Release
Recidivism_Within_3years 43-47 48 or older

false 0.11837892 0.19815204
true 0.08896940 0.10473698

wAge <- log(wAge[2,]/wAge[1,])
wAge

18-22 23-27 28-32 33-37 38-42 43-47
0.6331866 0.3721280 0.1567163 -0.0181095 -0.1916127 -0.2855981

48 or older
-0.6375824
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Generally, we see decreasing risk of reoffending with increasing age at release from prison.

Let’s take a step toward simplifying our code by making a weight of evidence function,

WoE <- function(x,y)
{
w <- table(y, x)
w <- w/rowSums(w)
return( log(w[2,]/w[1,]) )

}

and let’s test it out on Age_at_Release to make sure it works the way we think it is supposed
to work.

WoE(datRecid$Age_at_Release, datRecid$Recidivism_Within_3years)

18-22 23-27 28-32 33-37 38-42 43-47
0.6331866 0.3721280 0.1567163 -0.0181095 -0.1916127 -0.2855981

48 or older
-0.6375824

Now we can turn our WoE() loose on all the columns that interest us.

modNB <- datRecid |>
select(Gender, Age_at_Release, Education_Level,

Prior_Conviction_Episodes_Viol, Prison_Offense, Prison_Years) |>
lapply(WoE, y=datRecid$Recidivism_Within_3years)

modNB

$Gender
F M

-0.48922286 0.06998861

$Age_at_Release
18-22 23-27 28-32 33-37 38-42 43-47

0.6331866 0.3721280 0.1567163 -0.0181095 -0.1916127 -0.2855981
48 or older
-0.6375824

$Education_Level
At least some college High School Diploma Less than HS diploma
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-0.5179387 0.1130289 0.1183575

$Prior_Conviction_Episodes_Viol
false true

-0.06521657 0.13794691

$Prison_Offense
Drug Other Property Violent/Non-Sex

-0.04420648 -0.14859820 0.15214827 0.27648316 -0.15078709
Violent/Sex
-1.08380376

$Prison_Years
1-2 years Greater than 2 to 3 years Less than 1 year
0.1086507 -0.1322365 0.2806216

More than 3 years
-0.4477989

# collect weights into long form
modNB <- data.frame(var=rep(names(modNB), lengths(modNB)),

value=unlist(sapply(modNB, names)),
woe=unlist(modNB),
row.names = NULL)

# add in prior weight of evidence and tidy up
modNB <- data.frame(var="Prior", value=NA, woe=w0) |>
bind_rows(modNB) |>
mutate(value = ifelse(value=="", "NA", value),

woe = round(100*woe))

Table 2 shows the weights of evidence. Note that I have multiplied the weights of evidence by
100 to make them easier to read.

modNB |>
mutate(var = ifelse(duplicated(var), "", var)) |>
kbl() |>
kable_material_opt(lightable_options="striped", full_width = FALSE)

4.2 Evidence balance sheet

A positive 𝑤𝑗(𝑥𝑗) implies that the state of 𝑥𝑗 is evidence in favor of 𝑌 = 1 and a negative
𝑤𝑗(𝑥𝑗) is evidence in favor of 𝑌 = 0. After obtaining the weight of evidence estimates, we can
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Table 2: NIJ Challenge weights of evidence

var value woe
Prior NA 31
Gender F -49

M 7
Age_at_Release 18-22 63

23-27 37
28-32 16
33-37 -2
38-42 -19
43-47 -29
48 or older -64

Education_Level At least some college -52
High School Diploma 11
Less than HS diploma 12

Prior_Conviction_Episodes_Viol false -7
true 14

Prison_Offense NA -4
Drug -15
Other 15
Property 28
Violent/Non-Sex -15
Violent/Sex -108

Prison_Years 1-2 years 11
Greater than 2 to 3 years -13
Less than 1 year 28
More than 3 years -45
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construct an evidence balance sheet for a newly observed subject as described in Spiegelhalter
and Knill-Jones (1984). From the features of the new subject we can assemble those pieces
of features with weights of evidence that favor recidivism and those features associated with
no recidivism. Since the weights are additive, we can simply sum the weight totals for a full
accounting of the evidence bearing on the particular subject. Table 3 shows the weights of
evidence for a specific parolee’s case.

Table 3: Evidence balance sheet

Feature WoE Feature WoE
Prior 31
Offense = Property 28 Education = At least some college -52
Years = 1-2 years 11 Gender = F -49

Age at Release = 38-42 -19
Prior Conviction Viol = false -7

Total positive weight 70 Total negative weight -127
Total weight of evidence -57
Probability = 0.36

The conversion from total weight of evidence to probability is

𝑝 = 1
1 + exp(−WoE/100)

or by the conversion table shown in Table 4.

Table 4: Conversion from probability to total weight of evidence

Probability Total Weight of Evidence
10% -220
20% -139
30% -85
40% -41
50% 0
60% 41
70% 85
80% 139
90% 220

4.3 Prediction

To make a prediction for each parolee, we are going to take each parolee’s data and “pivot” it
into a long form. For example,
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datRecid |>
select(ID, Gender, Age_at_Release, Education_Level,

Prior_Conviction_Episodes_Viol,
Prison_Offense,Prison_Years) |>

pivot_longer(-ID, names_to="var")

# A tibble: 155,010 x 3
ID var value

<int> <chr> <chr>
1 1 Gender M
2 1 Age_at_Release 43-47
3 1 Education_Level At least some college
4 1 Prior_Conviction_Episodes_Viol false
5 1 Prison_Offense Drug
6 1 Prison_Years More than 3 years
7 2 Gender M
8 2 Age_at_Release 33-37
9 2 Education_Level Less than HS diploma
10 2 Prior_Conviction_Episodes_Viol true
# i 155,000 more rows

In this way each row contains one feature for each parolee. Putting it in this form will allow
us to join these features with their associated weights of evidence.

predNBwoe <- datRecid |>
select(ID, Gender, Age_at_Release, Education_Level,

Prior_Conviction_Episodes_Viol,
Prison_Offense,Prison_Years) |>

pivot_longer(-ID, names_to="var") |>
mutate(value = ifelse(value=="", "NA", value)) |>
left_join(modNB, join_by(var, value))

predNBwoe

# A tibble: 155,010 x 4
ID var value woe

<int> <chr> <chr> <dbl>
1 1 Gender M 7
2 1 Age_at_Release 43-47 -29
3 1 Education_Level At least some college -52
4 1 Prior_Conviction_Episodes_Viol false -7
5 1 Prison_Offense Drug -15
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6 1 Prison_Years More than 3 years -45
7 2 Gender M 7
8 2 Age_at_Release 33-37 -2
9 2 Education_Level Less than HS diploma 12
10 2 Prior_Conviction_Episodes_Viol true 14
# i 155,000 more rows

Note that after the left_join() we have the correct weights of evidence for the associated
feature and its value. To make a prediction we just need to add all of the weights of evidence
for each ID plus the prior weight of evidence.

# get predictions
predNB <- predNBwoe |>
group_by(ID) |>
summarize(totalWoE=modNB$woe[1] + sum(woe), # add prior WoE to WoE sum

p=1/(1+exp(-totalWoE/100)))
predNB

# A tibble: 25,835 x 3
ID totalWoE p

<int> <dbl> <dbl>
1 1 -110 0.250
2 2 2 0.505
3 3 -68 0.336
4 4 63 0.652
5 5 58 0.641
6 6 6 0.515
7 7 3 0.507
8 8 16 0.540
9 9 -30 0.426
10 10 17 0.542
# i 25,825 more rows

Here’s some R code assemble an evidence balance sheet for a parolee, here arbitrarily selected
to be ID==40.

# evidence balance sheets
ebs <-
predNBwoe |>
filter(ID==40) |>
mutate(feature=paste0(var,"=",value)) |>
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Feature Weight of evidence Feature Weight of evidence
Prior 31 Education_Level=At least some college -52
Prison_Offense=Property 28 Gender=F -49
Prison_Years=1-2 years 11 Age_at_Release=38-42 -19

Prior_Conviction_Episodes_Viol=false -7
Total positive weight 70 Total negative weight -127

Total weight of evidence -57
Probability = 0.36

select(feature,woe) |>
bind_rows(data.frame(feature="Prior", woe=modNB$woe[1])) |>
arrange(feature!="Prior", desc(abs(woe))) # put Prior at top

posEvidence <- ebs |> filter(woe > 0)
negEvidence <- ebs |> filter(woe <= 0)

maxRows <- max(nrow(posEvidence), nrow(negEvidence))
tab <- data.frame(posVar=rep(NA, maxRows+3),

woeP=NA,
negVar=NA,
woeN=NA)

tab[1:nrow(posEvidence), 1:2] <- posEvidence
tab[1:nrow(negEvidence), 3:4] <- negEvidence
tab[maxRows+1, c(1,3)] <- c("Total positive weight","Total negative weight")
tab[maxRows+1, c(2,4)] <- colSums(tab[,c(2,4)], na.rm=TRUE)
tab[maxRows+2, 3] <- "Total weight of evidence"
tab[maxRows+2, 4] <- sum(tab[maxRows+1,c(2,4)])
tab[maxRows+3, 3] <- "Probability ="
tab[maxRows+3, 4] <- round(1/(1+exp(-tab[maxRows+2,4]/100)), 2)
tab$woeN <- gsub(".00", "", as.character(tab$woeN))
tab[is.na(tab)] <- ""

kbl(tab,
col.names=c("Feature", "Weight of evidence", "Feature", "Weight of evidence"),
row.names = FALSE,
align="lrlr",
digits=0) |>

kable_material_opt(lightable_options="striped", full_width = FALSE)
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5 Missing data

Missing data is common. Even though we may be interested in 20 different pieces of evidence,
for a particular subject we may have information on only three of the features. The naïve
Bayes classifier can still handle such a scenario without modification. For features that are
frequently missing, we may allow that categorical feature to have a missing level and compute
𝑤𝑗(𝑁𝐴) = log 𝑃(𝑥𝑗=𝑁𝐴|𝑌 =1)

𝑃(𝑥𝑗=𝑁𝐴|𝑌 =0) . Otherwise, the naïve Bayes assumption allows us to trivially skip
unobserved features. Let’s say we have 𝑥1, 𝑥2, 𝑥3, but for a particular case 𝑥3 is missing. We
can simply predict using

𝑃(𝑌 = 1|𝑥1, 𝑥2)
𝑃 (𝑌 = 0|𝑥1, 𝑥2) = 𝑃(𝑌 = 1)

𝑃(𝑌 = 0)
𝑃(𝑥1|𝑌 = 1)
𝑃(𝑥1|𝑌 = 0)

𝑃(𝑥2|𝑌 = 1)
𝑃(𝑥2|𝑌 = 0)

The naïve Bayes classifier is unconcerned that 𝑥3 is unavailable.

6 Evaluating performance

Typically, there is no single metric that summarizes the performance of a classifier. This
section will review several of the most common ways to describe a classifier’s performance.

Of fundamental importance is evaluating the classifier on data that was not used in training
the classifier. We will always evaluate “out-of-sample performance,” performance on data
held back from the model fitting process, sometimes called a “validation dataset” or “test
set”. Particularly for more complex machine learning methods, they can become “overfit” to
a training dataset to the point that they do not predict well on a validation dataset.

Previously, we used all of the parolee data to estimate our weights of evidence. In reality, the
dataset is split between a “training” set and a “test” set.

table(datRecid$Training_Sample)

0 1
7807 18028

Let’s start by re-estimating our weights of evidence using only the training dataset and make
predictions based on those weights.

# prior weight of evidence
w0 <- datRecid |>
filter(Training_Sample==1) |>
summarize(w0 = mean(Recidivism_Within_3years=="true"),
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w0 = log(w0/(1-w0))) |>
pull(w0)

modNB <- datRecid |>
filter(Training_Sample==1) |>
select(Gender, Age_at_Release, Education_Level,

Prior_Conviction_Episodes_Viol, Prison_Offense, Prison_Years) |>
lapply(WoE,

y=datRecid$Recidivism_Within_3years[datRecid$Training_Sample==1])

modNB <- data.frame(var="Prior", value=NA, woe=w0) |>
bind_rows(data.frame(var=rep(names(modNB), lengths(modNB)),

value=unlist(sapply(modNB, names)),
woe=unlist(modNB),
row.names = NULL)) |>

mutate(value = ifelse(value=="", "NA", value),
woe = woe)

Here I have not rounded or multiplied the weights of evidence by 100 since now we are going
for precision rather than readability. modNB contains weights of evidence constructed only from
the parolees included in the training dataset. Let’s make predictions on everyone now using
those weights.

predNB <- datRecid |>
select(ID,Gender, Age_at_Release, Education_Level,

Prior_Conviction_Episodes_Viol,
Prison_Offense, Prison_Years) |>

pivot_longer(-ID, names_to="var") |>
mutate(value = ifelse(value=="", "NA", value)) |>
left_join(modNB, join_by(var, value)) |>
group_by(ID) |>
summarize(totalWoE = modNB$woe[modNB$var=="Prior"] +

sum(woe),
p=1/(1+exp(-totalWoE)))

# add predictions to original data for all parolees
datRecid <- datRecid |>
left_join(predNB, join_by(ID==ID))
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6.1 Misclassification rate and misclassification cost

The most straightforward performance measure is the misclassification rate, the fraction of
cases for which the predicted value does not equal the true value.

Misclassification rate

1
𝑛

𝑛
∑
𝑖=1

𝐼(𝑦𝑖 ≠ ̂𝑦𝑖) (2)

Baked into this calculation is some decision on where to set the threshold for predicting ̂𝑦 = 1.
If we decided that ̂𝑦 = 𝐼( ̂𝑝 > 1

2), equivalent to believing that false positives and false negatives
had equal costs, then we could compute the misclassification rate for the Georgia parolee data
as

datRecid |>
group_by(Training_Sample) |>
summarize(misclass=mean((Recidivism_Within_3years=="false" & p>0.5) |

(Recidivism_Within_3years=="true" & p<0.5)))

# A tibble: 2 x 2
Training_Sample misclass

<int> <dbl>
1 0 0.369
2 1 0.364

This breaks down the misclassification rate separately for training data and validation data.
Note that the classification error on the training data is slightly lower than on the validation
data (but really not by much in this example).

We may also compare the false positive and false negative rates. The false positive rate
is the fraction among those who really are 0s, but we in error predict them to be 1s. That is,
by mistake we labeled them as a 1. False negatives are those cases we mistakenly label as a
0. The false negative rate, therefore, is the fraction of cases that are truly 1s that we predict
erroneously to be 0s.

False positive rate

∑𝑛
𝑖=1 𝐼(𝑦𝑖 = 0 ∩ ̂𝑦𝑖 = 1)

∑𝑛
𝑖=1 𝐼(𝑦𝑖 = 0) (3)

This is also known as a “Type I error”
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“Specificity” is 1 − false positive rate

False negative rate

∑𝑛
𝑖=1 𝐼(𝑦𝑖 = 1 ∩ ̂𝑦𝑖 = 0)

∑𝑛
𝑖=1 𝐼(𝑦𝑖 = 1) (4)

This is also known as a “Type II error”
“Sensitivity” or “recall” is 1 − false negative rate

# false positive
datRecid |>
filter(Recidivism_Within_3years=="false") |>
group_by(Training_Sample) |>
summarize(falsePos=mean(p > 0.5))

# A tibble: 2 x 2
Training_Sample falsePos

<int> <dbl>
1 0 0.604
2 1 0.591

# false negative
datRecid |>
filter(Recidivism_Within_3years=="true") |>
group_by(Training_Sample) |>
summarize(falseNeg=mean(p < 0.5))

# A tibble: 2 x 2
Training_Sample falseNeg

<int> <dbl>
1 0 0.195
2 1 0.198

6.2 Receiver Operating Characteristic (ROC)

It is easy to make either the false positive rate or the false negative rate equal to 0. We can
just predict everyone to be a 0 to eliminate all of our false positive errors. Or we can predict
everyone to be 1s and eliminate all of our false negative errors. Clearly, there is a trade-off
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in these two kinds of errors. Reducing one invariably results in increasing the other. The
Receiver Operating Characteristic, or ROC, curve shows this tradeoff.

To construct the ROC curve, we vary the probability threshold used to classify a case as a 1.
For numerous values of the threshold, we compute the false positive rate and the true positive
rate (1-false negative rate). Along the x-axis we plot the false positive rate and along the
y-axis we plot the false negative rate. Figure 1 shows the result. The red dot in Figure 1
corresponds to the decision ̂𝑦 = 𝐼(𝑝 > 0.5), the equal misclassification cost decision rule. The
blue dot in Figure 1 corresponds to the decision ̂𝑦 = 𝐼(𝑝 > 0.25), the equal misclassification
cost decision rule.

# Receiver Operating Characteristic (ROC) plots FPR vs TPR
threshold <- seq(min(datRecid$p), max(datRecid$p),

length=100)
a <- sapply(threshold, function(p0)
{
datRecid |>

filter(Training_Sample==0) |>
group_by(Recidivism_Within_3years) |>
summarize(rate=mean(p>p0)) |>
pull(rate)

})
plot(a[1,], a[2,], type="l", lwd=3,

xlab="False positive rate",
ylab="True positive rate")

abline(0,1)

# mark threshold at 0.5
i <- which.min(abs(threshold-0.5))
points(a[1,i], a[2,i], col="red", pch=19, cex=2)
# mark threshold at 0.5
i <- which.min(abs(threshold-0.25))
points(a[1,i], a[2,i], col="blue", pch=19, cex=2)
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Figure 1: Receiver Operating Characteristic (ROC) curve for the Naïve Bayes classifier. Points
are marked for thresholds 0.5 (red) and 0.25 (blue)

Remember that the false positive rate takes all the parolees who did not reoffend and calcu-
lates the fraction of those the classifier predicted to reoffend (mistakenly labeling them as a
“positive”). The true positive rate takes all the parolees who did reoffend and calculates the
fraction of those the classifier predicted to reoffend (correctly labeling them as a “positive”).

Different machine learning methods can produce different ROC curves. Ideally, we would like
it to be pushed well up into the top left corner, low false positive rate with high true positive
rate.

The Area Under the ROC Curve (AUC) is a common summary measure for overall performance,
rather than judging the classifier’s performance at only one threshold the way misclassification
rate does. It is sometimes called the “concordance index”. AUC turns out to be equal to
the probability that the classifier ranks a random selected case with 𝑦𝑖 = 1 to have higher
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probability than a random selected 𝑦𝑖 = 0 case. We can compute the integral under the ROC
curve numerically using the trapezoid rule.

x <- rev(a[1,])
y <- rev(a[2,])
AUC <- sum( 0.5*(y[-1]+y[-length(y)]) * diff(x) )
AUC

[1] 0.6488289

In R, the pROC package calculates AUC and displays ROC curves. You do not need to compute
it “by hand” as we have done here.

library(pROC)
nbROC <- roc((Recidivism_Within_3years=="true")~p,

data=subset(datRecid, Training_Sample==0))
nbROC$auc

Area under the curve: 0.6512

# note x-axis is specificity, 1-FPR, and labeled from 1 down to 0
plot(nbROC)
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Figure 2: Receiver Operating Characteristic (ROC) produced from the pROC package

6.3 Calibration

If we consider all of the parolees that we predicted to have a 70% chance of reoffending, then
if our probabilities are meaningful 70% of those parolees should reoffend and 30% should not.
Calibration gets at this concept. Are our predicted probabilities meaningful as probabilities?
We will explore this characteristic of our naïve Bayes classifier graphically.

I first create bins for the predicted probabilities, (0.1, 0.2], … , (0.8, 0.9]. For each parolee with
predicted probability of reoffending in (0.1, 0.2] I computed the fraction that actually reof-
fended. As you can see in Figure 3, in reality 20% of the parolees with predicted probabilities
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in this range reoffended. So the calibration of the predicted probabilities in this range is a
little off. The predicted probabilities are a little too low. I repeated this process for each of
the other bins. The eight red dots in Figure 3 show the actual rate of reoffending within each
bin.

datRecid |>
filter(Training_Sample==0) |>
mutate(pCat = cut(p, breaks=(1:9)/10)) |>
filter(!is.na(pCat)) |> # for the few with p<0.1
group_by(pCat) |>
summarize(phat=mean(Recidivism_Within_3years=="true")) |>
mutate(p=0.05+(1:8)/10) |>
plot(phat~p, data=_, pch=16, col="red",

xlim=0:1, ylim=0:1,
xlab="Predicted probability",
ylab="Actual probability")
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Figure 3: Calibration plot, binned to deciles

Binning the predictions into deciles is rather rough, so in Figure 4 I created a blue curve that
is a smooth version of the red dots using natural splines. If the probabilities from the naïve
Bayes classifier were perfectly calibrated, then they would fall along the black diagonal line.
It is not perfectly calibrated, but also the predicted probabilities are off by at most 0.05.

datRecid |>
filter(Training_Sample==0) |>
mutate(pCat = cut(p, breaks=(1:9)/10)) |>
filter(!is.na(pCat)) |> # for the few with p<0.1
group_by(pCat) |>
summarize(phat=mean(Recidivism_Within_3years=="true")) |>
mutate(p=0.05+(1:8)/10) |>
plot(phat~p, data=_, pch=16, col="red",
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xlim=0:1, ylim=0:1,
xlab="Predicted probability",
ylab="Actual probability")

# a smoothed version
library(splines)
calib <- lm((Recidivism_Within_3years=="true")~ns(p,10),

data=subset(datRecid, Training_Sample==0))
p <- seq(min(datRecid$p), max(datRecid$p), length=100)
lines(p,

predict(calib, newdata=data.frame(p=p)),
type="l", lwd=3, col="blue")

# what perfectly calibrated looks like
abline(0,1)
# mark the deciles of the probabilities
rug(quantile(datRecid$p, prob=(0:10)/10))

24



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability

A
ct

ua
l p

ro
ba

bi
lit

y

Figure 4: Calibration plot, smoothed calibration curve

It is possible to calibrate the probabilities by inverting the blue curve. That is, if you want
to know about parolees with a 30% chance of reoffending, then look up 0.30 on the vertical
axis and find the associated predicted probability along the x-axis. This recalibrates the
probabilities so that they match with the observed reoffense rates.

It is trivial to obtain perfectly calibrated predictions. In the dataset, 57.8% of the training
sample parolees reoffended within 3 years. So, predict everyone to reoffend with probability
0.578, a perfectly calibrated probability. Clearly, calibration as a performance measure on
its own is not useful as such a predictive model has no ability to separate parolees who have
higher or lower risk. Like all of the other measures described here, improving performance in
one aspect sometimes decreases performance in another aspect.
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7 The naivebayes package

In practice, you do not need to do all the “hand calculations” we did in the previous sections to
construct the naïve Bayes classifier. Like most methods we will discuss, someone has written
a package that does all the calculations for you. There are actually several packages with
implementations of the naïve Bayes classifier (e1071 and klaR, for example). We will use
the package naivebayes for this class, but you are welcome to experiment with the other
versions.

Let’s start with loading the package.

library(naivebayes)

One feature (bug? quirk? complication?) of naivebayes() is that its predict() function has
trouble handling categorical features variables with a blank ("") category. If you get an error
like this

Error in `[.default`(tab, V, ) : subscript out of bounds

then it is caused by one of your variables having a blank ("") value. So, let’s fix this issue
before we go any further.

datRecid <- datRecid |>
mutate(Prison_Offense=case_match(Prison_Offense,

"" ~ NA,
# "" ~ "Missing", # alternately
.default=Prison_Offense))

Now we can fit the naïve Bayes classifier to our data. Note here that the function allows us to
set laplace=1 so that all probability estimates have a +1 in the numerator and a +2 in the
denominator.

nb1 <- naive_bayes((Recidivism_Within_3years=="true")~Gender+
Age_at_Release+Education_Level+
Prior_Conviction_Episodes_Viol+
Prison_Offense+
Prison_Years,

data=subset(datRecid,Training_Sample==1),
laplace=1)

Inside the nb1, R stores all the required prior probabilities and conditional probabilities. Let’s
explore the model object
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summary(nb1)

================================= Naive Bayes ==================================

- Call: naive_bayes.formula(formula = (Recidivism_Within_3years == "true") ~ Gender + Age_at_Release + Education_Level + Prior_Conviction_Episodes_Viol + Prison_Offense + Prison_Years, data = subset(datRecid, Training_Sample == 1), laplace = 1)
- Laplace: 1
- Classes: 2
- Samples: 18028
- Features: 6
- Conditional distributions:

- Bernoulli: 2
- Categorical: 4

- Prior probabilities:
- FALSE: 0.422
- TRUE: 0.578

--------------------------------------------------------------------------------

nb1$prior

FALSE TRUE
0.4219547 0.5780453

nb1$tables

--------------------------------------------------------------------------------
:: Gender (Bernoulli)
--------------------------------------------------------------------------------

Gender FALSE TRUE
F 0.15862794 0.09709297
M 0.84137206 0.90290703

--------------------------------------------------------------------------------
:: Age_at_Release (Categorical)
--------------------------------------------------------------------------------

Age_at_Release FALSE TRUE
18-22 0.05371684 0.10040276
23-27 0.15826110 0.23091676
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28-32 0.17244550 0.20502493
33-37 0.16627266 0.16407748
38-42 0.12398214 0.10529344
43-47 0.12135540 0.08975834
48 or older 0.20396638 0.10452628

--------------------------------------------------------------------------------
:: Education_Level (Categorical)
--------------------------------------------------------------------------------

Education_Level FALSE TRUE
At least some college 0.2302234 0.1389102
High School Diploma 0.4113009 0.4622026
Less than HS diploma 0.3584757 0.3988872

--------------------------------------------------------------------------------
:: Prior_Conviction_Episodes_Viol (Bernoulli)
--------------------------------------------------------------------------------

Prior_Conviction_Episodes_Viol FALSE TRUE
false 0.7042975 0.6542262
true 0.2957025 0.3457738

--------------------------------------------------------------------------------
:: Prison_Offense (Categorical)
--------------------------------------------------------------------------------

Prison_Offense FALSE TRUE
Drug 0.25086740 0.21522887
Other 0.11132901 0.12951144
Property 0.31482878 0.40845070
Violent/Non-Sex 0.26323729 0.22601232
Violent/Sex 0.05973752 0.02079665

--------------------------------------------------------------------------------
:: Prison_Years (Categorical)
--------------------------------------------------------------------------------

Prison_Years FALSE TRUE
1-2 years 0.2920773 0.3269065
Greater than 2 to 3 years 0.1714624 0.1565468
Less than 1 year 0.2646170 0.3462830
More than 3 years 0.2718434 0.1702638
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--------------------------------------------------------------------------------

nb1$tables$Gender

Gender FALSE TRUE
F 0.15862794 0.09709297
M 0.84137206 0.90290703

tables(nb1, "Gender")

--------------------------------------------------------------------------------
:: Gender (Bernoulli)
--------------------------------------------------------------------------------

Gender FALSE TRUE
F 0.15862794 0.09709297
M 0.84137206 0.90290703

--------------------------------------------------------------------------------

Let’s make some predictions now. You can safely ignore the warning message saying “pre-
dict.naive_bayes(): more features in the newdata are provided as there are probability tables
in the object. Calculation is performed based on features to be found in the tables.” It is just
letting you know that the nb1 model did not use all of the parolee features that are available
in datRecid. We just used six of those features for now.

datRecid$pNBpack <- predict(nb1, newdata=datRecid, type="prob")[,2]

Warning: predict.naive_bayes(): more features in the newdata are provided as
there are probability tables in the object. Calculation is performed based on
features to be found in the tables.

Although we trained nb1 on only the parolees where Training_Sample==1, we are making
predictions for everyone in the dataset, training and test set parolees.

Let’s check that the predicted probabilities are nearly the same
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plot(p~pNBpack, data=datRecid,
xlab="Predictions from naivebayes package",
ylab="Predictions from homemade naïve Bayes")
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Figure 5: Plot showing predicted probabilities from models are the same

We can check the predictive performance of nb1 using all the previous metrics we discussed like
misclassification rate, classification cost, false positive rate, false negative rate, calibration, and
AUC. Let’s say a false negative costs $9,000 and a false positive costs $1,000 (so a classification
threshold at 𝑝 = 0.1). We can compute the classification cost on the test set cases as

# compute the average misclassification cost
datRecid |>
filter(Training_Sample == 0) |> # evaluate only on the test set
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summarize(misclassCost =
mean(9000*(pNBpack<0.1 & Recidivism_Within_3years=="true") +

1000*(pNBpack>0.1 & Recidivism_Within_3years=="false")))

misclassCost
1 427.1807

7.1 naive_bayes() with continuous features

The naïve Bayes classifier is really designed with categorical features in mind. Note that fea-
tures like Prison_Years and Age_at_Release have been discretized into categorical features.
The naive_bayes() function will happily accept continuous features, but then either assumes
that the conditional distribution P(x_j|y) is a normal distribution or, if usekernel=TRUE will
fit a density estimate to the data. It is equivalent to assuming that the associated weight of
evidence is a quadratic function, log 𝑃(𝑥𝑗|𝑦=1)

𝑃(𝑥𝑗|𝑦=0) = 𝑎𝑥2
𝑗 + 𝑏𝑥𝑗 + 𝑐, but the approach to estimating

𝑎, 𝑏, and 𝑐 is not particularly efficient.

For example, we can add Percent_Days_Employed to our naïve Bayes model.

nb2 <- naive_bayes((Recidivism_Within_3years=="true")~Gender+
Age_at_Release+Education_Level+
Prior_Conviction_Episodes_Viol+
Prison_Offense+
Prison_Years +
Percent_Days_Employed,

data=subset(datRecid,Training_Sample==1),
laplace=1)

summary(nb2)

================================= Naive Bayes ==================================

- Call: naive_bayes.formula(formula = (Recidivism_Within_3years == "true") ~ Gender + Age_at_Release + Education_Level + Prior_Conviction_Episodes_Viol + Prison_Offense + Prison_Years + Percent_Days_Employed, data = subset(datRecid, Training_Sample == 1), laplace = 1)
- Laplace: 1
- Classes: 2
- Samples: 18028
- Features: 7
- Conditional distributions:

- Bernoulli: 2
- Categorical: 4
- Gaussian: 1
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- Prior probabilities:
- FALSE: 0.422
- TRUE: 0.578

--------------------------------------------------------------------------------

Note that the summary of the model indicates “Gaussian: 1,” meaning that the model has
assumed that one of the parolee features is normally distributed.

Let’s see the effect of this. I’ll make 99 copies of the first parolee in the dataset. Then I’ll
vary this parolee’s value for Percent_Days_Employed from 0.01 to 0.99. Lastly, we can plot
the relationship.

# 99 copies of row #1, fill Percent_Days_Employed with 0.01, 0.02, ...
a <- datRecid |>
slice(rep(1,99)) |>
mutate(Percent_Days_Employed = row_number()/100)

a$pNorm <- predict(nb2, newdata=a, type="prob")[,2]
# plot predictions on the log odds scale
plot(I(log(pNorm/(1-pNorm))) ~ Percent_Days_Employed, data=a,

type="l", lwd=3, ylim=c(-2,0.1),
ylab="Weight of evidence")
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Figure 6: Weight of evidence function using a Gaussian distribution for 𝑃(𝑥𝑗|𝑦)

The result is nearly a line, but with a little curvature.

With usekernel=TRUE, naive_bayes() allows for more complex (but smooth) relationships
between continuous features and weights of evidence.
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nb2 <- naive_bayes((Recidivism_Within_3years=="true")~Gender+
Age_at_Release+Education_Level+
Prior_Conviction_Episodes_Viol+
Prison_Offense+
Prison_Years +
Percent_Days_Employed,

data=subset(datRecid,Training_Sample==1),
laplace = 1,
usekernel = TRUE)

plot(I(log(pNorm/(1-pNorm))) ~ Percent_Days_Employed, data=a,
type="l", lwd=3, ylim=c(-2,0.1),
ylab="Weight of evidence")

a$pKern <- predict(nb2, newdata=a, type="prob")[,2]
lines(I(log(pKern/(1-pKern))) ~ Percent_Days_Employed, data=a,

lwd=3, col = "orange")
# add tick marks on x-axis marking deciles of Percent_Days_Employed
quantile(datRecid$Percent_Days_Employed,

prob = (0:10)/10,
na.rm = TRUE) |>

jitter() |>
rug()

legend(0.7, 0, legend = c("Normal", "Kernel"),
col= c("black", "orange"),
lwd=7)
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Figure 7: Weight of evidence function using a non-parametric kernel density estimate for
𝑃(𝑥𝑗|𝑦)
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Lastly, we can discretize (chop up) continuous features, transforming them into categorical
features like Age and Prison_Years are in the dataset. The function classIntervals() is a
handy tool for choosing where to set the breaks between categories.

# find good cut points to discretize Percent_Days_Employed
library(classInt)
Percent_Days_EmployedBreaks <-
classIntervals(datRecid$Percent_Days_Employed, style="fisher")

Percent_Days_EmployedBreaks

style: fisher
[0,0.03383389) [0.03383389,0.09712534) [0.09712534,0.1496376)

8456 655 535
[0.1496376,0.2113518) [0.2113518,0.2884017) [0.2884017,0.351383)

606 727 571
[0.351383,0.4144474) [0.4144474,0.4847299) [0.4847299,0.549171)

568 639 597
[0.549171,0.618929) [0.618929,0.6990119) [0.6990119,0.773837)

625 827 912
[0.773837,0.8419868) [0.8419868,0.916053) [0.916053,0.9735658)

908 1252 1268
[0.9735658,1]

6227

# create discretized version of Percent_Days_Employed
datRecid <- datRecid |>
mutate(Percent_Days_Employed_cat =

cut(Percent_Days_Employed,
breaks = Percent_Days_EmployedBreaks$brks))

nb2 <- naive_bayes((Recidivism_Within_3years=="true")~Gender+
Age_at_Release+Education_Level+
Prior_Conviction_Episodes_Viol+
Prison_Offense+
Prison_Years +
Percent_Days_Employed_cat,

data=subset(datRecid,Training_Sample==1),
laplace = 1)

a <- a |>
mutate(Percent_Days_Employed_cat =

cut(Percent_Days_Employed,
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breaks = Percent_Days_EmployedBreaks$brks))
a$pCat <- predict(nb2, newdata=a, type="prob")[,2]

# plot predictions on the log odds scale
plot(I(log(pNorm/(1-pNorm))) ~ Percent_Days_Employed, data=a,

type="l", lwd=3, ylim=c(-2,0.1),
ylab="Weight of evidence")

lines(I(log(pKern/(1-pKern))) ~ Percent_Days_Employed, data=a,
lwd=3, col = "orange")

lines(I(log(pCat/(1-pCat))) ~ Percent_Days_Employed, data=a,
lwd=3, col="#CC79A7")

quantile(datRecid$Percent_Days_Employed,
prob = (0:10)/10,
na.rm = TRUE) |>

jitter() |>
rug()

legend(0.7, 0, legend = c("Normal", "Kernel", "Discretized"),
col= c("black", "orange", "#CC79A7"),
lwd=7)
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Figure 8: Weight of evidence function for a discretized version of 𝑥𝑗

You can see that each approach does result in a different relationship between Percent_Days_Employed
and the associated weight of evidence. Realistically, the naive Bayes classifier’s design makes
it particularly useful for categorical features. I generally discretize any continuous measures
into categorical ones.
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8 Summary

For more information on the topic, the article by Spiegelhalter and Knill-Jones (1984) contains
a lengthy description of decision systems in use in the early 1980s. In addition, their section
4 offers an extensive discussion on the use of the naïve Bayes model in decision systems with
various special cases. They discuss the case of branching questions, those features that would
be further inspected if some other feature turned up positive (e.g. If the subject indicated
that they had pain, where is the location of the pain?). They develop enhanced estimates of
the weights of evidence that offer improved predictive performance. Although their work is
many decades old, the naïve Bayes classifier is still used as a competitive classifier due to its
robustness and simplicity. See Domingos and Pazzani (1997) for example.
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